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Abstract. In this paper, we study the security of a general two-level E0-like encryp-
tion model and its instance, the real-world Bluetooth encryption scheme. Both uncondi-
tional and conditional correlation properties of the two-level model are investigated in
theory and a key-recovery framework based on condition masking, that studies how to
choose the condition to get better tradeoffs on the time/memory/data complexity curve,
is refined. A novel design criterion to resist the attack is proposed and analyzed. Inspired
by these cryptanalytic principles, we describe more threatening and real time attacks on
two-level E0. It is shown that only the latest four inputs going into the FSMplay themost
important role in determining the magnitude of the conditional correlation and the data
complexity analysis of the previous practical attacks on two-level E0 are inaccuracy. A
new decoding method to improve the data complexity is provided. In the known-IV sce-
nario, if the first 24bits of 224 frames are available, the secret key can be reliably found
with 225 on-line computations, 221.1 off-line computations and 4MB memory. Then,
we convert the attack into a ciphertext-only attack, which needs the first 24bits of 226

frames and all the complexities are under 226. This is the first practical ciphertext-only
attack on the real Bluetooth encryption scheme so far. A countermeasure is suggested
to strengthen the security of Bluetooth encryption in practical applications.
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1. Introduction

The dedicated hardware-oriented stream ciphers are widely used in the resource
constrained environments with limited storage, gate count, or low power sup-
ply/consumption, e.g., A5/1 in the GSM and the two-level E0 encryption scheme in
Bluetooth. These LFSR-based primitives are designed in the 1990s of last century as
the typical examples of irregular clocking generator and the keystream generator with
memory.
Bluetooth is awireless technology standardmanaged by theBluetooth Special Interest

Group (SIG), whose applications are ubiquitous nowadays, e.g., at home, in hospitals,
assembly lines, aircrafts, and wearable computers. The Bluetooth standard, authorized
by IEEE 802.15.1 [3], adopts the two-level E0 stream cipher to protect the privacy
between different devices, such as personal computers, laptops and mobile phones, that
operate over a short range and at low power. Although being a long-standing problem in
stream ciphers, the security analysis of two-level E0 is still of great practical importance,
as pointed out by Prof. Preneel in [27]. In the latest version of Bluetooth Specification
v4.2 [3], the E0 stream cipher is still being used to protect the user information all over
the world.
Correlation attack [31] is a classical method in the cryptanalysis of stream ciphers,

which exploits some statistically biased relation between the produced keystream and
the output of certain underlying sequence. In the 1990s of last century, the correlation
properties of combiners with memory are analyzed in theory [9,25]. Based on these
identified correlations, for LFSR-based stream ciphers, the initial state of the target
LFSR can be recovered by (fast) correlation attacks [4,5,12,13,24]. Further, in [15,
16], the notion of correlation was extended to conditional correlation, that studied the
linear correlation of the inputs conditioned on a given output pattern of some nonlinear
functions. Later at Crypto 2005 [19], the conditional correlation was assigned with
a dual meaning, i.e., the correlation of the output of a function conditioned on some
unknown input,1 which is uniformly distributed and was applied to analyze the security
of two-level E0. Since the conditional correlation is no smaller than the unconditional
ones, it is expected that better attacks could be achieved if such conditional correlations
are exploited appropriately. In the special case that holds for two-level E0, the condition
vector is determined linearly by some key-relatedmaterial and the public nonce, and thus
the adversary will get for free the various condition vectors for different target functions
corresponding to different values of the nonce and expect to observe the biased sample
sequence for the correct key and unbiased sequences for the wrong candidates. Given
a pool of sample sequences derived from the guessed values of the condition vector
and some public information, a statistical distinguisher can be mounted accordingly to
restore the secret key.
The keystream generator E0 used in Bluetooth is a LFSR-based nonlinear com-

biner with 4-bit memory, which is a modification of the summation generator [28].
In practice, the E0 cipher is frequently re-synchronized as a two-level scheme and the
keystream generated for each frame is only 2790 bits.2 Thus, most of the published

1 For simplicity, the bit string consisting of the unknown input bits is called the condition vector hereafter.
2 In the Bluetooth Specification v4.2, the maximum length of keystream is changed from 2745 to 2790.
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attacks [1,6,7,11,14,21,29,30] that work on one impractically long frame of keystream
remain the academic interest only and have little impact on the practical usage of Blue-
tooth encryption. Currently, a few attacks [7,8,10,19,20,26] apply to the two-level E0.
The best known-IV attack in [19] requires 238 on-line computations, 238 off-line com-
putations and 233 memory to restore the original encryption key, given the first 24 bits of
223.8 frames in theory (while in experiments, it needs about 19-, 37-h and 64GB storage,
given the first 24 bits of 226 frames).
Our Contributions In this paper, we first propose a generalized mathematical model

that inherits the spirit of the two-level E0 encryption scheme, and study its both uncondi-
tional and conditional correlation properties. A fast recursivemethodwith time complex-
ity justification is formulated to compute the unconditional correlations in the general
core keystream generator. Besides, the conditional correlation properties of the two-level
model are derived and analyzed by the condition masking technique, which instead of
considering the correlations conditioned on the whole condition vector, only a subset
of the condition vector is taken into account when investigating the correlations. This
generalizes the concept of linear mask by depicting the condition as the value selected
according to a mask and studying how to choose the condition to achieve better tradeoffs
between time/memory/data complexities.
It is expected that with a careful selection of the condition mask, better tradeoffs

between the attack complexities can be reached compared to the case of simply choosing
the full condition vector. Based on the new notion, a theoretical framework is established
to efficiently restore the secret key in the model, which includes the former framework
in [19] as a special case. The subtle difference between the new framework and the
previous one in [19] is pointed out, which is demonstrated by the concrete attack on the
real two-level E0 later. Based on a dedicated linear approximation of the two-levelmodel,
both bitwise and vectorial key recovery attacks are mounted and analyzed. During the
process, a necessary and sufficient condition that determines when the adversary could
gain in correlation by moving from low-dimension to high-dimension in the conditional
correlation attack in the general model is proved. Furthermore, a novel design criterion
for the general model to achieve desirable security level is proposed as a countermeasure
to resist the attack, which is shown to be lightweight and very efficient in practice.
Then under the above cryptanalytic principles, we systematically study the security

of the real two-level Bluetooth encryption scheme. Our main observation is that it is of
high probability that only a subset of bits in the whole condition vector determines the
magnitude of the bias, e.g., in the E0 combiner, only the latest four LFSR bits entering
into the FSM play the most important role. Thus, the time/memory complexities of
the conditional correlation attack against two-level E0 can be significantly reduced by
properly choosing the condition mask.
We start with a revisiting of the unconditional correlation properties in the Bluetooth

combiner. Note that the former relevant result, the Corollary 6 in [21], can only compute
a special type of unconditional correlations in the core combiner, i.e., the correlations of
the pure FSMoutput sequence. For the correlations between all the input linear functions
and all the output linear functions, only a smallmask length up to 6-bit is provided in [10].
Here,we present the complete recursive formula for fast computation of such correlations
in the E0 combiner, which goes beyond the time/memory complexity barriers of the Fast
Walsh Transform (FWT) [18,32] and has a reasonable practical complexity for a wide
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range of the length of the linear mask. It is stated in the conclusion section of [10] that the
complexity of their attack against E0 can be further decreased by exploitingm-bit linear
correlation for m > 6 if such correlations are feasible to compute. We efficiently solve
this problem by using ourmethod to recursively compute and verify all the unconditional
correlations up to 14-bit with a low complexity.
Second, we comprehensively investigate the conditional correlations inside the two-

level E0 with the tool of condition masking. The target function inherent in E0 used
to compute the conditional correlations in [19] is generalized, and a large class of cor-
relations conditioned on both the linear mask and the condition mask is presented.
Although the correlation conditioned on the full condition vector is maximum in the
value, it is not generally optimum in the global time/memory/data complexities aspect.
The time/memory complexities are closely associated with the condition. An adversary
need not to guess the full condition vector and what he has to guess is determined by
the condition mask he has chosen. In this way, the time/memory complexities can be
considerably reduced.
Third, following the general principles of high-dimensional attacks, the vectorial

approach is studied. The vectors used in our attack are carefully constructed and indeed
work well to keep the data complexity as low as possible without a penalty in the
time/memory complexities. In the process, we point out that the data complexity analysis
of the attacks in [19] and [34] are inaccuracy. The exact data complexities in theory of
the previous attacks are all above the 226 bound due to an inaccurate formula used in [19]
and [34]. We correct the data complexity and show how to reduce it below the 226 bound
by a combination with the list decoding3 and multi-pass decoding techniques,4 which
results in the data complexity reduced to 224. As a result of all the above techniques, it
is shown that if the first 24 bits of 224 frames are available, the secret key can be reliably
found with 225 on-line computations, 221.1 off-line computations and 4MB memory in
the known-IV scenario. Our attacks have been fully implemented in C language on one
core of a single PC. Due to the small memory consumption and low time complexity, it
is repeated thousands of times with randomly generated keys and IVs, while the attack
in [19] is only executed 30 times for a fixed master key with 226 frames. On average, it
takes only a few seconds to restore the original encryption key. To our knowledge, this is
the best and most threatening known-IV attack on the real Bluetooth encryption scheme
so far. Besides, compared to the experimental attack in [34], the success probability of
our new attack is improved as well.
Finally, we further convert the above known-IV attack into a ciphertext-only attack

against the real two-level E0, based on the fact that in any stretch of written language,
certain letters and combinations of letters occur with varying frequencies, i.e., the plain-
texts are not random. Thus, we can always find some biases among the plaintext bits.
Then, it is shown that if the first 24 bits of 226 frames are available, the secret key
can be reliably found with 226 on-line computations and 221.1 off-line computations
in the ciphertext-only scenario, which is the first practical ciphertext-only attack on

3 The list decoding method means we select a list of candidates other than a unique solution at some step
of the attack, please see Sect. 9 for details.

4 Here, we borrow the idea from [33] in the sense that there are several passes/steps in the attack to identify
the correct key, please see Sect. 9 for details.
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the two-level bluetooth encryption scheme so far. The practical implementation of the
ciphertext-only attack is provided as well. An efficient countermeasure to improve the
security of the two-level E0 encryption scheme is summarized to prolong the existence
life of the Bluetooth standard in practice.
This paper is organized as follows. We first present some preliminaries used in our

work in Sect. 2. Then, the generalized mathematical model of the two-level encryption
scheme is provided in Sect. 3. The correlation properties of the two-level model, both
unconditional and conditional, are studied in Sect. 4 with the new framework for recov-
ering the secret key in the model. A full description of the real two-level E0 scheme
is presented in Sect. 5. In Sect. 6, a brief review of the best previous attack against the
two-level E0 is given. Various correlation properties in the E0 combiner, e.g., uncondi-
tional and conditional correlations based on condition masking are studied in Sect. 7.
Then, both bitwise and vectorial key recovery attacks based on condition masking are
developed in Sect. 8 with theoretical analysis. In Sect. 9, the practical implementation of
the known-IV attack is described. In Sect. 10, we detail the first ciphertext-only attack
on two-level E0, while the practical implementation of the ciphertext-only attack is
provided in Sect. 11. Finally, some conclusions are provided in Sect. 12.

2. Preliminaries

In this section, some basic notations and definitions are presented. Denote the binary
field by GF(2) and the m-dimensional extension field of GF(2) by GF(2m). Similarly,
denote the m-dimensional vector space over GF(2) by GF(2)m . The set of real numbers
is denoted by R. The inner product of two n-dimensional vectors γ and ρ over GF(2m)

(m ≥ 1) is γ · ρ =< γ, ρ > =< (γ0, . . . , γn−1), (ρ0, . . . , ρn−1) > = ⊕n−1
i=0 γiρi . The

Hamming weight of a vector or a polynomial is denoted by wt (·), i.e., the number of
nonzero components or coefficients.

Definition 1. The correlation (or bias) of a random Boolean variable X is ε(X) =
Pr(X = 1) − Pr(X = 0).

Note that in some articles, ε(X) = Pr(X = 0) − Pr(X = 1). The only difference is the
sign of the correlation. Let ξ be an arbitrary set, given the function f : ξ → GF(2)r ,
the distribution D f of f (X) with X ∈ ξ uniformly distributed is

D f (a) = 1

|ξ |
∑

X∈ξ

1 f (X)=a

for all a ∈ GF(2)r .

Definition 2. The Squared Euclidean Imbalance (SEI) of a distribution D f is defined
as �(D f ) = 2r

∑
a∈GF(2)r (D f (a) − 1

2r )
2.

�(D f ) measures the distance between the target distribution D f and the uniform dis-
tribution. Specially, for r = 1, we have �(D f ) = ε2(D f ). For brevity, we use the
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ε( f ),�( f ) to represent ε(D f ),�(D f ), respectively, hereafter. Similarly, E[�(hB)] is
used to measure the conditional correlations, where the expectation is taken over all
the uniformly distributed B. Next, we give the definitions of the Walsh Transform and
convolution transform respectively.

Definition 3. Given a function f : GF(2)n → R, for ω ∈ GF(2)n , the Walsh Trans-
form of f at point ω is defined as f̂ (ω) = ∑

x∈GF(2)n f (x)(−1)〈ω,x〉.

Definition 4. Given two functions f, g : GF(2)n → R, the convolution transform of
f and g is defined as ( f ⊗ g)(x) = ∑

y∈GF(2)n f (y) · g(x ⊕ y). Further, we have the
relation

̂( f ⊗ g)(x) = f̂ (x) · ĝ(x),

for all x ∈ GF(2)n .

It is well known that the Walsh transform of f can be computed efficiently with an
algorithm called Fast Walsh Transform (FWT) [32] in n2n time and 2n memory. The
preparation of f takes 2n time, and thus the total time complexity is 2n + n2n . The
convolution transform between f and g could be computed by invoking three times the

FWT algorithm, i.e., f̂ , ĝ and
̂

̂f ⊗ g.

3. Mathematical Model

Our model of the two-level E0-like encryption scheme is depicted in Fig. 1, which
consists of two phases: the payload key generator in the first level and the keystream
generator in the second level.
An E0-like keystream generator, as defined in [22], lies at the core of the two-level

model. There are n maximum-length LFSRs in the generator, denoted by LFSRi (1 ≤
i ≤ n) of length Li -bit, together with a Finite State Machine (FSM) of k memory bits.
Without loss of generality, let the LFSRi s have pairwise distinct lengths Li satisfying
L1 < L2 < · · · < Ln and primitive characteristic polynomials pi (x) ∈ GF(2)[x].
Denote the time instant at the first level by t and at the second level by t ′, respectively.

Fig. 1. Structure of the two-level model.



400 B. Zhang et al.

The content of the LFSRs at time t is denoted by ζt . At time t , denote the n output bits
of LFSRs by Bt = (b1t , . . . , b

n
t ), which is also the input to the FSM, and the FSM state

by σt ∈ GF(2)k . Then, the next state σt+1 of the FSM can be computed by the current
FSM state σt and Bt via σt+1 = F(Bt , σt ), where F : σt �→ σt+1 is a permutation for
any Bt . The FSM outputs one bit Ψt = ωc · σt , which is an inner product of its current
state σt and a constant ωc ∈ GF(2)k . The core combiner generates one keystream bit zt
as the xor of the FSM output bit Ψt and the sum of the LFSRs outputs, i.e., Ψt ⊕ ξt = zt ,
where ξt = ⊕n

i=1b
i
t .

Next, we provide a formal description of the workflow of the two-level model. At the
first level, the secret key and public nonce Pi (IV)5 are mixed by two affine transforms
G1 and G2, then loaded into the n LFSRs linearly. With the preset null state in the
FSM, the core generator runs a certain number of clocks and produce η1-bit output
(η1 >

∑n
i=1 Li ). The last generated L = ∑n

i=1 Li output bits at the first level are
permutated into the n LFSRs by another affine transform G3 and keep the content of the
FSM at the end of the first level. We stress here that G3 inherits the feature that the last∑n

i=1 Li output bits are only permutated into the LFSRs, without any linear combination
among the manipulated bits, for efficiency reasons. From this combined internal state,
the core generator produces η2-bit keystream for encryption for the i-th frame during
the second level.

4. Correlations Properties of the Two-Level Model

In this section, both the unconditional and conditional correlations properties based on
condition masking of the two-level model are studied, which naturally lead to our new
key recovery framework.

4.1. Unconditional Linear Correlations

We first study the unconditional correlation properties of the second level, which are
exploited in the linear approximation process of the two-levelmodel. Inspired by [10,21],
we give a general way to efficiently compute the unconditional correlations at the second
level.
Let Ω(a, 〈ω, u〉) be the correlation ε(a · σt ′+1 ⊕ ω · σt ′ ⊕ u · Bt ′) of two consecutive

steps in the keystream generation, where a ∈ GF(2)k, u ∈ GF(2)n, ω ∈ GF(2)k are
linear masks and Bt ′ represent the n output bits of LFSRs at time t ′ of the second level.
For brevity, we denote the unconditional correlation for a continuous d time instants by

δ(〈a1, u1〉, . . . , 〈ad−1, ud−1〉, ad) = ε(a1 · σt ′+1 ⊕ u1 · Bt ′+1 ⊕ · · · ⊕ ad−1

· σt ′+d−1 ⊕ ud−1 · Bt ′+d−1 ⊕ ad · σt ′+d), (1)

where u1, . . . , ud−1 ∈ GF(2)n, a1, . . . , ad−1, ad ∈ GF(2)k . The following theorem can
be used to compute the correlation for iterative structures [11].

5 The superscript i is used to indicate the context of the i-th frame.
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Theorem 5. Given functions f : GF(2)m × GF(2)p → GF(2) and g : GF(2)q →
GF(2)p, let X ∈ GF(2)m and Y ∈ GF(2)q be two independent random variables.
Then, for all u ∈ GF(2)m, v ∈ GF(2)q , we have

δ( f (X, g(Y )) ⊕ u · X ⊕ v · Y ) =
∑

ω∈GF(2)p
δ( f (X, g(Y )) ⊕ u

·X ⊕ ω · g(Y ))δ(ω · g(Y ) ⊕ v · Y ).

Now we can present our general iterative computation method to calculate the uncondi-
tional correlation in (1).

Theorem 6. Assume that the initial state (ζ0, σ0) is random and uniformly distributed
in the model, and then we have

δ(〈a1, u1〉, . . . , 〈ad−1, ud−1〉, ad) =
∑

ω∈GF(2)k

Ω(ad , 〈ω, ud−1〉)

· δ(〈a1, u1〉, . . . , 〈ad−2, ud−2〉, ad−1 ⊕ ω).

Proof. To apply Theorem 5, we set X = Bt ′+d−1,Y = (〈σt ′+1, Bt ′+1〉, . . . ,
〈σt ′+d−2, Bt ′+d−2〉, σt+d−1), g(Y ) = σt ′+d−1, f (X, g(Y )) = ad · σt ′+d , u = ud−1 and
v = (〈a1, u1〉, . . . , 〈ad−2, ud−2, ad−1〉). Thus, we have

δ(〈a1, u1〉, . . . , 〈ad−1, ud−1〉, ad)
= δ( f (X, g(Y )) ⊕ ud−1 · X ⊕ v · Y )

=
∑

ω∈GF(2)k

δ( f (X, g(Y )) ⊕ u · X ⊕ ω · g(Y )) · δ(ω · g(Y ) ⊕ v · Y )

=
∑

ω∈GF(2)k

δ(ad · θt ′+d ⊕ ud−1 · Bt ′+d−1 ⊕ ω · θt ′+d−1)

· δ(ω · θt ′+d−1 ⊕ a1 · θt ′+1 ⊕ · · · ⊕ ad−1 ⊕ θt ′+d−1)

=
∑

ω∈GF(2)k

Ω(ad , 〈ω, ud−1〉) · δ(〈a1, u1〉, . . . , 〈ad−2, ud−2〉, ad−1 ⊕ ω),

which completes the proof. �

Theorem6 is a generalization of the formulas in [21,22]. It can compute the unconditional
correlations between all the input linear functions and all the output linear functions
without any miss. Some illustrative examples are given in the two-level E0 case later in
Sect. 7.1.

Denote the m consecutive keystream bits as Zm
t ′ and the m continuous LFSR inputs

as Bm
t ′ , where v · Zm

t ′ = ⊕m−1
j=0 v j zt ′+ j , and W · Bm

t ′ = ⊕m−1
j=0 (ω j · Bt ′+ j ) are two

linear functions defined by a n × m matrix W = (ω0, . . . , ωm−1) and a vector v. We
can ignore the effect of t ′, for the correlations are time-invariant. Then, we have the
following corollary on the time complexity of the above recursive method.
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Corollary 7. The recursive expression in Theorem 6 can compute all the correlation
coefficients of the form ε(W · Bm ⊕ v · Zm), i.e., the unconditional correlations between
the LFSR output sequence and the keystream sequence of the general combiner in km ·
(n + 1)m−1 iterations.

Proof. We first prove that all the ε(W · Bm ⊕ v · Zm) can be computed by Theorem 6.
Assume W = (ω0, . . . , ωm−1), v = (v0, . . . , vm−1), where ωi ∈ GF(2)n, vi ∈ GF(2)
and 1n represents the vector with all the components being 1, and then we have

ε(W · Bm ⊕ v · Zm) = ε(ω0 · B0 ⊕ · · ·ωm−1 · Bm−1 ⊕ v0z0 ⊕ · · · vm−1zm−1)

= ε(ω0 · B0 ⊕ · · ·ωm−1 · Bm−1 ⊕ v0(1n · B0 ⊕ a0 · σ0)

⊕ · · · ⊕ vm(1n · Bm−1 ⊕ am−1 · σm−1))

= ε((ω0 ⊕ v01n) · B0 ⊕ (v0a0) · σ0 ⊕ · · · ⊕ (ωm−1 ⊕ vm−11n)

· Bm−1 ⊕ (vm−1am−1) · σm−1),

where ai = vi · ωc for 0 ≤ i ≤ m − 1. Note that if the linear mask ωm−1 ⊕ vm−11n
of Bm−1 is not 0, since the variable Bm−1 will be independent to all the other variables,
then the total correlation will be 0. Hence, we always assume ωm−1 ⊕ vm−11n = 0n .
Now, we can compute the above correlation by Theorem 6. For a certain m, we have
v0a0 �= 0 and vm−1am−1 �= 0. Because of the symmetry of the combiner’s output and
next-state functions with respect to the n input variables, the correlation depends on vi ai
and wt (Bi ). Hence, computing all the correlations at the second level only needs about
km · (n + 1)m−1 iterations. �

Theorem 6 and Corollary 7 are used in the linear approximation of the second level
in the model.

4.2. Conditional Correlations Based on Condition Masking

Now let us look at the conditional correlation properties of the two-level model. Several
consecutive steps of the core generator can be regarded as a vectorial Boolean function,
and we would like to investigate the conditional correlation properties of this derived
function.
Generally, there are two sets of inputs to the FSM in the first level at time t , i.e., the

n LFSR output bits Bt = (b1t , . . . , b
n
t ) and the k memory bits σt = (σ k−1

t , . . . , σ 0
t ) ∈

GF(2)k . Consider l continuous time instants and let γ = (γ0, γ1, . . . , γl−1) ∈ GF(2)l

be a linear mask with γ0 = γl−1 = 1. Define the inputs to the FSM as

Bt = Bt Bt+1 · · · Bt+l−2 ∈ GF(2n(l−1)), σt+1 ∈ GF(2)k

and the FSM outputs Ct = (ω ·σt , . . . , ω ·σt+l−1). Then, the function h
γ

Bt
: σt → γ ·Ct

is well defined, as γ0 = γl−1 = 1 is necessary and sufficient to recursively compute
γ · Ct with the knowledge of Bt and σt as shown in Fig. 2. The bias ε(hγ

Bt
) can be

easily computed by an exhaustive search over all the possible values of σt . For different
values of Bt , the bias ε(hγ

Bt
) may be different, while the mean value E[ε(hγ

Bt
)] is a good
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Fig. 2. The computation process of Ct .

Fig. 3. The new computation process of Ct .

estimate in the attacks. In general, we may expect to see the bias with a proper value of
γ . Now, we are ready for the definition of condition mask.

Definition 8. Given a function h : GF(2)u × GF(2)v → GF(2)r with B ∈
GF(2)u, X ∈ GF(2)v , where B is the key-related part and the possible condition
vector. Let B = (b0, . . . , bu−1) ∈ GF(2)u and λ = (λ0, λ1, . . . , λu−1) ∈ GF(2)u

with supp(λ) = {0 ≤ i ≤ u − 1|λi = 1} = {l1, . . . , lm} (l j < l j+1). Then, the
shrunken vector of B defined by λ is B′ = (bl1 , . . . , blm ) ∈ GF(2)m . Here, λ is called
the condition mask of B. Further, other bits in B form another vector and are denoted
by B∗ ∈ GF(2)u−m , which is the complement part of B′. We define an operator ′\′ to
represent the above process and have B∗ = B \ B′.

This definition indicates that the adversary may not use the full vector as the condition,
but only search the correlations conditioned on a subset of B defined by a mask λ.
For the model, given a condition mask λ = (λt , λt+1, . . . , λt+l−2) ∈ GF(2)n(l−1),

where λ j ∈ GF(2)n corresponds to Bj for j = t, t + 1, . . . , t + l − 2, let the condition
vector defined by λ be B′

t and its complement B∗
t which includes the other bits. The

target function hγ

Bt
can now be generalized as

hΛ
B′
t
: σt ,B∗

t → γ · Ct ⊕ η · B∗
t , (2)

where Λ = (γ, η) and |η| = |B∗
t |.6 As we can see, this function induces a large class of

correlations based on both the linear mask and the condition mask.

6 | · | denotes the cardinality of a vector.
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Figure3 also shows that though the straightforward computation process of Ct is
frustrated by the condition mask λ �= 1u , the bias can still be computed. Since Bt is the
outputs of the LFSRs, it is the key-related material in the first level. In [19], the attacker
guesses the full vector Bt+1, while now he/she only needs to guess B′

t , a part of Bt , to
mount the attack on the model.7 This is the reason that the time/memory complexities
of the attack can be significantly reduced.
Note that in the initialization phase, Bt at level one can be expressed by

Bi
t = Lt (K ) ⊕ L ′

t

(
Pi

)
, (3)

where Lt and L ′
t are the known linear functions dependent on l and t . The knowledge of

Bi
t will directly lead to the linear equations on the original encryption key. This motivates

us to study the bias ε(hΛ
B′
t
) defined by a certain condition mask λ.

The following property shows that the more knowledge of the LFSR bits B, the larger
conditional correlation we will obtain, which exactly matches the intuition.

Property 9. Given a function f with a partial inputB and two condition masks λ1, λ2,
let B1 be the condition vector defined by λ1 and B2 be the condition vector defined by
λ2. If supp(λ2) ⊆ supp(λ1), then we have E[�( fB1)] ≥ E[�( fB2)], where equality
holds if and only if D fB1

is independent of B1 \ B2.

Proof. By Definition 2, we have E[�( fB2)] = 2r
∑

a∈GF(2)r EB2

[
(D fB2

(a) − 1
2r )

2
]
,

where the expectation is taken over uniformly distributed B2 for the fixed a. Because of
D fB2

(a) = EB1\B2 [D fB1
(a)] for any fixed a, we have

EB2 [�( fB2)] = 2r
∑

a∈GF(2)r
EB2

[(

EB1\B2 [D fB1
(a)] − 1

2r

)2
]

= 2r
∑

a∈GF(2)r
EB2

[

E2
B1\B2

[

D fB1
(a) − 1

2r

]]

≤ 2r
∑

a∈GF(2)r
EB2

[

EB1\B2

[(

D fB1
(a) − 1

2r

)2
]]

= 2r
∑

a∈GF(2)r
EB2,B1\B2

[(

D fB1
(a) − 1

2r

)2
]

= EB1 [�( fB1)].

The inequality is obtained according to the theory of statistics that for any fixed a, E2
B1\B2

[D fB1
(a) − 1

2r ] ≤ EB1\B2 [(D fB1
(a) − 1

2r )
2] where equality holds if and only if D fB1

is independent of the condition vector B1 \ B2. �

7 In the real E0, the FSM state at time t always contains the 2 bits c0t and c0t−1, while in the general model
there is not such a property necessarily.
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From this property, give a function h : GF(2)u × GF(2)v → GF(2)r with B ∈
GF(2)u, X ∈ GF(2)v and a conditionmask λ, we have E[�(hB)] ≥ E[�(hB′)] ≥ �(h).

Moreover, for a fixed condition mask λ, its maximum bias maxΛ(E[�(hΛ
B′
t
)]) among

all the linear masks Λ is an essential measure of it. The larger the maximum bias, the
better the condition mask is. The best choice of the condition mask can be determined
according to the context of the underlying primitive.

4.3. Key Recovery Attacks on the Model

As mentioned before, the essential problem lies in the core is to distinguish a biased
sample sequence from a pool of random-like sample sequences. Since the involved
sample sequences are derived from some key-related information, this distinguisher can
be used to identify the correct key. Formally, given a function f : GF(2)m×GF(2)u−m×
GF(2)v → GF(2)r and a condition mask λ, let

fB′(B∗, X) = f (B′,B∗, X),

where B = B′ ∪ B∗ ∈ GF(2)u, X ∈ GF(2)v . Here, the condition vector defined by λ

is B′ ∈ GF(2)m and B∗ = B \ B′. If B′ is determined by κ-bit key information, then
denote by B′K the value derived when the guessing value of the key material is K, then
the formal description of the problem is as follows.

Definition 10. There are 2κ sequences ofN sampleswith the following characteristics:
one biased sequence has N samples ( fB′K

i
,B′K

i ) (i = 1, . . . ,N ) with the correct key
K; the other 2κ − 1 sequences consists of N independently and uniformly distributed
random variables (ZK

i ,B′K
i ) (i = 1, . . . ,N ) with the wrong keys. The problem is to

efficiently distinguish the biased sequence from the other sequences with the minimum
number N of samples.

Following [2], the minimum number N of samples for an optimal distinguisher using
the unconditional correlation to effectively distinguish a sequence ofN output samples
of f from (2κ − 1) truly random sequences of equal length is

N = 4κ log 2

�( f )
,

while with the smart distinguisher in [19] based on the condition vector B, the number
of sample needed is

NB = 4κ log 2

E[�( fB)] .

Since E[�( fB)] ≥ �( f ), we haveNB ≤ N . In our condition masking terminology, we
have the following theorem on the attack complexities.
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Theorem 11. Given a condition mask λ, Algorithm 1 solves the problem in Definition
10 with

NB′ = 4κ log 2

E[�( fB′)]
samples and the time complexity is O(NB′ · 2κ), where the condition bits B′ is defined
by λ, the expectation is taken over all the uniformly distributed B′. Further, if the B′K

i
and ZK

i can be expressed by

B′K
i = L(K ) ⊕ ai , (4)

ZK
i = L ′(K ) ⊕ a′

i ⊕ g
(
B′K
i

)
, (5)

for all κ-bit K and i = 1, 2, . . . ,N , where g is an arbitrary function, L , L ′ are linear
functions, and ai , a′

i are independently and uniformly distributed constants known to the
distinguisher. Under these assumptions, we can use the FWT algorithm to achieve the
optimal time complexity O(NB′ + κ2κ+1) with pre-computation O(κ2κ) and |B′| = κ .

Proof. The case λ = 1u was proved in [19]. When λ �= 1u , we can make a substitution
T = λ � B and use the same way to prove this theorem, where � represents the action
of the condition mask on B. �

Algorithm 1 The key recovery framework on the model based on condition masking
Parameters: N , λ, B and D fB′
input:
1: for i = 1, 2, . . . ,N , B′K

i for all κ-bit K
2: ZK

i = fB′(B∗K
i , Xi ) for the correct key K with uniformly and independently

distributed v-bit vectors Xi and B∗K
i = BK

i \ B′Ki

3: uniformly and independently distributed ZK
i for all keys K �= K

Goal: find K
Processing:
4: for all κ-bit K do
5: G(K ) ← 0
6: for i = 1, . . . ,N do
7: G(K ) ← G(K ) + log2(2

r · D fB′K
i

(ZK
i ))

8: end for
9: end for
10: output K that maximizes the grade G(K)

Remarks. There is a subtle difference between the case λ = 1u and λ �= 1u , i.e., our
framework is different from the one in [19]. Precisely, the premises (4) and (5) when
λ �= 1u can be the same as those when λ = 1u in many cases, i.e., even if λ �= 1u , we
can still have the same conclusion about the complexity reduction under the premise of
λ = 1u :
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BK
i = L(K ) ⊕ ai , (4’)

ZK
i = L ′(K ) ⊕ a′

i ⊕ g(Bk
i ). (5’)

This fact results from the linear approximation process of the underlying primitive. For
the Bluetooth two-level E0, we will demonstrate this issue in the following. We believe
there are other cases that our arguments hold.

We should not ignore the impact of the cardinality of the condition vector |B′| = κ on
the time/memory complexities. It is easy to see that for λ �= 1u , the cardinality κ can be
reduced and the time/memory complexities can be exponentially reduced accordingly. It
is expected that with a careful choice of the condition mask, we can get better tradeoffs
on the time/memory/data complexity curve compared to the case λ = 1u . This is why,
we introduce the notion of condition masking.
Further, note that not all the bits in the condition vector B have the same influence on

the correlation. In fact, some are more important than others, i.e., it is of high probability
that only a subset of the condition bits can determine the magnitude of the correlation.
Thus, it is the crucial task of the adversary to determine the most important part of the
condition vector for each specified primitive.
Next, we build the linear approximations of the two-level model with condition mask-

ing. The linear approximation is based on the re-initialization property of the model,
detailed in Sect. 3. As previously stated, we make the following assumption.

Assumption 1. The affine transform G3 is just a bit permutation of the input variables,
i.e., no linear combination among the manipulated bits is introduced when loading the
last L = ∑n

i=1 Li bits generated at the end of the first level into the n LFSRs at the
beginning of the second level.

Throughout this paper, in order to distinguish the ξt , Ψt at the first level and ξt ′, Ψt ′
at the second level, we introduce some notations as follow. Let Rt = ξt , Vt ′ = ξt ′ and
αt = Ψt , βt ′ = Ψt ′ . Denote the last generated L bits at the first level by Si[−L+1,...,0] in
the model, where Si[−L+1,...,0] = Ri

[−L+1,...,0] ⊕ αi
[−L+1,...,0]. We also have

V i
[1,...,L] = G3(Ri

[−L+1,...,0]) ⊕ G3(αi
[−L+1,...,0]).

For brevity, we define (Ui
1, . . . ,U

i
L) = G3(Ri[−L+1,...,0]). According to G3, V i can be

expressed as

V i
t ′ = Ui

t ′ ⊕
n⊕

j=1

αi
t j , for t ′ = 1, . . . , L1,

where ti are the fixed time instants of αi before the application of G3 dependent on each
considered primitive.
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Note that we haveUi
t ′ = Ht ′(K )⊕H ′

t ′(P
i ), where Ht ′, H ′

t ′ are public linear functions
dependent on t ′. At the second level, zt ′ = Vt ′ ⊕ βt ′ holds. Hence we have

zt ′ ⊕ Ht ′(K ) ⊕ H ′
t ′(P

i ) =
n⊕

j=1

αi
t j ⊕ β i

t ′ , for t ′ = 1, . . . , L1. (6)

Given a linear mask γ with |γ | = l, let Zi
t ′ = (zit ′ , . . . , z

i
t ′+l−1). Since at the second

level, the L-bit keystream Sit are loaded back into the n LFSRs according to the bit
permutation G3, then Eq. (6) can be rewritten with the linear mask notation as

G3(γ ) · (Zi
t ′ ⊕ Lt ′(K ) ⊕ L′

t ′(P
i )) =

n⊕

j=1

(γ · Ci
t j ) ⊕ G3(γ ) · Ci

t ′, (7)

for i = 1, . . . ,N ,Lt ′ ,L′
t ′ are fixed linear functions which can be derived from Ht ′, H ′

t ′
and G3(γ ) is the resultant linear mask after the restricted action of the bit permutation
G3. Equation (7) corresponds to the case of λ = 1u .

By Eq. (2), we can rewrite this equation as follows:

G3(γ ) · (Zi
t ′ ⊕ Lt ′(K ) ⊕ L′

t ′(P
i )) ⊕

n⊕

j=1

(η · B∗i
t j )

=
n⊕

j=1

(γ · Ci
t j ⊕ η · B∗i

t j ) ⊕ G3(γ ) · Ci
t ′ . (8)

For brevity, given masks λ and Λ, we use the simplified notations hΛ

B′i
t
, hG3(γ ) to denote

hΛ

B′i
t
(B∗i

t , σ i
t ), h

G3(γ )(Bi
t ′, θ

i
t ′) hereafter. Besides, Eq. (3) implies that B∗i

t = Bi
t \ B′i

t is

the linear combination of K and Pi . Now Eq. (8) becomes

G3(γ ) · (Zi
t ′ ⊕ Lt ′(K ) ⊕ L′

t ′(P
i )) ⊕ η · (L1(K ) ⊕ L2(P

i )) =
n⊕

j=1

hΛ

B′i
t j

⊕ hG3(γ ),

(9)

where L1, L2 are public linear functions and hG3(γ ) is the unconditioned function at the
second level. Equation (9) is the hybrid bitwise linear approximation based on condition
masking for the two-level model in Fig. 1, where hΛ

B′i
t j

are derived from the first level

and hG3(γ ) contains the unconditional correlation for the second level.

4.4. Bitwise Key Recovery Attack on the Model

Given the condition mask λ and the linear masks Λ = (γ, η), we define the following
sign function to estimate the effective value of hΛ

B′i
t
(Eq. (2)):
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gΛ(B′i
t ) =

⎧
⎨

⎩

1, if ε
(
hΛ

B′i
t

)
> 0

0, if ε
(
hΛ

B′i
t

)
< 0

(10)

for all B′i
t ∈ GF(2)wt (λ) such that ε(hΛ

B′i
t
) �= 0. For brevity, let

Bi
λ = (B′i

t1 ,B′i
t2 , . . . ,B′i

tn ), X i = (Y i
t1 ,Y

i
t2 , . . . ,Y

i
tn , X

i
t ′ ,Bi

t ′),

where Y i
t j = (σ i

t j ,B∗
t j ) is the unknown input to hΛ

B′i
t j

, and Xi
t ′,Bi

t ′ are the inputs to

hG3(γ ). By Eq. (3) and (9), the knowledge of the key K is contained in B′i
t j ,Lt ′(K ) and

L1(K ). Let K1 = (Lt1(K ), Lt2(K ), . . . , Ltn (K )) be the wt (λ)n bits contained in Bi
λ

and K2 = G3(γ ) · Lt ′(K ) ⊕ η · L1(K ) be the subkeys. Denote by ·̃ the guessed value
of the argument. First, choose an appropriate condition mask λ and guess the subkeys
K̃1, K̃2. As Pi is known for each frame i = 1, . . . ,N , we can compute the condition
vector Bi

λ. Second, to distinguish the correct keys from the wrong ones, we define a
mapping FΛ

Bi
λ

(X i ) as follows.

FΛ

Bi
λ

(X i ) =
⎧
⎨

⎩

⊕n
j=1

(

hΛ

B′i
t j

⊕ gΛ
(
B̃′i
t j

))

⊕ hG3(γ ), if
∏n

j=1 ε

(

hΛ

B′i
t j

)

�= 0

a truly random bit, otherwise

With Eq. (10) the value of FΛ

Bi
λ

(X i ) can be computed as

FΛ

Bi
λ

(X i ) = G3(γ ) ·
(
Zi
t ′ ⊕ L′

t ′(P
i )

)
⊕ η · L2(P

i ) ⊕ K̃2 ⊕
n⊕

j=1

gΛ
(
B̃′i
t j

)
.

If N frames are available, we can compute the value of FΛ

Bi
λ

(X i ) for each possible key

by the above equation N times. With appropriate choice of Λ and λ, if K1, K2 are
correctly guessed, then E[�(FΛ

Bi
λ

(X i ))] > 0 and we expect FΛ

Bi
λ

(X i ) equals one most

of the times. Otherwise, FΛ

Bi
λ

(X i ) is estimated by the uniform distribution. Third, we

get N outputs of the source for every possible key. Submitting these samples to the
distinguisher in Algorithm 1, with the κ = wt (λ)n + 1, u = n(l − 1),m = wt (λ), v =
(n+ 1)k + n(n+ 1)(l − 1)−wt (λ)n and r = 1, we are expected to successfully restore
the correct keys.

4.5. Vectorial Key Recovery Attack on the Model

Now we enhance the above attack by using multiple linear approximations simultane-
ously. Since the conditional correlations based on condition masking are not likely to
be larger than those based on the whole condition vector, we appeal to the vectorial
approach to keep the data complexity as low as possible.
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Assumeweuse smutually independent linear approximations. LetΓ = (Λ1, . . . , Λs)

and Γ ′ = (G3(γ1), . . . ,G3(γs)) denote the linear mask of these s approximations, where
Λi = (γi , ηi ), and |γ1| = · · · = |γs | = l with s < l. Let

FΓ

Bi
λ

(X i ) =
(

FΛ1

Bi
λ

, . . . ,FΛs

Bi
λ

)

, gΓ =
(
gΛ1(B′i

t ), . . . , gΛs (B′i
t )

)

and hΓ

B′i
t

= (hΛ1

B′i
t
, . . . , hΛs

B′i
t
), hΓ ′ = (hG3(γ1), . . . , hG3(γs )). Here, the first gΛ1(B′i

t ) in

gΓ is determined by Eq. (10). The other bits are determined as follows: for the j-th
bit, we just let it be an uniformly distributed bit if ε(hΛ1

B′i
t j

) = 0, otherwise take 0 or 1

according to the definition in Eq. (10). Since we have found the efficient condition mask
λ and linear maskΛ1 = (γ1, ω1) in the bitwise attack, we extendFΛ1

Bi
λ

to a s-dimensional

vector, i.e.,

FΓ

Bi
λ

(X i ) =
⎧
⎨

⎩

⊕n
j=1

(

hΓ

B′i
t j

⊕ gΓ
(
B̃′i
t j

))

⊕ hΓ ′
, if

∏n
j=1 ε

(

hΛ1

B′i
t j

)

�= 0

a uniformly distributed s-bit vector, otherwise.

In this way, we have constructed an approximation of two-level model in the vecto-
rial approach. For the correct guess K̃ = K , we have FΓ

Bi
λ

(X i ) = ⊕n
j=1(h

Γ

B′i
t j

⊕
gΓ (B′i

t j )) ⊕ hΓ ′
and E[�(FΓ

Bi
λ

(X i ))] > 0. For each wrong guess, the components of

the s-dimensional vector FΓ

Bi
λ

are uniformly distributed and we estimate the distribution

DFΓ

Bi
λ

(X i ) as a s-bit uniform distribution for all i such that E[�(FΓ

Bi
λ

(X i ))] = 0.

With the appropriate choice ofΓ = (Λ1, . . . , Λs), we can get larger correlation values
than those in the bitwise case. Thus, the data complexity NB′ is effectively reduced com-

pared to the bitwise attack. Again, submitting 2κ sequences ofNB′ pairs (FΓ

Bi
λ

(X i ), B̃i
λ)

to Algorithm 1, we can eventually recover the κ-bit K .
Now we study how to choose the linear mask vector Γ . We first select a linear mask

Λ1 = (γ1, η1) in the bitwise attack. Under thisΛ1, we search for other masksΛ j ( j ≥ 2)
to maximize the total correlation. The following theorem provides a guideline for an
adversary to construct the vector by depicting the criterion when he/she could gain in
correlation by moving from (s − 1)-dimension unit to s-dimension unit.

Theorem 12. Let Γs = (Λ1, . . . , Λs) be the linear mask in the s-dimensional attack
with condition vector B and condition mask λ. Denote the joint probability by Pa1···as =
P(hΛ1

B′ = a1, . . . , h
Λs
B′ = as), where ai ∈ GF(2) for 1 ≤ i ≤ s. Let P00···00 =

1
2s + ξ00···00, P00···01 = 1

2s + ξ00···01, . . . , P11···11 = 1
2s + ξ11···11, where − 1

2s ≤ ξ j ≤ 1
2s

for all j ∈ GF(2)s and
∑

j∈GF(2)s ξ j = 0, then�(hΓs
B′) ≥ �(hΓs−1

B′ ),where the equality
holds if and only if

ξ00···00 = ξ00···01, ξ00···10 = ξ00···11, . . . , ξ11···10 = ξ11···11.
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Proof. From the assumption, the (s−1)-dimensional joint probability can be computed
as8 P00···0∗ = 1

2s−1 + ξ00···00 + ξ00···01, P00···1∗ = 1
2s−1 + ξ00···10 + ξ00···11,· · · ,P11···1∗ =

1
2s−1 + ξ11···10 + ξ11···11. By the definition of SEI, we have

�(hΓs
B′) = 2s(ξ200···00 + ξ200···01 + · · · + ξ211···11),

�(hΓs−1
B′ ) = 2s−1((ξ00···00 + ξ00···01)2 + (ξ00···10 + ξ00···11)2

+ · · · + (ξ11···10 + ξ11···11)2).

We can see that �(hΓs
B′)−�(hΓs−1

B′ ) = 2s−1((ξ00···00 − ξ00···01)2 + (ξ00···10 − ξ00···11)2 +
· · · + (ξ11···10 − ξ11···11)2) ≥ 0, from which we can easily derive the conclusion. �

This theorem indicates that high-dimensional attack will always be better than or at
least be the same as low-dimensional attacks. Besides, if an adversary choose the linear
masks following the rules in this theorem, then he could always gain in correlation.
Further, there are some other rules when choosing Γ . First, the linear masks γ j for
j = 1, . . . , s should be linearly independent with s ≤ l − 2. Second, when the key

is wrong, FΛ j

Bi
λ

is an uniformly distributed bit for 1 ≤ j ≤ s in the bitwise attack. If

they are independent to each other,FΓ

Bi
λ

follows a s-bit uniform distribution. Thus, when

choosing the new Λ j = (γ j , ω j ) ( j > 1), we should keep the independence among the

different components FΛ j

Bi
λ

for j = 1, . . . , s.

4.6. Security Bound of the Two-Level Model

Nowwe derive the security bound of the two-level model from the above attacks. By the

definition of gΛ in Eq. (10), for a certain Bi
λ, g

Λ(B̃′i
t j ) is a fixed value not depending on

X i . Consequently, gΓ has no influence on �(FΓ

Bi
λ

). Thus, we have the data complexity9

NB′ = 4κ log 2

E

[

�

(

FΓ

Bi
λ

)] . (11)

Now let us look at the time complexity of the attack. From the expression of FΓ

Bi
λ

, it

can be easily verified that this expression fulfills the Theorem 11, so our attack can also
use the FWT to get the optimal time complexity. For all the subkeys K = (K1, K2) ∈
GF(2)wt (λ)n−1 × GF(2), where K1 and K2 are defined in Sect. 4.4, we defineH,H′ as
follows:

8 Pj∗ represents the s − 1-dimensional marginal distribution, where j ∈ GF(2)s−1.
9 E[�(hΓ

B′i
t
)] dose not depend on t .
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H(K ) =
NB′∑

i=1

1L ′
t1

(Pi ),...,L ′
tn (Pi )=K1 and (x1,...,xs )=(K2,1,...,1),

H′(K ) =
⎧
⎨

⎩

0, if
∏n

j=1 ε
(
hΛ1
K1, j

)
= 0

log 2s DFΓ
K1λ

((K2, 1, . . . , 1) ⊕ (y1, . . . , ys)), otherwise

where x j = G3(γ j ) · (Zi
t ′ ⊕ L′

t ′(P
i )) ⊕ ω j · L2(Pi ) and y j = ⊕n

i=1 g
Λ j (K1,i ) for

j = 1, . . . , s.
In Algorithm 1, the grade G(K ) is a simple convolution between H and H′ (also in

[19]), thus we have G(K ) = 1
2l

̂H′′(K ) whereH′′(K ) = Ĥ(K ) · Ĥ′(K ). Therefore, the

total time complexity is NB′ + κ · 2κ+1.
In order to give the security bound of the two-level model, we first consider the bitwise

approximation, i.e., Eq. (9). Let the largest conditional correlation at the first level in the
model be εmax,1 and the largest unconditional correlation at the second level be εmax,2
following the restricted consistency of the linear mask G3(γ ). The total correlation of
the linear approximation can be derived as εt = εnmax,1 · εmax,2. Hence, the required data
complexity is

NB′ = 4κ log 2

ε2nmax,1 · ε2max,2

, (12)

and the total time complexity is

T = 4κ log 2

ε2nmax,1 · ε2max,2

+ κ · 2κ+1. (13)

From Eqs. (12) and (13), to strengthen the security of the two-level model, we can
take some strategy to reduce the conditional correlation εmax,1 and the unconditional
correlation εmax,2 to the extent that the resultant T > 2κ and/or NB′ > 2κ for κ =
wt (λ)n + 1.

Remarks. Let us take a closer look at the linear approximation process of the above
attack in Sect. 4.3. The key reason that the linear approximation at the first level and
that at the second level of the model can be connected together and efficiently exploited
is that the affine transform G3 only permutes the keystream bits without any linear
combination among them. Thus, each permutated keystream bit is associated with only
1 noise variable from the FSM and when combined together at the second level, there
are n noise variables from the FSM at the first level and 1 noise variable from the second
level, which ultimately determine the conditional and unconditional bias. Therefore,
to reduce the correlations, the most efficient strategy is to increase the number of noise
variables from the FSMby somemethod.Whatwe suggest to reach this aim is as follows.
If we run the core generator at the second level for a number of ticks first without

outputting the keystream, i.e., drop off some amount of the keystream prefix at the
beginning of the second level, then the noise variables from the first level will propagate
and increase the associated number of noise variables for each LFSR variable with the
executing of the n LFSRs. It is expected that with an appropriate choice of the number
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of the dropping off keystream bits at the beginning of the second level, the correlations
will be reduced to the desirable extent so that the corresponding time/data complexities
of Algorithm 1 will exceed the security bound. �

The following theorem gives the relation between the suggested number of keystream
bits dropped off at the beginning of the second level and the correlations.

Theorem 13. Let θ be the largest unconditional correlation at the first level in the
model and ρi = wt (pi (x)) − 1 be the number of tap positions of LFSR Ri (1 ≤ i ≤ n)

of the core generator in the model, and then after dropping off t Ln (t ≥ 1) keystream
bits at the beginning of the second level, we have

εuc ≤ θ t ·
∑n

i=1 ρi+1, (14)

where εuc is the unconditional correlation of the linear approximation of the model in
Eq. (7) in Sect. 4.3; further, if we take the conditional correlation into account at the first
level, we have

εhybrid ≤ ε
t ·∑n

i=1 ρi
max,1 · εmax,2, (15)

for the hybrid linear approximation in Eq. (9) in Sect. 4.3.

Proof. First note that for each LFSR i in the generator, the new variable introduced by
the LFSR clocking in the model is the xor of ρi initial permuted variables at the end of
the first level, thus after 1 full circle clocking of the LFSR, i.e., Li ticks, each variable
in the current internal state of LFSR i depends on ρi initial permuted variables. Second,
after dropping off t Ln (t ≥ 1) keystream bits at the beginning of the second level, i.e.,
after t full circles of the underlying LFSR, each new variable in the current internal state
of LFSR i depends on t · ρi initial permuted variables in the underlying LFSR.

Besides, from zt = Ψt ⊕ ⊕n
i=1 b

i
t and L1 < L2 < · · · < Ln , we know that after

dropping off t Ln (t ≥ 1) keystream bits at the beginning of the second level, the quantity⊕n
i=1 b

i
t is associated with at least t ·

∑n
i=1 ρi initial permuted variables at the beginning

of the second level. Then, by the Eqs.(7) and (9), we complete the proof. �

Let |K | = κ and |I V | = ς , and this theorem indicates that to strengthen the security of
the two-level model, it suffices to discard some keystream prefix at the beginning of the
second level. To frustrate Algorithm 1, it suffices to reduce the involved correlations to
the extent that either the data complexity (the number of required frames) in Eq. (12) or
the time complexity in Eq. (13) exceed the security bounds, i.e., T > 2κ or NB′ > 2ς ,
which leads to the following criterion for the two-level model in Fig. 1.

– It is necessary to discard the first t Ln keystream bits at the beginning of the second
level in the model for some t ≥ 1 .

Nowwe are ready to look at the real-world Bluetooth encryption scheme, one instance
of the above two-level model, and study its security against the outlined conditional
correlation attacks (Fig. 4).
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Fig. 4. General basic rate packet format.

5. Description of Bluetooth Encryption

Bluetooth is a wireless technology standard for exchanging data over short distances
(using short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz)
from fixed and mobile devices, and building personal area networks (PANs). In order
to provide usage protection and information confidentiality, the system applies security
measures at both the application layer and the link layer. These measures are designed to
be appropriate for a peer environment. Before introducing the encryption of Bluetooth
device, we first describe the packets used by the Bluetooth devices. The general packet
format of Basic Rate packets is shown in the following figure. The access code is 72
or 68 bits, and the header is 54 bits. The payload ranges from zero to a maximum of
2790 bits. User information can be protected by encryption of the packet payload; the
access code and the packet header shall never be encrypted. The security mechanisms in
Bluetooth have three phases: Legacy, Secure Simple Pairing, and Secure Connections,
shown in the following table. The encryption of the payload is carried out with a stream
cipher, called E0, that shall be re-synchronized for every payload. The description here
is according to the official specification in [3]. The size of the secret key used in two-
level E0 is 128 bits, and the IV consists of 74 bits, 26 of which are derived from a
real time clock, while the remaining 48 address bits are depending on users. The core
is a modification of the summation generator with 4-bit memory, i.e., σt = Xt =
(ct−1, ct ) = (c1t−1, c

0
t−1, c

1
t , c

0
t ), as shown in Fig. 5.

The core keystream generation of E0

Processing:
1: zt = b1t ⊕ b2t ⊕ b3t ⊕ b4t ⊕ c0t

2: st+1 = (s1t+1, s
0
t+1) = � b1t +b2t +b3t +b4t +2c1t +c0t

2 �
3: c0t+1 = s0t+1 ⊕ c0t ⊕ c1t−1 ⊕ c0t−1, c

1
t+1 = s1t+1 ⊕ c1t ⊕ c0t−1

4: (ct−1, ct ) ← (ct , ct+1)

5: update the LFSRs

Precisely, the keystream generator consists of four regularly clocked LFSRs whose
lengths are 25, 31, 33 and 39 bits, respectively (128 bits in total). The LFSRs are indexed
in the order of increasing length. All the feedback polynomials are primitive and have 5
nonzero terms each. Their outputs are combined by a Finite State Machine (FSM) with
4 bits memory. At each time t , the following steps are executed (Table1).

It is easy to see that the four LFSRs are equivalent to a single 128-bit LFSR whose
output bit Rt is obtained by xoring the outputs of the four basic LFSRs, i.e., Rt =
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Fig. 5. The core keystream generator of E0.

Table 1. Security algorithms.

Security mechanisms Legacy Secure simple pairing Secure connections

Encryption E0 E0 AES-CCM

Fig. 6. The real two-level bluetooth encryption scheme.

b1t ⊕ b2t ⊕ b3t ⊕ b4t and zt = Rt ⊕ c0t . Next, we introduce the real two-level E0 scheme,
as shown in Fig. 6. As before, we refer the time instant t and t ′ to the context of E0 level
one and level two and denote c0t , c

0
t ′ by αt , βt ′ , respectively.

1. (The first level) The LFSRs are preset to zero. Given the secret key K and some
IV Pi , the LFSRs are initialized linearly as Ri[−199,...,−72]= (Ri−199, . . . , R

i−72) =
Ri[−199,...,−72] = G1(K ) ⊕ G2(Pi ), where G1 and G2 are public affine transfor-

mations over GF(2)128.
2. The initial 4 memory bits of FSM are all set to 0. After clocking E0 200 times, we

only keep the last produced 128-bit output Si[−127,...,0] = Ri[−127,...,0]⊕αi[−127,...,0].
Let M be the state transmission matrix of the equivalent LFSR over GF(2)128,
i.e., Ri[−127,...,0] = M72(Ri[−199,...,−72]). Note that because of the linear functions
G1,G2 and M , the last 128 bits of Ri

t can be written as Ri[−127,...,0] = (M72 ◦
G1)(K ) ⊕ (M72 ◦ G2)(Pi ).

3. Si[−127,...,0] is used to initialized the fourLFSRsbyabyte-wise affine transformation

G3 : GF(2)128 → GF(2)128, detailed in Fig. 7, this process can be expressed by
V i[1,...,128] = G3(Si[−127,...,0]).
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Fig. 7. Distribution of the last 128 bits in the first level.

4. (The second level) The FSM initial state remains the same as it was in the end of
the first level. Then, E0 produces the keystream zit ′ = V i

t ′ ⊕ β i
t ′ of the i-th frame

for t ′ = 1, . . . , 2790.

6. Previous Attacks on Two-Level E0

At Crypto 2005, Lu, Meier and Vaudenay presented a conditional correlation attack
on two-level E0 in [19]. They consider several consecutive steps of the generator as a
vectorial function and investigate the conditional correlation properties of this function.
Based on these properties, if an adversary is given a pool of keystream frames generated
with the same key and different IVs,10 a statistical distinguisher can be constructed
which could distinguish the biased sample sequence from the other sequences consisting
of independently and uniformly distributed variables. The biased sample sequence is
characterized by some key-related information, which can then be used to identify the
correct encryption key.
Note that in the real E0, there is a delay effect in the FSM state, i.e., the current FSM

state at time t always contains the previous bit c0t−1, which will make a difference in
defining the target function in Eq. (2) to increase the involved time instants by 1, as
shown below. Thus, the adversary could gain one time instant for free and reduce the
guess space by 4 bits for free. Precisely, there are two sets of inputs to the FSM in E0
encryption scheme at time t , i.e., the four LFSR output bits Bt = (b1t , b

2
t , b

3
t , b

4
t ) and the

4 memory register bits Xt = (ct−1, ct ) ∈ GF(2)4. Consider l continuous time instants
and let γ = (γ0, γ1, . . . , γl−1) ∈ GF(2)l be a linear mask with γ0 = γl−1 = 1 and
γ̄ = (γl−1, γl−2, . . . , γ0) be the linear mask in reverse order. Define the inputs as

Bt+1 = Bt+1Bt+2 · · · Bt+l−2 ∈ GF(24(l−2)), Xt+1 = (ct , ct+1) ∈ GF(2)4

10 As the Pi s are affine transformation of a 26-bit clock and a master device address, the maximum number
of available frames for a fixed key is 226.
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and the FSM outputs Ct = (c0t , . . . , c
0
t+l−1). Then, the function hγ

Bt+1
: Xt+1 → γ · Ct

is also well defined. It is shown in [19] that given Bt+1, γ · Ct is heavily biased for
properly chosen linear mask γ .

A statistical distinguisher can thus be constructed based on the biased distribution
of γ · Ct . Since Bt+1 is the key-related material, the adversary can guess the involved
key information and collect a set of sample sequences from the keystream, IVs and the
guessed key value. It is expected that with the correct key, the corresponding sample
sequence is biased, while for the wrong guesses, the underlying sequence will behave
like a random source. By properly choosing the involved parameters, it is shown that the
original encryption key K in Fig. 6 can be retrieved with 238 on-line computations, 238

off-line computations and 233 memory, given the first 24 bits of 223.8 frames in theory,
while in practical experiments, the attack needs about 19-hour on-line time, 37-hour
pre-computation for each key and 64GB storage, given the first 24 bits of 226 frames.

In [19], it is mentioned that this attackwas verified only 30 times for a fixedmaster key
with 226 frames, slightly less than the theoretical estimate 226.5 frames. Further, for each
possible key, there are 256 equivalent keys, which means that when using a distinguisher
to determine the rank of each possible key, there are 256 equivalent candidates having
the same grade. In the case that the correct key does not have the highest grade, much
more time is needed to search over all the possible keys, e.g., if the grade of the right
key ranks the 10th position, then we have to search 10 · 256 ≈ 211.3 possible keys to
find the real one. Thus, the successful probability of this attack cannot be guaranteed.
In the following sections, we will show that the adversary need not to guess all the

bits in the condition vector Bt+1, actually only a few bits determine the magnitude of
the biased distribution of γ · Ct , and thus we just need to select a condition mask to
determine the most important bits in Bt+1. In this way, the time/memory complexities
of the above attack can be considerably reduced.

7. Correlations Properties of the Two-Level Bluetooth Encryption

In this section, we will carefully study the correlation properties of the two-level encryp-
tion scheme. First, a powerful complete recursive formula to compute the unconditional
correlations of E0 is presented. Then, the conditional correlation properties based on
condition masking are analyzed and computed.

7.1. Unconditional Correlations in the E0 Keystream Generator

In [21,22], a recursive formula for the computation of the unconditional correlation in the
E0 combiner is presented. However, it only involves the pure FSM variables and cannot
cover all the unconditional correlations reported in [10], e.g., the following correlation
also has the largest correlation

ε
(
c0t ⊕ c0t+1 ⊕ c0t+2 ⊕ c0t+3 ⊕ b1t+3 ⊕ b2t+3 ⊕ c0t+4

)
= − 25

256
,
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but it cannot be found by the previous formula. Another example is

ε(c0t ⊕ c0t+1 ⊕ c0t+2 ⊕ b1t+3 ⊕ c0t+4) = 25

256
.

In general, let Ω1(a, 〈ω, u〉) be the correlation ε(a · st+1 ⊕ ω · ct ⊕ u · Bt ) shown in
Table2, where a ∈ GF(2)2, u ∈ GF(2)4, ω ∈ GF(2)2 and Bt denote the output bits
of four LFSRs at time t . Besides, let h : (x1, x0) → (x0, x1 ⊕ x0) be a permutation
over GF(2)2 and ε(〈a1, u1〉, . . . , 〈ad−1, ud−1〉, ad) = ε(a1 · c1 ⊕ u1 · B1 ⊕ · · · ⊕ ad−1 ·
cd−1 ⊕ ud−1 · Bd−1 ⊕ ad · cd), where u1, . . . , ud−1 ∈ GF(2)4. We can derive the above
correlation coefficient as follows.11

ε(〈1, 0〉, 〈1, 0〉, 〈1, 0〉, 〈0, 1〉, 1) =
∑

ω

Ω1(1, 〈ω, 1〉) · ε(〈1, 0〉, 〈1, 0〉, 〈2, 0〉, 1 ⊕ ω)

= − 1

4
· ε (〈1, 0〉, 〈1, 0〉, 〈2, 0〉, 2)

= − 1

4

∑

ω

Ω1(2, 〈ω, 0〉) · ε(〈1, 0〉, 〈0, 0〉, ω)

= 1

16
· ε(〈1, 0〉, 〈0, 0〉, 1) + 5

32
· ε(〈1, 0〉, 〈0, 0〉, 2)

= 1

16

∑

ω1

Ω1(1, 〈ω1, 0〉) · ε(〈2, 0〉, 1 ⊕ ω1)

+ 5

32

∑

ω2

Ω1(2, 〈ω2, 0〉) · ε(〈0, 0〉, 2 ⊕ ω2)

= 5

32

(
1

4
ε(〈0, 0〉, 3) + 5

8
ε(〈0, 0〉, 0)

)

= 25

256
.

Our complete formula for the computation of unconditional correlations of E0 is yielded
in the following theorem.

Theorem 14. If the initial states of FSM and LFSR are both uniformly distributed,
then we have

ε(〈a1, u1〉, . . . , 〈ad−1, ud−1〉, ad) = −
∑

ω∈GF(2)2

Ω1(ad , 〈ω, ud−1〉)

· ε(〈a1, u1〉, . . . , 〈ad−2 ⊕ h(ad), ud−2〉, ad−1 ⊕ ad ⊕ ω).

Proof. First note that according to the description of the real two-level E0,we can regard
the initial states of the LFSRs and the FSM as uniformly distributed random variables,
and thus the premise is met. To simplify the analysis, let Z ∈ GF(2)2 be a random
variable independent of Bd−1 with uniform distribution. By the keystream generation of

11 Note that there is a little difference from Sect. 4. Here, we divided the 4 memory bits σt = Xt into
(ct−1, ct ).
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Table 2. Biases of all the linear combinations of Ω1(a, 〈u, ω〉).
Ω1(a, 〈ω, u〉) ω

0 1 2 3

weight of u 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

a
0 −1 – – – – – – – – – – – – – – – – – – –
1 – – – – – – – – – – 1

4 – − 1
4 – 1

4 – − 1
4 – 1

4 –
2 – − 1

4 – – – − 1
4 – – – 1

4 − 5
8 – 1

8 – − 1
8 – 1

8 – − 1
8 –

3 5
8 – − 1

8 – 1
8 – − 1

8 – 1
8 – – − 1

4 – – – − 1
4 – – – 1

4

E0 in Sect. 5, define f : GF(2)4 ×GF(2)2 → GF(2) and g : GF(2)6(d−2)+2 → GF(2)2

as follows.

f (X, g(Y )) = ad · sd ⊕ ud−1 · Bd−1,

where g(Y ) = cd−1, X = Bd−1 and

Y = (〈c1, B1〉, . . . , 〈cd−3, Bd−3〉, 〈cd−2, Bd−2〉, cd−1),

v = (〈a1, u1〉, . . . , 〈ad−3, ud−3〉, 〈ad−2 ⊕ h(ad), ud−2〉, ad−1 ⊕ ad).

With this simplified expression, we have:

∑

ω∈GF(2)2

Ω1(ad , 〈ω, ud−1〉) · ε(〈a1, u1〉, . . . , 〈ad−2 ⊕ h(ad), ud−2〉, ad−1 ⊕ ad ⊕ ω)

=
∑

ω∈GF(2)2

ε( f (X, Z) ⊕ ω · Z) · ε(ω · g(Y ) ⊕ v · Y )

=
∑

ω,x,z

P(X = x, Z = z) · (−1) f (x,z)⊕ω·z ∑

y

P(Y = y) · (−1)ω·g(y)⊕v·y

=
∑

x,z,y

P(X = x, Z = z)P(Y = y)(−1) f (x,z)⊕v·y ∑

ω

(−1)ω·(z⊕g(y))

=
∑

x,y

P(X = x,Y = y)(−1)ad ·sd⊕ud−1·Bd−1⊕v·y

=
∑

x,y

P(X = x,Y = y)(−1)a1·c1⊕u1·B1⊕···⊕ud−1·Bd−1⊕ad ·cd

= −ε(〈a1, u1〉, . . . , 〈ad−1, ud−1〉, ad). (16)

Equation (16) is derived according to ad · cd = ad · sd ⊕ ad · cd−1 ⊕ h(ad) · cd−2. �

Theorem 14 can compute all the unconditional correlations of the E0 combiner without
any miss, e.g., it covers all the results reported in [10]. Then, we can compute ε(v · Zm

t ′ ⊕
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Table 3. The two largest correlations and the number of different linear masks when m = 7, . . . , 14.

m Value Number m Value Number

7 0.03814697 16 11 0.01680851 32
0.02441406 640 0.01337528 32

8 0.03839111 16 12 0.0148296356201 6
0.03814697 16 0.0101804733276 10

9 0.03662109 16 13 0.0096201896667 10
0.01642704 16 0.0095695257187 6

10 0.01451969 16 14 0.0095968134701 12
0.01413822 16 0.0095404870808 16

W · Bm
t ′ ) for m up to 14 with a low complexity, which is impossible for the exhaustive

search method by FWT due to the large time and memory complexities, see [17] for
more onWalshTransforms.WithTable2 and the initial conditions ε((0, 0), 0) = −1, and
ε((a, b), c) = 0 for (a, b, c) �= (0, 0, 0), we can recursively deduce the unconditional
correlations. Table3 gives some searching results of the unconditional correlations. From
the table, we found that with the increasing ofm, the unconditional correlations become
more and more smaller. Even though these correlations cannot be used here to improve
the attack of E0, they can be applied to the attack in [10] and maybe have some better
results.

Corollary 15. The recursive expression in Theorem 14 can compute all the correlation
coefficients ε(W · Bm ⊕ v · Zm) of the second level of E0 in 2m−2 · 5m−2 iterations.

Proof. In Theorem 14, c1t is usually not considered, so we only consider at = 0, 1 for
1 ≤ t ≤ m. For a certain m, we have a01 = 1 and a0m = 1. From the initial values, if
u1 �= 0, then the total correlation will be zero, so we always set u1 = 0. Now we just
search over all the m − 2 undetermined coefficients a0i ∈ GF(2) and ui ∈ GF(2)4 for
i = 2, . . . ,m − 1 which only needs 2m−2 · 5m−2 iterations. �

The unconditional linear correlations are used in the linear approximation of the second
level in Fig. 6. Since there is no linear relation between the input to the FSM in the
second level and the original encryption key, the conditional correlations cannot be used
in the approximation of the second level.

7.2. New Conditional Correlations

As condition mask indicates that the adversary may not use the full vector as the con-
dition, only search the correlations conditioned on a subset of B defined by a mask
λ. In the cryptanalysis of E0, Bt+1 is the key-related input. Given a condition mask
λ = (λt+1, . . . , λt+l−2) ∈ GF(2)4(l−2), where λ j ∈ GF(2)4 corresponds to Bj for
j = t + 1, . . . , t + l − 2. According to Eq. (2) and the difference between the model
and the real E0 mentioned in Sect. 6, we can construct the target function of E0 as
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Fig. 8. The new computation process of Ct in the real bluetooth encryption.

Table 4. The bias with Λ = (γ, η) = (0x1 f, 0|η|) and λ = 0x00 f .

ε

(

hΛ
B′
t+1

)

wt (Bt+3) Cardinality of Bt+3

0.390625 2 6
−0.390625 0, 4 2
0.0625 3 4
−0.0625 1 4

hΛ
B′
t+1

: Xt+1,B∗
t+1 → γ · Ct ⊕ ω · B∗

t+1, (17)

as shown in Fig. 8. Figure8 also shows that though the computation process of Ct is
frustrated by the condition mask λ �= 1u , the bias can still be computed. Here, comes an
example to illustrate how to compute the bias in the condition masking setting. Assume
l = 4 and λ = 0x0f,12 we have Bt+1 = Bt+1Bt+2,B′

t+1 = Bt+2 and B∗
t+1 = Bt+1.

We can guess Bt+2 and compute hΛ
Bt+2

for all the possible choices of Bt+1, Xt+1 to get

ε(hΛ
Bt+2

).
According to the specification of E0, we can construct the linear functions Lt and

L ′
t of Eq. (3). With this knowledge, the linear equations on the original encryption key

can be acquired. For 4 ≤ l ≤ 6, we have exhaustively searched the correlations based
on condition masking for all the possible condition masks on a PC. All the significant
biases obtained are also verified in computer simulations working on sufficiently long
output sequences. The time complexity of guessing is determined bywt (λ). To get better
time/memory complexities, we restrain ourselves to the λs satisfying 1 ≤ wt (λ) ≤ 7.

In the experiments, we have found many important masks, shown in Tables 4
and 5. Table 4 is computed with λ = 0x00f,Λ = (γ, η) = (0x1f, 0|η|). We get
E[�(hB′

t+1
)] ≈ 2−3.7, where B′

t+1 = Bt+3. In Table 5, we choose λ = 0x007f

and Λ = (γ, η) = (0x21, 0|η|). From it, we get E[�(hB′
t+1

)] ≈ 2−3.5, where

B′
t+1 = Bt+3Bt+4.
Moreover, as mentioned in Sect. 4.2, for a fixed condition mask λ, its maximum bias

among all the linear masks Λ is an essential measure of it. The larger the maximum
bias, the better the condition mask is. The following property indicates how to choose

12 For brevity, we use the hexadecimal number to represent a vector.
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Table 5. The bias with Λ = (γ, η) = (0x21, 0|η|) and λ = 0x007 f .

ε

(

hΛ
B′
t+1

)

wt (Bt+3)wt (Bt+4) Cardinality of Bt+3Bt+4

0.46875 10, 20, 14, 24 12
−0.46875 12, 22 36
0.15625 00, 30, 04, 34 4
−0.15625 02, 32 12
0.046875 01, 33 8
−0.046875 31, 03 8
0.015625 11, 33 24
−0.015625 21, 13 24

the condition mask to make the bias as large as possible. We have verified this property
by searching over all the biases of hΛ

B′ for each combination of λ, γ and ω.

Property 16. Let Bt+1 = Bt+1 · · · Bt+l−2 ∈ GF(2)4(l−2), and λ = (λt+1, . . . ,

λt+l−2), λ
′ = (λ′

t+1, . . . , λ
′
t+l−2) are two condition masks with 4 ≤ l ≤ 6 and

wt (λ) = wt (λ′) ≥ 4, where λi , λ
′
i ∈ GF(2)4 correspond to Bi . If wt (λt+l−2) = 4 and

wt (λ′
t+l−2) < 4, then13 maxΛ(E[�(hΛ

B′
t+1

)]) > maxΛ′(E[�(hΛ′
B′
t+1

)]), except when
l = 4, wt (λt+1) = 1, wt (λt+2) = 4 and wt (λ′

t+1) = 2, wt (λ′
t+2) = 3, in which case

the maximum values are equal.

From Property 16, wt (Bt+l−2) in Bt plays the most important role in the correla-
tion values based on condition masking. This weight determines the magnitude of the
corresponding bias in the condition masking case. For example, given l = 5,Λ =
(γ, η) = (0x1f, 0|η|), λ1 = 0x303, λ2 = 0x00f, we can find E[�(hΛ

B1
)] =

0.020325,E[�(hΛ
B2

)] = 0.078247, where B1 and B2 are the two condition vectors
determined by λ1 and λ2, respectively. The experimental results are depicted in the
Figs. 9 and 10.14 to show the different levels of the correlation magnitude. The fact
depicted in the figures that the conditional correlation values are distributed at clearly
different levels tells us that when selecting the condition masks, we should set the
value of the highest four bits of λ to be 0xf. For example, given l = 5, η = 0, γ =
0x1f, λ1 = 0x303, λ2 = 0x00f and λ3 = 0x113, we can find E[�(hγ,0

λ1�Bt+1
)] =

0.020325,E[�(hγ,0
λ2�Bt+1

)] = 0.078247 and E[�(hγ,0
λ3�Bt+1

)] = 0.010162. Not only one
example, but all the experimental results confirm this claim so far.

13 maxΛ(·) is the maximum function for all Λ.
14 λ′ in the figures is represented in the inverse nibble order of λ, e.g., λ = 0x007 f , then λ′ = 0x f 700.
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Fig. 9. maxω(hΛ
B) for different condition masks λ with wt (λ) = 7 and l = 6.

Fig. 10. maxω(hΛ
B) for different condition masks λ with wt (λ) = 6 and l = 6.

8. Our Attacks with Condition Masking

According to the specification in [3], the last generated 128 bits Si[−127,...,0] in
the first level are arranged in octets denoted by S[0], . . . , S[15], e.g., S[0] =
(Si−127S

i−126 · · · Si−120). According to Sect. 4 and Fig. 7, V i[1,...,24] can be expressed as

V i
t ′ = Ui

t ′ ⊕ αi
t1 ⊕ αi

t2 ⊕ αi
t3 ⊕ αi

t4 , for t ′ = 1, . . . , 24.

Since at level two (in Fig. 6), the 128-bit keystream Sit are loaded in the reverse order of
that at level one, then Eq. (7) can be rewritten as



424 B. Zhang et al.

γ̄ · (Zi
t ′ ⊕ Lt ′(K ) ⊕ L′

t ′(P
i )) =

4⊕

j=1

(γ · Ci
t j ) ⊕ γ̄ · Ci

t ′ , (18)

for i = 1, . . . ,N . Here, we have t ′ ∈ ⋃2
d=0{8d + 1, . . . , 8d + 9 − l}.15

When t ′ ∈ ⋃2
d=0{8d + 1, . . . , 8d + 9 − l}, by Eq. (2) and (17), we can rewrite this

equation as follows:

γ̄ · (Zi
t ′ ⊕ Lt ′(K ) ⊕ L′

t ′(P
i )) ⊕ ω · (L1(K ) ⊕ L2(P

i )) =
4⊕

j=1

hΛ

B′i
t j+1

⊕ hγ̄ , (19)

where L1, L2 are public linear functions in E0. Thus, we acquired the linear approxi-
mation of two-level E0 based on condition masking.

8.1. Key Recovery Attack with Bitwise Linear Approximation

From Sect. 7, the largest unconditional bias of hγ is 25
256 with γ = (1, 1, 1, 1, 1) or

(1, 0, 0, 0, 0, 1). To maximize the bias of Eq. (19), we choose these two γ s in the sec-
ond level approximation, and then |γ | = l = 5 or 6. Due to the high time/memory
complexities, the attack in [19] only considered l < 6. In our attack, the time/memory
complexities are not dependent on |γ |, they are determined on wt (λ), and thus l = 6
can also be used in the condition masking setting.
Given the condition mask λ and the linear masks Λ = (γ, η), in the case of E0 we

have

Bi
λ =

(
B′i
t1+1,B′i

t2+1,B′i
t3+1,B′i

t4+1

)
,

X i =
(
Y i
t1+1,Y

i
t2+1,Y

i
t3+1,Y

i
t4+1, X

i
t ′ ,Bi

t ′+1

)
,

where Y i
t j+1 = (Xi

t j+1,B∗
t j+1) is the unknown input to hΛ

B′i
t j+1

, and Xi
t ′ ,Bi

t ′+1 are

the inputs to hγ̄ . By the same notations in Sect. 4, we set K1 = (Lt1(K ), Lt2(K ),

Lt3(K ), Lt4(K )) be the 4wt (λ) bits contained in Bi
λ and K2 = γ̄ ·Lt ′(K ) ⊕ ω · L1(K )

be the subkey. In the case of E0, we have the parameters n = 4, k = 4. With the dis-
tinguisher FΛ

Bi
λ

(X i ) in Sect. 4 and the keystream sequences of E0, we can restore the

correct keys.

8.2. Key Recovery Attack with the Vectorial Approach

Now we look at the vectorial approach. Here, we apply the vectorial key recovery attack
in Sect. 4 with n = 4, k = 4 to the two-level E0. Assume we use s mutually independent
linear approximations. Keep the same notations as before. Let Γ = (Λ1, . . . , Λs) and
Γ ′ = (γ̄1, . . . , γ̄s) denote the linear mask of these s approximations. In particular, Λ1
is just the linear mask used in the above bitwise attack.

15 From Eq. (18), the time instant t j in Ci
t j

are continuous, so the approximation is only set up in this

requirement.
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By the way of Sect. 4 and notice the difference between the general model and the real
E0 pointed out in Sect. 6, we can construct a linear approximation of the real two-level E0
in the vectorial approach accordingly.With the appropriate choice ofΓ = (Λ1, . . . , Λs)

following the principles in Sect. 4.5, we apply the vectorial key recovery attack in Sect. 4
to the case of E0. We can thus recover the κ secret bits of two-level E0.

8.3. The Data Complexity

The bi-biases analysis, i.e., using two bitwise linear approximations to construct a two-
dimensional vector, is used in [19] to reduce the data complexity from 226.5 to 223.8.
This method is very similar to the multidimensional linear cryptanalysis. But there are
two errors in their analysis. First, the linear masks γ1 = (1, 1, 0, 1), γ2 = (1, 0, 1, 1),
are chosen there. But note that the unconditional correlation ε(hγ̄2) = 0, so the second
dimension of the vector distinguisher is always uniformly distributed. Thus, according
to the multidimensional linear cryptanalysis, this vectorial distinguisher has the same
SEI with the bitwise distinguisher, i.e., the bitwise linear approximation in the first
dimension. This mainly comes from the fact that there are 4-bit memory in the E0
combiner, and thus any2-bit linear combinationhas the zero correlation coefficient. Thus,
this method cannot improve the data complexity. Second, the formula (31) in [19], i.e.,
FΓ
Bi = �(hΓ̄ ) · E4(�(hΓ

Bt+1
)), is not always true. For the bitwise linear approximation,

this formula is the same as pilling-up lemma, but for the vectorial method it is not always
the case. Hence, the data complexity in [19] should be 226.5 rather than 223.8. The same
problem is also in [34].
The correctway to compute the distribution ofFΓ

Bi is to use the convolutional operation
to combine each sub-distribution efficiently. This process can be expressed as follows:

�(FΓ
Bi ) =�

(

hΓ

B1
t+1

⊗ hΓ

B2
t+1

⊗ hΓ

B3
t+1

⊗ hΓ

B4
t+1

⊗ hΓ ′
)

.

Note that the FWT could be used here to accelerate the final computation through the
relation between the convolution and the Walsh Transform, detailed in Sect. 2. We have
used this method to re-compute all the data complexities in [19] and [34] and found that
the advanced algorithm in [19] cannot improve the data complexity, that is the actual data
complexity should be 226.5 rather than 223.8. Besides, the data complexities in [34] are
also not so accuracy, though the experiments confirmed the data complexity in practice.
But the success probability of the attack is not very high. The main reason is that the
same formula as that in [19] is used. In the following sections, we will describe a new
method to improve the data complexity based on the condition masking method.

8.4. Theoretical Analysis

To get the optimal performance of our attack, we should carefully choose the parameters
Γ and λ in the linear approximations. As explained before, each component should not
be uniformly distributed. We have searched all the linear masks in [19] and found that
there is no other linear approximations that have non-uniform distribution. Thus, the
method in [19] cannot be transformed into the vectorial approach. On the other hand,
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Table 6. Example: λ = 0x000 f .

λ γ η E[�(hΛ
B′
t+1

)]

(1, 0, 0, 0, 0, 1) 0 2−3.7

0x000 f (1, 0, 0, 0, 1, 1) 0 2−3.7

there is more flexibility of the condition masking method in [34] in the sense that much
more linear masks are available to construct the vectorial distinguisher. By choosing
different condition masks, we can use the multi-pass method and list decoding method
to reduce the data complexities efficiently.
The experiments have shown that there are many large correlations based on condition

masking that can be used in our attack. For example, for a condition mask λ = 0x000f,
we can choose the 2 linear masks listed in Table 6, the experimental results show
�(hΓ

B′
t+1

) ≈ 2−2.7, where Γ = ((0x21, 0), (0x23, 0)). And �(hΓ ′
) ≈ 2−6.7, thus

from Eq. (11) we know that the data complexity is NB′ ≈ 227. In this example, we
can recover the involved κ = 17-bit subkey. But the data complexity is higher than the
real-world Bluetooth bound 226. We will use the list decoding method to reduce the data
complexity to 225, which is detailed in the next Section. Here, we give the theoretical
analysis why we use the data complexity 225 to generate a list of 256 possible candidate
keys. According to the LLR method in [2], each possible K ∈ {0, 1}17 has the grade
GK = LLR(FΓ

Kλ
). We assume that for one unknown value K = K0, each sample FΓ

Kλ

follows the distribution D0, whereas when K �= K0, all the FΓ
Kλ

follow the distribution
D1. For any K �= K0, we obtain that GK0 − GK is approximately normally distributed
with the expected valueNB′�(D0) and the standard deviation

√
2NB′�(D0). Hence, the

probability that awrong key K has a better grade than the right key K0, i.e.,GK0 < GK is

about Φ(−√NB′�(D0)/2), where Φ(t) = 1√
2π

∫ t
−∞ e− 1

2 u
2
du is the distribution func-

tion of the standard normal distribution. Thus, the expected number of the K having
larger grades than the correct key K0 is (217−1) ·Φ(−√NB′�(D0)/2). The probability
that this value is smaller than 256 is Φ(−√

nB′�(D0)/2) ≤ 256
217−1

. By the property of

the standard normal distribution, we can acquire Φ(
√NB′�(D0)/2) ≈ 0.998. Since

�(D0) ≈ 221.44, we can get the new value ofNB′ is 225.49. That is why, we use the data
complexity NB′ = 225 in the experiments. Furthermore, we can use a new condition
mask to repeat the same process to minimize the size of key candidates list, presented in
Sect. 9. In the experiments, we find that we can always recover the correct key correctly.

Let us analyze the time complexity of the two examples discussed above. The pre-
computation of Ĥ ′ is 17 · 217, and we need time 2 · 17 · 217 ≈ 221.1 to compute Ĥ, Ĥ′′,
and time nB′ = 227 to compute H, so the total time is 227 + 221.1.

9. Practical Implementation of the Known-IV Attack

Our attacks have been fully implemented on one core of a single PC, running with
Windows 7, Intel Core 2 Q9400 2.66GHz and 4GB RAM. In general, the exper-
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imental results match the theoretical analysis quite well. We present the details as
follows.
We choose the condition mask λ = 0x000f and γ1 = 0x21, η1 = 0, γ2 =

0x23, η2 = 0, t ′ = 1,NB′ = 225 (reduced by the list decoding and multi-pass method)
in the experiments. We call this process the first step. Here, the list decoding method
means that we select a list of key candidates other than a unique possible key. After
the first step, we get a candidate list of size 256. In the second step, we choose another
condition mask, λ = 0x00f and γ = 0x1f, ω = 0, and then use these parameters to
mount a new key recovery attack to reduce the size of key list further. After that, we can
always acquire the correct key.
Precisely in this configuration, we have the condition bits B′i

t+1 = Bi
t+4. In the first

step, we first collectNB′ frames for a random key and store them in a binary file. It takes
about 8 minutes and 160MB to fulfill this task. With these samples, we run Algorithm
1 to recover the possible keys stored in a list. The pre-computation of H′ and Ĥ′ needs
about one second, and the results are stored in a 4MB table in RAM, not on the hard
disk. Computing H, Ĥ,H′′, Ĥ′′ in total takes about 2 seconds. Compared with the 37
hours and 64GB table in [19], our attack can be easily carried out in real time on a single
PC.
Our new attack is repeated 100 times with different randomly generated keys and IVs.

In the first step of our experiments, the right key ranks first for 72 times and about 99%
of the right keys are in the first 256 key candidates list. Thus, after the first step, we
almost have got the right key. Then, we use the new condition masking to recover the
right key in this 256 candidates and in 86 times, we get the unique one right key. The
remaining experiments can reduce the size of the possible key list further. Note that in
[19], the experiments are only carried out in the basic bitwise level with 226 frames and
repeated 30 times for a fixed key.
One run of our attack is as follows. We first use two-level E0 to generate 225 frames

for the key 0x8387cb74a2b0cf437ba6995f74de39e0. In the experiments, we
use the Mersenne twister to generate the key and the 225 74-bit IVs, and set the first
IV ADR = 0x1ad5e266c6fa,CLK = 0x6260c9 as the benchmark, the others
are xor values with the benchmark IV. We store the first 24 bits of each frame in a
file and compute the FΛ

Bi
λ

(X i ), i = 1, . . . , 225. Note that if we choose another IV as

the new benchmark IV, the values of new FΛ

Bi
1λ

(X i ), i = 1, . . . , 225 are just a per-

mutation of the former ones. Second, we compute (Bi
t1+4, B

i
t2+4, B

i
t3+4, B

i
t4+4)(i ≥ 2)

by (B1
t1+4, B

1
t2+4, B

1
t3+4, B

1
t4+4) ⊕ (�i,1,�i,2,�i,3,�i,4), where �i, j denotes the dif-

ference value of the i-th frame. Third, for each possible key, we use the FWT to
compute the grade G(K ). In this instance, the grade of the right subkey (K1 =
(0x5,0xf,0x7,0x3), K2 = 0x1) is 8.118578, which ranks the first. In total, the
running time isNB′ + k · 2k+1 ≈ 225. In order to recover more key bits, we can increase
the time instant and using the same method to recover all the key bits. Table 7 gives a
comparison of our attacks with the best previous attacks on two-level E0.
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Table 7. Comparison of our attack in Sect. 8 with the previous attacks on two-level E0.

Attack Pre-com Time Frames Memory

[7] – 273 – 251

[8] 280 265 2 280

[10] 280 270 45 280

[20] – 240 235 235

[19] 238 238 223.8 → 226 233

Ours 221.1 225 225 217

10. The Ciphertext-Only Attack

In this section, we convert the attack in Sect. 8 against the real two-level E0 into a
ciphertext-only attack, which is much more practical than the above known-IV (known-
plaintext) attacks. In the real-world ciphertext-only scenario, the adversary only has
access to a set of ciphertext bits cpt ′ intercepted from the air other than the keystream
bit zt ′ .
Note that zt ′ = cpt ′ ⊕ mt ′ , where mt ′ is the t ′-th real plaintext bit. Let CPt ′ =

(cpt ′ , . . . , cpt ′+l−1) and Mt ′ = (mt ′, . . . ,mt ′+l−1), then the core linear approximation
Eq. (19) in Sect. 8 becomes

γ̄ · (CPi
t ′ ⊕ Lt ′(K ) ⊕ L′

t ′(P
i )) ⊕ ω · (L1(K ) ⊕ L2(P

i ))

=
4⊕

j=1

hΛ

B′i
t j+1

⊕ hγ̄ ⊕ γ̄ · Mi
t ′ .

Further note that the adversary always has some knowledge of the statistical distribution
of the plaintext characters. Here, for brevity, we assume that the plaintexts consist of nat-
ural English sentences represented by ASCII codes. The ASCII codes and the statistical
property of these symbols are listed in Table8.

In this case, the statistical distribution of the plaintext is usually heavily biased, i.e.,
ε(γ̄ · Mi

t ′) �= 0. Let us denote the corresponding bias by εM . Besides, assume that the
bias of Eq. (19) is εZ , and then according to the Piling-up Lemma, we can compute the
total bias of the above linear approximation in the ciphertext-only attack as 2εMεZ , and
the other parts of the attack are the same as the previous known-IV attack.
We use the bitwise linear approximation to mount the ciphertext-only attack. The

reason that the vectorial approach cannot be applied here is as follows. Assume we
use the same parameter configuration as that in the known-plaintext attack, i.e., λ =
0x000f, Γ = ((0x21, 0), (0x23, 0)). The target distribution in the ciphertext-only
attack now becomes FΓ

Bλ
⊕ (γ1 · M, γ2 · M). By Table8, we can compute the SEI of the

plaintext as �((γ1 · M, γ2 · M)) = 1.04, which is much larger than the bitwise bias of
plaintext. But when computing the SEI of the distribution ofFΓ

Bλ
⊕(γ1 ·M, γ2 ·M) using

the convolution method, the SEI decreases very fast and becomes �(FΓ
Bλ

⊕ (γ1 · M, γ2 ·
M)) ≈ 2−27.19 and accordingly the data complexity becomes NB′ ≈ 232.75, which is
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Table 8. Relative frequencies of letters in english text.

Letter ASCII Frequency (%) Letter ASCII Frequency (%)

a 01100001 8.167 n 01101110 6.749
b 01100010 1.492 o 01101111 7.507
c 01100011 2.782 p 01110000 1.929
d 01100100 4.253 q 01110001 0.095
e 01100101 12.702 r 01110010 5.987
f 01100110 2.228 s 01110011 6.327
g 01100111 2.015 t 01110100 9.056
h 01101000 6.094 u 01110101 2.758
i 01101001 6.966 v 01110110 0.978
j 01101010 0.153 w 01110111 2.360
k 01101011 0.772 x 01111000 0.150
l 01101100 4.025 y 01111001 1.974
m 01101101 2.406 z 01111010 0.074

well above the upper bound of 226. The decreasement of the SEI is mainly caused by
the computation of the convolution between the two distributions. On the other hand,
for the bitwise linear approximation case, the distribution of the xor of two underlying
distributions can be computed by the piling-up lemma, which is detailed in the next
Section.

11. Practical Implementation of the Ciphertext-Only Attack

In the experiments of the ciphertext-only attack, we choose the condition mask λ =
0x00f and γ = 0x1f, η = 0. In this configuration, we have the conditional correlation
�(hΛ

B′
t+1

) ≈ 2−3.67 and the unconditional correlation �(hγ ) = 2−6.71. Assume the

plaintext are represented by ASCII codes and we can use the Table8 to compute the
SEI of the plaintext, i.e., �(γ̄ · Mt ) ≈ 2−1.82. Therefore, according to Eq. (11), we
can calculate the data complexity of the ciphertext-only attack as NB′ ≈ 228.79, which
is larger than the upper bound of 226 in the real Bluetooth system for a fixed key. To
compensate this issue, we use the same list decoding and multi-pass method as those in
the known-IV scenario to assure a high success probability.
In our experiments, we set the NB′ ≈ 226 (slightly less than the theoretical estimate

228.79). The pre-computation of Ĥ′ is 17 · 217, and we need time 2 · 17 · 217 ≈ 221.1

to compute Ĥ, Ĥ′′, and time nB′ = 226 to compute H, so the total time is 226 + 221.1.
Thus, our ciphertext-only attack can be easily carried out in real time on one core of a
single PC and the cost of our attack is nearly the same as that of the known-plaintext
attack.
In order to acquire enough number of the plaintexts that conform to the relative

frequencies of the natural English, we collected the plaintexts frommany famous novels.
Then, we encrypted each letter by the two-level E0 scheme as a Bluetooth frame, and
thus we can get 226 frames. As described in Sect. 5, we have known the format of the
Bluetooth frame. Therefore, in the practical application we can use a Bluetooth sniffer to
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Fig. 11. The practical attack scenario of bluetooth encryption.

Fig. 12. The distribution of grades.

grab the Bluetooth packets from the Bluetooth devices, described in Fig. 11.We repeated
100 times of our ciphertext-only attack with different randomly generated keys and IVs.
For each pair of key and IV, we generate 226 Bluetooth frames which are stored in a
binary file. Then, we use the algorithmwhich is similar to Algorithm 1 to recover the key.
In the experiments, we take the first 256 candidates in the list as the possible keys for each
run.We found that in about 69 runs, the correct key ranks among the first 256 candidates.
Figure12 shows the distribution of grades in the 100 times experiments. We can see that
more than 70% grades are larger then 4. We can use some new condition masks, e.g.,
λ = 0x01f,0x000f, to do the same experiments as above. This method will increase
the success probability and decrease the size of key candidates. After recovering the
partial key bits, the other bits of key can be acquired in the same way. The theoretical
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Table 9. Complexities of our ciphertext-only attack.

Mask γ η Pre-com Time Frames Memory

0x00 f 0x1 f 0 226 226 226 217

analysis is the same as in the known-IV attack.One run of our attack is as follows.Wefirst
generate 226 frames by the key 0x1c774e7b1626ed02f2b9b6b49afb82a1 and
encrypt the plaintexts to generate 226 ciphertexts, which need about 320Mb to be stored.
The flow of the ciphertext-only attack is the same as the known-plaintext attack. In this
mentioned instance, the grade of the right K1 = (0x3,0x0,0xc,0x2), K2 = 0x1 is
9.020190, which ranks the first. The complexities of our attack are listed in Table9.

Countermeasure. Following the design criterion in Sect. 4.6, we recommend to discard
the first 2 · 39 = 78 keystream bits at the beginning of the second level to resist against
our attack. In this case, the unconditional correlations can be reduced to below 2−218,
which will frustrate our attack completely.

12. Conclusions

In this paper, we have studied the security of a general two-level E0-like encryption
model and the real-world Bluetooth encryption scheme. A fast recursive method with
time complexity analysis is formulated to compute the unconditional correlations in the
general core keystream generator. Besides, the conditional correlation properties of the
two-level model are derived and analyzed by the condition masking technique. A key
recovery framework is established to extract the secret key in the model, which has more
generality compared to the previous one. Both bitwise and vectorial attacks have been
mounted on the model with theoretical analysis. A novel design criterion is suggested to
resist our attack. As the case study, we described more threatening and real time attacks
on two-level E0. Our attacks have been fully implemented in C language on one core
of a single PC and are repeated hundreds of times with randomly generated keys and
IVs. On average, it takes only a few seconds to restore the original encryption key. This
clearly demonstrates the superiority of our method. Finally, we converted the attack into
a ciphertext-only attack with only small increments in the complexities. This is the first
practical ciphertext-only attack against the Bluetooth encryption in the real-world so far.
We suggest to discard the first 78 keystream bits at the beginning of the second level to
strengthen the security of Bluetooth encryption.
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