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Abstract. Structure-preserving signatures (SPS) are a powerful building block for
cryptographic protocols. We introduce SPS on equivalence classes (SPS-EQ), which
allow joint randomization of messages and signatures. Messages are projective equiv-
alence classes defined on group-element vectors, so multiplying a vector by a scalar
yields a different representative of the same class. Our scheme lets one adapt a signature
for one representative to a signature for another representative without knowledge of any
secret. Moreover, given a signature, an adapted signature for a different representative is
indistinguishable from a fresh signature on a random message. We propose a definitional
framework for SPS-EQ and an efficient construction in Type-3 bilinear groups, which
we prove secure against generic forgers. We also introduce set-commitment schemes
that let one open subsets of the committed set. From this and SPS-EQ, we then build
an efficient multi-show attribute-based anonymous credential system for an arbitrary
number of attributes. Our ABC system avoids costly zero-knowledge proofs and only
requires a short interactive proof to thwart replay attacks. It is the first credential sys-
tem whose bandwidth required for credential showing is independent of the number of
its attributes, i.e., constant-size. We propose strengthened game-based security defini-
tions for ABC and prove our scheme anonymous against malicious organizations in the
standard model; finally, we discuss a concurrently secure variant in the CRS model.

Keywords. Public-key cryptography, Pairing-based cryptography, Structure-pre-
serving signatures, Attribute-based anonymous credentials, Set commitments.
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1. Introduction

Digital signatures are an important cryptographic primitive that provide a means for
integrity protection, non-repudiation and authenticity of messages in a publicly verifiable
way. In most signature schemes, the message space consists of integers in Zq(g) for
some group G, or of arbitrary strings mapped to either integers in Zgq(g) or elements
of a group G via a cryptographic hash function. In the latter case, the hash function is
often modeled as a random oracle (thus, one effectively signs random group elements).

In contrast, structure-preserving signature (SPS) schemes [2—8,20,58,61,72,73] sign
group elements without requiring any prior encoding. SPS are defined over two groups
G and Gy, equipped with a bilinear map (pairing), and messages are vectors of group
elements (from either G| or Gy or both). Moreover, public keys and signatures also
consist of group elements only and signatures are verified by deciding group membership
of their elements and evaluating the pairing on elements from the public key, the message
and the signature. Fully SPS schemes [9,66] also require the secret key to consist of group
elements. The main reason for the introduction of SPS was their interoperability with
the non-interactive zero-knowledge proof (NIZK) system by Groth and Sahai [67].

Randomization is a useful feature of signature schemes that lets anyone without knowl-
edge of the secret key transform a signature into a new one that looks like a freshly
generated signature on the same message. There have been various constructions of
randomizable signatures [16,41,42,81,87] and SPS schemes supporting different types
of randomization [3,6].

In this paper, we extend randomization by constructing SPS schemes that in addition to
randomizing signatures also enable randomization of the signed messages in particular
ways, and adaptation of the corresponding signatures. We show that such signature
schemes are particularly interesting for applications in privacy-enhancing cryptographic
protocols, as they allow avoiding costly zero-knowledge proofs.

1.1. Contribution

Our contributions can be broken down as follows: (1) introduction and instantiation of
SPS on equivalence classes (SPS-EQ), which are defined on group-element vectors; (2)
a randomizable set-commitment scheme that enables constant-size opening of subsets
of the commiitted set; and, building on these primitives, (3) a new construction approach
for multi-show attribute-based anonymous credentials, which we efficiently instantiate
and analyze in a comprehensive security model we propose.

Structure-Preserving Signature Scheme on Equivalence Classes. Inspired by randomiz-
able signatures, we introduce a variant of SPS. Instead of signing message vectors as in
previous SPS schemes, our variant signs classes of a projective equivalence relation R
defined over G* with £ > 1. These classes are lines going through the origin and are
determined by the mutual ratios of the discrete logarithms of the vector components. By
multiplying each component by the same scalar, a different representative of the same
equivalence class is obtained. If the decisional Diffie-Hellman (DDH) assumption holds
in group G, then it is hard to decide whether two vectors belong to the same equivalence
class.
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In SPS-EQ, an equivalence class is signed by signing an arbitrary representative of the
class. From this signature, one can then derive a signature for any other representative
of the same class, without having access to the secret key. Unforgeability for SPS-
EQ holds with respect to classes: after obtaining signatures on representatives of his
choice, no adversary should be able to compute a signature on a representative of a
class that is different from the ones signed. We also require that an adaptation of a
signature is distributed like a freshly computed signature on the new representative. In
combination with unlinkability of equivalence classes, this implies the following: given
arepresentative and a signature on it, a random representative of the same class and the
adaptation of the signature to it are indistinguishable from a completely random message
and a fresh signature on it.

We present a definitional framework for SPS-EQ using game-based security defini-
tions and give an efficient construction whose signatures are short and their length is
independent of the message-vector length £. We prove our construction secure in the
generic-group model [84].

Set Commitments. We propose a new type of commitment scheme that lets one commit
to sets and open arbitrary subsets. We first propose a model for this primitive and then
give an efficient construction, which we prove secure in this model. It lets one com-
mit to subsets of Z, and a commitment and a subset-opening both consist of a single
bilinear-group element. Our scheme is computationally binding, perfectly hiding, and
computationally subset-sound, meaning that given a commitment to a set S it is infeasi-
ble to produce a subset-opening for some 7" Z S. We prove our scheme secure under a
generalization of the strong Diffie-Hellman assumption [14].

The scheme also supports commitment randomization, which is compatible with the
randomization of messages in our SPS-EQ scheme (i.e., multiplication by a scalar). Ran-
domization is perfect, and the witness used for subset-opening can be adapted accord-
ingly. This property has not been achieved by existing constructions (cf. Sect. 1.2)
without relying on costly zero-knowledge proofs of randomization.

A Multi-Show Attribute-Based Anonymous Credential System. An attribute-based
anonymous credential system provides means for anonymous authentication. Such a
system is a multi-party protocol involving a user, an organization (or issuer) and a veri-
fying party. The user can obtain a credential on multiple attributes, such as her nationality
or age, from an organization and present the credential to a verifier later on, while reveal-
ing only certain attributes. Without learning any information about the user (anonymity),
the verifier will be convinced that the presented information (the shown attributes) is
authentic (unforgeability). In a multi-show credential system, a user obtains a creden-
tial from an organization, typically in a non-anonymous way, and can later perform an
arbitrary number of showings that are unlinkable to each other.

We propose a new way of building multi-show attribute-based anonymous credentials
(often called Privacy-ABCs; we simply write ABCs) from SPS-EQ and set commitments.
Using our instantiations, we construct the first standard-model multi-show ABC for
which anonymity holds against malicious organization keys and which does not assume
a trusted setup.

An SPS-EQ scheme allows randomizing a vector of group elements together with a
signature on it, a property we use to achieve unlinkability of credential showings. We
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use set commitments to commit to a user’s attributes. To issue a credential, the issuer
signs a message vector containing this set commitment; the credential is essentially
this signature together with the opening of the set commitment. During a showing, a
subset of the issued attributes can then be opened. Unlinkability of showings is achieved
via the randomization properties of both signatures and set commitments, which are
compatible with each other. Furthermore, to thwart replay attacks of showings, we add
a short constant-size proof of knowledge for providing freshness.

We emphasize that our approach to constructing ABCs differs considerably from
existing ones, as we do not use zero-knowledge proofs to selectively disclose attributes
during showings. This makes constant-size showings possible, as achieved by our con-
struction. In particular, the size of credentials as well as the bandwidth required when
showing a credential is independent of the number of possible attributes as well as those
contained in the credential; it is a small constant number of group elements. This is the
first ABC system with this feature. We note that Camenisch et al. [31] recently proposed
an approach to ABCs with the same asymptotic complexity.

We introduce a game-based security model for ABCs in the vein of the Bellare, Shi
and Zhang’s [29] model for group signatures and prove our ABC system secure in it. Our
model considers replays and provides a strong form of anonymity against organizations
that may maliciously generate keys—both of which are not considered by earlier models.
Replay attacks have often been considered an implementation issue, but we believe that
such attacks should already be considered in the formal analysis, avoiding right from
the start problems that might later appear in implementations.

We note that previously there were no other comprehensive models for attribute-based
credential systems. In independent work, Camenisch et al. [31,37] developed simulation-
based notions. The model in [37] is on the one hand very comprehensive and covers
many potential features of ABCs such as revocation, multi-credential representation,
key binding, blind issuance, pseudonyms, etc.; on the other hand, it only supports non-
interactive showings. Its comprehensiveness makes it much more complex and harder to
work with than our model, which focuses on covering the basic functionality of an ABC
system. The model in [31] focuses on ABCs secure in the universal composability (UC)
framework. Unfortunately, these strong security guarantees often come with significantly
deteriorated efficiency (as seen in the instantiations in [31]). In contrast, our model can
be instantiated with highly efficient constructions, as we show. We further note that [37]
and the ABC construction in [31] do consider replays and malicious keys too, although
the former in a seemingly weaker sense and the latter only assuming a CRS, whereas
our construction does not rely on a trusted setup.

Finally, we discuss a variant of our scheme with smaller organization key sizes that
is concurrently secure in the CRS model. We provide a comparison of our ABC system
to other existing multi- and one-show ABC approaches.

1.2. Related Work

Signatures. Blazy et al. [22] introduce signatures on randomizable ciphertexts and mod-
ify Waters’ signature scheme [87] to instantiate them. Given a signature on a ciphertext,
anyone can randomize the ciphertext and adapt the signature accordingly, knowing nei-
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ther signing key nor encrypted message. Their construction is only practical for very
small message spaces, which makes it unsuitable for our purposes.

Another related approach is the proofless variant of the Chaum-Pedersen signature
[46], used for self-blindable certificates by Verheul [86]. The certificate as well as the
initial message can be randomized using the same scalar, preserving the validity of the
certificate. This approach works for the construction in [86], but (as also observed in [86])
it is not a secure signature scheme due to its homomorphic property and the possibility
of efficient existential forgeries.

Linearly homomorphic signatures [21,34,57] allow for signing subspaces of a vector
space by publishing a signature for all of its basis vectors with respect to the same (file)
identifier; this identifier “glues” together the single vectors (of a file). Given a sequence
of scalar/signature pairs (8;, 0;);e[¢] for vectors v; (with the same identifier), one can
publicly compute a signature for the vector v = Y, 1y Bivi-

If one uses a different identifier for every signed vector v, then such signatures would
support a functionality similar to signature adaptation in SPS-EQ, that is, publicly com-
pute signatures for vectors v’ = B (although they are not structure-preserving). Various
constructions also provide a privacy feature called strongly/completely context-hiding
[10,11], requiring that a signature resulting from homomorphic operations is indistin-
guishable from a fresh one. Nevertheless, homomorphic signatures are not applicable
to our context: for SPS-EQ unforgeability, we must prevent combination of signatures
on several (independent) vectors; so every vector must be assigned a unique identifier.
This, however, breaks our unlinkability notion, as every signature can be linked to its
initial signature via the unique identifier. The same arguments also apply to structure-
preserving linearly homomorphic signatures [76]. Homomorphic signatures supporting
richer classes of admissible functions (beside linear ones) have also been considered,
but are not applicable in our context either (cf. [1, 10] for an overview). We note that the
general framework of P-homomorphic signatures [1,10] is related to our approach in
terms of unforgeability and privacy guarantees, but there are no existing instantiations
for the functionality that we require.

Chase et al. [39] introduce malleable signatures that let one derive, from a signature on
amessage m, asignature onm’ = T (m) for an “allowable” transformation 7'. This gener-
alizes signature schemes, including quotable [1, 11] or redactable signatures [71,83] with
an additional context-hiding property. Letting messages be pseudonyms and allowable
transformations map one pseudonym to another, the authors use malleable signatures
to construct anonymous credential systems and delegatable anonymous credential sys-
tems [18]. The general construction in [39], however, relies on malleable zero-knowledge
proofs [38] and is not practically efficient—even when instantiated with the Groth-Sahai
proof system [67]. Although the above framework is conceptually very different from
our approach, we note that SPS-EQ can be cast into the definition of malleable signa-
tures: the evaluation algorithm takes only a single message vector with corresponding
signature and there is a single type of allowable transformation. In contrast to Chase
et al. [39], our construction is practical and while Chase et al. only focus on transfor-
mations of single messages (pseudonyms) in their credentials, we consider multi-show
attribute-based anonymous credentials, which is the main focus of our construction.



Structure-Preserving Signatures on Equivalence Classes 503

Set Commitments. The best-known approach for commitments to (ordered) sets are
Merkle hash trees (MHTSs) [78], where for a set S the commitment size is O (1) and the
opening of a committed set element is of size O (log | S|). Boneh and Corrigan-Gibbs [17]
propose an alternative MHT construction using a novel commitment scheme based on a
bivariate polynomial modulo RSA composites. In contrast to MHTSs, their construction
supports efficient succinct proofs of knowledge (PoK) of committed values.

Kate, Zaverucha and Goldberg [74] define polynomial-commitment schemes that
allow to commit to polynomials and support (batch) openings of polynomial evalua-
tions. They can be used to commit to ordered sets (by fixing an index set) or to sets by
identifying committed values with roots. Their two constructions are analogues of DL
and Pedersen commitments and have O (1)-size commitments and openings. Camenisch
et al. [31] proposed a variant of the Pedersen version from [74]. A related commitment
scheme, called knowledge commitment, was proposed by Groth [65] and later general-
ized by Lipmaa [75].

Other commitments to ordered sets are generalized Pedersen [80] or Fujisaki-Okamoto
[56] commitments. Both have commitment size O (1), but opening proofs are of size
O (]S|). For completeness, let us also mention vector commitments [33], which allow
to open specific positions as well as subsequent updates at specific positions (but do
not necessarily require hiding). Zero-knowledge sets [79] are another primitive in this
context, which imply commitments [50]. They allow committing to a set and perform-
ing membership and non-membership queries on values without revealing any further
information on the set.

Unfortunately, all existing approaches do not simultaneously provide constant-size
commitments and subset-openings as well as randomization compatible with the ran-
domization of messages in our proposed SPS-EQ.

ABCs. Signatures providing randomization features together with efficient zero-know-
ledge (ZK) proofs of knowledge of committed values can be used to generically construct
ABC systems. The most prominent example is CL credentials [41,42], based on X-
protocols. Following Groth and Sahai’s [67] efficient non-interactive ZK proofs without
random oracles, various constructions of non-interactive anonymous credentials [19,
70] and delegatable (hierarchical) anonymous credentials [18,59] have been proposed.
These have a non-interactive showing protocol, that is, the show and verify algorithms
do not interact when demonstrating credential possession (also the recent model for
conventional ABCs in [37] considers non-interactive showings).

We note that although such credential systems with non-interactive protocols extend
the scope of applications of anonymous credentials, the most common use case (i.e.,
authentication and authorization) essentially relies on interaction in order to provide
freshness/liveness. We emphasize that our goal is not to construct non-interactive anony-
mous credentials.

1.3. Differences to the Original Work

The original version of this work by Hanser and Slamanig [69] gave an SPS-EQ instan-
tiation that was shown not to be EUF-CMA by Fuchsbauer [60]. We propose a new
instantiation (given in Fig. 1), which we prove EUF-CMA-secure and which is more
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efficient than the one in [69] in terms of key size, signature size and number of veri-
fication equations. We also show that our scheme satisfies stronger security properties
(Definitions 19 and 20) and discuss their relation to the original properties from [69].

While [69] use the notion of polynomial commitments with factor opening, we found
set commitments with subset-openings a more natural notion. We also strengthen the
ABC security model from [69]: we define anonymity against adversaries that create mali-
cious organization keys (Definition 29) and provide a stronger notion of unforgeability
(Definition 28).

1.4. Subsequent Work

Since its introduction, SPS-EQ have been used in various contexts. The attribute-based
multi-show anonymous credential system initially presented in [69] was extended in
[49] by an efficient revocation mechanism, which takes advantage of the randomization
of SPS-EQ.

Besides ABCs, SPS-EQ have also been used to efficiently instantiate other crypto-
graphic concepts. They yielded an intuitive construction of practical round-optimal blind
signatures in the standard model [54,55], which led to an attribute-based one-show
anonymous credential system. They were also used to construct conceptually simple
verifiably encrypted signatures in the standard model [68]. There it is also shown that
certain SPS-EQ imply public-key encryption, which separates them from one-way func-
tions. SPS-EQ were used in [53] for an efficient instantiation of access control encryption
[48] and as a building block to construct the most efficient fully anonymous dynamic
group signature schemes [51].

Fuchsbauer and Gay [52] have recently constructed an SPS-EQ from standard assump-
tions (such as DLin) in a weaker security model. Their scheme satisfies unforgeability
against adversaries that must reveal the discrete logarithms of the message vectors on
which they query signatures. They show that their model is sufficient for the use of
SPS-EQ in credential schemes and all other applications considered so far, except for
blind signatures.

Apart from results concerning SPS-EQ, let us also mention a recent alternative con-
struction of ABCs by Camenisch et al. [31] from what they call unlinkable redactable
signatures. In their approach (whose underlying ideas are related to ours) the size of the
credentials and showings is asymptotically identical to that of our construction. How-
ever, the concrete efficiency of our construction is much better, partly due to the fact that
[31] target security in the universal composability (UC) framework (cf. Sect. 5.6).

2. Preliminaries

A function €: N — R7 is called negligible if for all ¢ > 0 there is a ko such that
e(k) < 1/k¢ for all k > ko. By a <& S, we denote that a is chosen uniformly at random
from a set S. Furthermore, we write A(ay, ..., a,; r) if we want to make the randomness
r used by a probabilistic algorithm A(ay, . . ., a,) explicit and denote by [A(ay, ..., a,)]
the set of points with positive probability of being output by A. For an (additive) group
G, we use G* to denote G \ {0g}.
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Definition 1. (Bilinear map) Let G, G, and G be cyclic groups of prime order p,
where G| and G are additive and Gr is multiplicative. Let P and P be generators of
G and Gy, respectively. We call e: G| x G — Gr a bilinear map or pairing if it is
efficiently computable and the following holds:

Bilinearity: e(aP,bP) = e(P, P)?* = e(bP,aP) Va,b e Z,.
Non-degeneracy: e(P, 13) # lg,,1.e., e(P, 13) generates Gr.

If G| = Gy, then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For
Type-2 pairings, there is an efficiently computable isomorphism ¥ : G, — G but none
from G| — Gg; for Type-3 pairings, no efficiently computable isomorphisms between
G and G, are known. Type-3 pairings are currently the optimal choice in terms of
efficiency for a given security level [45].

Definition 2. (Bilinear-group generator) A bilinear-group generator BGGen is a (pos-
sibly probabilistic) polynomial-time algorithm that takes as input a security parameter
1¥ and outputs a description of a bilinear group BG = (p, G1, G2, Gr, e, P, 13) con-
sisting of groups G| = (P), G, = (13) and Gr of prime order p with [log, p] = « and
apairinge: G; x G, — Gr.

Definition 3. (DL) Let BGGen be a bilinear-group generator that outputs BG =
(p,G1,Gy,Gp,e, P| = P, P, = f’). The discrete logarithm assumption holds in
G; for BGGen if for all probabilistic polynomial-time (PPT) adversaries .4, there is a
negligible function €(-) such that

Pr[BG < BGGen(1¥), a < Z), a' < A(BG,aP;) : a' =a] <e(x) .

'The next assumption states that DL remains hard when given g — 1 additional elements
a’ P;, in both groups (hence “co-"). The assumption is implied, e.g., by the Type-3
bilinear-group counterpart of the g-SDH assumption [14,45].

Definition 4. (¢-co-DL) Let BGGen be a bilinear-group generator that outputs BG =
(p, Gy, Gy, G, e, P, P). The g-co-discrete logarithm assumption holds for BGGen, if
for all PPT adversaries A there is a negligible function €(-) such that

BG <B 1« k7
P /G(R_ GGen(l). @ < Zp . y_, <€) .
a' < A(BG, (a’/ P,a’ P)jeiq))
Note that we will use the g-co-DL assumption statically throughout this paper, that
is, g is a fixed system parameter and does not depend on the adversary’s behavior, as,
e.g.,in [14].

Definition 5. (DDH) Let BGGen be a bilinear-group generator that outputs BG =
(p, Gy, Gy, Gr, e, Pl = P, Py = P). The decisional Diffie—Hellman assumption holds
in G; for BGGen, if for all PPT adversaries A, there is a negligible function €(-) such
that
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K 1
Pr b*<—{0 1}, BG < BGGen(1¥), rst<—Z f b =L <.
b* L ABG, rP,sP,(1—=b)-t+b- rs)P) 2
The XDH assumption formalizes the absence of efficiently computable isomorphisms
from G to G;; the SXDH assumption implies that there is none from G, to G either.

Definition 6. ((S)XDH) Let BGGen be a bilinear-group generator outputting BG =
(p, Gy, Gy, Gr, e, P, P). The (symmetric) external Diffie—Hellman assumption holds
for BGGen if DDH holds in G (and in G»).

Our last assumption (Definition 8) is a special case of Boyen’s [26] extended version
of the uber-assumption [15]. We first recall the basic uber-assumption for Type-3 bilinear
groups:

Definition 7. ((R, S, T, f)-DH) Let BGGen be a bilinear-group generator that outputs
BG = (p, G1,G2,Gr,e, P, P); let R = (r)iefr], S = (s))jefs) and T = (t)kefr] be
three tuples of n-variate polynomials in Z,[ X1, ..., X,] and let f € Z,[ X1, ..., X;,].
Define R(X) = (1 (X) P)ie[r], S(X) = (si(X) P)ie[s) and T(X) := (e(P, P)i™);cpyy.
The (R, S, T, f)-Diffie—Hellman assumption holds for BGGen, if for all PPT adversaries
A there is a negligible function €(-) such that

BG <~ BGGen(1%), X <~ 7", ‘v’MeZ;”Vl;eZ’ L0£ f
Pr| e(P, P)/®) D # > Mijrisj+ Y bite | <€) .
£ A(BG, R(X), S(X), T(x)) (. ))elr]x[s] kelr]
Essentially, this assumption says thatif a polynomial f € Z,[ X1, ..., X,,]is independent

of the polynomials in R, S and T, then given their evaluations at some p01nt Xe Z” (as
exponents of the group generators), it is hard to evaluate f at vector X (as exponent of
the group generator). The assumption holds in the generic-group model [15].

Despite its power, the above assumption does not cover the g-co-SDH assumption
[14,45], which states that given (a’ P, a' ﬁ)ie[q], it is hard to output (s, aiy P) for any
s of the adversary’s choice. SDH allows the adversary to (1) choose its own target
function f (defined by s) from some family F of functions; and moreover (2) F can
contain rational functions and not only polynomials. Boyen [26, Sects. 6.1 and 6.2] thus
extends the uber-assumption to cover these two generalizations and argues that validity
in the generic-group model is maintained.

We introduce the following assumption, which is implied by Boyen’s extended uber-
assumption and generalizes the g-co-SDH assumption. The latter can be cast in the
uber-framework by stating that the adversary is given the evaluations at some point a
for (R,S,T) = ((X'),e[o q L (XDic [0,41, 1) and must output a rational function of the

1

form = X +Y and h(a) P. We extend the family of target functions from Fspy =

{le) | h € Zp[X], degh = 1} to any rational functions whose denominator degree is
greater than its enumerator degree; that is

fqz{%‘g,heZ,,[X],Ogdegg<degh5q} .
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Note that since any f = % € JF, is strictly rational (and nonzero since deg g > 0),
it is independent from all polynomials in R, S, T. The asymptotic simulation error in
the generic-group model proof of the generalized ¢g-co-SDH assumption attains an error
bound cubic in g.

Definition 8. (g-co-generalized SDH) Let BGGen be a bilinear-group generator that
outputs BG = (p, G1, Go, Gr,e¢, P, 13). Then, the g-co-generalized-strong-Diffie-Hell-
man assumption holds for BGGen in G, if for all PPT adversaries A there is a negligible
function €(-) such that
TeGy A g heZyX] A

0<degg <degh <g A <e(k).
e(T, h(a)P) = e(g(a) P, P)

BG <~ BGGen(1¥), a <~ Z,,, .
(g.h.T) < A(BG, (@' P,a' P)icq))

Analogously, the above assumption can be defined to require 7 € Gy. As with the
g-co-DL assumption, we will use the g-co-GSDH assumption statically.

2.1. Digital Signatures

Definition 9. (Signature scheme) A digital signature scheme is a tuple (KeyGen,
Sign, Verify) of PPT algorithms:

KeyGen(1*): This probabilistic algorithm takes as input a security parameter 1%. It out-
puts a private key sk and a public key pk (we assume that the message space M
can be deduced from pk).

Sign(m, sk): This algorithm takes as input a message m € M and a secret key sk. It
outputs a signature o.

Verify(m, o, pk): This deterministic algorithm takes as input a message m € M, a sig-
nature o and a public key pk. It outputs 1 if ¢ is a valid signature for m under pk
and 0 otherwise.

A digital signature scheme is secure if it is correct and existentially unforgeable under
adaptive chosen-message attacks (EUF-CMA) [62].

Definition 10. (Correctness) A digital signature scheme (KeyGen, Sign, Verify) is cor-
rect if for all k € N, all key pairs (sk, pk) € [KeyGen(1¥)] and all m € M we have:

Pr [Verify(m, Sign(m, sk), pk) = 1] =1.

Definition 11. (EUF-CMA) A digital signature scheme (KeyGen, Sign, Verify) is exis-
tentially unforgeable under adaptive chosen-message attacks if for all PPT algorithms
A with access to a signing oracle Sign(-, sk) there is a negligible function €(-) such that:

P |:(sk, pk) <X KeyGen(1%),

(m*, %) &ASign(-,sk)(pk) :om* ¢0 A Verify(m*, o*, pk) = 1j| <€),

where Q is the set of queries that .4 has issued to the signing oracle.
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2.2. Zero-Knowledge Proofs of Knowledge

In this section, we define zero-knowledge proofs of knowledge, which will be used
in our construction of ABCs. In particular, we require protocols to prove knowledge
of a discrete logarithm. These are best instantiated by starting with X'-protocols (i.e.,
three-round public-coin honest-verifier zero-knowledge proofs of knowledge) and then
efficiently converting them to (malicious-verifier) zero-knowledge proofs of knowledge,
as done in [32]. We provide generic definitions here.

For our definitions, let Lr = {x | 3w : (x, w) € R} C {0, 1}* be a formal language,
where R C {0, 1}* x {0, 1}* is a binary, polynomial-time (witness) relation. For such a
relation, the membership of x € Ly can be decided in polynomial time (in |x|) when
given a witness w of length polynomial in |x| certifying (x, w) € R. We consider
an interactive protocol (P, V) between a (potentially unbounded) prover P and a PPT
verifier V and denote the outcome of the protocol as (-, b) <« (73(', ), V(~)) where
b = 0 indicates that V rejects and b = 1 that it accepts the conversation with P. We
require the following properties of an interactive protocol.

Definition 12. (Completeness) We call an interactive protocol (P,V) for a rela-
tion R complete if for all x € Ly and w such that (x,w) € R we have that
(-, 1) < (P(x, w), V(x)) with probability 1.

Definition 13. (Zero knowledge) We say that an interactive protocol (P, V) for a rela-
tion R is zero-knowledge if for all PPT algorithms V* there exists a PPT simulator S
such that:

[V () ~ (P w), VOO (e -

xeLr

where (P(-, -), V*(-)) denotes the transcript of the interaction of P and V), and “~”
denotes (perfect) indistinguishability.

Definition 14. (Knowledge soundness) We say that (P, V) is a proof of knowledge
(PoK) relative to an NP-relation R if for any (possibly unbounded) malicious prover P*
such that (-, 1) « (P*(x), V(x)) with probability greater than € there exists a PPT
knowledge extractor /C (with rewinding black-box access to P*) such that KP" (%)
returns a value w satisfying (x, w) € R with probability polynomial in €.

For more formal definitions, see, e.g., [63]. If an interactive protocol is complete, perfect
zero knowledge and satisfies knowledge soundness, then we call it a zero-knowledge
proofs of knowledge (ZKPoK).

3. Structure-Preserving Signatures on Equivalence Classes

We aim for an efficient, randomizable structure-preserving signature scheme for group-
element vectors that allows to jointly randomize messages and signatures in public. We
associate messages with representatives of projective equivalence classes defined on the
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projective space underlying G* (for £ > 1 and some prime-order group G). Based on
such classes, we will construct a signature scheme that allows the randomization of
both messages and signatures via a change of representatives and a matching signature
update.

Let us detail these equivalence classes. All elements of a vector (M;);c[¢] € (G*)*
share different mutual ratios. These ratios depend on their discrete logarithms and are
invariant under the operation y: Z, x (G*t — (G*) with (s, (M)iere) — s -
(M;)iee1- This invariance allows for randomization of messages and coincides with the
operation of changing the representative inside projective equivalence classes defined
on G*. More precisely, we use the following equivalence relation to partition (G*) into
classes:

-

={(M.N) e G x (G"" |IseZi:N=s M} S (GH*.

Note that R is an equivalence relation if and only if G has prime order. We exclude the
zero element from G, since we require that for any (M;);¢[,) a randomization s - (M;);c[e]
looks random in (G*)¢, which is not the case if M; = 0 for some i.

In our scheme, an equivalence class [M]g is signed by issuing a signature on an
arbitrary representative M of [M = The scheme then allows to choose a different rep-
resentative s - M and to publicly adapt a signature for M to one for s - M i.e., without
access to the secret key. One of our goals is to guarantee that two message-signature pairs
from the same equivalence class cannot be linked. Messages of the same equivalence
class cannot be linked if the DDH assumption holds on the message space. Our approach
requires thus a DDH-hard group, which is why we consider structure-preserving signa-
tures (if the messages were vectors of elements from Z,’, class membership could be
decided efficiently).

3.1. Definition

Definition 15. (SPS-EQ) A structure-preserving signature scheme for equivalence
relation R over G; is a tuple SPS-EQ of the following polynomial-time algorithms:

BGGenR (1) is a bilinear-group generation algorithm which on input a security param-
eter k in unary outputs a prime-order bilinear group BG.

KeyGeng (BG, 1¢) is a probabilistic algorithm which on input a bilinear group BG and a
vector length £ > 1 in unary outputs a key pair (sk, pk).

SlgnR(M sk) is a probablhstlc algorithm which on input a representative M e (G*)e
of an equivalence class [M ]r and a secret key sk outputs a signature o.

ChgRepr (M o, ik, pk) is a probabilistic algorithm which on input a representative Me
(G*)Z of an equivalence class [M IRr,asignature o for M, ascalar wand a public key
pk returns an updated signature o’ that is valid for the representative M '=pu- M.

VenfyR(M o, pk) is a deterministic algorithm which given a representatlve M e (G*)e
a signature o and a public key pk outputs 1 if o is valid for M under pk and O
otherwise.
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VKeyR (sk, pk) is a deterministic algorithm which given a secret key sk and a public key
pk checks the keys for consistency and returns 1 on success and 0 otherwise.

In case it does not matter which new representative is chosen, ChgRep can be seen as
a matching randomization of a signature and its message using randomizer p without
invalidating the signature on the equivalence class. We require the signature resulting
from ChgRepp, to be indistinguishable from a freshly issued signature for the new rep-
resentative of the same class, that is, ChgRepg should also randomize the signature.

The scheme is correct if honestly generated key pairs and signatures verify, and if
ChgRepy outputs a valid signature.

Definition 16. (Correctness) An SPS-EQ scheme SPS-EQ over G; is correct if
for all security parameters k € N, for all £ > 1, all bilinear groups BG =
(p.G1.G2, Gy, e, P, P) € [BGGeng(1)], all key pairs (sk,pk) € [KeyGeng
(BG, 19)] and all messages M € (Gj‘)z and scalars u € Z, we have:

VKeyR (sk, pk) = 1 and
Pr [Verityz (M, Signg (M, sk), pk) = 1] =1 and
Pr [VerifyR(u . 1\2, CthepR(Irl, SignR(Z\_;I, sk), i, pk), pk) = l] =1.

We define EUF-CMA security w.r.t. equivalence classes. In contrast to the standard
notion of EUF-CMA, we consider a forgery a valid signature on a message from any
equivalence class for which the forger has not seen signatures. Note that we assume ¢
to be fixed.

Definition 17. (EUF-CMA) An SPS-EQ scheme SPS-EQ over G; is existentially
unforgeable under adaptive chosen-message attacks if for all £ > 1 and all PPT algo-
rithms .4 having access to a signing oracle Signg (-, sk), there is a negligible function
€(+) such that:

BG <X BGGenp (1¥),
Pr | (sk, pk) £ KeyGeng (BG, 19),
(M*,O'*) AASignR(-,sk)(pk)

: VM e Q:[M*lg # Mg A

— <e€k),
Verifyp (M*, 0%, pk) =1 | — )

where Q is the set of queries that .4 has issued to the signing oracle.

We now define new properties, which are better suited to work with than the class-
hiding game originally introduced in [69]. We start with a class-hiding property on the
message space:

Definition 18. (Class-hiding) Let £ > 1 and G be a base group of a bilinear group.
The message space (Gf)[ is class-hiding if for all PPT adversaries A there is a negligible
function €(-) such that
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P [b £40,1}, BG <—BGGenR(1K) M*(G*)l : b*Zb]_ <e(x).

O K @Ht, MD EMig, b* L Awe, M, MP)

N =

The following shows that the class-hiding property is implied by the DDH assumption.

Proposition 1. Let ¢ > 1 and G be a group of prime order p. Then, (G*)¢ is a class-
hiding message space if and only if the DDH assumption holds in G.

Proof. We first note that DDH (as defined in Definition 5) is equivalent to a variant
DDH* where r, s, t are drawn from Z ,;" instead of Z, (as the statistical distance of
the respective distributions is negligible). It suffices thus to show that class-hiding is
equivalent to DDH*.

“=" Let A be an adversary against DDH*. We define an adversary B against the
class-hiding property of (G*)‘: B is given an instance (BG, M M’ ), runs A on
(My, My, M/ 1 Mé) and outputs whatever A outputs.

If M' e [1\7[]73, then M’ = AM for some A € Zy and (My, Mo, M|, M}) =
(My, My, M1, AM>) isavalid DDH* tuple in G. If M’ is random, then (M1, My, My, M})
is also random as in the case b = 0 in the DDH* game. There are also “false positives”,
when M’ & [M1r but (M{, M) = (AM{, AM>) for some A. This occurs, however, only
with negligible probability; thus, 53’s success probability differs only by a negligible
amount from that of A, which shows the implication.

“<=" Let us parametrize the game from Definition 18 by bit b and denote it as Game,
that is, A is given (BG, M, M’ < (G*)!) in Gameg and (BG, M, M’ <X [M]g) in Game;.
We next define a hybrid game Game/j for every j € [£]: it chooses u < 7Z 5 as well as

Riy1,..., Ry £ G* and runs A on BG,Mand

:(I'LMlv'-"MMjaRj+15'-'7R£)'

Note that by definition Game| = Gameg and Game, = Game, respectively.
If there exists an adversary that distinguishes Gameg from Game; with probability
e(K), then for some index j € [£] it distinguishes Game’j_ | from Game’j with probability
e(K) which is non-negligible if € («) is non-negligible. We show how to construct a
DDH>’< distinguisher B from a distinguisher between Game _, and Game'.. T
Given a DDH* instance (BG,rP,sP,tP), B picks (m )icle] Lz *)e as well as
Riy1,..., Ry L G*, sets

M < (mP,...... ,mj_1P, (rP),mjz1P,...,mgP) (1)
M <« (mi(sP),....mj_1(sP),(tP),Rjt1,...... . Ry) )

and runs A on (BG, M, M’). If (BG,rP,sP,tP) is a “real” instance (i.e., t = rs),
then the first j elements in (2) are s-multiples of the first j elements in (1), and B
thus simulates Game/j. If ¢ is random, then so is the jth element in (2) and B simulates
Game';,_,. Hence, any adversary distinguishing Game’,_; from Game’; can be used to
break DDH*. O
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The next two definitions have already been used in [55]. The first one formalizes the
notion that signatures output by ChgRepy are distributed like fresh signatures on the
new representative.

Definition 19.  (Signature adaptation) Let £ > 1. An SPS-EQ scheme SPS-EQ on
(G;“)e perfectly adapts signatures if for all tuples (sk, pk, M, o, ) with

VKeyp, (sk, pk) = 1 M e ((G;k)e VerifyR(M, o,pk) =1 wezy

CthepR(M , 0, i, pk) and SignR(//,]rl , sk) are identically distributed.

The following definition demands that this even holds for maliciously generated ver-
ification keys. As for such keys there might not even exist a corresponding secret key,
we require that adapted signatures are random elements in the space of valid signatures.

Definition 20. (Signature adaptation under malicious keys) Let £ > 1. An SPS-EQ
scheme SPS-EQ on ((G;*)‘Z perfectly adapts signatures under malicious keys if for all

tuples (pk, M , 0, L) with
M e (G Verify (M, o, pk) = 1 weLr 3)

we have that the output of ChgRepp. (1\71 , 0, I, pk) is a uniformly random element in the
space of signatures, conditioned on Verifyg (uM, o', pk) = 1.

3.2. Our Construction

In Fig. 1, we present our SPS-EQ construction defined for a bilinear-group generator
BGGen with message space (G )¢. Its signatures consist of two G elements and one
G2 element and public keys are ¢-tuples from (Go)*. Verification is defined via two
pairing-product equations. A scheme with message space ((G:;)Z is easily obtained by
swapping the group membership of all elements.

3.3. Security of Our Construction
Theorem 1. The SPS-EQ scheme in Scheme 1 is correct.
Proof.  'We have to show that for all « € N, all £ > 1, all choices of bilinear groups

BG < BGGeng (1%), all choices of key pairs (sk, pk) < KeyGeng (BG, 1¢),all M € (G*)¢
and all ;1 € Z, the following holds:

VKeyRr (sk,pk) =1 A
VerifyR(]\71, SignR(ﬂ, sk; ), pk) =1 VyeZ;, ~

VerifyR(CthepR(fL Signg (M, sk; y), 11, pk; %), pk) =1 Vy o €Z;.
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KeyGenx (BG, 1¢): On input a bilinear-group description BG and vector length £ > 1 in
unary, choose (;);ee <= (Zy)", set secret key sk < (2;);e[¢, compute public key

pk « (Xi)ie[g] = (24 P);ejq and output (sk, pk). We assume that all other algorithms
have implicit input BG.

Signg (M, sk): On input a representative M = (M;);e() of equivalence class [M] and a
secret key sk = (2;);e(q € (Zy)", return L if M; ¢ Gj for some i € [(]. Else, choose
y £ 7% and output o — (Z,Y,Y) with
ZHnyiM,; Y<—;P V—1p,
i€[l]

< =

Verify (M, o, pk): On input a representative M = (M;)ieqq of equivalence class [M]%,
a signature o = (Z,Y,Y) and public key pk = (Xi)ig[(], output 0 if for some ¢ € [¢]:
M; ¢ GrorX; ¢ G;orif Z¢ GyorY ¢ Gt orY ¢ Gj. Return 1 if the following
equations hold and 0 otherwise:

[[eMiXi)=e(z,Y) A e(Y,P)=e(PY)
i€[l]

CthepR(M, o, i, pk): On input a representative M = (M;)ieqq of equivalence class
[]\Z]R, signature ¢ = (Z,Y,Y), p € Z, and public key pk, return L if
Verifyr (M, o, pk) = 0. Otherwise pick ¢ <* Z and return o/ — (YuZ, iK %Y).
VKeyr (sk, pk): On input sk = (;);c[¢ and pk = (Xi)iem, output 1 if for all ¢ € [¢]:

x; € Z, and X, ¢ G% and 2P = X;; return 0 otherwise.

Fig. 1. Scheme 1, an EUF-CMA secure SPS-EQ scheme.

KeyGenp, (BG, 1¢) returns sk < (X)iere] £ (Z;)e and pk <« (xif’)ie[g], which shows
the first equation.

Signr (M, sk; y) returns Z = y Zie[/ﬁ] xiM;, Y = %P and ¥ = %
into the first relation in Verify, we get

~

P. Plugging this

A ~ Ayy.L
e(Z, Y) = e(y Zie[é] xl-Mi, %P) = e(Zie[Z] xl'M,', P)y Y =
= [[eimi. Py = [ em:. Xi) .

iell] iell]

Since e(Y, ]3) = e(%P, }3) =e(P, %ﬁ) =e(P, f’), the second verification equation is
also satisfied.
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Finally, ChgRepg (M, (Z = y Y ;e XiMi, Y = 1P, ¥ = L P), pu, pk; ¥) outputs

1 1
¥ ¥

o' = (yuz, %Y, %?) = (Vy Xici XinMi, %%P %%13) ,

which is the same as SignR(MM,sk; Y¥y), and thus verifies by correctness of
SignR .- (]

We prove the security of our construction using a direct proof in the generic-group
model [84]. Loosely speaking, the generic-group model is a model to study the runtime of
generic algorithms in cyclic groups. Such algorithms do not exploit any special structure
of the representation of the group elements. Instead, they are only allowed to perform
abstract group operations and test whether two group elements are equal; they thus work
for any group. This is modeled by providing group operations to an algorithm solely
via oracles. In particular, for any discrete logarithm i, a generic algorithm can obtain a
random encoding o (i) of i P (where P is a fixed generator) via an oracle and can use
further oracles to perform group operations as well as equality checks on encodings of
group elements. In the bilinear-group setting, we consider all three groups G1, G; and
G as generic and algorithms have additionally access to a pairing oracle.

Theorem 2. In the generic-group model for Type-3 bilinear groups, Scheme 1 is EUF-
CMA secure.

Proof. In the generic-group model, an adversary only performs generic-group opera-
tions (operations in G, G, and G, pairings and equality tests) by querying the respec-
tive group oracle.

We first consider the messages submitted to the signing oracle and the forgery output
by the adversary as formal multivariate Laurent polynomials whose variables correspond
to the secret values chosen by the challenger, and show that an adversary is unable to
symbolically produce an existential forgery (even when it chooses message elements
adaptively). Then, in the second part we show that the probability for an adversary to
produce an existential forgery by chance is negligible.

The values chosen by the challenger in the unforgeability game, which are unknown
to the adversary, are the logarithms x1, ..., xg of the public keys ()2 iiefe] € ((G;)/Z and
the values y1, ..., y4, picked for the g oracle replies, that is, when the jth signing query
for a message (M ;)ic[¢) is answered as

A | | A
(Zj, Yj, Yj) = (yj Z,’e[z]xiMj,i, y—jP, EP> .

When outputting a forgery (Z*, Y*, Y*) fora message (M");c[¢], the elements the adver-

sary has seen, besides P and 13, are (Zj,Y;)jerq1inGy,and (f/j)je[q] as well as ()A(i),-e[g]

in G,. The forgery must thus have been computed by choosing

Tz, Tys s Tm*is Pz, Py jis Pm*.ijs Yy, js U5, js Ym* i j»> X3.i
€ Z, for je€[glandi € [£]
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and setting

Z5=mP+ Y piZi+ Y VY

Y*=m,P+ Z oy Zj+ Z vy,

Jj€lql J€lq]
Y* = §P+ZXy1X + Z ‘/fu
iell] J€lql
M = mp+ ;i P + Z om*.ijZj+ Z Yme.ij ¥
Jjelql J€lql

Similarly, for all j € [¢] the message (M ;);e[¢) submitted in the jth query is computed
as a linear combination of all the G| elements the adversary has seen so far, that is,

P1 ZIQY17"'7Zj—17 Y]_l .

By considering all these group elements and taking their discrete logarithms to the bases
P and P, respectively, we obtain the following linear combinations:

_nZ+ZijZ/+ZWij

J€lql J€lq]
Yy =my+ ZPHZ/+ Zwyj
J€lq]
—ﬂﬁzxwﬂr Z ‘pu
iell] J€lql
m;k=77m*i+ me*i]zj+ Z I/fm*ij
J€lq]
1
Mmji = Tm,ji + Z Pm,jikZk + Z Y, jik—
kelj—1] kelj—1] Yk

Observe that all message elements as well as the elements Y™, Y* of the forgery must
be different from Og, and Og,, respectively, by definition. Plugging the forgery into the
verification relations yields:

[]eMf Xi) =ez*.¥*) A e(¥*, P)=e(P,Y¥)
ie[l]

and taking discrete logarithms to the basis e(P, f’) in Gy, we obtain the following
equations:

> mixi =29* (4)
iell]
%

yro=yr ®)



516 G. Fuchsbauer et al.

The values m;.*, Z*, *, y* are multivariate Laurent polynomials of total degree O(g) in
X1, ... X¢, Y1, - - - » Yg- Our further analysis will be simplified by the following fact.

Claim 1. For all n > 1, the monomials that constitute z,, have the form

— H i [T % 6)

s kelt] kelt]

with 1 <t < n; forall ki # ka: ji, # jiy, forallk: jx <n ANs < jk; ji = n; and
b € {0, 1}.

In particular, the monomials in z,, can contain up to n y’s and x’s in the numerator and
there are as many x’s as y’s. All of the y’s are different, one of them is y, and the indices
of the other y’s are smaller than n. There can be (at most) one y in the denominator, and
its index is smaller than that of all other y’s.

Proof (of Claim 1). We prove the claim by induction on n.

n = 1 : As before the first signing query, the only element from G available to the
adversary is P, we have m ; = 7, 1,; and therefore

Z T, 1,i Y1Xi

iell]

which proves the base case.
n — n + 1 : Assume for all k € [n] the monomials of all z; are of the form in (6).
Since

1
MugLi = Tmnt1i + Dgen) PmantLikZk T 2kepn) YmantLik g -

by the definition of Signp we have

in+1 = Z Tm,n+1,i Yn+1Xi + Z Z Pm,n+1,i.k Yn+13kXi

icle] icle] ke
1

+ Z Z wm n+l,ik Yn+1—Xi . (N
ie[l] keln] Yk

The monomials in the first and the last sum are as claimed in the statement. By the
induction hypothesis any monomial contained in any zj is of the form

yb H Yip 1_[ Xip s
$ pelr] peli]

witht < n, j; = kand s < j, for all j, as well as j, < k, for all j, with
p < t (which are all different). Each such monomial leads thus to a mono-
mial in the 2™ sum in (7) of the form é (yn+1 ]_[pe[t] yjp)(x,- ]_[pe[t] xip) =
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# ]—IpE[I/] yjp HPE[I/] xl‘p, with t/ =1r+1 <n-+ 1, jt’ =n+ 1, i[+1 = 1.
Moreovert’ <n+1,all j p are still different and < n and s < j, for all j,, which
proves the induction step.

Together this proves the claim. O

We will use that by Claim 1 in any monomial in z; there are always exactly as many
y’s as x’s in the numerator and there are at least one y and one x; moreover, there is at
most one y in the denominator (and which does not cancel down). Moreover, we have:

Corollary 1. Any monomial can only occur in one unique zy,.

Proof. This is implied by Claim 1 as follows: For any monomial, let i* be the maximal
index such that the monomial contains y;«. Then, the monomial does not occur in z,
with n > i*, since z, contains y, contradicting maximality. It does not occur in z,, with
n < i* either, since all y; contained in z,, have j < n, meaning y;+ does not occur in z,;
a contradiction. O

We start by investigating Eq. (5):

>

*

Y

*

+ZP)JZ/+Z¢M = +ZX;M+Z%/
j€lq]

jelg jelq Vi ielt] jelq)

By equating coefficients, and taking into account that by Claim 1 no z; contains mono-
mials of the form 1, x;, or }1 we obtain py ; = 0 forall j € [¢] and

@) Ty = Ty

(i) x5 =0 Viel[]
(i) ¥5 ;5 =1y, Vj€lq]
Let us now investigate Eq. (4) (where in 3* we replace 75, X3, and ¥y ; as per (i), (i)
and (iii), respectively):

iell]
Z(n:n*z+2pm*ijzj+zl/fmz] )xiz
i€[{] J€lql J€lql
1
= (”7 + D gzt ) Ve )(”y + 2 Wy,k_)
Jj€lq] Jj€lql kelg] Yk

1
= m Ty + ZpZ]jTVZ]+ Z Yz, iy +7Tz‘)0yj) —+
Jj€lq) j€lq) i

Z szﬂpyk—z/‘f‘z ZWZ/Wyk—

qlkelq] Jj€lglkelg
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Equating coefficients for 1, we get:

(iv) mymy =0

Since by Claim 1, no terms in z;x;, z; and iz j are of the form }l or ﬁ equating
coefficients for 2 3; and for all j, k yields:

(V) ¥z, jmy +7Tzl/’y,j = 0 Vjelql
(Vi) ¥, ¥y =0 Vj, k €lq]

By (iv)—(vi), we have simplified Eq. (4) to the following:

Z(nm*l+zpm*ijZ/+ZWm*ij )xi

iell] J€lql

_szjnyzj—l'zzpzﬂ/fyk ()

Jjelql Jj€lglkelq]

Let us analyze the monomials contained in the z;’s. By (6) in Claim 1, there is an equal
number of y’s and x’s in numerators of such monomials. Therefore, on the LHS the
number of x’s in all monomials is always greater than that of y’s, meaning monomials
of type (6) only occur on the RHS of (8).

We now show that p; ,7yz, = 0 for all n € [g]. Assume that for some n € [g]
this is not the case. Since none of the monomials in z, can appear on the LHS and,
by Corollary 1, they do not appear in any other z;, i # n, z, must be subtracted by a
term contained in ylkz j for some j, k € [¢]. The term in this z; must not have y; in
the numerator, as otherwise it would cancel down and the number of y’s and x’s would
be different, meaning it would not correspond to any monomial in z,, (which are of the
form (6)). This also means that any monomial contained in z,, (in the first sum on the
RHS) must have yj in the denominator if it is to be equal to a term in )}—kz j

Next, we observe that monomials in z,, can only be equal to terms in yl—kz jif j =n.
This is because the maximal i * with y;+ appearing in z,, would be different for any other
2j, j # n (cf. the proof of Corollary 1). But this means that any monomial in z,,, which
by the above must have yx in the denominator, also occurs in the z,, in the double sum,
yielding a term with yk2 in the denominator. Since this cannot occur anywhere else in
the equation by Corollary 1, we arrived at a contradiction. We have thus:

(vid) pz Ty 20 =0 V) € [q]
Equation (4) has now the following, simplified representation:

Z(ﬁm*z‘f‘zpm*z]Z]‘FZWm*z] ) ZZPulﬂyk 9

ielt] J€lql Jj€lqlkelql

From Claim 1, we have that every monomial of z; has an equal number of y’s and
x’s in the numerator; for all monomials of the LHS, we thus have: (number of y’s)
= (number of x’s) — 1. For such a term to occur on the RHS, this has to be a monomial
N in z; that has yj in the numerator, so it cancels down and yields a term with more x’s
than y’s. We show that this must be z, that is, we show that p; ;¥ x = O forall j # k.
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First this holds for k > j, since the “largest” y contained in z; is y; and thus y; does
not cancel. Second for k < j, let us assume that there is at least one pair of coefficients
0z,j¥yx # 0 with k < j. Observe that yl—kz ;j on the RHS still contains y; as “largest”

y-value (by Claim 1). The monomials composing L, j do thus only occur in z; on the
LHS, thus py+ ; ; # 0 for some i € [£]. Thus, the monomial N from z; on the RHS
which contains yj also occurs on the LHS. However, as by Claim 1 every y occurs only
once in every monomial, after canceling out y; from z; no y; remains in N on the RHS.
As, however, y; is present in the corresponding monomial in z; on the LHS, there is no
corresponding term on the RHS. A contradiction. We thus obtain:

(viii) pz j¥y k=0 Vj kelgl, j#k

Since the RHS of (9) cannot be 0 (otherwise, all m:* on the LHS would be 0, which is
not a valid forgery), we have:

(ix) 3k €[q]: Pz k Wy k #0
We now argue that there exists exactly one such k: if we had p; x ¥y« # 0 as well as
Pk Wy # 0 fork # k', then p,x # 0 and ¥/, # 0 and thus p, x ¥y x # 0, which
contradicts (viii). We have thus:

x) Anelq]: pz,nwy,n #0
By (viii) and (x), Eq. (9) simplifies to

Z(nm*i'f‘zpm*ijZ/‘f‘ZWm*i/ )xi

iel{] J€lql

1
= Pz,n l[’y,n —Zn
Vi

n

:pz,nWy,n E My i Xi

iell]

:Pz,nWy,nZ(Tl'mnt‘i‘ Z pmn,,Z,—f- Z Wmnz] )x,-,

iell] jen—1] jeln—1]

where in the 2" line we substituted Zp, by its definition, namely y, > kele] M kXks and
in the 3™ line we replaced m, ; by its definition. Since by Claim 1, x;, z;x; and ,x,,
foralli € [€], j € [g], do not have common monomials, equating coefficients yields
(with @ := pz 0¥y n):

Tim*,i = O T n,i Pm*,i,j = & Pm n,i,j 1,//m*,i,j =o 1/fm,n,i,j

This finally means that the message for the forgery is just a multiple of the previously
queried message M,,, which completes the first part of the proof.

It remains to show that the probability that an adversary produces an existential forgery
by “accident”, i.e., that two formally different polynomials collide by evaluating to the
same value (or, equivalently, that the difference polynomial evaluates to zero), is negligi-
ble. Suppose that the adversary makes g queries to the signing oracle and O(q) queries
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to the group oracles. Then, all involved formal polynomials resulting from querying the
group oracles are of degree O(g) and overall there are O ( (‘é)) = 0(g?) polynomials
that could collide (i.e., whose difference polynomial evaluates to zero). Then, by the
Schwartz-Zippel lemma and the collision argument, the probability of such an error in

the simulation of the generic group is 0(%) and is, therefore, negligible in the security
parameter. [

Lemma 1. Scheme 1 has perfect adaptation of signatures and perfect adaptation of
signatures under malicious keys.

Proof. Let M € (GH)!, pk € (G$)* and (x;)iefe be such that pk = (x; P)jcfe]. A
signature (Z, Y, 1?) € G x G x Gj satisfying VerifyR(M, (z,7Y, I?), pk) = 1 is of
the form (y > x; M; Lp, %f’) for some y € Zj'. CthepR(M, (Z,Y,Y), u, pk) for

Xl y
w € Z; outputs (yyr Y x; uM;, #P, ﬁP), which is a uniformly random element o
in G x G x G} conditioned on VerifyR(,uM, o,pk) = 1.
Scheme 1 moreover satisfies Definition 19, since sk = (x;);¢c¢] is the only
element satisfying VKeyy (sk, pk) = 1 and Signgk (M, sk) outputs a uniformly random
element o in G| x G} x G conditioned on Verify (LM, o, pk) = 1 (like ChgRepr). [

4. Set Commitments

We now introduce a new commitment type that allows for committing to sets and besides
ordinary opening also supports opening of subsets. After formalizing the primitive, we
give an efficient construction with succinct commitments and openings.

Kate, Zaverucha and Goldberg [74] introduce the notion of constant-size polynomial
commitments. They present two schemes, one computationally and one perfectly hiding.
Following a similar approach, we construct set commitments which allow us to commit
to aset S C Z, by committing to a monic polynomial whose roots are the elements
of S. A feature we are aiming for is opening of subsets of the committed set, which
corresponds to opening non-trivial factors of the committed polynomial. Our scheme is
perfectly hiding and computationally binding.

4.1. Definitions

We first present the model and security properties of our set-commitment scheme. They
are adapted from the polynomial-commitment scheme in [69], tailored to sets encoded
as monic polynomials.

Definition 21. (Set commitments) A set-commitment scheme SC consists of the fol-
lowing PPT algorithms.

Setup(1¥, 17): This probabilistic algorithm takes as input a security parameter « and an
upper bound ¢ for the cardinality of committed sets, both in unary form. It out-
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puts public parameters pp (which include a description of an efficiently samplable
message space Sp, containing sets of maximum cardinality 7).

Commit(pp, S): This probabilistic algorithm takes as input the public parameters pp defin-
ing message space Sy, and a non-empty set S € Syp. It outputs a commitment C
to set S and opening information O.

Open(pp, C, S, O): This deterministic algorithm takes as input the public parameters
pp, a commitment C, a set S and opening information O. If O is a valid opening
of C to S € S, it outputs 1, and 0 otherwise.

OpenSubset(pp, C, S, O, T): This (deterministic) algorithm takes as input the public
parameters pp, a commitment C, a set S € Sp,, opening information O and a
non-empty set 7. It returns L if 7 ¢ S; else it returns a witness W for T being a
subset of the set S committed to in C.

VerifySubset(pp, C, T, W): This deterministic algorithm takes as input the public param-
eters pp, a commitment C, a non-empty set 7 and a witness W. If W is a witness
for T being a subset of the set committed to in C, it outputs 1, and 0 otherwise.

We call a set-commitment scheme secure if it is correct, binding, subset-sound and
hiding. The properties are as follows, where the definitions of correctness, binding and
hiding are as for standard commitment schemes.

Definition 22. (Correctness) A set-commitment scheme SC is correct if for all ¢t > 0,
all « > 0, all pp € [Setup(1¥, 17)], all § € Sy, and all non-empty 7 C S the following
holds:

1. Pr[(C, O) <“ Commit(pp, S) : Open(pp,C,S,0) =1]=1.

(C, 0) < commit(pp, S), ,
. : Verif t T =1|=1.
2. br |:W < OpenSubset(pp, C, S, O, T) erifySubset(pp, €, T, W) 1

Definition 23. (Binding) A set-commitment scheme SC is binding if for all t > 0 and
all PPT adversaries A there is a negligible function €(-) such that:

Open(pp, C, S, 0) =1 A

R K 1t
pp <= Setup(1*, 17), . Open(pp, C, 8", 0) =1/ | <e(x).

Pr , , R .
(C5S3 O,S,0)<—A(pp) S#S/

Subset soundness requires it to be infeasible to perform subset openings to sets that are
not contained in the committed set.

Definition 24. (Subset soundness) A set-commitment scheme SC is subset-sound if
for all # > 0 and all PPT adversaries A there is a negligible function €(-) such that:

Open(pp, C, S, O)
. VerifySubset(pp, C, T, W)
T

R K 1t 1A
pp < Setup(1¥, 17), | A

Prlc.s.0.7. W) <& Awp)

<e).
S

Qo
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Our hiding notion strengthens the standard one by giving the adversary access to an
OpenSubset oracle that opens the challenge commitment to any subset in the intersection
of the two candidate sets.

Definition 25. (Hiding) A set-commitment scheme SC is hiding if for all + > 0 and
all PPT adversaries .4 with access to an oracle OpenSubset there is a negligible function
€(-) such that:

b &40, 1}, pp < setup(1¥, 1),
(S0, S1, st) <~ A(pp),

(C, 0) <& commit(pp, Sp),
b* &AOpenSubset(pp,C,Sh,O, . nsomsl)(st C)

1
Pr :bF = —556(/().

The scheme SC is perfectly hiding if the above holds for € = 0.

4.2. The Construction
We now give a construction SC of a set-commitment scheme based on a bilinear-group
generator BGGen. For the sake of compact representation, for @ # § C Z, we define
the polynomials fs(X) := [T,cs(X —s) = Y10 £ - X¥ and f5(X) := 1. For a group
generator P, since fs(a)P = Zli'o( fi - a")P, one can efficiently compute fs(a)P
when given (a’ P)l‘.i0 but not a itself.
Setup(1¥, 17): On input a security parameter 1 and a maximum set cardinality 1" run
BG = (p, Gy, Gy, Gr,e, P, P) £ BGGen(1), pick a &Zp and output pp <«
(BG, (@' P, d 13),-6[”), which defines message space

Spp={SCZ,|0<|S|<t}.

Commit(pp, S): On input pp = (BG, (a' P, aiﬁ)ie[t]) and aset § € Spp:
— Ifforsome a’ € S:a’P = aP, output C &G’f and opening O <« (1,d’);
— Else pick p <7, compute C < p - fs(a)P € G} and output (C, O) with
0 < (0, p).

Open(pp, C, S, 0): On input pp = (BG, (a' P, a' P);c(;}), a commitment C, set S, and

opening O = (b, p):if C ¢ G orp ¢ Z; or S ¢ S, then return L.
- IfO = (,a")and @’ P = aP, then return 1; else return 0.
- IfO=(,p)and C = p - fs(a)P, return 1; else return 0.

OpenSubset(pp, C, S, O, T): On input pp = (BG, (@' P, ai};)ie[,]), a commitment C, a
set S, opening O and a set T, if Open(pp, C, S, 0) =0or T ;(_ SorT = (), then
return L.

—~IfO=(,d):ifa’ € T,return W < L;elsereturn W < fr(a’)~'-C.
- If O = (0, p), output W <= p - fo\7(a)P.
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VerifySubset(pp, C, T, W): On input pp = (BG, (a’ P, a’ P);c[;)), a commitment C, a set
T and a witness W: if C ¢ G} or T ¢ Sy, return 0.

— Ifforsomea’ € T:a’P =aP, th§n: if W= AL, return 1; else return O.
— Else: if W € G} and e(W, fr(a)P) = e(C, P), return 1; else return 0.

We have augmented the scheme from [69] by a special opening (of the form (1, a))
for the case that a set S contains the trapdoor a. (Under the 7-co-DL assumption, such
sets are infeasible to find.) This makes the scheme perfectly correct and perfectly hiding
while still maintaining computational binding and subset soundness.

We have defined the scheme in a way that reduces the computational complexity of
the prover in the ABC system in Sect. 5.4. To improve the performance of VerifySubset,
one could define a scheme with W € G (for which VerifySubset would have to compute

Jr(a)P).

Security. We prove SC secure under the g-co-DL and the g-co-GSDH assumption. We
use both assumptions in a static way, as g < ¢ is a system parameter and fixed a priori.

Theorem 3. SC is correct.

Proof. Let t,k > 0 and (BG, (a'P,a'P)icp)) < Setup(1¥,1") with BG =
(p,G1,Ga,Gr,e, P, P),let S C Z, with 0 < [S] < randlet? # T < S. We
consider two cases.

(1) a € S. Commit(pp, S) returns (C, O) with C € G} and O = (1, a). Open on
input (C, S, (1, a)) returns 1, which shows the first property. OpenSubset(pp, C, S, O, T)
returns W <« Lifa € Tand W <« fr(@)™' - Cifa ¢ T.Ifa € T, then
VerifySubset(pp, C, T, W) returns 1, as W = L. Ifa ¢ T, itreturns 1if C, W e Gj
and e(W, fr(a)P) = e(C, P). This is satisfied, since W € G} and e(W, fr(a)P) =
e(fr@"-C, fr@P) =e(C, P).

2)a ¢ S. Commit(pp, S) returns (C, (0, p)) with C = p - fs(a)P and p € Z;. Open
returns 1, since p € Z;, S € Sy, fs(a) # 0, thus C € G and C has the required
form. OpenSubset(pp, C, (0, p), T) returns W <« p- fo\7(a) P. Oninput (pp, C, T, W),
VerifySubset returns 1 if C, W € G7 and e(W, fT(a)ﬁ) =e(C, 13). Since p € Z, and
a & Swehave W = p - fs\7(a)P € G7; moreover, e(W, fT(a)ﬁ) =e(p - fs(a) -
fr@)™' - P, fr(@P) =e(p- fs(a)P, P) = e(C, P); so VerifySubset returns 1. [

Theorem 4. [f the t-co-DL assumption (Definition 4) holds, then SC is binding.

Proof.  'We show that if A is able to output a commitment C and two valid openings to
distinct sets S, S’, then we can construct an adversary B that breaks ¢-co-DL: B obtains
an instance I = (BG, (a' P, aiﬁ)ie[t]), sets pp < I and runs A(pp). If A outputs a
collision (C, S, O, §’, O), then by Open(pp, C, S, O) = 1 and Open(pp, C, S’, 0') =1
with § # §', it holds that C € G} and ¥ # S, S C Z,. If O = (1,4’), then by
Open(pp, C, S, O) = 1, we have @’ P = a P and B outputs a’ as solution to the -co-DL
problem. The case O’ = (1, a’) is dealt analogously. Else, we have O = (0, p), O’ =
(0, p") with p, p’" € Z; and:
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p-fs@P=C=p- fg@P, (10)

from which we have p - fs(a) — p’ - fs(a) = 0. Since S and S’ are both non-empty and
distinct, we have deg fs > 0 and deg fs» > 0 and fg # fs. Furthermore, fg and fg
are monic and p, p’ # 0, thus 1 (X) < p - fs(X) — p’ - fs'(X) # 0 while 7(a) = 0 by
(10). Therefore, a is a root of the nonzero polynomial #(X) € Z,[X] and ¢ (X) is known
to 3. Factoring ¢ (X) yields a, which B outputs as solution to the #-co-DL problem. [

Theorem 5. [f the t-co-GSDH assumption (Definition 8) holds, then SC is subset-
sound.

Proof. We show that if A is able to output (C, S, O, T, W), such that O is a
valid opening of C to set S, VerifySubset(pp, C, T, W) = 1 and T g_ S, then we
can construct an adversary B against f-co-GSDH as follows. On input an instance
I = (BG, (a'P, aiﬁ)ie[,]), B sets pp < I and runs A(pp); assume .4 breaks subset
soundness by outputting (C, S, O, T, W).

We first deal with the case a € T, which B can efficiently check. In this case, B
chooses ¢ € Z), \ {—a}, and outputs a solution (1, X + ¢, #CP) to t-co-GSDH.

For the rest of the proof, assume a ¢ T.1If Ais successful, we have Open(pp, C, S, O) =
1.If O = (1,d’), thena’ P = aP and B chooses ¢ € Z, \ {—a'}, and outputs a solution
(1, X +c, a,I?P) to t-co-GSDH. Else, we have O = (0, p) with@ # S C Z,, |S| <1,
p € Zy and

C=p-fs(@P eGj. (11)

From VerifySubset(pp, C, T, W) = 1, we have ¥ # T C Z,, |T| < t, W € G and
e(W, fr(a)P) = e(C, P), which by (11) equals e(p - fs(a)P, P). Since p # 0, we
have . .

e(p™'W, fr(@)P) = e(fs(@)P, P). (12)

We further distinguish two cases:
(1) 0 < |S| < |T|. Then, 0 < deg fs < deg fr < t, which together with (12) means
that (fs, fr, ,0_1 W) is a solution to the -co-GSDH problem.
(2)0 < |T| < |S]. Then, 0 < deg fr < deg fs. By polynomial division, we obtain
h,r with fs(X) = h(X)fr(X) + r(X) and degr < deg fr. Since T Q S, we have
0 < degr and moreover degh < deg fs < t. Plugging this into (12), we get:

e(p™'W, fr@)P)=e(h(a) fr(@P+r(@)P, P) = e(h(@)P, fr(a)P) +e(r(a)P, P)
and thus

e(p™'W = h(@)P, fr(a)P) = e(r(a)P, P).

Together with 0 < degr < deg fr < t, this means that (r, f7, p~'W — h(a)P) is a
solution to the 7-co-GSDH problem, which B can efficiently compute from pp, since
degh <t. a



Structure-Preserving Signatures on Equivalence Classes 525

Theorem 6. SC is perfectly hiding.

Proof.  We consider the view of an unbounded adversary A in the hiding experiment
and assume w.l.0.g. that every query 7T to the OpenSubset oracle satisfies ' C Z, and
W #T C (SoN Sp). We distinguish several cases.

(1) A chooses Sy, S; with a € Sy N 1. Then, for both b € {0, 1}, Cp is uniformly
random in G and the jth query 7 to OpenSubset is answered with L if a € T}, and
with W, , = fr(a)~' - Cp if a ¢ T;. The bit b is thus information-theoretically hidden
from A.

(2) a is contained in one of the sets So, S1; say a € Sp. Note that for all queries T}, we
have a ¢ T;. If b = 0, then A receives a uniformly random Cy and when it queries T
to the OpenSubset oracle, it receives W; o = ij (@)~'- Cy. If b = 1, then A receives
Ci=p - fs,(a)P for arandom p € Z,', and query T; to the OpenSubset oracle returns
witness W1 = p - fsr,(@) - P = p- fs,(@) - fr;(@)~" - P = fr;(@)~" - C1. Hence,
for both b € {0, 1} we have C}, is uniformly random in G} and W;;, = fT_/. @' c
for all j; the bit b is thus information-theoretically hidden from A.

(3) A chooses So, S1 with a & So U S;. Then, for both b € {0,1}: C, = p - fs,(a)P
for random p € Z; and a query for T; is answered by W;;, = p - fspr;(@P =
I (@)~ - Cp. Again for both b € {0, 1}, A receives a uniformly random element C},
and query replies that do not depend on b; the bit b is thus information-theoretically
hidden from A. (]

5. Building an ABC System

In this section, we present an application of SPS-EQ and set commitments introduced
in the two previous sections; we use them as basic building blocks for an attribute-
based credential system. ABC systems are usually constructed in one of two ways. They
can be built from blind signatures: a user obtains a blind signature from an issuer on
(commitments to) attributes and later shows the signature, provides the shown attributes
and proves knowledge of all unrevealed attributes [24,28,55]. The drawback of this
approach is that such credentials can only be shown once in an unlinkable fashion (one-
show).

Anonymous credentials supporting an arbitrary number of unlinkable showings
(multi-show) can be obtained in a similar vein using a different type of signatures:
A user obtains a signature on (commitments to) attributes, then randomizes the sig-
nature (so that the resulting signature is unlinkable to the issued one) and proves in
zero-knowledge the correspondence of this signature to the shown attributes as well as
the undisclosed attributes [41,42].! Our approach also achieves multi-show ABCs, but
differs from the latter. We randomize both the signature and the message (which is a set
commitment to attributes) and then use subset-opening of set commitments for selec-
tive constant-size showings of attributes. We thereby completely avoid costly ZKPoKs

"More generally, the user could prove knowledge of a signature without revealing it. Although this can be a
significant performance bottleneck, this allows for using ABCs with conventional signatures such as ECDSA,
as in [36].
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over the attributes, which in all other existing approaches require communication and
typically also computation in the number of shown/encoded attributes.

We start by discussing the functionality and security of ABCs in Sects. 5.1 and 5.2.
After providing some intuition for our construction (Sect. 5.3), we present the scheme
(Sect. 5.4) and analyze its security (Sect. 5.5). Finally, we give a performance and
functionality comparison with other schemes in Sect. 5.6.

5.1. Model of ABCs

In an ABC system, there are different organizations issuing credentials to users. These
users can then anonymously demonstrate possession of their credentials to verifiers. The
system is called multi-show when transactions (issuing and showings) performed by the
same user cannot be linked. A credential cred for user i is issued by an organization for a
set of attributes A and the user can show a subset D of A while hiding the other attributes.
Note that in our definition there is no setup and we do not assume any trusted parameters
at all.

Definition 26. (ABC system) An attribute-based anonymous credentials system con-
sists of the following PPT algorithms:

OrgKeyGen(1¥, 17): A probabilistic algorithm that gets (unary representations of) a secu-
rity parameter « and an upper bound ¢ for the size of attribute sets. It outputs a key
pair (osk, opk) for an organization.

UserKeyGen(opk): A probabilistic algorithm that gets an organization public key and
outputs a key pair (usk, upk) for a user.

(Obtain(usk, opk, &), Issue(upk, osk, A)): These algorithms are run by a user and an orga-
nization, respectively, who interact during execution. Obtain is a probabilistic algo-
rithm that takes as input the user’s secret key usk, an organization’s public key opk
and a non-empty attribute set A of size |A| < t. Issue is a probabilistic algorithm
that takes as input a user public key upk, the organization’s secret key osk and a
non-empty attribute set A of size |A| < t. At the end of this protocol, Obtain outputs
a credential cred for the user for attributes A or _L if the execution failed.

(Show(opk, A, D, cred), Verify(opk, D)): These algorithms are run by a user and a verifier,
respectively, who interact during execution. Show is a probabilistic algorithm that
takes as input the organization public key opk, an attribute set A of size |A| < f,
a non-empty set D C A (representing the attributes to be shown) and a credential
cred. Verify is a deterministic algorithm that takes as input the organization’s public
key opk and a set D. At the end of the protocol, Verify outputs 1 or O indicating
whether it accepts the credential showing or not.

5.2. Security of ABCs

We present a security model for multi-show ABCs, which is game based and in the
spirit of group signatures [29] and considers malicious organization keys. We note that
at the time of designing our model, there were no other comprehensive models for
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ABC systems.> We start with a high-level overview of the required security properties
and note that we consider only a single organization in our model of unforgeability
and anonymity (since all organizations have independent signing keys, an extension to
multiple organizations is straightforward):

Correctness: A showing of a credential with respect to a non-empty set D of attributes
always verifies if the credential was issued honestly for some attribute set A with
D C A,

Unforgeability: A user cannot perform a valid showing of attributes for which she does
not possess a credential. Moreover, no coalition of malicious users can combine
their credentials and prove possession of a set of attributes which no single member
has. This holds even after seeing showings of arbitrary credentials by honest users
(the notion thus covers replay attacks).

Anonymity: During a showing, no verifier and no (malicious) organization (even if
they collude) is able to identify the user or learn anything about the user, except
that she owns a valid credential for the shown attributes. Furthermore, different
showings of the same credential are unlinkable.

We now provide formal definitions of these properties, for which we introduce the
following global variables and oracles.

Global Variables. At the beginning of each experiment, either the experiment computes
an organization key pair (osk, opk) or the adversary outputs opk. In the anonymity game,
there is a bit b, which the adversary must guess.

In order to keep track of all honest and corrupt users, we introduce the sets HU, and
CU, respectively. We use the lists UPK, USK, CRED, ATTR and OWNR to track user public
and secret keys, issued credentials and corresponding attributes and to which user they
were issued. Furthermore, we use the sets J;,z and I7,r to store the issuance indices
and corresponding users that have been set during the first call to the left-or-right oracle
in the anonymity game.

Oracles. The oracles are as follows:

Oy (i) takes as input a user identity i. If i € HUUCU, it returns _L. Otherwise, it creates
a new honest user i by running (USK[i], UPK[i]) & UserkeyGen(opk), adding i to
HU and returning UPK[/].

Ocu(i, upk) takes as input a user identity i and (optionally) a user public key upk; if
user i does not exist yet, a new corrupt user with public key upk is registered, while
if i is honest, its secret key and all credentials are leaked.

In particular, if i € CUorifi € I1,r (thatis, i is a challenge user in the anonymity
game), then the oracle returns L. If i € HU, then the oracle removes i from HU and adds
it to CU; it returns USK|[i] and CREDI[] for all j with OWNR[j] = i. Otherwise (i.e.,
i ¢ HU U CU), it adds i to CU and sets UPK[i] < upk.

Oontiss (i, 2) takes as input a user identity i and a set of attributes A. If i ¢ HU, it returns
L. Otherwise, it issues a credential to i by running

2As already mentioned earlier, there are independently (and subsequently) developed very strong
simulation-based models in [31,37].
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(cred, T) &£ (Obtain(USK[i], opk, A), Issue(UPK][i], osk, A)) .

If cred = L, it returns L. Else, it appends (i, cred, &) to (OWNR, CRED, Z—\TTR)3
and returns T.

Oobtain (i, A) lets the adversary, who in the anonymity game impersonates a malicious
organization, issue a credential to an honest user. It takes as input a user identity i
and a set of attributes A. If i ¢ HU, it returns _L. Otherwise, it runs

(cred, -) £ (Obtain(USK[i], opk, A), ) ,

where the Issue part is executed by the adversary. If cred = L, it returns L. Else,
it appends (i, cred, A) to (OWNR, CRED, ATTR) and returns T.

Ohssue (i, 2) lets the adversary, who in the unforgeability game can impersonate a mali-
cious user, obtain a credential from an honest organization. It takes as input a user
identity i and a set of attributes A. If i ¢ CU, it returns L. Otherwise, it runs

(-, 1) <~ (-, Issue(UPKIi], osk, A)) ,

where the Obtain part is executed by the adversary. If I = L, it returns L. Else, it
appends (i, L, A) to (OWNR, CRED, ATTR) and returns T.

Oshow(j, D) lets the adversary play a dishonest verifier in a credential showing by an
honest user. It takes as input an index of an issuance j and a set of attributes D. Let
i < OWNR[j]. If i ¢ HU, it returns L. Otherwise, it runs

(S, -) < (show(opk, ATTR[j], D, CRED[]), -) ,

where the Verify part is executed by adversary.

OLor(jo, j1, D) is the challenge oracle in the anonymity game where the adversary must
distinguish (multiple) showings of two credentials CRED] jo] and CRED[ j;]. The
oracle takes two issuance indices jo and j; and a set of attributes D. If Jy,g # 0
and Jror # {Jjo, j1}, it returns L. Let igp <— OWNR[jp] and i1 <— OWNR[j;]. If
JLor = @, then it sets Jpog < {jo, j1} and Ir,r < {io,i1}. If ip, iy & HU or
D & ATTR[jo]l N ATTR[ /1], it returns L. Else, it runs

(S, +) <= (Show(opk, ATTR[ 3], D, CRED[ ), -) ,

(with b set by the experiment) where the Verify part is executed by the adversary.
Using the global variables and oracles just defined, we now define security of an ABC
system:

Definition 27. (Correctness) An ABC system is correct, if for all k > 0, all ¢ > 0 and
all Awith O < |A| <randall ¥ # D C A it holds that:

3We use this as a shorthand for “appends i to OWNR, cred to CRED and A to ATTR.
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(osk, opk) < OrgkeyGen(1%, 17),

(usk, upk) & UserkeyGen(opk), . (T,1) & (Show(opk, A, D, cred),
(cred, T) < (Obtain(usk, opk, &), Verify (opk, D))
Issue(upk, osk, A))

Definition 28. (Unforgeability) An ABC system is unforgeable, if for all + > 0 and
all PPT adversaries .4 having oracle access to O := {Ogy, Ocu, Ooptisss Olssue> Oshow
there is a negligible function €(-) such that

(osk, opk) AOrgKeyGen(l", 19, b*=1 A
Pr| (D, st) < A9 (opk), . Vj :OWNR[j] € CU <ek).
(-, b*) <& (A(st), Verify(opk, D)) = D € ATTR[/]

Definition 29. (Anonymity) An ABC system is anonymous, if for all > 0 and all PPT
adversaries .4 having oracle access to O := {Ony, Ocy, Oobtains Oshow> OLor}, there is
a negligible function €(-) such that

b <4 {0, 1}, (opk,st) <~ A(1<, 11, 1
Pr[b*&AO(st) P br=b) =

5.3. Intuition of Our Construction

Our construction of ABCs is based on SPS-EQ, on set commitments with subset-
openings and on a single constant-size proof of knowledge for proving freshness. In
contrast to this, the proofs of knowledge in existing ABC systems [28,40—44] require
computation and communication that is linear in the number of shown (or even issued)
attributes. However, aside from selective disclosure of attributes, they usually allow to
prove statements about non-revealed attribute values, such as AND, OR and NOT, inter-
val proofs, as well as conjunctions and disjunctions of the aforementioned. We achieve
less expressiveness; our construction supports selective disclosure as well as AND state-
ments about attributes (as the constructions in [31,43,44], of which only the latter also
achieves constant-size showings). A user can thus either open some attributes and their
corresponding values or solely prove that some attributes are encoded in the respective
credential without revealing their concrete values. Note that one can always associate
sets of values to attributes, so that users are not required to reveal the full attribute
value, but only predefined “statements” about the attribute value, e.g., “01.01.19807,
“>16"or“> 18 for an attribute label birthdate. This allows emulation of proving
properties about attribute values.

Example. To give an idea of the expressiveness of our construction, we include an
example of an attribute set A. We are given a user with the following set of attribute and
value strings:

A = {“gender,male", “birthdate, 01.01.1980",

“drivinglicense,#", “drivinglicense, car"}.
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Note that # indicates an attribute value that allows to prove possession of the attribute
without revealing any concrete value. A showing could, for instance, involve the follow-
ing attributes D and its hidden complement A \ D:

"o

D = {“gender,male", “drivinglicense, #"}
A\ D= {*birthdate, 01.01.1980", “drivinglicense, car"}.

Outline. We assume attributes to be values from Z,, and note that we can define attributes
of arbitrary format by using a collision-resistant hash function H : {0, 1}* — Z,,. In our
construction, a credential cred of user i consists of an element C from a bilinear group,
a scalar r € Z,f, an opening O of C and an SPS-EQ signature o on (C,r - C, P). The
element C is a set commitment to a set of attributes A C Z,, whose randomness is the
user secret usk (thus, its opening O contains usk or the commitment trapdoor a, ifa € 2).
When obtaining a credential, the user performs a ZKPoK 772U (upk) to prove knowledge
of usk, which allows us to extract usk for corrupt users in the proof of unforgeability.

The values C and r define an equivalence class [(C, r - C, P)]g thatis unique for each
credential with overwhelming probability. (The scalar r and the third credential compo-
nent are required to prove unforgeability.) During a showing, a random representative of
this class, (Cy, Ca, C3) & [(C,r-C, P)]gr, together with an updated signature o is pre-
sented. The randomized commitment C is then subset-opened to the shown attributes
D C A (representing selective disclosure). Hence, showings additionally include a wit-
ness W and a verifier checks whether the encodings of the disclosed attributes and W
give a valid subset-opening of Cj.

Freshness. We have to prevent transcripts of valid showings from being replayed by
someone not in possession of the credential. To this end, we require the user to conduct
an (interactive) proof of knowledge PoK{B | C3 = B P} of the discrete logarithm of
the third component C3 = u P of a shown credential cred’ = ((Cy, C2, C3), 07), i.e.,
the randomizer p used in the showing protocol, which provides a fresh challenge for
every showing. For the unforgeability reduction, we have the user additionally prove
knowledge of r = log, C2 by conducting a proof of knowledge PoK{c | C2 = aC1}.

We use the compact notation I7 Re (Cq, C3, C3) for the AND-composition of both proofs,
ie., HRF(Cl, Cy, C3) := PoK{(«, B Cr=aCy AN C3= /3P}

Malicious Organization Keys. In contrast to anonymity notions usually considered for
ABCs, our model guarantees anonymity even against adversaries that generate the orga-
nization keys maliciously. Our construction is in the standard model and organization
public keys consist of an SPS-EQ public key pk and set-commitment parameters ppg.
We augment the issuing protocol sketched above and let the (malicious) organization
prove knowledge of a secret key that matches its public key to the user (which allows us
to extract the signing key in the anonymity proof).

For an SPS-EQ scheme SPS-EQ, we define an NP-relation Rg, whose statements
and witnesses are organization public and private keys, i.e.. (pk,sk) € Ry &
VKeyp (sk, pk) = 1. In our proof of anonymity, we also need to extract the set-
commitment trapdoor a € Z,, so we augment the above relation to:

((@P,pk), (wy,w2)) € Ro <= (aP = w1 P A VKeyr(wz,pk) =1),
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where a P is from the set-commitment parameters pp,, contained in opk. For compactness,
we use the notation I7%° (opk) and require the proof to be a perfect zero-knowledge proof
of knowledge.

ZKPoKs and Concurrent Security. We will consider all ZKPoKs in a black-box way and
assume that they are 4-move ZKPoK proofs from [32], which are based on X'-protocols
and feature rewindable black-box access to the verifier (for perfect zero-knowledge) and
the prover (for knowledge soundness), respectively.

Note, however, that the ZKPoKs from [32] are not concurrently secure and so neither
is any instantiation of Scheme 2 using them. Thus, each organization, each user and each
verifier must not run more than one protocol execution at once. We will briefly discuss
the idea of a concurrently secure scheme variant in the CRS model in Remark 1.

5.4. The Construction of the ABC System

Our ABC construction is based on any perfectly adapting structure-preserving signa-
ture scheme on equivalence classes and the set-commitment scheme from Sect. 4.2
and is described in Scheme 2 (Fig. 2). In particular, since the organization public key
is fully determined by the adversary (for malicious-key anonymity), we assume the
bilinear-group generation algorithm inside the set-commitment-setup algorithm to be
deterministic* and produce the same bilinear group for each security parameter.’ We
will base our proofs on assumptions that are modified accordingly, i.e., that are with
respect to a deterministic BGGen producing one bilinear group per security parameter.

Randomizable Set Commitment. The instantiation of set commitments presented in
Sect. 4.2 is randomizable in the sense that commitments as well as subset-opening
witnesses can be consistently randomized. For a compact presentation of our ABC
construction and to smoothly integrate the set-commitment scheme with the SPS-EQ
scheme, in Scheme 2 we make the randomness p of the Commit algorithm explicit, i.e.,
write Commit(pp, S; 0). We also stress that in (Show, Verify) after the OpenSubset algo-
rithm has been run, we randomize the witness W using u to obtain W’. Observe that the
resulting witness is then consistently randomized with the set commitment C.

Optimizations. Note that the first move in the showing protocol can be combined with
the first move of IT7F, meaning the showing protocol consists of a total of 4 moves,
when using 4-move ZKPoKs. Furthermore, note that issuing can be made more efficient
with regard to both communication complexity and computational effort, as osk contains
set-commitment trapdoor a: instead of using a pairing to check C for consistency, the
issuer can compute it herself as C < fa(a) - upk. (We wrote our scheme so that a is
never used and ppg, can then be moved to public parameters in the concurrently secure
variant discussed below.)

4 This assumption was also made by Bellare et al. [23] and is justified by actual implementations. For
example, BN-curves [25], the most common choice for Type-3 pairings, are generated deterministically.

SHence, the only random choice made by the set-commitment setup algorithm is picking the commitment
trapdoor a. Inside OrgkeyGen, we will make this randomness explicit.
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OrgKeyGen(1%,1%): Given ,t > 0, compute BG = (p, G1, G2, G, ¢, P, 15) — BGGen(1%);
pick a < Zy, run pp,. = (BG, (a'P,a’P)c[y)) + Setup(1*,1'; @), which defines
Spp — {ACZp [0 <[A] <t}
Run (sk, pk) <X KeyGenz (BG, 1%) for £ = 3 and return (osk, opk) «— ((a, sk), (pp., pk)).
UserKeyGen(opk): From opk derive security parameter > 0, deterministically compute BG «—
BGGenr (17), pick usk <= Z;, set upk « usk - P and return (usk, upk).
(Obtain, Issue): Using IT7%° (opk = ((BG, (a'P, a'P),), pk)) = PoK{(a,ﬁ) | aP = aP A
VKeyR(ﬁ, pk) = 1} and IT™*V(upk) := PoK{a | aP = upk}, Obtain and lIssue interact as

follows:

Obtain(usk, opk, A) Issue(upk, osk, &)

BG <« BGGenx (17) If A ¢ Spp, return L
If A ¢ Spp, return L

R
70 (upk) 1 77R0 (upk) fails, return L

If I1%0 (opk) fails, return L IT7° (opk)
(C,0) « Commit(ppg, A; usk)
r&Z: Rer-C C,R Ife(C, P) # e(upk, fa(a)P) and
Va' € A:a'P # aP thenreturn |
If Verify ((C, R, P), 0, pk) = 0 —7%  Elseo < Signr((C, R, P),sk)
return L

Else return cred < (C, o, r,0O)

(Show, Verify): Using II™F(C1,C2,Cs) := PoK{(a,8) | Co = aCi A C3 = BP}, Show and

Verify interact as follows:

Show(opk, A, D, cred) Verify(opk, D)

Letcred = (C, 0,7, 0); << 77 Let opk = (ppe., pk)
o' & ChgRepr ((C,r - C, P), o, 1, pk)
cred’ « ((C1,Ca,C3) = p- (C,r- C, P),0’)
W «— OpenSubset(pp,., C, A, O, D)
W' e W cred’, W’
I7F(C1, Co,Cs) 1 (1R (Cy, Ca, Ci) fals, return 0
Return (Verifyr (cred’, pk) A
VerifySubset(pp,., C1,D, W'))

Fig. 2. Scheme 2, a multi-show ABC system.

5.5. Security

The correctness of Scheme 2 follows by inspection.
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Theorem 7. Let ITRF, [T™ and IT™° be ZKPoKs. If the t-co-DL assumption holds,
SC is subset-sound and SPS-EQ is EUF-CMA-secure, then Scheme 2 is unforgeable.

In the proof of unforgeability, we distinguish whether the adversary wins the game by
forging a signature, breaking subset-opening soundness of the commitment scheme or
computing a discrete logarithm. We can efficiently determine which was the case since
the knowledge extractor of the ZKPoK IT7%F lets us extract the credential used by the
adversary.

Proof (of Theorem 7). We first introduce the following syntactic changes to the exper-
iment, which let us distinguish different types of forgeries: (1) We include the value R
in credentials cred output by Obtain (these belong to honest users and are now of the
form cred = ((C, R), o, r, 0)). (2) When the adversary makes a valid call to Ojsge, the
experiment receives the values C, R and produces a signature o'; instead of appending
L to the list CRED, the oracle now appends ((C, R), o, L, 1). Note that the adversary’s
view in the experiment remains unchanged.

Assume now an efficient adversary A wins the unforgeability game (Definition 28)
with non-negligible probability, and let ((C}, C5, C3),c*) be the message-signature
pair it uses and W* be the witness for an attribute set D* < ATTR[ ], for all j with
OWNR[j] € CU; moreover, the ZKPoK IT Re(C*, C3, C3) verifies. We distinguish the
following cases:

Type 1: [(CT,C3,C)Ir # [(C, R, P)]Ig for ((C, R), 0, *,%) = CRED[j] for all
issuance indices j (i.e., OWNR[j] € HU U CU). The pair ((C], C3, C3),0") is
thus a signature forgery and using .4 we construct an adversary B that breaks the
EUF-CMA security of the SPS-EQ scheme.

Type 2: [(CT,C5,C)Ir = [(C, R, P)]r where ((C, R), 0, *,%) = CRED[j] for
some index j with OWNR[j] € CU. Since A only wins if D € ATTR[/], it must
have broken subset soundness. We use A to construct an adversary /5 that breaks
subset soundness of the set-commitment scheme SC.

Type 3: [(CT,C3,CHIr = [(C, R, P)lg where ((C, R),0,r, 0) = CRED[/] for
some index j with OWNR[j] € HU. Then, we use A to break g-co-DL.

Type 1. This reduction is straightforward. B interacts with a challenger C in the EUF-

CMA game for SPS-EQ and 5 simulates the ABC-unforgeability game for .A.

C runs (sk, pk) < KeyGeng (BG, 1) and gives pk to BB. Then, B picks a <~ Z,, defines
PPss < (BG, (@' P, a' P)icy)) and sets (osk, opk) < ((a, L), (ppss, pk)). It next runs
A(opk) and simulates the environment and the oracles. All oracles are executed as in the
real game, except for the following oracles, which use the signing oracle instead of the
signing key sk:

Ooptiss (i, 2): B computes (C, O) &Commit(ppsc, A, USK[i]), picks r &Z; and then
queries its oracle Signg (-, sk) on (C, r - C, P) to obtain o; B appends (i, ((C, r -
C),o0,r, 0),2) to (OWNR, CRED, ATTR).

Ohssue (i, A): B runs this oracle by running the simulator S of ZKPoK I7T Ro (opk) (as it
does not know sk = osk[2]), and instead of signing (C, R, P), B obtains the signa-
ture o from C’s signing oracle. If successful, B appends (i, ((C, R), o0, L, 1), n)
to (OWNR, CRED, ATTR) and returns T.
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Note that by perfect zero-knowledge of IT Ro (opk) the simulation of Oy is perfect,
and so is that of Ogpyss. When A outputs (D*, st), B runs A(st) and interacts with A as
verifier in a showing protocol. If A delivers a valid showing using ((C7, C5, C3), c*) and
conducting I7 Re(C*, C3, C3), then B runs the knowledge extractor of IT R# 10 obtain a
witness w = (r”, u) with C; = P If there is a credential L # ((C", R"), 0/, *, %) €
CREDsuchthat (C’, R’, P) = u~'-(C¥, C3, C3), then Baborts. (In this case, the forgery
is not of Type 1.) Otherwise, B has never queried a signature for class [(C}, C5, C3)Ir
and outputs ((C7, C3,C3), 0"), whichis aforgery. B breaks thus EUF-CMA of SPS-EQ.

Type 2. B interacts with the challenger C in the subset-soundness game for SC for some
t > 0. First, C generates set-commitment parameters ppg, < (BG, (@' P,a ﬁ)ie[t]) with
BG = (p, Gy, Gy, Gr,e, P, ﬁ) = BGGenR (1) and sends ppg, to B. B generates a
key pair (sk, pk) £ KeyGenp, (BG, 13), sets (osk, opk) <« ((L, sk), (ppsc» Pk)) and runs
A(opk), simulating the oracles. All oracles are as in the real game, except for Oopyss,
in which B simply ignores the first two moves IT Ru and TR0, and Oegue, Which is
simulated as follows (as 3 does not know a = osk[1]):

Olssue (i, 2): The oracle is simulated as prescribed except for running the simulator for
I1™0 (opk). When A conducts 177 (upk), B runs the extractor for I77V to extract
usk and sets USK|[i] < usk.

By perfect zero-knowledge of I77%° (opk), the simulation of the oracle Osqye is perfect.
Moreover, note that 53 stores the secret keys of all users (all i € HU U CU).

When A outputs (D*, st), 5 runs .A(st) and interacts with A as verifier in a showing
protocol. Assume A delivers a valid showing using ((C}, C3, C3),0™) and a witness
W* for the attribute set D* such that D* € ATTR[ ] for all j with OWNR[ ] € CU and by
conducting ITRF(C*, C3, C3). Then, B runs the knowledge extractor of IT Rr to obtain
a witness w = (r”, ) such that C; = uP.Let (C',R', P) = wt(c, C3, Cy)sif
there is no credential 1 # ((C’, R’), *, *, *) € CRED, then B aborts (the forgery was of
Type 1). Otherwise, let j* be such that ((C’, R"), *, %, *) = CRED[j*]. If OWNR[j*] €
HU, then B aborts (the forgery was of Type 3). Else, we have OWNR[j*] € CU and
D* ¢ ATTR[j*]. If for some a’ € ATTR[j*] : a’P = aP, then B sets O* « (1,4a).
Else, B sets O* < (0, u - USK[OWNR[j*]]). B outputs (C7, ATTR[j*], O*, D*, W*),
which satisfies D* & ATTR[j*] # L and VerifySubset(pps;, C}, D*, W*) = 1. B’s output
breaks thus subset soundness of SC.

Type 3. We assume the forgery to be of Type 3 and use a sequence of games which
are indistinguishable under g-co-DL. Henceforth, we denote the event that an adversary
wins Game i by S;.

Game 0: The original game, which only outputs 1 if the forgery is of Type 3.
Game 1: As Game 0, except for the following oracles:

Ootiss (i, 2): As in Game 0, except that the experiment aborts if set-commitment trap-
door a is contained in A.
Olssue (i, B): Analogous to Oppyss-

Game 0 — Game 1: If A queries a set A with a € A to one of the two oracles, then
this breaks the g-co-DL assumption for ¢ = ¢ and BG = BGGen (1*). Denoting by



Structure-Preserving Signatures on Equivalence Classes 535

€4pL (k) the advantage of solving the g-co-DL assumption, we have thus
[ Pr[Sol — Pr[Si]| = €gpr(x) . (13)

Game 2: As Game 1, with the difference that the oracle Ogpoy is run as follows:
Oshow(J, D): As in Game 0, but the ZKPoK R+ (Cq, Ca, C3) is simulated.
Game 1 — Game 2: By the perfect zero-knowledge property of IT7%F, we have that

Pr[Si] = Pr[S,] . (14)

Game 3: As Game 2, except that oracle Oyy is run as follows:

Oyu(i): As in Game 0, but when executing UserKeyGen(opk), the experiment draws
usk <7, instead of usk <7, and it aborts if usk = 0.

Game 2 — Game 3: Denoting by ¢, the number of queries to Oyy, we have
| Pr(S2] — Pr(S3]| < . (15)

Game 4: As Game 3, except that when A eventually delivers a valid showing by con-
ducting 7 Re(C*, C3, C3), the experiment runs the knowledge extractor of /7 Re and
extracts a witness w. If the extractor fails, we abort.

Game 3 — Game 4: The success probability in Game 4 is the same as in Game 3, unless
the extractor fails, i.e., using knowledge soundness we have

| Pr(S3] — PrS4]] < ks (k) . (16)

Game 5: As Game 4, except that we pick an index k <% [¢,], where ¢, is the number of
queries to Oppyss- (The game guesses that the adversary will use the kth issued credential
in its Type 3 forgery.)

The extracted witness w is such that w = (r,u) € (Z; )2 and C; = rCf and
C; = pP. If credential ((C', R),0’,r’, O") < CREDIK] is such that (C’, R’, P) #
,u_l - (CT, C; ,C ; ), then the experiment aborts. Furthermore, we change the executions
of the following oracle, by aborting should the adversary want to corrupt the user that
owns the kth credential:

Ocu(i): Asin Game 0, except that the experiment aborts when i = OWNR[k].

Game 4 — Game 5: Note that when the forgery is of Type 3, then there exists some
j s.t. for CRED[j] = ((C’, R"), o/, ', O') we have (C', R', P) = u~' - (C?, C3.C3);
moreover, OWNR[j] € HU. With probability i, we have k = j, in which case the
experiment does not abort, i.e., we have

Pr(Ss] > - PriSal (17)

We will now show that Pr[Ss5] < epr (k), where e pr (k) is the advantage of solving the
DLP. B plays the role of the challenger for A in Game 5 and obtains a G-DLP instance
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(BG, xP) with BG = (p, Gy, G2, G, e, P, P) = BGGeng (1), generates ppy, <«
(BG, (a' P, a' P)icjn)) by picking a <X Z,, generates (sk, pk) <~ KeyGen (BG, 1°) and
sets (osk, opk) < ((a, sk), (ppsc, Pk)). Then, 13 runs A (opk) and simulates the oracles as
in Game 5, except for Ogpyss, Whose simulation is as follows:

Oobtiss (i, 2): Let this be the jth query. B first computes C < USK[i] - fa(a) - P. If
Jj = k, then it sets R <— USK[i] - fa(a) -xP (= x - C), O = (0,USK[{]) and
appends cred = ((C, R), o, L, O) to CRED. Otherwise, B proceeds as in Game 5.

Note that since Game 2, the third component (r) of the credential is not required to
simulate Ogpoy queries. When A outputs (D*, st), then 5B runs A(st) and interacts with A
as verifier in a showing protocol. If A wins Game 5 using (C}, C5, C3) and conducting
TRe(C*, C3, C3), then B runs the knowledge extractor of IT Rr and extracts a witness
w= (0, n € (Zp*)2 such that C; = r'C} and C§ = wP. Further, we have that
((C',R", o', L, 0') = CRED[k]. In the end, B outputs r’ as a solution to the DLP in
G1. We thus have

Pr[Ss] < epr(x) . (18)

Equations (13)—(18) together yield Pr[So] < g, - €pr (k) + €xs(k) + % + €4pL(K),
where ¢ = t and ¢, and ¢, are the number of queries to Ogpyss and Oy,
respectively. (|

Theorem 8. Ler [TRF, [TRv and TR0 be ZKPoKs. If the SPS-EQ has a class-hiding
message space and perfectly adapts signatures, then Scheme 2 is anonymous.

The proof proceeds by defining a sequence of indistinguishable games in the last of
which the answers of oracle Oy, g are independent of the bit b. Such an answer contains
(C1, Ca, C3), o’ and the proof ITRF(Cy, Ca, C3). We first replace the signature o’ by
a fresh signature (Game 2) and simulate the proof I77%F (Game 3). In Games 5 and 6,
we replace Cq and Cy by random elements. Since C3 = w - P for u Lz ¥, in the final
game the adversary receives a fresh signature o on a random tuple (Cy, C2, C3) and a
simulated proof, resulting in a game that is independent of b.

Proof (of Theorem 8). We assume that adversary A at some point calls O, for some
(Jjo, j1, D) with both OWNR[ jo], OWNR[ji] € HU. This is w.l.o.g., as otherwise the bit
b is perfectly hidden from .A. Henceforth, we denote the event that an adversary wins
Game i by ;.

Game 0: The original game as given in Definition 29.

Game 1: As Game 0, except for the oracle Ogpain. On the first successful completion of
the ZKPoK 170 (opk) (of which there must be at least one by the above assumption), the
experiment runs the knowledge extractor for I7 RO, which extracts a witness (wi, wp).
If the extractor fails, we abort.

Game 0 — Game 1: The success probability in Game 1 is the same as in Game 0, unless
the extractor fails, i.e., using knowledge soundness we have

| Pr(Sol — PrSi]] < ks (k) . 19)
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Game 2: As Game 1, except that the experiment sets a <— w; and sk <— wy and runs
OpLor as follows:

OrLor(jo, j1,D): As in Game 0, except that all executions of ChgRepg ((C,r -
C, P), o, i, pk) forcredential (C, o, r, O) < CRED[j,]and & Z; are replaced
by SIgnR(M : (C3 r- C7 P)’ Sk))

Game 1 — Game 2: By knowledge soundness of I7 Ro we have VKeyR (sk, pk) =
1,_and by perfect adaptation of signatures of SPS-EQ (Definition 19), ChgRepr
(M o, i, pk) and SlgnR(,uM sk) are identically distributed for all M e ((G*)3 We
thus have Pr[S{] = Pr[S2].

Game 3: As Game 2, except that the experiment runs Oy, as follows:

Oror(jo, j1,D): Asin Game 2, but the ZKPoK IT™%F (C*, C3, C3) is simulated.

Game 2 — Game 3: By perfect zero-knowledge of IT RF, we have that Pr[S;] = Pr[S3]
and thus
Pr[S;] = Pr[S;] = Pr[S3] . (20)

Game 4: As Game 3, except for the following changes. Let g, be (an upper bound on)

the number of queries made to Oyy. At the beginning, Game 4 picks k <% [¢,] (it guesses

that the user that owns the jpth credential is registered at the kth call to Oyy) and runs

Oy, Ocy and Op g as follows:

Onu(i): As in Game 3, except if this is the kth call to Oyy, then it additionally defines
i* <.

Ocu(i, upk): Ifi € CUori € IR, itreturns L (asin the previous games). Ifi = i*, then
the experiment stops and outputs a random bit »" << {0, 1}. Otherwise, if i € HU, it
returns user i’s usk and credentials and moves i from HU to CU; and if i ¢ HUUCTU,
it adds i to CU and sets UPK[i] < upk.

Oror(jo, j1, D): As in Game 3, except that if i* # OWNR[p], the experiment stops
outputting b” << {0, 1}.

Game 3 — Game 4: By assumption, Op,r is called at least once with some input

(Jo, j1, D) with OWNR[jo], OWNR[j;] € HU. If i* = OWNR[ ], then O,r does not

abort and neither does Ocy (it cannot have been called on OWNR[ j; ] before that call to

Oror (otherwise OWNR][ j,] ¢ HU); if called afterward, it returns L, since i* € I7,R).

Since i* = OWNR[ j,] with probability qlu, the probability that the experiment does not

abort is at least qi, and thus

+ i - Pr[S$3]. 21

Pr[Sy] > (1 _ L) 1
- W72 qu

Game 5: As Game 4, except for Op,g:

Oror(jo, j1,D): As in Game 4, except that in addition to u <X Z, it picks C; <& G}
and performs the showing using cred’ £ (Cr,r-Cr, - P), Signp ((C1,r-Crp, 4
P), sk)), with r <— CRED[jp][3],and W <« L (ifa € D)or W <« fD(a)_l -Cq
(if a ¢ D), where a = w is the value extracted since Game 1.

Note that the only difference is the choice of C1; W is distributed as in Game 4, in
particular, if a ¢ D, it is the unique element satisfying VerifySubset(pp, C, D, W).
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Game 4 — Game 5: Let (BG, x P, yP, zP) be a DDH instance for BG = BGGenp (1).
After initializing the environment, the simulation initializes a list L < . The oracles
are simulated as in Game 4, except for the subsequent oracles, which are simulated as
follows:

Onu(i): As in Game 4, but if this is the kth call then, besides setting i* <« i, it sets
USK[i] <— L and UPK[i] <— x P (which implicitly sets usk < x).

Oobtain (i, A): Asin Game 4, except for the computation of the following values ifi = i*.
Let this be the jth call to this oracle. If a ¢ A, it computes C as C < fa(a) - xP
and sets L[j] < L.Ifa € &, it picks p L7 5, computes C as C < p - x P, sets
L[j] < p and simulates the ZKPoK IT R (upk) (by the perfect ZK property of
R (upk) the simulation is perfect). (In both cases, C is thus distributed as in the
original game.)

Oshow(J, D): As in Game 4, with the difference that if OWNR[j] = i* and ¢ € D
it computes the witness W < ufa\p(a) - xP. (W is thus distributed as in the
original game.)

Oror(jo, j1, D): Asin Game 4, with the following difference. Using self-reducibility of
DDH, it picks s, ¢ <£Zp and computes Y’ < - yP+sP = y' P withy' < ty+s,
and Z' < 1t-zP +s-xP = (t(z — xy) + xy)P. (If z # xy, then Y’ and Z' are
independently random; otherwise, Z' = y’X.) It performs the showing using the
following values (implicitly setting & < y’):

— Ifa € ATTR[jp]: C1 < fa(a) - Z' and W <« fD(a)_1 -Cr;
—Ifa € ATTR[jp] and a & D: C; < p - Z' with p < L[jp] and W <«
fol@)™-Cy;

—IfaeD:Cy < p-Z withp < L[jp]and W « 1;
Cy < r-Cy,C3 < Y and r < CRED[][3].
Apart from an error event happening with negligible probability, we have simulated
Game 4 if the DDH instance was “real” and Game 5 otherwise. If x P = Og,, or if
during the simulation of Op,r it occurs that Y’ = Og, or Z’ = Og, , then the distribution
of values is not as in one of the two games. Otherwise, we have implicitly setusk <— x and
u <y (for a fresh value y’ at every call of O, ). In case of a DDH instance, we have
(depending on the case) C1 < uskufa(a) - P (or C; = p - xu - P = p - C); otherwise,
C is independently random. Letting € p p g (k) denote the advantage of solving the DDH
problem and ¢; the number of queries to the O, we have

| Pr(S4] — Pr[Ss]| < eppa () + (1 +2q1); - (22)

Game 6: As Game 5, except for Op,g:

Oror(jo, j1,D): As in Game 5, except that, in addition to pu and Cj, it also
picks Cy <& G and performs the showing using cred’ L(Cy, Cy, 11 - P), Signg
((C1,Ca, - P), sk)) and W as in Game 5.

Game 5 — Game 6. Let (BG, x P, y P, zP) be a DDH instance for BG = BGGenp (1).
After initializing the environment, the simulation initializes a list L <— @. The oracles
are simulated as in Game 5, except for the subsequent oracles, which are simulated as
follows:
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Oobtain (i, A): Asin Game 5, except for the computation of the following values ifi = i*.
Let this be the jth call to this oracle. It first picks u <& Zpandsets X < xP+u-P
and L[j] < u.

Ifa ¢ A, it computes C < fa(a)-USK[i]- P and R < fa(a)-USK[i]- X'.Ifa € A, it

picks p &Zlf and computes C <— p - P and R < p - X'. In both cases, it sets r < L

(r is implicitly setto r < x’ := x +u and C and R = r - C are distributed as in the

original game; unless X’ = Og, ). Note that, since the ZKPoK in Ogpey is simulated, r

is not used anywhere in the game.

Oror(jo, j1,D): As in Game 5, with the difference that it fetches u < L[], picks
s, t &Zp and computes Y/ < - yP +5- P = y'P with y/ < ty + s, and
Z' < t-zP+s-xP+ut-yP+us-P = (t(z—xy)+x'y)P. It picks u < Z
and performs the showing using C; < Y’, Cy < Z' and C3 < u - P. Witness
W is computed from C; as in the previous simulation.

Apart from an error event happening with negligible probability, we have simulated
Game 5 if the DDH instance was valid and Game 6 otherwise. If X’ = Og, during the
simulation of Ogptan, or if during the simulation of Op,r it occurs that Y’ = Og, or
7' = 0g, , then the distribution of values is not as in one of the two games. Otherwise, we
have implicitly set » <— x’ (for a fresh value x’ at every call of Oppain) and C; <— Y’ (for
afresh value Y’ atevery call of Oy, ). In case of a DDH instance, we have C, = r-C (as
in Game 5); otherwise, C» is independently random (as in Game 6). Letting epppy (k)
denote the advantage of solving the DDH problem, and ¢, and g; be the number of
queries to Oopain and O, g, respectively, we get

| Pr(S5] — Pr{Se]| < eppm () + (g0 +241) 5 - (23)

In Game 6, the Op,r oracle returns a fresh signature o on a random triple
(C1, Cay, C3) & ((Gflk)3 and a simulated proof; the bit b is thus information-theoretically
hidden from A and we have Pr[S¢] = % From this and Egs. (23)—(19), we have

Pr[Ss] < Pr[Se]l + €ppr () + (do +2q1) 5, = 5 + €ppH () + (G0 +241) 5
Pr[S4] < Pr[Ss] + eppr (k) + (1 +2g1)5 < 5 +2 - €ppu () + (1 + o +4q1) 7, ,
PrS3]1 < 5 +qu-PrlSsl— 3 - qu < 5 +qu- (2~ €ppue) + (1 +q0 +4a)7) ,
Pr[So] < Pr[Si] + €xs(k) < 5 + ek (k) + qu - (2~ €ppu () + (1 + g + 46]1)%)

where Pr[S;] = Pr[S3]; qu, go and ¢g; are the number of queries to the Oxy, Ooptain
and the Op,r oracle, respectively. Assuming security of the ZKPoKs and DDH, the
adversary’s advantage is thus negligible. (]

Remark 1. (A Concurrently Secure Scheme Varian) We now sketch the idea of a more
efficient and concurrently secure variant of our scheme, which uses a CRS (and is in
particular, anonymous under malicious organization keys in the CRS model). Damgard
[47] proposes a generic transformation of any X'-protocol for an arbitrary NP-relation R
into a 3-move concurrent ZKPoK (without any timing constraints), under the assumption
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of one-way functions and using a CRS. This requires the introduction of a setup algorithm
and replacing the ZKPoKs used in our construction with those from [47] (the statements
proven stay the same). It uses four moves during issuing and only three moves during
showing (when interleaving the ZKPoK moves with the other protocol moves).

The introduction of system parameters pp allows us to move the set-commitment
parameters from the organization keys to pp, which reduces the size of organization
public keys.

5.6. Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches. As other candidates for
multi-show ABCs, we consider the Camenisch-Lysyanskaya schemes [40-42] as well as
schemes from BBS™ signatures [13,16], which cover a broad class of ABC schemes from
randomizable signature schemes with efficient proofs of knowledge. Furthermore, we
look at two alternative multi-show ABC constructions [43,44], the recent self-blindable
scheme in [82], as well as Brands’ approach [28] (for which there is a tweaked provable
secure version [24]) for the sake of completeness, although the latter only provides one-
show ABCs. We omit a comparison with approaches that only support a single attribute
per credential, e.g., [12], as our focus is on schemes supporting an arbitrary number of
attributes. We also omit approaches that achieve more efficient showings for existing
ABC systems only in very special cases such as for attribute values that come from a very
small set (and are, thus, hard to compare).6 Finally, we also include the recent approach
in [31] that has the same asymptotic parameter sizes as our approach. They achieve
strong security in the UC framework [30], but far less efficient constructions when it
comes to concrete instantiations. Their approach is equally expressive as ours (selective
disclosure), but additionally supports pseudonyms and context-specific pseudonyms for
showings. For our comparison in Table 1, we take their most efficient instantiation (which
does not provide secret key extractability) and note that our showings require less than
10 group elements (when instantiated with Scheme 1 and the ZKPoK protocol from
[32]), whereas the cheapest variant in [31] requires around 100 group elements.

Table 1 gives an overview of these systems, where BG denotes a bilinear-group setting;
Gy denotes a group of prime order ¢ (e.g., a subgroup of large order g of Z, or an
elliptic curve group of order g) and Zy an RSA group. By |G/, denote the bitlength of
the representation of an element from group G, by MK we indicate whether anonymity
(privacy) holds with respect to maliciously generated issuer keys and by P we indicate
whether the schemes support selective disclosure (s) or also proving relations about
attributes (r). We note that o indicates that the most efficient construction from [31]
used in Table 1 does not consider malicious keys, while the other less efficient ones in
[31] do. The required assumptions for the schemes include the strong RSA (sRSA) [27],
LRSW [77], SXDH (cf. Definition 6), XDLIN (a decision linear [16] variant of SXDH),

6 For instance, the approach in [35] for CL credentials in the RSA setting (encoding attributes as prime
numbers) or in a pairing-based setting using BBS™ credentials [85] (encoding attributes using accumulators)
where the latter additionally requires very large public parameters (one F-secure BB signature [19] for every
possible attribute value).
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Table 1. Comparison of various approaches to ABC systems.

Scheme Parameter size (L attr.)
Setting Assumption |opk| |cred|
[41] N sRSA O(L) o(l) 3|Zn|
[42] BG LRSW O(L) O(L) 2L +2)|Gq|
[13,16] BG q-SDH O(L) o(l) 1G]+ 2|Zq|
[43] BG q-ADHSDH o(l) O(L) LIG|+|Gy]
[44] BG q-SDH,XDH O(L) O(L) QL +2)(IGy| +1Zp))
[28] Gyq ? O(L) o(l) 2(1Gg | + 1Zq])
[82] BG LRSW O(L) O(L) QL +4(Gy| + 1Zg))
[31] BG SXDH, J-  O(L) o) 61G1| + 2|Ga| + |Zp|

RootDH, n-BSDH
q-SDH, XDLIN,

co-CDH, DBP

Scheme 2  BG GGM O(L) o(l) 31Gy| + 1Ga| + 2| Zp|
Scheme Issuing Showing (k-of-L attr.) MK P

Issuer User Comm Verifier User Comm
[41] O(L) O(L) O(L) O(L) O(L) O(L—k) X r
[42] O(L) O(L) O(L) O(L) O(L) O(L) X r
[13,16] O(L) O(L) o(l) O(L) O(L) O(L) X r
[43] O(L) O(L) O(L) O(L) o(l) o(l) X K
[44] O(L) O(L) O(L) 0 (k) 0 (k) O (k) X K
[28] O(L) O(L) o(l) 0 (k) 0 (k) O(L—k) X r
[82] O(L) O(L) O(L) O(L) O(L) O(L) X r
[31] O(L) O(L) o(l) 0O (k) O(L —k) o(l) v K
Scheme2  O(L) O(L) o(l) 0 (k) O(L —k) o(l) v K

DBP [3], ¢g-SDH [14], g-ADHSDH [58], n-BSDH [64], J-RootDH [31], the generic-
group model (GGM), and we write ? when no security proof is given.

We emphasize that, in contrast to other approaches, such as [42,44,82], our construc-
tion only requires a small and constant number of pairing evaluations in all protocol
steps. Finally, we want to mention that the model introduced in [37] allows to instantiate
constructions, for instance based on [41], that can deal with malicious organization keys
(although at the cost of efficiency).

6. Future Work

Some challenging issues with respect to SPS-EQ remain open. Primarily, the construction
of an instantiation secure in the standard model (or CRS model) that relies on simple
assumptions and perfectly adapts signatures (under malicious keys) is an open problem.
A first step was [55], which gives a standard-model construction of SPS-EQ under a
g-type assumption, but which only provides a weaker form of privacy, which is too
weak for any of the considered applications of SPS-EQ. A further step was [52], which
gives a construction of SPS-EQ from standard assumptions, but achieving a weaker
form of unforgeability where the adversary must reveal the logarithms of the message
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vector for which it queries a signature. This notion is not sufficient for the construction
of round-optimal blind signatures from SPS-EQ [54,55].”

Another interesting question is whether such signatures when built for other more
general equivalence relations yield alternative and further applications.
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