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Abstract. Masking schemes based on tables recomputation are classical countermea-
sures against high-order side-channel attacks. Still, they are known to be attackable at
order d in the case the masking involves d shares. In this work, we mathematically show
that an attack of order strictly greater than d can be more successful than an attack at
order d. To do so, we leverage the idea presented by Tunstall, Whitnall and Oswald at
FSE 2013: We exhibit attacks which exploit the multiple leakages linked to one mask
during the recomputation of tables. Specifically, regarding first-order table recomputa-
tion, improved by a shuffled execution, we show that there is a window of opportunity,
in terms of noise variance, where a novel highly multivariate third-order attack is more
efficient than a classical bivariate second-order attack. Moreover, we show on the exam-
ple of the high-order secure table computation presented by Coron at EUROCRYPT
2014 that the window of opportunity enlarges linearly with the security order d. These
results extend that of the CHES ’15 eponymous paper. Here, we also investigate the
case of degree one leakage models and formally show that the Hamming weight model
is the less favorable to the attacker. Eventually, we validate our attack on a real ATMEL
smartcard.
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1. Introduction

For more than 16years now, side-channel attacks (SCA [17]) have been a threat against
cryptographic algorithms in embedded systems. To protect cryptographic implementa-
tions against these attacks, several countermeasures have been developed. Data masking
schemes [14] are widely used since their security can be formally grounded.
The rationale of masking schemes goes as follows: each sensitive variable is randomly

splitted in d shares (using d − 1 masks), in such a way that any tuple of d − 1 shares
manipulated during the masked algorithm is independent from any sensitive variable.
Masking schemes are the target of higher-order SCA [5,25,31]. A dth-order attack
combines the leakages of d shares. In the implementation of masking schemes, it is
particularly challenging to compute nonlinear parts of the algorithm, such as for example
the S-Box of AES (a function from n bits to n bits). To solve this difficulty, different
methods have been proposed which can be classified in three categories [19].

– Algebraic methods [2,26]. The outputs of the S-Box will be computed using the
algebraic representation of the S-Box.

– Global look-up table [24,29] method. A table is precomputed off-line for each
possible input and output masks.

– Table recomputation methods which precompute a masked S-Box stored in a table
[1,5,20].Here, the full table is recomputed despite not all entrieswill be called. Such
tables canbe recomputedonlyonceper encryption to reachfirst-order security.More
recently, Coron presented at EUROCRYPT 2014 [7] a table recomputation scheme
secure against dth-order attacks. Since this countermeasure aims at high-order secu-
rity (d > 1), it requires one full table precomputation before every S-Box call.

These methods provide security against differential power analysis [18] (DPA) or
higher-order DPA (HODPA). Still, whatever the protection order, there is at least one
leakage associated to each share; in practice, shares (typically masks) can leak more
than once. For example, attacks exploiting the multiplicity of leakages of the same mask
during the table recomputation have been presented by Pan et al. [23] and more recently
byTunstall et al. [30]. Such attacks consist in guessing themask in a first-order horizontal
correlation power analysis [3,10] (CPA) and then conducting a first-order vertical CPA
knowing the mask.We refer to these attacks as Horizontal–Vertical attacks (HV attacks).
Shuffling the table recomputation makes the HV attacks more difficult. Still shuffling

can be bypassed if the random permutation is generated from a seed with low entropy,
since both the mask and the shuffling seed can be guessed [30].

Our contributions. Our first contribution is to describe a new HODPA tailored to target
the table recomputation despite a highly entropic masking (unexploitable by exhaustive
search). More precisely, we propose an innovative combination function, which has the
specificity to be highlymultivariate.We relate attacks based on the combination function
of state-of-the-art and our new HODPA attack to their success rate, which allows for a
straightforward comparison.
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We build a theoretical analysis of their success rate. Our analysis reveals that there is
a window of opportunity, when the noise variance is smaller than a threshold, where our
new HODPA is more successful than a straightforward HODPA, despite it being higher
order. Specifically, our analysis allows to derive mathematically that the previously
known attacks require up to three times more traces than our new attack to extract the
key. In addition, the impact of the leakage functions (Hamming weight, weighted sum
of bits, etc.) is identified, and as a consequence the best and the worst cases for our new
attack are found.
For instance, in this paper we attack a first-order masking scheme based on table

recomputation with a (2n+1 + 1)-variate third-order attack more efficiently than with a
classical bivariate second-order attack. In this case, HV attacks could not be applied.
This is the first time that a nonminimal-order attack is proved better (in terms of success
rate) than the attack of minimal order. Actually, this nonintuitive result arises from a
relevant selection of leaking samples—this question is seldom addressed in the side-
channel literature. We generalize our attack to a higher-order masking scheme based on
tables recomputation (Coron, EUROCRYPT 2014) and prove that it remains better than
a classical attack, with a window of opportunity that actually grows linearly with the
masking-order d.

Finally, we propose a new innovative countermeasure in order to protect masking
schemes based on tables recomputation against our new attack.

Outline of the paper. The rest of the paper is organized as follows. Section 2 introduces
the notations used in this article. Section 3 provides a reminder on table recomputation
algorithms and on the way to defeat and protect this algorithm using random permuta-
tions. In Sect. 4, we propose a new attack against the “protected” implementation of the
table recomputation, prove theoretically the soundness of the attack and validate these
results by simulation. In Sect. 5, we apply this attack on a higher-order masking scheme.
Section 6 extends our results to the case where the leakage function is affine in the bits of
the targeted sensitive variable. In Sect. 7, we validate our results on real traces. Finally
in Sect. 8, we present a countermeasure to mitigate the impact of our new attack.

2. Preliminary and Notations

In this article, capital letters (e.g., U ) denote random variables and lowercase letters
denote their realizations (e.g., u).

Let k� be the secret key of the cryptographic algorithm. T denotes the input or the
ciphertext. We suppose that the computations are done on n-bit words which means that
these words can be seen as elements of Fn

2. As a consequence both k� and T belong to
F
n
2. Moreover, as we study protected implementations of cryptographic algorithms these

algorithms also take as input a set of uniform independent random variables (not known
by an attacker). Let denote byR this set.
Let g be a mapping which maps the input data to a sensitive variable. A sensitive

variable is an internal variable proceeded by the cryptographic algorithmwhich depends
on a subset of the inputs not known by the attacker (e.g., the secret key but also the secret
random value). A measured leakage is modeled by:
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X = Ψ
(
g
(
k�, T,R)) + N , (1)

where Ψ : Fn
2 → R denotes the leakage function. This leakage function is a specific

characteristic of the target device. The leakage function could be for example the Ham-
ming Weight (denoted by HW in this article), or a weighted sum of bits (investigated
in greater details in Sect. 6). The random variable N denotes an independent additive
noise. In order to conduct a dth-order attack, an attacker should combine the leakages
of d shares. To combine these leakages, an attacker will use a combination function
[5,21,22]. The degree of this combination function must be at least d for the attack
to succeed. The combination function will then be applied both on the measured leak-
ages and on the model (this is the optimal HODPA). As a consequence, an HODPA is
completely defined by the combination function used.
In the rest of the paper, the SNR is given by the following definition:

Definition 1. (Signal-to-noise ratio) The signal-to-noise ratio of a leakage denoted by
a random variable L depending on informative part denoted I is given by:

SNR [L , I ] = Var [E [L|I ]]
E [Var [L|I ]] . (2)

An attack is said sound when it allows to recover the key k� with success probability
which tends to one when the number of measurements tends to the infinity.

3. Masking Scheme with Table Recomputation

3.1. Algorithm

In this article, we consider Booleanmasking schemes. In particular, we focus on schemes
based on table recomputation where the masked S-Box is stored in a table and fully
recomputed each time.
This algorithm begins by a key addition phase where one word of the plaintext t , one

word the key k� and a random mask word m, are Xored together.
Then, these values are passed through a nonlinear function (stored in a table). The

output of this operation can bemasked by a differentmaskm′. Some linear operations can
follow the nonlinear function. Of course, in the whole algorithm, all the data are masked
(exclusive-ored) with a randommask, to ensure the protection against first-order attacks.
Masking the linear parts is straightforward but passing through the nonlinear one is

less obvious. To realize this operation, the table is recomputed. For all the elements of
F
n
2, the input mask is removed and then the output is masked by the output mask. In this

step, the key is never manipulated so all the leakages concern the mask. It can also be
noticed that a new table S′ of size 2n × n bits is required for this step.

3.2. Classical Attacks

As any masking scheme, table recomputation can be defeated without the leakage of the
table recomputation. Indeed, an attacker can use:
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– Second-order attacks [5] such as second-order CPA (2O-CPA). It can be noticed
that for such attacks, the adversary can also exploit the leakage of the mask during
the table recomputation.

– Collisions attacks. If several S-Boxes are masked by the same mask the Collisions
attacks may be practicable [6].

However, these attacks do not take into account all the leakages due to table recom-
putation stage. An approach to exploit these leakages is to combine all of them with a
leakage depending on the key. This method has been presented in [30] where an “hori-
zontal” attack is performed on the table recomputation to recover the mask.
In such “horizontal” attacks, two different steps can be targeted:

– An attacker could try to recover the outputmasks. In this case, he should first recover
the address in the table. In this case, it is not necessary to recover the input mask
but only the address value.

– An attacker could also try to recover the input masks.

The second step consists in a vertical attack which recover the key. In this second
step, the mask is now a known value. It can be noticed that the exact knowledge of the
mask is not required to recover the key. Indeed, if the probability to recover the mask
is higher than 1

2n , then a first-order attack is possible (because the mask distribution is
biased).
Recently, the optimal distinguisher in the case of masking has been studied in [4]: it

is applied to the precomputation phase of masked table without shuffling in Sect. 5. This
attack can be extended to the case of shuffled table recomputation but would require an
enumeration of all shuffles, which is computationally unfeasible.

3.3. Classical Countermeasure

The strategy to protect the table recomputation against HV attacks and the distinguisher
presented in [4] is to shuffle the recomputation, i.e., do the recomputation in a random
order, as illustrated in Algorithm 1.

Different methods to randomize the order are presented in [30]. One of the methods
presented is based on a random permutation on a subset of Fn

2.
Let S2n the symmetric group of 2n elements, which represents all the ways to shuffle

the set {0, . . . , 2n − 1}. If the random permutation over Fn
2 is randomly drawn from a

set of permutation S ⊂ S2n , where card (S) � card (S2n ), it is still possible for an
attacker to take advantage of the table recomputation. Indeed, as it is shown in [30]
attacks could be built by including all the possible permutations alongside with the
key hypothesis. If the permutation is drawn uniformly over the S2n , the number of
added hypothesis is 2n ! which can be too much for attacks. For instance, for n = 8,
we have 28! ≈ 21684.
By generating a highly entropic permutation, such as defined in [30] or any pseudo-

random permutation generator (RC4 key scheduler. . .), a designer could protect table
recomputation against HV attacks. Indeed, using for example five or six bytes of entropy
as seed for the permutation generator could be enough to prevent an attacker from guess-
ing all the possible permutations.
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Algorithm 1: Shuffled masked table recomputation
input : Genuine SubBytes S : Fn2 → F

n
2 bijection

output: Masked SubBytes S′ : Fn2 → F
n
2 bijection

1 m ←R F
n
2, m

′ ←R F
n
2 // Draw of random input and output masks

2 ϕ ←R F
n
2 → F

n
2 // Draw of random permutation of F

n
2

3 for ω ∈ {0, 1, . . . , 2n − 1} do // S-Box recomputation loop
4 z ← ϕ(ω) ⊕ m // Masked input
5 z′ ← S[ϕ(ω)] ⊕ m′ // Masked output
6 S′[z] = z′ // Creating the masked S-Box entry

7 end
8 return S′

4. Totally Random Permutation and Attack

In this section, we present a new attack against shuffled table recomputation. The success
of this attack will not be impacted by the entropy used to generate the shuffle. As a
consequence, this attack will succeed when the HV attacks will fail because the quantity
of entropy used to generate the shuffle is too large to be exhaustively enumerated.We then
express the condition where this attack will outperform the state-of-the-art second-order
attack.

4.1. Defeating the Countermeasure

As the permutation ϕ is completely random, the value of the current index in the for loop
(line 3 to line 7) is unknown. But it can be noticed that this current index ϕ(ω), printed
in boldface for clarity, is manipulated twice at each step of the loop (line 4, line 5):

z ← ϕ(ω) ⊕ m, (3)

z′ ← S[ϕ(ω)] ⊕ m′. (4)

Let U a random variable uniformly drawn over Fn
2 and m ∈ F

n
2 a constant. Then, it is

shown in [25] that:

E
[(
HW[U ] − E

[
HW[U ]]) × (

HW[U ⊕ m] − E
[
HW[U ⊕ m]])] = −HW[m]

2
+ n

4
.

(5)
As a consequence, it may be possible for an attacker to exploit the leakage depending

on the two manipulations [Eqs. (3) and (4)] of the current random index in the loop.
Indeed, at each of the 2n steps of the loop in the table recomputation, the leakage of
the ϕ(ω) in Eqs. (3) and (4) which plays the role of U in Eq. (5) will be combined
(by a centered product) to recover a variable depending on the mask. Afterward, these
2n variables will be combined together (by a sum) in order to increase the SNR as
much as possible. Finally, this sum is combined (again by a centered product) with a
leakage depending on the key. This rough idea of the attack is illustrated on Fig. 1, which
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Fig. 1. State-of-the-art attack and new attack investigated in this article.

represents the “trace” corresponding to the dynamic execution of Algorithm 1, followed
by the masked AES AddRoundKey and SubBytes steps.

Remark 1. (Construction of the high-order attack) The construction of the attack
depicted in Fig. 1 leverages on two building blocks:

1. the centered product, represented as , which allows to get rid of a mask [recall
Eq. (5)], albeit at the expense of a smaller SNR (it is squared, as shown in [11]—see
Sec. 4.3)

2. the sum of variables with the same leakage model, represented as + , which
increases the SNR linearly with the number of variables summed together.

An attacker couldwant to perform the attack on the output of the S-Box.But depending
on the implementation of themasking scheme, the output masks can be different for each
address of the S-Box (see for example the masking scheme of Coron [7]). To avoid loss
of generality, we focus our study on the S-Box input mask of the recomputation. Indeed,
by design of the table recomputation masking scheme, the input mask is the same for
each address of the S-Box: The attacker can thus exploit it multiple times. Moreover, an
attacker can still take advantage of the confusion of the S-Box [13] to better discriminate
the various key candidates. Indeed, he can target the input the of SubBytes operation
of the last round. Notice the use of capital M and capital Φ, which indicates that the
leakage is modeled as a random variable.

4.2. Multivariate Attacks Against Table Recomputation

In the previous section, it has been shown that at each iteration of the loop of the table
recomputation, it is possible to extract a value depending on themask. As a consequence,
it is possible to use all of these values to perform a multivariate attack. In this subsec-
tion, we give the formal formula of this new attack. Let us define the leakages of the
table recomputation. The leakage of the masked random index in the loop is given by:
HW[Φ (ω)⊕M]+N (1)

ω . The leakage of the random index is given by:HW[Φ (ω)]+N (2)
ω .

Depending on the knowledge about the model, the leakage could be centered by the
“true” expectation or by the estimation of this expectation.We assume this expectation is

a known value given by:E
[
HW[Φ (ω) ⊕ M] + N (1)

ω

]
= E

[
HW[Φ (ω)] + N (2)

ω

]
= n

2 .
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Then, let us denote the central leakages as:

X (1)
ω = HW[Φ (ω) ⊕ M] + N (1)

ω − n

2
, (6)

X (2)
ω = HW[Φ (ω)] + N (2)

ω − n

2
. (7)

Besides, the leakage of the masked AddRoundKey is:

X� = HW[T ⊕ M ⊕ k�] + N − n

2
. (8)

In a view to use all the leakages of the table recomputation, an original combination
function could be defined.

Definition 2. The combination functionCT R exploiting the leakage of the table recom-
putation is given by:

CT R : R
2n+1 × R −→ R((

X (1)
ω , X (2)

ω

)

0�ω�2n−1
, X�

)

−→

(
−2 × 1

2n
∑2n−1

ω=0 X (1)
ω × X (2)

ω

)
× X�.

Following Fig. 1, it can be noticed that CT R is in fact the combination of two sub-
combination functions. Indeed, first of all, the leakages of the table recomputation are
combined; the result of this combination is the following value:

XT R = −2 × 1

2n

2n−1∑

ω=0

X (1)
ω × X (2)

ω . (9)

Second, this value is multiplicatively combined with X�.

Remark 2. It can be noticed that the random variable XT R does not depend on Φ.
Indeed in Eq. (9), the sum can be reordered by Φ. Moreover, as this sum is computed
over all the possibleΦ (ω) it implies that 1

2n
∑2n−1

ω=0 X (1)
ω ×X (2)

ω is exactly the expectation
over the Φ (ω). As a consequence, XT R is random only through the mask and the noise.

Based on the combination function CT R , a multivariate attack can be built.

Definition 3. Themultivariate attack (MVA) exploiting the leakage of the table recom-
putation (TR) is given by the function:

MVAT R : R
2n+1 × R × R −→ F

n
2((

X (1)
ω , X (2)

ω

)

ω
, X�,Y

)

−→ argmax

k∈Fn2
ρ
[
CT R

((
X (1)

ω , X (2)
ω

)

ω
, X�

)
,Y

]
,
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where Y = E
[(
HW[T ⊕ M ⊕ k] − n

2

) · (HW[M] − n
2

) |T ]
and ρ is the Pearson coef-

ficient. According to Eq. (5), the model Y is equal to an affine transformation of
−HW[T ⊕ k] (note the negative sign for the correlation ρ extremal value when k ∈ F

n
2

to be positive).

Proposition 1. MVAT R is sound.

Proof. By the law of large numbers, correlation coefficient involved in the expression
of MVAT R tends to ρ(−HW[T ⊕ k∗],−HW[T ⊕ k]) when the number of traces tends
to infinity. This quantity is maximal when k = k∗, by the Cauchy–Schwarz theorem.
Then, for enough traces the noise will impact all the key guesses similarly and as a
consequence the result of MVAT R is maximal when k = k∗. �

Remark 3. The attack presented in Definition 3 is a (2n+1+1)-multivariate third-order
attack.

Let us denote the leakage of the mask (which occurs at line 1 of Algorithm 1) by:

X (3) = HW[M] + N (3) − n

2
. (10)

Definition 4. We denote by 2O-CPA the CPA using the centered product as combina-
tion function. Namely:

2O-CPA : R × R × R −→ F
n
2(

X (3), X�,Y
) 
−→ argmax

k∈Fn2
ρ
[
X (3) × X�,Y

]
.

A careful look at Definitions 2, 3 and Eq. (9) reveals that the only difference between
the MVAT R and the 2O-CPA is the use of XT R instead of X (3). Thus, XT R will act as
the leakage of the mask. Let us call XT R the second-order leakage.

Lemma 2. The informative part of the second-order leakage is the same as the infor-
mative part of the leakage mask, i.e.,

E [XT R |M = m] = E

[
X (3)|M = m

]
.

Proof. It is a straightforward application of the results of [25]: Use Eq. (5) and notice
the intentional −2 factor in Eq. (9). Both expectations are thus equal to HW[m]. �

4.3. Leakage Analysis

By using the formula of the theoretical success rate (SR), we show that as the same
operations are targeted by the MVAT R and the 2O-CPA. Consequently, it is equivalent
to compare the SNR or the SR of these attacks. Based on this fact, we can theoretically
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establish the conditions inwhich theMVAT R outperforms the 2O-CPA.These conditions
are given in Theorem 3.
Recently, Ding et al. [11, §3.4] give the following formula to establish the Success

Rate (SR) of second-order attacks:

SR = ΦNk−1

(√
b δ0δ1

4
K

−1
2 κ

)

. (11)

In this formula:

– δ0 denotes the SNR of the first share and δ1 denotes the SNR of the second one;
– ΦNk−1 denotes the cumulative distribution function of (Nk − 1)-dimensional stan-
dard Gaussian distribution; as underlined by the authors in [11], if the noise distri-
bution is not multivariate Gaussian, then ΦNk is to be understood as its cumulative
distribution function;

– Nk denotes the number of key candidates;
– K denotes the confusion matrix and κ the confusion coefficient;
– b denotes the number of traces.

Remark 4. An updated version of this formula for first-order CPA has been presented
in Eqn. (27) of [12] which solves the issue of the noninvertible matrix.

This formula allows to establish the link between the SNR and SR of second-order
attacks against Boolean masking schemes.
Let us apply the Ding et al. formula in the case of our two attacks:

SR2O-CPA = Φ2n−1

(√
b
SNR

[
X (3), M

]
SNR

[
X�, (T, M)

]

4
K

−1
2 κ

)

,

SRMVAT R = Φ2n−1

(√
b
SNR [XT R, M] SNR

[
X�, (T, M)

]

4
K

−1
2 κ

)

.

We target the same operation for the share that leaks the secret key (X�). Moreover
by Remark 2, the informative parts of the leakages depending on the mask (XT R and
X (3)) is the same in the two leakages. As a consequence, K and κ are the same in the
two attacks.
It can be noticed that the only difference in the success rate formula is the use of

SNR [XT R, M] instead of SNR
[
X (3), M

]
. Therefore, it is equivalent to compare these

values and compare the SR of these attacks.

Theorem 3. The SNR of the “second-order leakage” is greater than the SNR of the
leakage of the mask if and only if

σ 2 � 2n−2 − n

2
,

where σ denotes the standard deviation of the Gaussian noise.
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As a consequence,MVAT R will be better than 2O-CPA in the interval σ 2 ∈ [0, 2n−2−
n/2].

Proof. See “Appendix A.” Interestingly, the same result is also a byproduct of the
demonstration of Proposition 8 (see “Appendix B.2”). �

Theorem 3 gives us the cases where exploiting the second-order leakage will give
better results than exploiting the classical leakage of the mask. For example, if n = 8
(the case of AES) the second-order leakage is better until σ 2 � 60.
Figure 2 shows when the SNR of XT R is greater than the SNR of X (3). In order to

have a better representation of this interval, 1
SNR is plotted.

4.4. Simulation Results

In order to validate empirically the results of Sect. 4, we test the method presented on
simulated data. The target is a first-order protected AES with table recomputation. To
simulate the leakages, we assume that each value leaks its Hamming weight with a
Gaussian noise of standard deviation σ . The 512 leakages of the table recomputation
are those given in Sect. 4.2.
A total of 1000 attacks are realized to compute the success rate of each experiment.

In this part, the comparisons are done on the number of traces needed to reach 80% of
success.
It can be seen in Fig. 3a and in Fig. 3b that the difference between the two attacks is

null for σ = 0 and σ = 8 (that is, σ 2 = 64 ≈ 60). It confirms the bound of the interval
shown in Fig. 2. This also confirms that comparing the SNR is equivalent to comparing
the SR.
It can be seen in Fig. 3 that in presence of noise theMVAT R outperforms the 2O-CPA.

The highest difference between the MVAT R and 2O-CPA is reached when σ = 3. In
this case, the MVAT R needs 2500 traces to mount the attack, while the 2O-CPA needs
7500 traces. This represents a relative gain1 of≈200%. As shown in Fig. 3d, the relative
gain decreases to 122% when σ = 4.

1The formal definition of the relative gain is given in Definition 5.
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Fig. 3. Comparison between 2O-CPA and MVAT R . a σ = 0. b σ = 8. c σ = 3. d σ = 4 .

4.5. Theoretical Analysis of the SR

While the previous analysis of Sect. 4.3 gives the bounds of effectiveness of theMVAT R ,
it does not allow a quantitative comparison of the respective behaviors of the MVAT R

and the 2O-CPA between these bounds. In this subsection, we propose an approach
which allows a deeper analysis of the relevant parameters of their SR. We exploit the
results of [15] which presents a closed form formula which links the SR to the SNR for
first-order attacks. These results have recently been extended to high-order attacks [16].

Proposition 4. ([15, Corollary 1]) The SR of an additive distinguisher satisfies:

1 − SR ≈ exp (−SE×q), (12)

where SE is the success exponent and q the number of traces used for the attack.

Proof. The proof is given in [15]. �

Proposition 5. The SE of the 2O-CPA is:

SE2O-CPA = min
k 
=k�

κ (k�, k)

2
(

κ ′(k�,k)
κ(k�,k) − κ (k�, k)

)
+ 2

(
α−2
1 σ 2

1 + α−2
2 σ 2

2 + α−2
1 σ 2

1 α−2
2 σ 2

2

) ,

(13)
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where in our case [which complies to Eq. (2) of Definition 1]:

α2
1 = α2

2 = Var
[
E

[
X (3)|M

]]
= Var

[
E
[
X�|M, T

]] =
√
n

4
,

σ 2
1 = σ 2

2 = E

[
Var

[
X (3)|M

]]
= E

[
Var

[
X�|M, T

]] = σ 2,

κ
(
k�, k

)
and κ ′ (k�, k

)
are general confusion coefficients defined in

Definition 8 of [15]. Notice that κ
(
k�, k

)
is a natural extension

of the seminal coefficient introduced by Fei et al. in [13].

Proof. See “Appendix B.1.” �

We note that α2
i and σ 2

i respectively represent the power of the signal and of the noise.
As Definitions 2, 3 and Eq. (9) reveal that the only difference between the MVAT R

and the 2O-CPA is the use of XT R instead of X (3). Thus, we can directly compute the
success exponent of MVAT R .

Proposition 6. The SE of the MVAT R is:

SEMVAT R = min
k 
=k�

κ (k�, k)

2
(

κ ′(k�,k)
κ(k�,k) − κ (k�, k)

)
+ 2

(
α−2
1 σ 2

1 + α−2
2 σ 2

2 + α−2
1 σ 2

1 α−2
2 σ 2

2

) ,

(14)
where in our case

α2
1 = α2

2 = Var [E [XT R |M]] = Var
[
E
[
X�|M, T

]] =
√
n

4
,

σ 2
1 = E [Var [XT R |M]] = 4 ×

(
σ 2

2n
× n

2
+ σ 4

2n

)
,

σ 2
2 = E

[
Var

[
X�|M, T

]] = σ 2.

Proof. The proof is similar as the proof of Proposition 5 using the values of noise
computed in the “Appendix A.” �

Exploiting this values, it is possible to extract the parameters which impact the respec-
tive behavior of the two attacks and especially the ones reaching to a higher difference
between the two attacks. Similarly to Sect. 4.4, we will compare the two attacks using
the relative gain.

Definition 5. (rel-gain(SR)) The relative gain between 2O-CPA and MVAT R is given
by:

rel-gain(SR) = m(SR)
2O-CPA − m(SR)

MVAT R

m(SR)
MVAT R

,
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where m(SR)
2O-CPA and m(SR)

MVAT R
are, respectively, the number of traces needed by 2O-CPA

and MVAT R to reach success rate value SR.

And we will also use the difference in number of traces needed to reach SR.

Definition 6. (gain(SR)) The difference in number of traces needed to reach SR of
success is given by the gain:

gain(SR) = m(SR)
2O-CPA − m(SR)

MVAT R
,

where m(SR)
2O-CPA and m(SR)

MVAT R
are respectively the number of traces needed by 2O-CPA

and MVAT R to reach SR of success rate.

Notice that rel-gain(SR) and gain(SR) are tools to compare attacks after having com-
puted their SR. They differ from relative distinguishing margins metrics [32] which
analyses the value of the distinguisher (and not their SR).

Proposition 7. rel-gain(SR) does not depend on the value of SR.

Proof. See “Appendix B.2.” �

This means that, in Fig. 3, the SR curves for 2O-CPA and MVAT R are the same,
modulo a scaling in the X -axis. For instance, in Fig. 3a, b, the scaling factor is 1, i.e.,
the two curves superimpose perfectly. As a result, one can compare these two attacks
in terms of traces number to extract the key, irrespective of the SR value chosen for the
threshold.

Proposition 8. gain(SR) depends on the value of SR, but the value of the noise variance
where gain(SR) is maximum not depends on SR.

Proof. See “Appendix B.3.” �

Remark 5. While the bounds of Theorem 3 depend only on the SNR the maximum
effectiveness (the maximum of gain(SR) or rel-gain(SR)) of the MVAT R compare to the
2O-CPA also depends on the operation targets (e.g., AddRoundKey or SubBytes) by
the confusion coefficients κ and κ ′.

Numerical results. In order to validate our theoretical analysis, we build empirical val-
idation based on simulations. We reuse the curves generated for Sect. 4.4. In Fig. 4,
the empirical results based simulation are plotted in gray and the Theoretical ones in
red pointed lines. The first observation is that the theoretical analysis match well the
simulations which validates our model choices.
In Fig. 4a, it can be noticed that for several SR (different gray lines) the empirical

rel-gain(SR) are closed which confirmed Proposition 7. Exploiting the formula of Def-
inition 5, we can find the noise variance σ 2 where rel-gain(SR) is maximum. Indeed, it
occurs in a root of the derivative of rel-gain(SR). In our scenario, it occurs for σ 2 = 9.11
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Fig. 4. Comparison between the 2O-CPA and the MVAT R . a rel-gain(SR). b gain(SR) .

(that is σ ≈ 3.02). For this value of σ 2, the relative gain is about equal to 2, that is, our
MVAT R attacks requires three times less traces than the 2O-CPA to extract the key.
The behavior of gain(SR) is different indeed the SR has an impact on it; the gray lines

are not superimposed (see Fig. 4b). But similarly to rel-gain(SR), the SR does not impact
the value of noise where the maximum gain(SR) is reached. This confirms Proposition 8.
In our scenario, it is reached for σ 2 = 39.67 (that is σ ≈ 6.30).
In order to compute this maximum, we have computed the roots of the derivatives (of

rel-gain(SR) and gain(SR) w.r.t. σ 2) using the MAXIMA software.

5. An Example on a High-Order Countermeasure

The result of the previous section can be extended to any masking scheme based on table
recomputation. In particular, the MVAT R can apply to high-order masking schemes.

5.1. Coron Masking Scheme Attack and Countermeasure

The table recomputation countermeasure can be made secure against high-order attacks.
An approach has been proposed by Schramm and Paar [28]. However, it happened
that this masking scheme can be defeated by a third-order attack [8]. To avoid this
vulnerability, Coron recently presented [7] a new method based on table recomputa-
tion, which guarantees a truly high-order masking. The core idea of this method is
to mask each output of the S-Box with a different mask and refresh the set of masks
between each shift of the table (masking the inputs by one mask). HV attacks are still
a threat against such schemes. Indeed, an attacker will recover iteratively each input
mask. Afterward, he will be able to perform a first-order attack on the AddRoundKey
to recover the key. To prevent attacks based on the exploitation of the leakages of the
input masks an approach based on a random shuffling of the loop index is possible (see
Algorithm 2). Algorithm 2 is a (d − 1)-th-order countermeasure, meaning that attacks
of order strictly less than d fail. In this algorithm, the xi for i < d can be seen indif-
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ferently as shares or as masks. The original masked S-Box algorithm from Coron [7]
is the same as Algorithm 2, with ϕ chosen as the identity. It can be noticed that the
entropy needed to build the permutation could be low compared to the entropy needed
for the masking scheme (especially because of the numerous costly RefreshMasks
operations).

Algorithm 2: Masked and shuffled computation of y = S (x)
input : x1, . . . , xd , such that x = x1 ⊕ . . . ⊕ xd
output: y1, . . . , yd , such that y = y1 ⊕ . . . ⊕ yd = S(x)

1 ϕ ←R F
n
2 → F

n
2 // Draw of random permutation of F

n
2

2 for ω ∈ F
n
2 do

3 T (ω) ← (S (ω) , 0, . . . , 0) ∈ (
F
n
2
)d // ⊕ (T (ω)) = S (ω)

4 end
5 for i = 1 to d − 1 do
6 for ω ∈ F

n
2 do

7 for j = 1 to d do
8 T ′ (ϕ( ω )) [ j] ← T (ϕ( ω )⊕xi ) [ j] // T ′ (ϕ( ω )) ← T (ϕ( ω )⊕xi )
9 end

10 end
11 for ω ∈ F

n
2 do

12 T (ϕ( ω )) ← RefreshMasks
(
T ′ (ϕ( ω ))

)

// See in Alg. 2 of [7]

13 end
14 end

// Invariant: ⊕ (T (ϕ( ω ))) = S (ϕ( ω
)⊕x1 ⊕ . . . ⊕ xd−1

)
, ∀ω ∈ F

n
2

15 (y1, . . . , yd ) ← RefreshMasks (T (xd )) // ⊕ (T (xd )) = S (x)
16 return y1, . . . , yd

5.2. Attack on the Countermeasure

We apply Algorithm 2 on X which is equal to T ⊕k�, i.e.,
⊕d

i=1 Xi = T ⊕k�. Similarly
to the definitions in Sect. 4.2, let us define the leakages of the table recomputation of
the masking scheme of Coron where the order of the masking is d − 1: X (1)

(ω,i, j) =
HW[Φ (ω) ⊕ Xi ] + N (1)

(ω,i, j) − n
2 and X (2)

(ω,i, j) = HW[Φ (ω)] + N (2)
(ω,i, j) − n

2 , where
i ∈ �1, d − 1� will index the d − 1 masks. The d-th share is the masked sensitive
value. Besides j ∈ �1, d� denotes the index of the loop from lines 7 to lines 9 of
the Algorithm 2. The leakage of the masks is given by X (3)

i = HW[Xi ] + N (3)
i − n

2 .

Finally, we denote by: X� = HW[⊕d−1
i=1 Xi ⊕ k� ⊕ T ] + N − n

2 the leakage of the
masked value.

Definition 7. The combination function Cd
CS exploiting the leakage of the table recom-

putation (Coron Scheme, abridged CS) is given by:
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Cd
CS : R

d×(d−1)×2n+1 × R → R
⎛

⎜⎜
⎝
(
X (1)

(ω,i, j), X
(2)
(ω,i, j)

)
ω∈F2n

i∈�1,d−1�
j∈�1,d�

, X�

⎞

⎟⎟
⎠ 
→

d−1∏

i=1

⎛

⎜⎜⎜
⎝

−2

d2n
∑

ω∈F2n
j∈�1,d�

X (1)
(ω,i, j)×X (2)

(ω,i, j)

⎞

⎟⎟⎟
⎠

×X�.

Similarly to Sect. 4.3, we define for all 1 � i � d − 1:

XCSdi
= −2

d2n
∑

ω∈F2n
j∈�1,d�

X (1)
(ω,i, j) × X (2)

(ω,i, j).

This value is the combination of all the leaking values of the table recomputation depend-
ing of one share.

Remark 6. The scaling by factor −2/d allows to have, for all i ∈ �1, d − 1�:

E

[
XCSdi

|Xi = xi
]

= E

[
X (3)
i |Xi = xi

]
.

Additionally, we define for, i = d, XCSdi
= X�. Based on the combination function

Cd
CS , a multivariate attack can be built.

Definition 8. Themultivariate attack exploiting the leakage of the table recomputation
of the d − 1-order Coron masking Scheme is given by:

MVAd
CS : R

d×(d−1)×2n+1 × R × R → F
n
2⎛

⎜⎜
⎝
(
X (1)

(ω,i, j), X
(2)
(ω,i, j)

)
ω∈F2n

i∈�1,d−1�
j∈�1,d�

, X�,Y

⎞

⎟⎟
⎠ 
→ argmaxk∈Fn2 ρ

[
d∏

i=1

(
XCSdi

)
,Y

]

,

where Y = (−1)d−1 × (
HW[T ⊕ k] − n

2

)
.

Proposition 9. MVAd
CS is sound.

Proof. The demonstration follows the same lines as that of Proposition 1. In the case

of Proposition 9, the expectation of
∏d

i=1

(
XCSdi

)
knowing the plaintext T = t is

proportional to HW[t ⊕ k]. Indeed by [27] E
[∏d

i=1

(
XCSdi

)
|T = t

]
= (−1

2

)d−1 ×
(
HW[t ⊕ k] − n

2

)
�

Remark 7. The attack presented in Definition 8 is a (d × (d − 1) × 2n+1 + 1)-variate
(2 × (d − 1) + 1)-order attack.
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Definition 9. The “classical” dO-CPA is the HOCPA build by combining the d shares
using the centered product combination function.

dO-CPA : R
d−1 × R × R −→ F

n
2((

X (3)
i

)

i∈�1,d−1�
, X�,Y

)

−→ argmaxk∈Fn2 ρ

[
d−1∏

i=1

X (3)
i × X�,Y

]

.

5.3. Leakage Analysis

The difference between the two attacks is the use of XCSdi
instead of X (3)

i as the leakage
of the d − 1 shares which do not leak the secret key. Ding et al. [11, §3.4] also provides
a formula to compute the SR of HOCPA.
Similarly to Sect. 4, the only differences in the formula are the SNR of the shares

which do not leak the key. Then by comparing the SNR
[
XCSdi

, Xi

]
and SNR

[
X (3)
i , Xi

]
,

we compare the success rate of the attacks. It can be noticed that in our model the SNR
does not depend on i .

Theorem 10. The SNR of the “second-order leakage” is greater than the SNR of the
leakage of the mask if and only if

σ 2 � d × 2n−2 − n

2
, (15)

where σ denotes the standard deviation of the Gaussian noise.
As a consequence,MVAd

CS will be better than dO-CPA when the noise variance lays
in the interval [0, d×2n−2−n/2]. We can immediately deduce that the size of the useful
interval of variance increases linearly with the order of the masking scheme.

Proof. See “Appendix C.” �

Figure 5 shows the impact of the attack order d on the interval of noise where the
MVAd

CS outperforms dO-CPA (let us call this interval the useful interval of variance
denoted by UIoV). We can see that the size of these intervals increases with the order.
For example, for d = 3 the useful interval of variance is [0, 188]. In practice, it is very
difficult to perform a third-order attack with a noise variance of 188. Indeed, recall that
the number of traces to succeed an attack with probability 80% is proportional to the
inverse of the SNR [15].

5.4. Simulation Results on Coron Masking Scheme

In order to validate the theoretical results of Sect. 5.3, the MVAd
CS has been tested on

simulated data and compared to dO-CPA. The simulations have been done with the
Hamming weight model and Gaussian noise such as the leakages defined in Sect. 5.2.
We test these attacks against a second- and a third-order masking schemes.
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To compute the success rate, attacks are redone500 times for the second-ordermasking
and 100 times for the third-order masking (because this attack requires an intensive
computational power).
In Fig. 6a, it can be seen that MVA(3)

CS reaches 80% of success rate for less than 20,000
traces while the 3O-CPA does not reach 30% for 100,000. In Fig. 6b, it can be seen
that MVA(4)

CS reaches 80% of success rate for less than 200,000 traces while the 4O-CPA
does not reach 5%.

6. A Note on Affine Model

In Sects. 4 and 5, the leakage function was expected to be the Hamming weight. Let us
now study the impact of the leakage function on the MVAT R attack. We suppose that
the leakage function is affine.
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6.1. Properties of the Affine Model

Definition 10. (Affine leakage function) Let V the leaking value, α the weight of the
leakage of each bit, and · the inner product in Rn , that is α · V = ∑n

i=1 αi Vi . A leakage
function Ψα is said affine if this function is a weighted sum of the bits of the leaking
value, i.e., Ψα (V ) = α · V .

In the sequel, we assume sensitive variables are balanced and have each bit independent
of the other, as is customary in cryptographic applications.

Proposition 11. Let 1 = (1, . . . , 1) ∈ F
n
2 .

E [Ψα (V )] = 1

2
(α · 1) and Var [Ψα (V )] = 1

4
‖α‖22.

Proof. WehaveE [Ψα (V )] = α ·E [V ] = α ·( 121
)
andVar [Ψα (V )] = αtCov [V ]α =

1
4‖α‖22. �

Then, it is possible to compute the results of the centered product.

Lemma 12. Let U be a random variable following a uniform law over Fn
2 , and z ∈ F

n
2 .

We have:

E
[
(Ψα (U ) − E [Ψα (U )]) × (

Ψβ (U ⊕ z) − E
[
Ψβ (U ⊕ z)

])] = −1

2
(α � β) · z + 1

4
α · β,

where � denotes the element-wise multiplication, that is (α � β)i = αiβi .

Proof. See in “Appendix D.1.” �

Assumption 1. In order to compare the results in case of an affine model and the
Hamming weight model (HW = Ψ1), let us assume that the model variance is the same
in the two cases, i.e., Var [Ψα (V )] = Var

[
HW[V ]]; this is equivalent to ‖α‖22 = n.

Let us also assume that all the values manipulated during the algorithm leak in the
same way, i.e., the weight vector α of the sum is the same for all the variables V of the
algorithm. This is realistic because it is likely that sensitive variables transit through a
given resource, e.g., the accumulator register.

In the rest of this section, we will denote by α the vector of weight of the leakage model.
Let us redefine the leakage of the table recomputation the (centered) leakage of the

random index: X (1)
ω = α · (Φ (ω) ⊕ M)+ N (1)

ω − 1
2 (α · 1), the (centered) leakage of the

mask random index: X (2)
ω = α · (Φ (ω)) + N (2)

ω − 1
2 (α · 1), the (centered) leakage of

the mask: X (3) = α · M − 1
2 (α · 1), Besides, let X� be the leakage of a sensitive value

depending on the key. We have either:

– X� = α · (T ⊕ k� ⊕ M) + N − 1
2 (α · 1), which is similar to Eq. (8), or

– X� = α · (S(T ⊕ k�) ⊕ M) + N − 1
2 (α · 1), if there is an S-Box S.
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In a view to unite both expressions, we denote by Z the sensitive variable, that is either
Z = T⊕k�, or Z = S(T⊕k�). Consequently, we have X� = α ·(Z⊕M)+N− 1

2 (α · 1).

Lemma 13. In case of affine leakage model the second-order leakage XT R is given
by:

E [XT R |M = m] = E

⎡

⎣−2

2n

2n−1∑

ω=0

X (1)
ω × X (2)

ω | M = m

⎤

⎦ =
(
α2

)
· m − 1

2
‖α‖22,

where α2 = α � α.

Proof. Direct application of Lemma 12. �

Proposition 14. In case of affine model, the leakages of the MVAT R (recall Defini-
tion 2) and the 2O-CPA are different. Indeed, let us denote αn = α � α � · · · � α︸ ︷︷ ︸

n times

. We

have:

E

[
CT R

((
X (1)

ω , X (2)
ω

)

ω
, X�

)
| T

]
= −1

2
α3 · z + 1

4

n∑

i=1

α3
i ,

and

E

[
X (3) × X� | T

]
= −1

2
α2 · z + 1

4
‖α‖22.

Proof. Direct application of Lemmas 13 and 12. �

6.2. Impact of the Model on the Confusion Coefficient

As the models in the two different attacks are different, the parameters K and κ (recall
Eq. (11)) also differ. In order to compare the two attacks, we first establish the impact
of the model on the value of the minimum confusion coefficient mink 
=0 κk . Then, we
show that the impact is not important in case of the targeted sensitive value is proceed
in a nonlinear part of the algorithm (an S-Box).
In practice, the confusion coefficients are very close. We study the impact of the

disparity of α using several distributions (see Fig. 7):

• αi = √
1 + ε for i even and αi = √

1 − ε otherwise (abridged α = √
1 ± ε),

• and the other sign convention (abridged α = √
1 ∓ ε).

We also randomly generate 1000 α. All those distributions satisfy Assumption 1, namely∑n
i=1 α2

i = n.
The confusion coefficients for α2 and α3 are very close (see Fig. 7).
Moreover, we find that the maximum difference in all the simulations with random

weight is max
(
mink 
=0 α2κk − mink 
=0 α3κk

) = 0.019. In terms of number of traces
needed to reach 80% of success, this represents a small difference of 5%.
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6.3. Theoretical Analysis

Similarly to the Sect. 4.3, let us study the impact of the affine model on the success of
the MVAT R compared to the 2O-CPA.
As motivated in Sect. 4.1, we can modify the MVAT R in order to target the last round

S-Box input: X� = α · (Sbox−1[T ⊕ k�] ⊕ M
) + N − 1

2 (α · 1).

Theorem 15. The SNR of the “second-order leakage” is greater than the SNR of the
leakage of the mask if and only if

σ 2 � ‖α‖44 × 2n−2

n
− n

2
,

where ‖α‖p = (
∑n

i=1 |αi |p)1/p is the p-norm (p � 1) of vector α, and where σ denotes
the standard deviation of the Gaussian noise.
As a consequence, MVAT R is better than 2O-CPA when the noise variance is in the

interval [0, ‖α‖44 2n−2/n − n/2].

Proof. See “Appendix D.2.” �

Corollary 16. The minimal value of ‖α‖44 subject to ‖α‖22 = n is reached when all the
component of α are equal. This means that the worst case for theMVAT R compared to
the 2O-CPA is when the leakage is in Hamming Weight.

Proof. See “Appendix D.3.” �

6.4. Simulation Results

Some simulations have been done in order to validate the results of the theoretical study
of the previous sections. The results, presented in this section, confirm that:

– attacks are not impacted by the small differences of the confusion coefficient (κ ,
recall Sec. 6.2).

– attacks depend on the SNR as predicted by Theorem 15.
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For the purpose of the simulations, the target considered is the input of the S-Box of
the last round; as a consequence, we consider

X� = α ·
(
Sbox−1[T ⊕ k�] ⊕ M

)
+ N − 1

2
(α · 1) .

The mask M and the plain text T are randomly drawn from F
8
2. The noises are drawn

from a Gaussian distribution with different variances σ 2. The results of the attacks are
expressed using the success rate. To compute the success rates, the experiments have
been redone 1000 times. For each experiment, the secret key k� are randomly drawn
over F8

2. To compare the efficiency of the two attacks, we compare the number of traces
needed to reach 80% of success.
For the first experiment, we choose α = √

1 ± ε (i.e., ∀i , αi = √
1 + (−1)iε).

Case ε = 0.9 In this case ‖α‖44 = 14.480 and according to Theorem 15, the MVAT R

should outperform the classical success rate in the interval [0, 111]. It can be seen in
Fig. 8a, b that in such case when σ 2 = 0 or when σ 2 = 111 theMVAT R and the 2O-CPA
need the same number of traces to reach 80% of success. First of all, this confirms the
soundness of our model. Second, it validates that, in case of affine model when the
target is proceeded in a nonlinear part of the cryptographic algorithm, the main factor
which makes attacks different is the SNR. When σ = 3 the 2O-CPA needs around
3800 traces to reach 80% of success whereas the MVAT R needs around 1000 traces (see
Fig. 8c). This represents a relative gain of 280%. Compared to the relative gain observed
in case of the Hamming weight model (recall Fig. 3c), this confirms that the MVAT R

performs better compare to the 2O-CPA in case of an affine model. It can be seen in
Fig. 8d, when the σ = 4, the number of traces needed to reach 80% of success is around
2500 for the MVAT R and around 10,000 for the 2O-CPA; this represents a relative gain
of 300%.

Case ε = 0.5 When ε = 0.5, ‖α‖44 = 10; consequently, Theorem 15 predicts that the
MVAT R should outperform 2O-CPA in the interval [0, 76]. It can be seen in Fig. 9a,
b that in such case when σ 2 = 0 or when σ 2 = 76 the MVAT R and the 2O-CPA
need the same number of traces to reach 80% of is success. This confirms the results of
Theorem 15.
It can be seen in Fig. 9c that when σ = 3 the MVAT R needs around 1000 traces

to reach 80% of success whereas the 2O-CPA needs 3500 traces. The relative gain
of use the MVAT R is 250%. When σ = 4 then the number of traces needed by
the MVAT R to reach 80% of success is around 3000. The number of traces needed
by the 2O-CPA is around 9000. The relative gain of the MVAT R with respect to the
2O-CPA is 200%.

For one bit attacks The best case for MVAT R compared to the 2O-CPA is when all
the bits are zero except one (see “Appendix D.3”). Let us compare the two attacks in
a such case. We assume that all the coordinates of α are equal to zero except the most
significant bit. As ‖α‖44 = 64, the useful interval of variance is [0, 508]. It can be seen
in Fig. 10a that when the noise is null both attacks perform in the same way. It confirms
that also in this case the difference resides in the SNR. When σ = 8 the MVAT R reach
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Fig. 8. Comparison between 2O-CPA and MVAT R for ε = 0.9. a σ = 0. b σ = 10.54. c σ = 3. d σ = 4 .

80% of success with 25,000 traces, whereas the 2O-CPA needs 175,000; this represents
a relative gain of 600% (see Fig. 10b).

7. Practical Validation

This section presents the results of the multivariate attack exploiting the table recompu-
tation stage on true traces.

7.1. Experimental Setup

The traces are electromagnetic leakages of the execution of anAES-128 assembly imple-
mentation with table recomputation. Our implementation has been loaded on ATMEL
ATMega163 8-bit to be analyzed. This smartcard is known to be leaky. It contains 16Kb
of in-system programmable flash, 512 bytes of EEPROM, 1Kb of internal SRAMand 32
general purpose working registers. The smartcard is controlled by a computer through
the Xilinx Spartan-VI FPGA embedded in a SASEBO-W platform. The ATMega is
powered at 2.5 V and clocked at 3.57 MHz.
The measurements were taken using a LeCroy wave-runner 6100A oscilloscope by

means of a Langer EMV 0–3 GHz EM probe and PA-303 30 dB Langer amplifier.
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Fig. 9. Comparison between 2O-CPA and MVAT R for ε = 0.5. a σ = 0. b σ = 8.71. c σ = 3. d σ = 4 .
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Fig. 10. Comparison between the 2O-CPA and the MVAT R in case of one bit model in presence of high
Gaussian noise. a σ = 0. b σ = 8 .

The acquisitions have been acquired with full bandwidth and with a sampling rate of
FS = 500 MS/s.
To build our experiments, 13,000 traces have been acquired. Each trace contains 12

million leakages samples in order to simplify our analysis we only acquired the table
recomputation step and the first round of the AES.
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Fig. 11. Comparison of the SR of the MVAT R and the 2O-CPA. a Comparison on raw traces. b Comparison
with noise addition .

7.2. Experimental Results

Let us first study the results of the attack in terms of success rate. The leakage function
has been recovered using a linear regression. For example, the normalized vector of
weight for the leakage of the first share is

α = (0.95, 1.22, 0.98, 1.13, 0.59, 1.01, 1.04, 0.95) .

Both the MVAT R and the 2O-CPA target Sbox[T ⊕ k�] ⊕ M as in our implementation
the input and output masks are the same.
It can be seen in Fig. 11a that the results of the two attacks are similar. Both attacks

perform similarly because the curves are not noisy.
Indeed, the average values of the SNR of the 256 leakages of the masked random

index (Φ (ω) ⊕ M) and the SNR of the 256 leakages of the random index (Φ (ω)) is 5.
Ifwe assume that the variance of the signal is equal to two (such asHW on 8-bit CPUs),

then the variance of the noise is less than 0.5. Themask (M) and the key-dependent share
(Sbox[T ⊕ k�] ⊕ M) leak with a SNR of 14 which corresponds to a noise variance of
0.1, which is very low (compared to the upper bound of the useful interval of variance
given in Theorem 3, namely 60).
This two results are specific to the implementation and a clear disadvantage for the

MVAT R . But even in this case the MVAT R works as well as the 2O-CPA, this shows
that there is (generally) a gain to use the MVAT R .

In order to confirm these results, let us verify that when the noise increases the
MVAT R outperforms the 2O-CPA. Let us add an artificial Gaussian noisewith a standard
deviation of 0.0040. This models the addition of a countermeasure on top of the table
recomputation. Then, it can be seen in Fig. 11b that in this case the MVAT R outper-
forms the 2O-CPA. This confirms the practicality of our attack and also that the gain is
in the SNR.
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8. Countermeasure

The MVAT R represents a threat against block ciphers with table recomputation step.
In order to mitigate this new vulnerability, we present in this section a countermeasure,
depicted in Algorithm 3. This countermeasure will ensure the security against the new
proposed attack. We present it in the context of a first-order masking scheme, but this
countermeasure is generic and as a consequence can be applied in a higher-ordermasking
scheme such as the masking scheme of Coron.

Remark 8. The proposed countermeasure tackles the input masks vulnerability. The
protection of the output mask is easier as all the output masks can be different for all the
table entries.

8.1. Countermeasure Principle

The core idea of this countermeasure is to randomly draw permutations not all over the
possible permutations but only over a particular kind of permutations: the ones which
are commutative with S (the SubBytes function).

Definition 11. A permutation f : Fn
2 → F

n
2 is said to be commutative with respect

to the function g : F
n
2 → F

n
2 and the composition law if and only if f (g (x)) =

g ( f (x)) ,∀x ∈ F
n
2.

Exploiting this kind of function, the countermeasure principle is as follow: As random
permutation, a commutative permutation with respect to S is drawn. Let us call the
permutationγ . Exploiting the commutative property of the randompermutation,γ (S[ω])
is computed instead of S[γ (ω)] (line 5 of Algorithm 3). Contrast this line with line 5
of Algorithm 1. As a consequence, if an attacker combines the leakages of the random
mask index (line 4) and the random index (line 5) the obtained value depends very little
in the masks m and m′ (see in-depth analysis in Sect. 8.3).

Algorithm 3: Shuffled masked table recomputation, with our additional counter-
measure
input : Genuine SubBytes S : Fn2 → F

n
2 bijection

output: Masked SubBytes S′ : Fn2 → F
n
2 bijection

1 m ←R F
n
2, m

′ ←R F
n
2 // Draw of random input and output masks

2 ϕ ←R F
n
2 → F

n
2 // Draw of random permutation of F

n
2, permuting with S

3 for ω ∈ {0, 1, . . . , 2n − 1} do // S-Box recomputation loop
4 z ← ϕ(ω) ⊕ m // Masked input
5 z′ ← ϕ(S[ω]) ⊕ m′ // Masked output
6 S′[z] = z′ // Creating the masked S-Box entry

7 end
8 return S′
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8.2. Implementations

The major issue of the countermeasure in an implementation perspective is to randomly
generate a commutative permutation.
A first approach could be to generate off-line a large enough set of permutations and

store them into the device. At each execution using a random number, a permutation
will be selected. Of course such approach can be prohibitive in terms of memory need
and as a consequence is not applicable.
A probably better approach is to generate on-the-fly a commutative permutation. In

this subsection, we give an example of a such algorithm. The idea is to randomly generate
a power (with respect to the combination law) of the SubBytes : S bijection.

Definition 12. The power p ∈ N of the function S is given by:

S p : Fn
2 −→ F

n
2

x 
−→ S ◦ S ◦ . . . ◦ S︸ ︷︷ ︸
p

(x) ,

where ◦ denotes the composition law.

Proposition 17. The bijections S p : Fn
2 −→ F

n
2 and S : Fn

2 −→ F
n
2 are commutative

∀p ∈ N.

In order to generate a random power of S, it is possible to directly compute Sr by
applying r times the permutation S where r is a random number. Notice that r can be
larger than the number of possible power S by the group law property of the combination.
But this approach can be time consuming.
In a view to accelerate this operation, the use of the cycle decomposition of S may be

an interesting approach. Let us recall this well known theorem:

Proposition 18. (Theorem 5.19 [9]) Let Sn be the symmetric group of n elements, then
each element of Sn can be expressed as a product of disjoint cycles.

Proposition 19. Themaximumnumber of exponentiations needed to compute S p could
be reduced from p to p (mod l1)+ p (mod l2)+ . . .+ p (mod lm) where the li denote
the respective length of the cycles in the cycles decomposition of S. Notice that l1 + l2 +
· · · + lm = 2n.

Proof. We can express S as S = c1 ◦ c2 ◦ · · · ◦ cm by Proposition 18. As the order of a
cycle is equal to its length l, we have that:

S p = cp (mod l1)
1 ◦ cp (mod l2)

2 · · · ◦ cp (mod lm )
m .

�

Example 20. Let us take as example of S the SubBytes function of AES. This permu-
tation can be decomposed on five disjoint cycles of respectively length l1 = 59, l2 =
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Fig. 12. MVAT R with commutative bijection as countermeasure (Algorithm 3). a σ = 2. b σ = 3 .

81, l3 = 87, l4 = 27, l5 = 2. The order of S in this case is lcm (59, 81, 87, 27, 2) =
277,182. As a consequence, the computation of S277,182 requires a maximum of 256
table evaluations.

8.3. Security Analysis

The security provided by this countermeasure results from different working factors.
Of course the first one is to ensure that the MVAT R is still unfeasible or at least less
effective than the 2O-CPAwhichwould remain feasible.We validated this security using
simulation with the same setup as in Sect. 4.4. Namely we assume that each value leaks
its Hamming weight with a Gaussian noise of standard deviation σ . A total of 1000
attacks has been realized to compute the success rate of each experiment.
The attacker can combine multiplicatively γ (S[ω]) with γ (ω). The results of the

attack resulting from this combination can be found in Fig. 12 for two different noise
standard deviations.We can immediately see that in this case theMVAT R does not allow
to recover the key.
The second working factor for the countermeasure of Algorithm 3 is the number of

possible commutative permutations. Indeed, if this number is too low an attacker can
test all the permutations and build attacks such as in [30]. For example using the possible
powers of S in AES, we reach a total count of 277,182 bijections commutating with S,
which is hard to exhaustively test but remains possible.
Of course another aspect of the countermeasure is the security of the permutation

generation itself against possible side-channel analysis. If an attacker is able for example
to recover: p (mod l1), p (mod l2), . . . , p (mod lm), he will be able to recover the
random permutation. This means that at least the exponentiation of S should be executed
in constant time.

8.4. Implementation Analysis

The countermeasure presented previously may have an impact both on the time and on
the entropy needed for the table recomputation step. Interestingly the entropy, i.e., the
number of randombytes needed is smaller in our new countermeasure. Indeed, in the case
where the nonlinear operation is built using the S-box of AES our new countermeasure
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Table 1. Time needed for the table recomputation.

Implementation Time

TR 0.810 µs
TRS 0.861 µs
TRCOMN 23,700 µs (i.e., 23.7 ms)
TRCOM 3.03 µs

needs less than 5 bytes of entropy whereas in the case of shuffle implementation 256
bytes are needed.2

The other important implementation parameter is the execution time of the table
recomputation. In order to evaluate it, we implement in C a classical table recompu-
tation without any countermeasure denoted by TR, a shuffled version denoted by TRS
where the permutation is drawn over all the possible permutations. We also implement
our countermeasure in a naïve approach denoted by TRCOMN and finally our counter-
measure exploiting the cycle decomposition denoted by TRCOM. The summary of the
different times of table recomputation execution can be found in Table 1. The profiling
has been done using GPROF on an i5-6198DU CPU running at 2.30 GHz.
It can be first noticed that the naïve approach leads to a prohibitive overhead, while the

implementation using the cycle decomposition is computed in a reasonable supplemen-
tary amount of time. As a consequence, we can deduce that this countermeasure can be
an interesting alternative to avoid the attacks presented in this article. Finally, the time
needed to generate the random permutation is small. Indeed, both the implementation
with andwithout shuffle have almost the same execution time. Nevertheless, these results
may be slightly different on embedded systems where the random generation could be
costly.

9. Conclusions and Perspectives

The table recomputation is a knownweakness ofmasking schemes.We have recalled that
practical countermeasures (e.g., shuffling with a high entropy) could be built to protect
the table recomputation. In this article, we have presented a new multivariate attack
exploiting the leakage of the protected table that outperformed classical HODPA even
if a large amount of entropy is used to generate the countermeasure. This multivariate
attack gives an example of a HODPA of nonminimal order which is more efficient than
the corresponding minimal order HODPA.We have theoretically expressed the bound of
noise inwhich this attackoutperformsHOCPAusing theSNR.Then,wehave empirically
validated this bound. Interestingly, we show that if the leakage model consists in a linear
combination of bits, then our attack becomes all the better as the model gets further
away from uniform weights (so-called Hamming weight model). Moreover, we have
shown that the relative gain to use the multivariate attack grows linearly with the order

2Of course, this reduction may have an impact on the security especially in the case where an attacker
performs an exhaustive search overall the permutations.
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of the masking schemes. This result highlights the fact that the study of masking scheme
should take into account as second parameter the number of variables exploitable by
these attacks. Indeed, we have shown in this article that when the number of variables
used to perform the attacks increases, the order does not alone provide a criterion to
evaluate the security of the countermeasure and that the SNR is a better security metric
to consider.
In future works, we will investigate how to protect table recomputation against such

attacks and investigate the cost of such countermeasures, evaluate the threat of such
attacks on high-order masking schemes implemented on real components. We will also
investigate how multivariate attacks could be applied on other masking schemes and
protection techniques. And then, we will quantify the impact of these attacks.
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A. Proof of Theorem 3

In order to prove Theorem 3, let us first introduce some lemmas. By Remark 2 the only
random parts of XT R are the noise and the mask. As a consequence the random variable
(XT R |M = m) depends only on the noise, and is equal to:

(XT R |M = m) = − 2 × 1

2n

2n−1∑

ω=0

[(
HW[Φ (ω) ⊕ m] + N (1)

ω − n

2

)

×
(
HW[Φ (ω)] + N (2)

ω − n

2

)]
.

(16)

Lemma 21.

(XT R |M = m) =HW[m] − n

2

− 2 × 1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]

− 2 × 1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]

− 2 × 1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
.

(17)
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Proof. (XT R |M = m) can be split into a deterministic part and a random part:

(XT R |M = m) = −2 × (Sd + Sr ) ,

where

Sd = 1

2n

2n−1∑

ω=0

[(
HW[Φ (ω) ⊕ m] − n

2

)
×

(
HW[Φ (ω)] − n

2

)]
,

Sr = 1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]

+ 1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]

+ 1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
.

Sd=E
[(
HW[U ⊕ M]−E

[
HW[U ⊕ M]])× (

HW[U ] − E
[
HW[U ⊕ M]]) | M=m

]

= −1

2
HW[m] + n

4
by [25] ,

where U denotes a random variable drawn uniformly over Fn
2. �

Lemma 22.

Var [(XT R |M = m)] = 4 ×
(

σ 2

2n
× n

2
+ σ 4

2n

)
. (18)

Proof. Recall that the random variable (XT R |M = m) can be write as in Lemma 21;
thus Var [(XT R |M = m)] = 4 × (V1 + V2 + V3 + C1 + C2 + C3), where

V1 = Var

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
⎤

⎦ ,

V2 = Var

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]
⎤

⎦ ,

V3 = Var

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦ ,

C1 = 2 × Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦ ,
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C2 = 2 × Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦ ,

C3 = 2 × Cov
[
1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
,

1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]]
.

Let us now prove that C1 = C2 = 0. First we have:

Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦=C (1)
1 − C (2)

1 ,

with

C (1)
1 = Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[
HW[Φ (ω)] × N (1)

ω

]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦

= 1

2n

2n−1∑

ω′=0

1

2n

2n−1∑

ω=0

[
Cov

[
HW[Φ (ω)] × N (1)

ω , N (1)
ω′ × N (2)

ω′
]]

.

The random variables N (i)
ω , where i ∈ {1, 2} and ω ∈ F

n
2 are mutually independent and

independent with all the HW[Φ (ω)]. Thus we have:

∀ω,ω′,Cov
[
HW[Φ (ω)] × N (1)

ω , N (1)
ω′ × N (2)

ω′
]

= 0

⇐⇒ 1

2n

2n−1∑

ω′=0

1

2n

2n−1∑

ω=0

[
Cov

[
HW[Φ (ω)] × N (1)

ω , N (1)
ω′ × N (2)

ω′
]]

= 0

⇐⇒ C (1)
1 = 0.

Besides

C (2)
1 = Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[n
2

× N (1)
ω

]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦

= n

2
× 1

2n

2n−1∑

ω′=0

1

2n

2n−1∑

ω=0

[
Cov

[
N (1)

ω , N (1)
ω′ × N (2)

ω′
]]

.
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As N (i)
ω , where i ∈ {1, 2} and ω ∈ F

n
2, are mutually independent, we have:

Cov
[
N (1)

ω , N (1)
ω′ × N (2)

ω′
]

= 0, ∀ (
ω,ω′) ∈ F

n
2 × F

n
2

⇐⇒ C (2)
1 = Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[n
2

× N (1)
ω

]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦ = 0

⇐⇒ Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

N (1)
ω ×

(
HW[Φ (ω)] − n

2

)
,
1

2n

n−1∑

ω=0

N (1)
ω × N (2)

ω

⎤

⎦ = 0.

Identically we prove that:

Cov

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]
,
1

2n

2n−1∑

ω=0

[
N (1)

ω × N (2)
ω

]
⎤

⎦ = 0.

Asa consequenceC1 = C2 = 0.Let us nowstudyC3. By the bilinearity of the covariance
C3 can be rewritten such that:

C3= 2

22n

2n−1∑

ω=0

2n−1∑

ω′=0

Cov
[
N (1)

ω ×
(
HW[Φ (ω)]− n

2

)
, N (2)

ω′ ×
(
HW[Φ (ω) ⊕ m]− n

2

)]
.

But

Cov
[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)
, N (2)

ω′ ×
(
HW[Φ (ω) ⊕ m] − n

2

)]

= E

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)
× N (2)

ω′ ×
(
HW[Φ (ω) ⊕ m] − n

2

)]

− E

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
× E

[
N (2)

ω′ ×
(
HW[Φ (ω) ⊕ m] − n

2

)]
.

By definition, N (1)
ω is independent from HW[Φ (ω)]. Thus:

E

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
= E

[
N (1)

ω

]
× E

[(
HW[Φ (ω)] − n

2

)]
= 0 and

E

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
× E

[
N (2)

ω′ ×
(
HW[Φ (ω) ⊕ m] − n

2

)]
= 0.

N (1)
ω is independent from

(
HW[Φ (ω)] − n

2

) × N (2)
ω′ × (

HW[Φ (ω) ⊕ m] − n
2

)
. Thus

E

[
N (1)

ω × (
HW[Φ (ω)] − n

2

) × N (2)
ω′ × (

HW[Φ (ω) ⊕ m] − n
2

)] = 0, which implies
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that C3 = 0. As a consequence Var [(XT R |M = m)] = 4 × (V1 + V2 + V3).

V1 = Var

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
⎤

⎦

= 1

22n

2n−1∑

ω=0

Var
[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]

+ 2

22n
∑

0�ω<ω′�2n−1

Cov
[
N (1)

ω × (HW[Φ (ω)]) , N (1)
ω′ × (

HW[Φ (
ω′)])

]
. (19)

As Cov
[
N (1)

ω × (HW[Φ (ω)]) , N (1)
ω′ × (

HW[Φ (
ω′)])

]
= 0, the terms in Eq. (19) are

all null. It can be noticed thatE
[
HW[Φ (ω)] − n

2

] = 0 asΦ (ω) is uniformly distributed

over S2n and E

[
N (1)

ω

]
= 0. As a consequence:

Var
[
N (1)

ω ×
(
HW[Φ (ω)] − n

2

)]
= Var

[
HW[Φ (ω)] − n

2

]
× Var

[
N (1)

ω

]
, hence

V1 = 1

22n

2n−1∑

ω=0

σ 2 × n

4
= 1

2n
× σ 2 × n

4
.

Identically, we have

V2 = Var

⎡

⎣ 1

2n

2n−1∑

ω=0

[
N (2)

ω ×
(
HW[Φ (ω) ⊕ m] − n

2

)]
⎤

⎦ = σ 2

2n
× n

4
= V1 , and

V3 = Var

⎡

⎣ 1

2n

2n−1∑

ω=0

N (1)
ω × N (2)

ω

⎤

⎦ = σ 4

2n
.

Finally

Var [(XT R |M = m)] = 4 ×
(

σ 2

2n
× n

2
+ σ 4

2n

)
.

�

Then, let us prove Theorem 3.

Proof. Lemma 22 gives us the value of the variance of the noise. Then by the definition
of the SNR, we have:

SNR [XT R, M] � SNR
[
X (3), M

]
⇐⇒ Var

[
HW[M]]

Var [(XT R |M = m)]
�

Var
[
HW[M]]

Var
[
N 3

]
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⇐⇒ 4 ×
(

σ 2

2n
× n

2
+ σ 4

2n

)
� σ 2

⇐⇒ 2n−1 − n

2
� σ 2

�
B. Proof of Propositions of Sect. 4.5

B.1. Proof of Proposition 5

Proof. By Theorem 2 in [16, Appendix A.2] (extended version of [15]), we have that
the SE of is given by

SE2O-CPA = min
k 
=k�

κ (k�, k)

2
(

κ ′(k�,k)
κ(k�,k) − κ (k�, k)

)
+ 2

∑
i∈{0,2}d

i 
=(0,...,0)

∏
1≤δ≤d

(
α

−iδ
δ · σ

iδ
δ

)

= min
k 
=k�

κ (k�, k)

2
(

κ ′(k�,k)
κ(k�,k) − κ (k�, k)

)
+ 2

(
α−2
1 σ 2

1 + α−2
2 σ 2

2 + α−2
1 σ 2

1 α−2
2 σ 2

2

) .

�

B.2. Proof of Proposition 7

Proof.

m(SR)
2O-CPA − m(SR)

MVAT R

m(SR)
MVAT R

=
(
log (1 − SR)

SE2O-CPA
− log (1 − SR)

SEMVAT R

)
× SEMVAT R

log (1 − SR)

= SEMVAT R

SE2O-CPA
− 1,

which indeed does not depend on SR. �

B.3. Proof of Proposition 8

Let us now compute the difference of traces needed to reach any SR.

m(SR)
2O-CPA − m(SR)

MVAT R
= log (1 − SR)

SE2O-CPA
− log (1 − SR)

SEMVAT R
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Let us rewrite using α = α1 = α2. In such case:

m(SR)
2O-CPA − m(SR)

MVAT R
= log (1 − SR)

SE2O-CPA
− log (1 − SR)

SEMVAT R

= log (1 − SR)

SE2O-CPA
− log (1 − SR)

SEMVAT R

=
(
2α−2 log (1 − SR)

κ (k�, k)

)(
1 + α−2σ 2

)(
σ 2 − 4

(
σ 2

2n
n

2
+ σ 4

2n

))

The attacks perform similarly when m2O-CPA − mMVAT R = 0 which implies (σ 2 − 4 ×(
σ 2

2n × n
2 + σ 4

2n

)
= 0. Notice that we recover here the results of the Sect. 4.3.

In order to find the noise when the maximum occurs, let us compute the derivative in
σ 2:

d
(
m(SR)
2O-CPA − m(SR)

MVAT R

)

dσ 2 =
((

α−2 − 4α−2

2n
× n

2

)

+
(
8α−2

2n
+ 2α−4 − 8α−4

2n
× n

2

)

σ 2 − 12α−4σ 4

2n

)

×
(
2
log (1 − SR)

κ (k�, k)

)

The maximum occurs when
d
(
m(SR)
2O-CPA−m(SR)

MVAT R

)

dσ 2 = 0 which not depends on the SR.

C. Proof of Theorem 10

Similarly to the Remark 2, we have ∀i < d:

(
XCSdi

|Mi = m
)

= −2

d2n
∑

ω∈F2n
j∈�1,d�

[(
HW[Φ (ω) ⊕ m] + N (1)

(ω, j) − n

2

)

×
(
HW[Φ (ω)] + N (2)

(ω, j) − n

2

)]
.

As the i is fixed for each share we have removed it from the index position.

Lemma 23.

Var
[(

XCSdi
|Mi = m

)]
= 4 ×

(
σ 2

d × 2n
× n

2
+ σ 4

d × 2n

)
, (20)

where d is the number of share of the high-order masking scheme and i < d.

Proof. Lemma 23 is a straightforward extension of Lemma 22. �

Exploiting Lemma 23, let us prove Theorem 10.
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Proof. As Lemma 23 gives us the variance of the noise of the second-order leakage,
we have ∀i < d

SNR
[
XCSdi

, Mi

]
� SNR

[
X (3)
i , Mi

]

⇐⇒ Var
[
HW[M]]

Var
[(

XCSdi
|Mi = m

)] �
Var

[
HW[M]]

Var
[
N (3)
i

]

⇐⇒ 4 ×
(

σ 2

d × 2n
× n

2
+ σ 4

d × 2n

)
� σ 2

⇐⇒
(
n − d × 2n−1

) σ 2

d × 2n−1 + σ 4

d × 2n−2 � 0.

The upper bound of the interval are the σ 2 where σ 2 
= 0 and:

σ 4

d × 2n−2 =
(
d × 2n−1 − n

) σ 2

d × 2n−1

⇐⇒ σ 2 =
(
d × 2n−1 − n

)

2

⇐⇒ σ 2 = d × 2n−2 − n

2
.

It implies that the size of Useful Interval of Variance is given by d × 2n−2 − n
2 . �

D. Affine Model

D.1. Proof of Lemma 12

Proof.

E
[
(Ψα (U ) − E [Ψα (U )]) × (

Ψβ (U ⊕ z) − E
[
Ψβ (U ⊕ z)

])]

= E

[(
α ·U − α ·

(
1

2
1
))

×
(

β · (U ⊕ z) − β ·
(
1

2
1
))]

= E

[(
α ·

(
U − 1

2
1
))

×
(

β ·
(

(U ⊕ z) − 1

2
1
))]

= E

[(
1

2
α ·U

)
×

(
1

2
β · (U ⊕ z

))]

= 1

4

(
αt
E

[
U
(
U ⊕ z

)t]
β
)

,

where U denotes 2
(
U − 1

21
)
.
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It can also be noticed that: U = −(
(−1)U1 , . . . , (−1)Un

)
, and thus (U ⊕ z) =

−(
(−1)U1+z1 , . . . , (−1)Un+zn

)
. Moreover

E

[
U
(
U ⊕ z

)t] = Cov
[
U ,

(
U ⊕ z

)t]

�⇒
(
E

[
U
(
U ⊕ z

)t])

i, j
= Cov

[
(−1)Ui , (−1)(Uj+z j)

]

�⇒
(
E

[
U
(
U ⊕ z

)t])

i, j
= 0 if i 
= j or

(
E

[
U
(
U ⊕ z

)t])

i, j
= (−1)z j if i = j.

Eventually, we have:

E
[
(Ψα (U ) − E [Ψα (U )]) × (

Ψβ (U ⊕ z) − E
[
Ψβ (U ⊕ z)

])]

= −1

4
(α � β) · z = −1

4
(α � β) · 2

(
z − 1

2
1
)

= −1

2
(α � β) · z + 1

4
(α � β) · 1 = −1

2
(α � β) · z + 1

4
α · β.

�

D.2. Proof of Theorem 15

Similarly to Eq. (16), we have:

(XT R |M = m) = − 2 × 1

2n

2n−1∑

ω=0

[(
α · (Φ (ω) ⊕ m) + N (1)

ω − 1

2
(α · 1)

)

×
(

α · (Φ (ω)) + N (2)
ω − 1

2
(α · 1)

)]
.

Lemma 24.

Var [(XT R |M = m)] = 4 ×
(

n

2n+1 × σ 2 + σ 4

2n

)
.

Proof. Similar to proof of Lemma 22 (see “AppendixA”) using the affinemodel instead
of the Hamming Weight and Assumption 1. �

Then, we can prove Theorem 15.

Proof. Lemma 24 gives us the value of the variance of the noise. Then by the definition
of the SNR, we have:

SNR [XT R, M] � SNR
[
X (3), M

]

⇐⇒ Var
[
α2 · M]

Var [(XT R |M = m)]
� Var [α · M]

Var
[
N (3)

]
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⇐⇒
1
4‖α‖44

4 ×
(

σ 2

2n+1 × n + σ 4

2n

) �
1
4n

σ 2

⇐⇒ σ 2

4
× ‖α‖44 − σ 2

2n+1 × n2 − σ 4

2n
× n � 0

⇐⇒ σ 2 ×
(
1

4
× ‖α‖44 − 1

2n+1 × n2 − σ 2

2n
× n

)
� 0

⇐⇒ 1

4
× ‖α‖44 − 1

2n+1 × n2 − σ 2

2n
× ‖α‖22 � 0

⇐⇒ 2n

4
× ‖α‖44

n
− 2n

2n+1 × n2

n
� σ 2

⇐⇒ ‖α‖44 × 2n−2

n
− n

2
� σ 2

�

D.3. Proof of Corollary 16

Let us first prove the following result:

Lemma 25. Let x ∈ R
n and let p, q two integers such that p > q > 0. Then:

n
1
p − 1

q ‖x‖q � ‖x‖p � ‖x‖q . (21)

These two bounds are tight. Indeed,

∀i, j, xi = x j �⇒ n
1
p − 1

q ‖x‖q = ‖x‖p

∃i/xi 
= 0 and ∀i 
= j, x j = 0 �⇒ ‖x‖p = ‖x‖q .

Proof. Let us first prove the lower bound of Eq. (21). By the Hölder inequality we
have:

∑

i

|xi |q �
(
∑

i

(|xi |q)P
) 1

P
(
∑

i

(1)Q
) 1

Q

where P = p

q
and Q = p

p − q
.

So, we have,
∑

i |xi |q � ‖x‖qpn1−
q
p , i.e., ‖x‖pn

1
p − 1

q � ‖x‖p.

Then, let us prove the upper bound. We have
∑

i
|xi |q
‖x‖qq = 1. Hence, for all 1 � i � n,

|xi |q
‖x‖qq � 1. Therefore, for all i , |xi |p

‖x‖p
q

� |xi |q
‖x‖qq , hence

∑
i

|xi |p
‖x‖p

q
�

∑
i

|xi |q
‖x‖qq = 1, which

yields the announced inequality: ‖x‖p
p � ‖x‖p

q .
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Let us prove the sufficient conditions when the inequalities become equalities:

∀i, j, xi = x j �⇒ ‖x‖p = |xi |n
1
p and ‖x‖q = |xi |n

1
q �⇒ ‖x‖p = ‖x‖qn

1
p − 1

q

∃i, xi 
= 0 and ∀i 
= j, x j = 0 �⇒ ‖x‖p = |xi | and ‖x‖q = |xi | �⇒ ‖x‖p = ‖x‖q .

�

The Corollary 16 is the application of Lemma 25 with p = 4 and q = 2.

Proof. Indeed, we have by Theorem 15 that the useful interval of variance is 0 � σ 2 �
‖α‖44 × 2n−2

n − n
2 , where ‖α‖22 = n (recall Assumption 1). Then, by Lemma 25:

(
‖α‖2n 1

4− 1
2+ 1

2

)4 × 2n−2

n
− n

2
� ‖α‖44 × 2n−2

n
− n

2
� ‖α‖42 × 2n−2

n
− n

2

�⇒
(
‖α‖2n 1

4− 1
2

)4 × 2n−2

n
− n

2
� ‖α‖44 × 2n−2

n
− n

2
� n2 × 2n−2

n
− n

2

�⇒ 2n−2 − n

2︸ ︷︷ ︸
Value of Theorem 3.

� ‖α‖44 × 2n−2

n
− n

2
� n × 2n−2 − n

2

�
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