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1. Introduction

IDEA (which is an acronym for International Data Encryption Algorithm) was intro-
duced by Lai and Massey in 1991, and quickly became one of the best known and most
well studied block ciphers. Even though it has only 8.5 relatively simple rounds which
consist of just XOR’s, additions, and multiplications of 16-bit values, it withstood more
than 20 years of cryptanalysis surprisingly well (e.g., [2–6,8,9,11–14,17–21,23,25–28]).

The best attack on IDEA published until 2006 was the improved Demirci–Selçuk–
Türe [2] attack on 5 rounds, whose 2124 time complexity is only slightly better than
exhaustive search. At ASIACRYPT 2006 [4], we introduced the keyless Biryukov–
Demirci relation and used it to reduce the time complexity of the attack on 5-round
IDEA to 2103. At FSE 2007 [5], we used an improved version of the same technique to
devise the first attack on a 6-round variant of IDEA, but its complexity was extremely
high: it was only twice as fast as exhaustive search, and required essentially the whole
codebook of 264 plaintext/ciphertext pairs. This 6-round attack was considerably im-
proved by Sun and Lai at ASIACRYPT 2009 [28], who showed at how to reduce the
data complexity from 264 to 249 chosen plaintexts, while at the same time reducing the
time complexity from 2126.8 to 2112.1.

In this paper we combine the keyless Biryukov–Demirci relation with a highly op-
timized meet-in-the-middle attack and obtain a new attack on 6-round IDEA which
reduces the data complexity from 249 chosen plaintexts to 16 known plaintexts while
remaining faster than the Sun and Lai attack (alternatively, we can reduce the data com-
plexity all the way to its information-theoretic lower bound of 2 known plaintexts, but
then its time complexity increases to 2123.4).

By using higher data complexities, we can attack larger variants of IDEA, which
could not be successfully attacked by any previously published technique. By combin-
ing the keyless Biryukov–Demirci relation with the splice-and-cut variant of the meet-
in-the-middle attack [1,24,29], we can break 6.5 rounds using about one thousand plain-
texts in 2122 time. With further optimizations, we can attack 7 rounds in 2112 time using
248 data, 7.5 rounds in 2114 time using 263 data, and the full 8.5-round IDEA in 2126.8

time using only 16 plaintexts.
After the submission of our paper, Khovratovich, Leurent, and Rechberger [21] inde-

pendently developed a different type of attacks on 5, 6, 7.5 and 8.5 round IDEA, using
their new biclique approach in order to slightly optimize the complexity of exhaustive
search. Compared to our techniques, their approach requires much larger data complex-
ities to achieve tiny time savings. For example, their attack on full IDEA requires 252

chosen plaintexts in order to reduce the time complexity to 2126 time, whereas our attack
needs only 16 chosen plaintexts to reduce the time complexity to 2126.8.

Table 1 summarizes the major previously published attacks on reduced-round IDEA
variants, and compares them to the new attacks presented in this paper.

The paper is organized as follows: In Sect. 2 we describe the structure of IDEA
and introduce our notations. In Sect. 3 we overview the techniques used in this paper,
including a keyless version of the Biryukov–Demirci relation (which gets rid of all the
subkeys in the equation). In Sect. 4 we present our attacks on 6-round IDEA. The attacks
on up to 7.5 rounds, which incorporate the splice-and-cut technique, are presented in
Sect. 5. In Sect. 6 we show how to use our techniques to speed up exhaustive search on
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Table 1. Comparing other attacks on IDEA with our new results.

Rounds Attack type Complexity Source & Year
Data Time

2 Differential 210 CP 240 [23], 1993
2.5 Differential 210 CP 2104.7 [23], 1993
3 Differential-linear 229 CP 244 [9], 1997
3.5 Differential 256 CP 267 [9], 1997
4 Impossible differential 236.6 CP 266.6 [3], 1999
4.5 Impossible differential 264 KP 2110.4 [3], 1999
5 Demirci–Selçuk–Türe 224.6 CP 2124 [2], 2006
5 ZitM BD-relation 219 KP 2103 [4], 2006
5.5 ZitM BD-relation 232 CP 2126.85 [5], 2007
6 ZitM BD-relation 264 KP 2126.8 [5], 2007
5.5 Key-dependent linear 221 CP 2112.1 [28], 2009
6 Key-dependent linear 249 CP 2112.1 [28], 2009

Our new results

6 MitM BD-relation 2 KP 2123.4 Sect. 4, 2011
6 MitM BD-relation 16 KP 2111.9 Sect. 4, 2011
6.5 SaC MitM BD-relation 210 CP 2122 Sect. 5, 2011
6.5 SaC MitM BD-relation 223 CP 2113 Sect. 5, 2011
6.5 SaC MitM BD-relation 232 CP 2111.9 Sect. 5, 2011
7 SaC MitM BD-relation 238 CP 2123 Sect. 5, 2011
7 SaC MitM BD-relation 248 CP 2112 Sect. 5, 2011
7.5 SaC MitM BD-relation 16 CP 2125.9 Sect. 6, 2011
7.5 SaC MitM BD-relation 263 CP 2114 Sect. 5, 2011
7.5 RK ZitM BD-relation 225 CP 2103 Sect. 7, 2011
8.5 SaC MitM BD-relation 16 CP 2126.8 Sect. 6, 2011

The independently discovered results in [21]

7.5 Biclique BD-relation 218 CP 2126.5 [21], 2012
7.5 Biclique BD-relation 252 CP 2123.9 [21], 2012
8.5 Biclique BD-relation 252 CP 2126.0 [21], 2012

ZitM—Zero-in-the-Middle, MitM—Meet-in-the-Middle, SaC—Splice-and-Cut, RK—Related Key,

KP/CP—Known/Chosen Plaintext. Time complexity is measured in encryptions. †—This attack is a
distinguishing attack.

the full IDEA. In Sect. 7 we introduce a different technique called Zero-in-the-Middle,
and show how to use it to devise a related-key attack on 7.5 rounds of IDEA with a
practical data complexity. In Appendix A, we present a surprising attack on 4.5-round
IDEA which uses merely the meet-in-the-middle technique. We conclude with a short
summary and discussion in Sect. 8.

2. Description of IDEA and Notations

IDEA [22] is a 64-bit, 8.5-round block cipher with 128-bit keys. It uses a composition
of XOR operations, additions modulo 216, and multiplications over GF(216 + 1).
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Fig. 1. One round of IDEA.

The structure of a single round of IDEA is shown in Fig. 1. As can be seen in the
figure, every round of IDEA is the concatenation of two layers. The input of round i,
denoted by Xi , consists of four 16-bit words, denoted by (Xi

1,X
i
2,X

i
3,X

i
4). In the first

layer (denoted by KA for Key Addition), the first and the fourth words are multiplied by
subkey words (mod 216 + 1) where a 0 operand is replaced by 216, and an outcome of
216 is replaced by 0, and the second and the third words are added to subkey words (mod
216). The intermediate value after this half-round is denoted by Y i = (Y i

1, Y i
2, Y i

3, Y i
4).

Formally, let Zi
1,Z

i
2,Z

i
3, and Zi

4 be the four subkey words, let � denote addition modulo
216 and let � be IDEA’s special multiplication, then

Y i
1 = Zi

1 � Xi
1; Y i

2 = Zi
2 � Xi

2; Y i
3 = Zi

3 � Xi
3; Y i

4 = Zi
4 � Xi

4.

The pair (pi, qi) = (Y i
1 ⊕ Y i

3, Y i
2 ⊕ Y i

4) enters the second layer, a structure composed of
multiplications and additions denoted by MA. Denoting the subkey words that enter the
MA function by Zi

5 and Zi
6, the computation is performed as follows:

si = pi � Zi
5;

t i = (
qi � si

) � Zi
6;

ui = t i � si .

The output of the MA function is (ui, t i), where ui and t i are related through ui =
t i � si , a fact which is later used.

The output of the ith round is Xi+1 = (Y i
1 ⊕ t i , Y i

3 ⊕ t i , Y i
2 ⊕ ui, Y i

4 ⊕ ui). In the last
round the MA layer is removed (i.e., the ciphertext is Y 9 = (Y 9

1 ||Y 9
2 ||Y 9

3 ||Y 9
4 )), and thus

we refer to the full IDEA as an 8.5-round rather than as a 9-round scheme.
IDEA’s key schedule is extremely simple, and turns out to be the source of many at-

tacks. It is completely linear, and each subkey is a subset of 16 consecutive bits selected
from the key. Since the exact structure of the key schedule is crucial for our attacks, the
entire key schedule is described in Table 2. In this table and the remainder of this paper,
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Table 2. The key schedule algorithm of IDEA. Each cell describes the bits of the secret key used in the
corresponding subkey.

Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

we denote the first bit of the key by 0 and the last bit of the key by 127, and use a cyclic
interval notation such as 121–8 to denote the 16 bits 121,122, . . . ,127,0,1, . . . ,7,8.

3. Overview of the Used Techniques

In this section we present the techniques we use in this paper. First we present the
generic techniques—the standard Meet-in-the-Middle attack [15], along with its variant
called the Splice-and-Cut attack [1,24]. Then we present the keyless Biryukov–Demirci
relation, which is specific to IDEA and allows to exploit the simplicity of IDEA’s oper-
ations and key schedule in an efficient way.

3.1. The Meet-in-the-Middle Attack

The Meet-in-the-Middle (MitM) attack, introduced by Diffie and Hellman [15] in 1977,
is one of the most classic cryptanalytic techniques. The MitM attack on a block cipher
uses the observation that given a (plaintext, ciphertext) pair, some (possibly partial)
intermediate value V during the encryption process can be computed in two different
ways:

– Using only the plaintext and part of the secret key material, denoted by Kt (where
t stands for “top”), and

– Using only the ciphertext and a (possibly different) part of the key material, de-
noted by Kb (where b stands for “bottom”).

In the attack, the adversary considers several known (plaintext, ciphertext) pairs, and
for each guess of Kt , she computes from the plaintexts the corresponding V values and
stores them in a hash table. Then, for each guess of Kb , she computes the V values from
the ciphertexts, and searches for a match in the hash table. (If |Kt | > |Kb|, it is more
efficient to swap the roles of Kt and Kb .)

Since the right value of the key material in Kt and Kb must lead to the same value
of V in the two different computations (for each of the (plaintext, ciphertext) pairs),
this right value can be found by checking all the (Kt ,Kb) values which lead to a match
in the hash table. If d (plaintext, ciphertext) pairs are examined, the expected number
of such suggestions is 2|Kt |+|Kb|−d·|V |, where |X| denotes the length of X in bits. If
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more than one suggestion passes the filtering, the remaining suggestions are checked by
exhaustive search over the remaining bits of the secret key.

The time complexity of the attack is 2max(|Kt |,|Kb|) encryptions.
The memory complexity of the attack is 2min(|Kt |,|Kb|) blocks of size d|V | +

min(|Kt |, |Kb|) bits. If the key materials guessed in the top and the bottom parts (i.e.,
Kt and Kb) share a common part Kc , the memory complexity can be reduced without
affecting the time complexity by guessing Kc in advance, and repeating the attack for
each value of Kc . The resulting memory complexity is 2min(|Kt |,|Kb|)−|Kc| blocks of size
d|V | + min(|Kt |, |Kb|) − |Kc| bits.

The data complexity in a naive application of the attack is (|Kt | + |Kb|)/|V | (plain-
text, ciphertext) pairs, required for discarding all wrong values of (Kt ,Kb) in the first
filtering step. This complexity can be reduced with only a small effect on the time
complexity by letting 2max(|Kt |,|Kb|) key candidates remain after the first filtering step,
and then checking them exhaustively. (Note that this makes the time complexity of the
second filtering step roughly equal to that of the first step, and hence is optimal.) The
resulting data complexity is

|Kt | + |Kb| − |Kc| − max(|Kt |, |Kb|)
|V | = min(|Kt |, |Kb|) − |Kc|

|V |
(plaintext, ciphertext) pairs.

3.2. The Splice-and-Cut Technique

A promising enhancement of the meet-in-the-middle attack is the recently rediscovered
(and renamed) method of Splice-and-cut. Originally presented in the attack on double-
key triple-DES in [24], the attack was reintroduced in 2009 by Aoki and Sasaki [1]
for cryptanalysis of hash functions, and was recently adapted to block ciphers by Wei
et al. [29].

The idea behind the technique is rather simple. Instead of treating the encryption pro-
cess as directed from the plaintext to the ciphertext, we consider it as a cyclic process,
where the plaintext is connected to its corresponding ciphertext by an encryption oracle.
In this treatment, the last rounds of encryption and the first ones are considered consec-
utive (with the oracle in between), and the plaintext and ciphertext are no longer treated
as “special” points of the process. This treatment allows to apply a “cyclic” variant of
the MitM attack. We fix an intermediate value I of the encryption process, and apply
the MitM attack to the cyclic construction treating I as the plaintext/ciphertext point.

Specifically, like in the basic MitM attack, we compute the same intermediate value
V in two ways, where in the first way we guess the key material Kt used in the rounds
between I and V , and in the second way we guess the key material Kb used in the rounds
below V and in the rounds above I . The new subdivision of the cipher is demonstrated
in Fig. 2.

In some cases, including the case of IDEA, the ability to choose a “good” start-
ing point I instead of the plaintext/ciphertext allows to exploit weaknesses of the key
schedule to improve the attack significantly. A drawback of the attack is the need to use
many chosen plaintext or chosen ciphertext queries in order to imitate the oracle used
in the attack. However, if the new starting point I is relatively close to the plaintext or
to the ciphertext, one can use structures to make the data complexity reasonable.
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Fig. 2. The general idea of splice-and-cut.

For a full presentation of the splice-and-cut technique, we refer the reader to
[1,24,29].

3.3. The Keyless Biryukov–Demirci Relation

In this section we present a keyless variant of the Biryukov–Demirci (BD) relation—a
linear equation involving the plaintext, the ciphertext, and several intermediate values
computed during the IDEA encryption process.1

We start with the basic observation made by Biryukov. Let us examine the second
and the third words in all the intermediate stages of the encryption. There is a relation
between the values of these words and the outputs of the MA layers in the interme-
diate rounds, which uses only XOR and modular addition, but not multiplication. Let
P = (P1,P2,P3,P4) be a plaintext and let C = (C1,C2,C3,C4) be its corresponding
ciphertext. Then
(((((((((((((((((

P2 � Z1
2

) ⊕ u1) � Z2
3

) ⊕ t2) � Z3
2

) ⊕ u3) � Z4
3

) ⊕ t4) � Z5
2

) ⊕ u5)

� Z6
3

) ⊕ t6) � Z7
2

) ⊕ u7) � Z8
3

) ⊕ t8) � Z9
2

) = C2. (1)

Similarly,
(((((((((((((((((

P3 � Z1
3

) ⊕ t1) � Z2
2

) ⊕ u2) � Z3
3

) ⊕ t3) � Z4
2

) ⊕ u4) � Z5
3

) ⊕ t5)

�Z6
2

) ⊕ u6) � Z7
3

) ⊕ t7) � Z8
2

) ⊕ u8) � Z9
3

) = C3. (2)

If we restrict our interest to the values of the least significant bits (LSB) of the words,
modular addition is equivalent to XOR and we can simplify the above equations into

LSB
(
P2 ⊕ Z1

2 ⊕ u1 ⊕ Z2
3 ⊕ t2 ⊕ Z3

2 ⊕ u3 ⊕ Z4
3 ⊕ t4 ⊕ Z5

2 ⊕ u5 ⊕ Z6
3 ⊕ t6 ⊕ Z7

2

⊕ u7 ⊕ Z8
3 ⊕ t8 ⊕ Z9

2

) = LSB(C2), (3)

and

LSB
(
P3 ⊕ Z1

3 ⊕ t1 ⊕ Z2
2 ⊕ u2 ⊕ Z3

3 ⊕ t3 ⊕ Z4
2 ⊕ u4 ⊕ Z5

3 ⊕ t5 ⊕ Z6
2 ⊕ u6 ⊕ Z7

3

⊕ t7 ⊕ Z8
2 ⊕ u8 ⊕ Z9

3

) = LSB(C3). (4)

1 The Biryukov–Demirci relation is based on observations made independently by Biryukov and Demirci,
and was previously used by Junod in [19]. The keyless variant, which allows to enhance the attacks based on
the relation significantly, was first presented in the conference version of this paper [4].
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As observed by Demirci [13], ui = t i � si , thus, LSB(ui) = LSB(t i � si), which is
equivalent to LSB(ui ⊕ t i ) = LSB(si). Taking this into consideration and XORing the
two above equations, we obtain

LSB
(
P2 ⊕ P3 ⊕ Z1

2 ⊕ Z1
3 ⊕ s1 ⊕ Z2

2 ⊕ Z2
3 ⊕ s2 ⊕ Z3

2 ⊕ Z3
3 ⊕ s3 ⊕ Z4

2 ⊕ Z4
3 ⊕ s4

⊕ Z5
2 ⊕ Z5

3 ⊕ s5 ⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8 ⊕ Z9
2 ⊕ Z9

3

)

= LSB(C2 ⊕ C3). (5)

This equation is called in [19] “the Biryukov–Demirci relation”, which we shall refer to
as the BD-relation.

In this paper we use a keyless variant of the BD-relation in which all the Zi
j sub-

keys are canceled. Consider any pair of known plaintexts P 1 and P 2. Denote the XOR
difference between the encryptions of P 1 and P 2 (under the same secret key) in an
intermediate value X by �X. Then, XORing the equations given by P 1 and P 2 yields

LSB
(
P 1

2 ⊕ P 1
3 ⊕ P 2

2 ⊕ P 2
3 ⊕ �s1 ⊕ �s2 ⊕ �s3 ⊕ �s4 ⊕ �s5 ⊕ �s6 ⊕ �s7 ⊕ �s8)

= LSB
(
C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3

)
. (6)

In the sequel, we refer to this equation as the keyless BD-relation.

4. Meet-in-the-Middle Biryukov–Demirci Attack on 6-Round IDEA

In this section, we combine the standard MitM technique with the keyless BD-relation
to obtain a new attack on a 6-round variant of IDEA, which starts after the KA layer of
round 2. The data complexity of our best attack is just 16 known plaintexts, its memory
complexity is 225 64-bit blocks, and its time complexity is less than 2112 encryptions.
This is a significant improvement over the best previously known attack on 6-round
IDEA [28], which required 249 chosen plaintexts and 2112 encryptions.

First we present the basic attack, and then we present a tradeoff that allows us to
slightly reduce the high time complexity, at the expense of slightly increasing the low
memory complexity. A reader who is mainly interested in the idea of the attack and is
less concerned with the details may concentrate on Sect. 4.1 and skip the other parts of
this section.

4.1. The Basic Attack

The idea behind the attack is that the keyless BD-relation can be incorporated into the
standard meet-in-the-middle framework. Instead of computing the same intermediate
value V in two different ways, we divide the terms of Eq. (6) into two sets, such that the
terms in the first set can be computed using only the plaintexts and the set Kt of key bits
(as defined in Sect. 3.1), and the terms in the second set can be computed using only the
ciphertexts and the set Kb of key bits.

In the attack, for each guess of Kt , the adversary computes the XOR of all terms of
the equation that belong to the first set, and stores it in a hash table. Then, for each guess
of the subkey Kb , she computes the XOR of all terms that belong to the second set, and
searches for a match in the hash table. If the equation is satisfied (which is always the
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case for the correct guess of (Kt ,Kb)), the XOR of all the terms in the equation is zero,
which corresponds to a match in the hash table. In the sequel, we call such an attack
MitM BD attack.

In the specific case of a 6-round variant of IDEA which starts after the KA layer of
round 2 and ends after the KA layer of round 8, Eq. (6) can be written in the form

LSB
(
P 1

2 ⊕ P 1
3 ⊕ P 2

2 ⊕ P 2
3 ⊕ �s2 ⊕ �s3 ⊕ �s4)

= LSB
(
C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3 ⊕ �s5 ⊕ �s6 ⊕ �s7). (7)

We choose the sets as follows:

– The first set consists of the terms: P 1
2 ,P 1

3 ,P 2
2 ,P 2

3 ,�s2,�s3,�s4.
– The second set consists of the terms: C1

2 ,C1
3 ,C2

2 ,C2
3 ,�s5,�s6,�s7.

This division emphasizes the advantage of the MitM BD attack over the standard
MitM attack. In the standard MitM attack, the adversary has to compute values from
both the plaintext and ciphertext sides until she reaches a common intermediate value V .
The use of the BD-relation allows us to “jump” over one round in the middle: the ad-
versary computes only up to �s4 in the encryption direction and only up to �s5 in
the decryption direction, and the meet-in-the-middle effect is achieved using Eq. (7) to
bridge between these values. The attack algorithm is given by a pseudo-code in Fig. 3.

In order to compute the complexity of the attack, we have to find the values
|Kt |, |Kb|, |Kc|, |V | (as defined in Sect. 3.1). The terms of the first set can be com-
puted from the plaintexts given key bits 50–33 (i.e., the entire subkeys of the MA layer
of round 2 and the entire round 3, and the subkeys Z4

1,Z4
3,Z4

5). The terms of the sec-
ond set can be computed from the ciphertexts given key bits 125–99 (i.e., the entire

Input: 17 “plaintext”/“ciphertext” pairs (P1,C1), (P2,C2), . . . , (P17,C17).
Divide the 17 plaintexts into 16 pairs: (P1,P2), (P1,P3), . . . , (P1,P17) (with their
corresponding ciphertexts).
for any key guess of key bits 0–33, 50–99, 125–127 do

Initialize an empty hash table H .
for any guess of key bits 34–49 do

For each of the 16 pairs (C1,Ci) compute bi � LSB(C1
2 ⊕ C1

3 ⊕ Ci
2 ⊕ Ci

3 ⊕
�s5 ⊕ �s6 ⊕ �s7), and store in H the value (b2, b3, . . . , b17,K[34–49]).

end for
for any guess of key bits 100–124 do

For each of the 16 pairs (P1,Pj ) compute b′
j � LSB(P 1

2 ⊕ P 1
3 ⊕ P

j

2 ⊕ P
j

3 ⊕
�s2 ⊕ �s3 ⊕ �s4), and check whether (b′

2, b
′
3, . . . , b

′
17) is in H .

If so, perform trial encryption under the key bits 0–33, 50–99, 125–127, the
current guess of key bits 100–124, and the guess of bits 34–49 suggested in
the corresponding entry of H .

end for
end for

Fig. 3. The algorithm of our attack on 6-round IDEA (starting after the KA layer of round 2).
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subkeys of the KA layer of round 8 and the entire round 7, in addition to the subkeys
Z6

1,Z6
2,Z5

5). Hence, we have |Kt | = 112, |Kb| = 103, |Kc| = 87 (since Kt and Kb share
key bits 125–33 and 50–99), and |V | = 1 (since Eq. (7) considers only the LSB of the
word).

Thus, using the formulas given in Sect. 3.1, the data complexity of the attack is
(min(|Kt |, |Kb|)−|Kc|)/|V | = 16 plaintext pairs (which can be obtained from 17 plain-
texts), the memory complexity is 2min(|Kt |,|Kb|)−|Kc| = 216 32-bit blocks (which are
equivalent to 215 64-bit blocks), and the time complexity is 2max(|Kt |,|Kb|) = 2112 partial
encryptions of 17 plaintexts, which are roughly equivalent to 2115 encryptions.

4.2. A Time-Memory-Data Tradeoff

In this section we show that the time and data complexities of the attack can be slightly
reduced to less than 2112 encryptions and 16 known plaintexts, at the expense of in-
creasing the memory complexity to 225 64-bit blocks. The tradeoff may seem to be
unattractive, but in fact, it reduces the largest complexity (time) while keeping a smaller
complexity (memory) completely practical.

The most time-consuming part of the basic attack is computing the terms �s3 and
�s4 for 16 plaintexts,2 which requires the knowledge of the 112 key bits 50–33. We
observe that bits 25–33 are required only for the subkey Z4

5 , which is used only in the
last multiplication operation in the computation of �s4. Hence, at a first glance it seems
that the adversary can guess the 103 key bits 50–24 and perform all operations except
for the last multiplication, and then guess the remaining 9 key bits and perform a single
multiplication operation for the 16 plaintexts. However, this is impossible since key
bits 25–33 are also part of Kb , and hence, their value should be guessed and fixed in
advance, before the beginning of the MitM phase.

This technical problem can be solved at the expense of increasing the memory com-
plexity. The adversary simply ignores the fact that bits 25–33 are shared by Kt and Kb ,
and treats them as independent parts of Kt and Kb . As a result, the number of shared
key bits is reduced to 78, and thus the memory complexity is increased to 225 40-bit
blocks.3 On the other hand, this allows the adversary to reduce the time complexity
of the computation of �s3 and �s4, since it is now possible to postpone the guess of
bits 25–33 until the last multiplication operation, as described above. As a result, this
phase of the attack requires 2112 · 16 = 2116 modular multiplications. Since each en-
cryption with 6-round IDEA contains 24 modular multiplications (in addition to other
operations), the time required is less than 2111.4 6-round encryptions.4

2 Note that the number of plaintexts is reduced to 16, which means that only 15 pairs are used in the MitM

phase of the attack. As a result, in the second phase of the attack we have to check 2113 key guesses (instead
of 2112 in the basic attack). We show below how this step can be performed efficiently, so that its complexity
will be lower than that of the MitM phase.

3 Note that the size of an entry in the table is 40 bits: 15 bits for the value of the evaluated keyless BD-
relation in the 15 pairs, and 25 bits for the value of key bits 25–49.

4 In order to evaluate more precisely the time complexity of the attack (and of the other attacks presented
in this paper), one has to determine the ratio between the complexities of the three types of operations used
in IDEA (i.e., XORs, modular additions, and modular multiplications). As this relation varies very much for
different platforms, and the precise complexity is of little significance in this case, we compute the complexity
according to the simplest measure that assumes that additions and XORs are negligible compared to modular
multiplications.
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After reducing the time complexity of the MitM phase, the second phase of the
attack (i.e., discarding the 2113 remaining subkey candidates), becomes the most time-
consuming phase of the attack. However, this part can also be performed more effi-
ciently, as follows: at the phase of generating the hash table, the adversary also com-
putes the entire value p5 = X6

1 ⊕ X6
2 for one of the plaintext/ciphertext pairs and stores

it in the hash table. Then, for a remaining subkey guess, the adversary only com-
putes the value p5 for that plaintext/ciphertext pair from the plaintext side, and checks
whether it matches the value in the corresponding entry of the hash table. As this is a
16-bit filtering, only 297 key candidates remain after this stage, and they can be easily
checked by trial encryption. Since during the computation of �s3 and �s4, the adver-
sary already performs full encryption through round 3 and partial encryption through
round 4, obtaining the value of p5 requires only three modular multiplications, which
are roughly equivalent to 1/8 encryption. Thus, the time complexity of this phase is
(1/8) · 2113 = 2110 encryptions.

Therefore, the total time complexity of the attack is 2111.4 +2110 = 2111.9 encryptions.
The memory complexity is increased by a small factor (due to the need to store the p5

values) to 225 56-bit blocks, which are less than 225 64-bit blocks.

4.3. Other Attacks on 6-Round IDEA

For the sake of completeness, we consider in this section several other attacks on
6-round IDEA, which represent different time/memory/data tradeoffs, or target different
consecutive sets of rounds.

4.3.1. An Attack with Only Two Known Plaintexts

A variant of the attack described above can be used to attack the same 6-round variant
of IDEA with only two known plaintexts and time complexity of 2123.4 encryptions.

First, the adversary constructs the tables and performs the MitM phase of the basic
attack described above. Since the adversary has only two plaintexts in his disposition,
she can check the validity of the keyless Biryukov–Demirci relation only once, and thus,
2127 key suggestions remain after this stage.

As described in the previous section, most of these suggestions can be discarded effi-
ciently by storing in the table also the p5 value in one of the encryptions and computing
it from the plaintext side for each subkey suggestion. In order to make this step even
more efficient, the adversary can make a small change in the MitM phase of the attack:
In addition to computing �s3 and �s4, she computes the intermediate values until the
multiplication with the subkey Z4

6 in the MA layer of round 4. Given these intermediate
values, p5 can be computed with only 2 modular multiplications, 2 modular additions,
and 2 XORs, which are less than 1/12 of a 6-round encryption.

The time complexity of the attack is dominated by the second phase (i.e., discarding
the subkey suggestions), whose complexity is 2127 · (1/12) = 2123.4 encryptions.

We note that a similar attack can be applied to any number 2 ≤ k ≤ 16 of plaintexts,
with time complexity of 2107.4 · k + 2125.4−k encryptions.

4.3.2. Attacks on Other Reduced-Round Variants of IDEA

Our analysis indicates that no other 6-round variant of IDEA (with a shifted starting
position) can be attacked using our technique.
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Two specific cases of interest are reduced-round variants in which the targeted rounds
are either the first or the last rounds of IDEA. In these cases, we obtained the following
results.

If the reduced-round variant must end at the KA layer of round 9, then 5.5 rounds can
be attacked, with data complexity of 10 known plaintexts, memory complexity of 224

64-bit blocks, and time complexity of 2119 encryptions.
If the reduced-round variant must start at the beginning of round 1 (as considered

in [21,28]), then 5 rounds can be attacked, with data complexity of 10 known plaintexts,
memory complexity of 224 64-bit blocks, and time complexity of 2119 encryptions.

For the sake of comparison, the best previous attack on the same variant which was
presented in [28] requires either 217 chosen plaintexts and 2125.5 encryptions, or 264

known plaintexts and 2115.5 encryptions. The attack of Khovratovich et al. [21], which
was obtained independently after the first version of this paper was submitted, requires
225 chosen plaintexts, and either 216 memory and 2110 encryptions or 2110 memory and
2112 memory accesses.

In addition, [21] presents an attack on 6-round IDEA which targets the first six
rounds, with data complexity of 241 chosen plaintexts, time complexity of 2118.9 encryp-
tions and memory complexity of 212. While these complexities are higher than those of
our attack on 6-round IDEA presented above, this attack targets a set of consecutive
rounds which cannot be attacked using our technique.

5. Splice-and-Cut Biryukov–Demirci Attacks on up to 7.5-Round IDEA

In this section, we show that by using the splice-and-cut [1] variant of the meet-in-the-
middle technique, we can increase the number of rounds the MitM BD attack can target
from 6 to 7.5, without affecting the time complexity of the attack.

In Sect. 5.1 we present the basic attack procedure, which can break the first 7.5 rounds
of IDEA with time complexity of 2112 encryptions, but requires the entire codebook. In
the following sections, we show how the data complexity can be reduced significantly
by allowing the fixed value of the intermediate state I to vary as function of the bits of
Kc which are guessed at the beginning of the attack. These sections consider separately
variants of 6.5, 7, and 7.5 rounds of IDEA, where the 6.5-round variant starts at the
beginning of round 2, the 7-round variant starts after the KA layer of round 1, and
the 7.5-round variant consists of the first 7.5 rounds of IDEA. The complexities of the
attacks are presented in Table 1.

A reader who is mainly interested in the attack’s idea and is less concerned with
the details, can concentrate on Sect. 5.1 and the beginning of Sect. 5.2, and skip the
remaining parts of this section (which are similar in nature but more technical).

5.1. The Basic Attack on 7.5-Round IDEA

Consider a reduced-round variant which consists of the first 7.5 rounds of IDEA. We
want to show that the basic attack on 6-round IDEA presented in Sect. 4.1 can be ex-
tended to this variant, without increasing the time complexity.

Recall that in our 6-round attack, Kt consists of all the key except for bits 34–49, and
Kb consists of all the key except for bits 100–124.
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Fig. 4. The 7.5-round splice-and-cut location.

The basic observation behind the 7.5-round attack is that all the subkeys used in
round 1 are included in Kb , and the four subkeys used in the KA layer of round 2 consist
of Z2

1,Z2
2 which are included in Kt and Z2

3,Z2
4 which are included in Kb . This allows

us to perform a Splice-and-Cut BD attack, where the intermediate value I is located at
the KA layer of round 2 in a ladder-type fashion: In the first two words, I represents
the value before the subkey addition/multiplication, while in the last two words I repre-
sents the value after the subkey addition/multiplication. That is, I = (X2

1,X
2
2, Y

2
3 , Y 2

4 ).
The location of I is presented in Fig. 4. We note that a similar ladder-type technique
was used in another context by Biryukov and Khovratovich [7], under the name ladder
switch.

In our case, Eq. (6) can be rewritten as

LSB
(
�s2 ⊕ �s3 ⊕ �s4)

= LSB
(
P 1

2 ⊕ P 1
3 ⊕ P 2

2 ⊕ P 2
3 ⊕ C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3 ⊕ �s5 ⊕ �s6 ⊕ �s7 ⊕ �s1).

(8)

Given the intermediate value in the state I , the left-hand-side of Eq. (8) can be com-
puted using only the subkeys included in Kt . On the other hand, given the value in the
state I and the subkey Kb , the adversary can partially decrypt the intermediate value
at I through the first 1.5 rounds to obtain the plaintext. Assuming that the entire code-
book is available, she can obtain the corresponding ciphertext, and then partially decrypt
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Input: The entire code book.
Determine 17 values Ii = (X2i

1 ,X2i
2 , Y 2i

3 , Y 2i
4 ) as “plaintext” values.

Divide the 17 “plaintexts” into 16 pairs: (I1, I2), (I1, I3), . . . , (I1, I17)

for any key guess of key bits 0–33, 50–99, 125–127 do
Initialize an empty hash table H .
for any guess of key bits 34–49 do

Partially decrypt all Ii to obtain the corresponding plaintext Pi . Deduce from
the given data the corresponding ciphertext Ci .
For each pair (C1,Ci) compute bi = LSB(P 1

2 ⊕ P 1
3 ⊕ P

j

2 ⊕ P
j

3 ⊕ C1
2 ⊕

C1
3 ⊕ C

j

2 ⊕ C
j

3 ⊕ �s5 ⊕ �s6 ⊕ �s7 ⊕ �s1) and store in H the value
(b2, b3, . . . , b17,K[34–49]).

end for
for any guess of key bits 100–124 do

For each of the 16 pairs (I1, Ij ) compute b′
j � LSB(�s2 ⊕ �s3 ⊕ �s4), and

check whether (b′
2, b

′
3, . . . , b

′
17) is in H .

If so, perform trial encryption under the key bits 0–33, 50–99, 125–127, the
current guess of key bits 100–124, and the guess of bits 34–49 suggested in
the corresponding entry of H .

end for
end for

Fig. 5. The algorithm of the basic splice-and-cut attack on 7.5-round IDEA.

through rounds 8,7,6,5 to compute the right-hand-side of Eq. (8). The attack procedure
is presented as a pseudo-code in Fig. 5.

In order to compute the complexity of the attack, we have to find the values
|Kt |, |Kb|, |Kc|, |V |. As in the basic 6-round attack in Sect. 4.1, we have |Kt | = 112,
|Kb| = 103, |Kc| = 87, and |V | = 1. Thus, the attack requires (min(|Kt |, |Kb|) −
|Kc|)/|V | = 16 plaintext pairs (which can be obtained from 17 fixed intermediate val-
ues), the memory complexity is 2min(|Kt |,|Kb|)−|Kc| = 216 32-bit blocks (which are equiv-
alent to 215 64-bit blocks), and the time complexity is 2max(|Kt |,|Kb|) = 2112 partial en-
cryptions of 17 plaintexts, which are roughly equivalent to 2115 encryptions. The time-
memory tradeoff presented in Sect. 4.2 works without change as well, allowing us to
reduce the time complexity to less than 2112 encryptions.

The crucial difference between our attack and the 6-round attack is in the data com-
plexity. In the basic form described above, the 7.5-round attack requires the entire code-
book, which is used to imitate the oracle that maps plaintexts to the corresponding
ciphertexts (see Sect. 3.2). In the following sections, we show that the data complexity
can be reduced significantly with only a small effect on the time and memory complex-
ities, using the ability to vary the value at the intermediate state I , depending on the key
bits in Kc guessed at the beginning of the attack.

5.2. Reducing the Data Complexity for 6.5-Round IDEA
Consider a 6.5-round variant of IDEA, which starts at the beginning of round 2 and
ends after the KA layer of round 8. The splice-and-cut attack presented above applies,
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of course, to this variant as well. We would like to show that the value of the intermediate
state I can be chosen such that only 223 specific plaintext values are encountered during
the computation of the right-hand-side of Eq. (8). In such a case, the knowledge of
the 223 ciphertexts corresponding to these specific plaintexts is sufficient to imitate the
encryption oracle, and hence, the data complexity of the attack is reduced to 223 chosen
plaintexts.

First, note that in our variant, the first two words of I (i.e., X2
1 and X2

2) are simply the
first two words of the plaintext. Hence, by fixing the value of these two words to zero
in all values of I considered in the attack, we assure that only plaintexts whose first two
words are equal to zero are encountered during the attack.

Second, note that the 9 most significant bits (MSBs) of the addition subkey Z2
3 (i.e.,

bits 25–33) are included in Kc in the basic 6-round attack. This allows us to choose the
value of the third word of I (i.e., Y 2

3 ) in a more sophisticated way. Recall that the inner
loop of the basic 6-round attack is repeated for each possible value of the 87 bits of Kc

(see Fig. 5).
We suggest to choose a different value of Y 2

3 for each value of bits 25–33, as follows.
Denote the value of bits 25–33 by v ∈ {0,1}9. In the application of the inner loop which
corresponds to the guess v, we choose the intermediate value Y 2

3 to be v||1111111,
where || denotes concatenation of bit strings. For this choice, the 27 corresponding
values of P3 (obtained for the 27 possible values of the 7 LSBs of Z2

3) are the 27 values
of the form 000000000||w, where w takes all possible values in {0,1}7. This assures
that all the plaintexts encountered during the attack have zeros as the 9 MSBs of P3.

Therefore, by choosing the values of X2
1,X

2
2, and Y 2

3 as a function of the bits in Kc

as described, we assure that all plaintexts encountered in the attack have zeros at their
41 MSBs. This reduces the data complexity to 223 chosen plaintexts.

The price of the significant data reduction is a slightly increased time complexity
(from 2112 to 2113), as the time-memory tradeoff described in Sect. 4.2 is not compatible
with the sophisticated choice of Y 2

3 suggested above. Indeed, in the attack presented in
Sect. 4.2, key bits 25–33 are no longer part of the external loop, and thus, Y 2

3 cannot be
chosen according to their value.

To minimize the computation overhead, we note that the adversary can still perform
part of the computation of �s3 and �s4 before guessing all the 25 key bits 100–124.
Specifically, she can compute �s3 and perform the multiplication with Z3

4 before guess-
ing subkey bits 105–120, and only then guess these key bits and perform the rest of
the computation of �s4. As a result, this phase of the attack is roughly equivalent to
2112 · 16 · 3 = 2117.6 modular multiplications. Since each encryption with 6.5-round
IDEA contains 26 modular multiplications, this is roughly equivalent to 2112.9 6.5-round
encryptions. The time complexity of the rest of the attack (which is equal to the com-
plexity of the corresponding steps of the 6-round attack) is negligible, and hence, the
overall time complexity of the attack is about 2113 encryptions.

The data complexity can be further reduced by another factor of 213 to only 210

chosen plaintexts, at the expense of increasing the time complexity by a factor of 29.
Note that out of the 16 bits of the multiplication subkey Z2

4 , 7 bits are included in Kc.
If we guess the 9 remaining bits (i.e., bits 41–49) at the beginning of the attack, we can
choose the value Y 2

4 in accordance with the value of Z2
4 , such that the corresponding

value of P4 is fixed. Since the attack requires 8 intermediate values for performing
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the match in the middle (such that the remaining part of the attack has a smaller time
complexity), the data complexity is reduced to 210 chosen plaintexts (27 possible values
of P3, and 8 possible values of P4).

We note that various other tradeoffs between the data and the time complexities of
the attack are possible as well.

5.3. Reducing the Data Complexity for 7-Round IDEA

In this section we show that for 7-round IDEA, the data complexity can be reduced to
248 chosen plaintexts without affecting the time complexity of 2112, and can be further
reduced to 238 chosen plaintexts, at the expense of increasing the time complexity to
2123.

The 7-round variant we target starts after the KA layer of round 1 and ends after the
KA layer of round 8. In particular, the plaintexts in this variant correspond to the state
(Y 1

1 , Y 1
2 , Y 1

3 , Y 1
4 ). Obviously, the basic 7.5-round attack applies to this variant as well.

To obtain the first data complexity reduction, we observe that by the structure of the
MA layer in IDEA, we have

X1
2 ⊕ X2

2 = Y 1
1 ⊕ Y 1

3 = P1 ⊕ P3.

Hence, we can choose X2
1 = X2

2 in all values of I considered in the attack, and this
assures that all encountered plaintexts satisfy P1 = P3. This reduces the data complexity
to 248 chosen plaintexts.

The data complexity can be further reduced from 248 to 239 chosen plaintexts, at the
expense of increasing the time complexity by factor of about 210. As described at the
end of Sect. 5.2, if we guess the value of key bits 41–49 at the beginning of the attack,
we can choose the value Y 2

4 according to the value of the subkey Z2
4 , such that X2

4
always assumes the same prescribed value. If we choose them such that X2

4 = 0, then
P2 ⊕ P4 = X2

3 holds throughout the attack. This allows us to choose the value Y 2
3 in

such a way that the 9 MSBs of P2 ⊕ P4 are equal to zero (like in the 6.5-round attack).
This reduces the data complexity to 239 chosen plaintexts (since the 9 MSBs of

P2 ⊕ P4 and all 16 bits of P1 ⊕ P3 are equal to zero in all encountered plaintexts). On
the other hand, the time complexity is increased by a factor of 210, due to the guess of
bits 41–49, and since this improvement is not compatible with the time-memory tradeoff
presented in Sect. 4.2.

The data complexity can be reduced by another factor of 2, at the expense of increas-
ing the time complexity by the same factor. Here we use the fact that by the BD-relation,

LSB
(
X2

2 ⊕ X2
3

) = LSB(P2 ⊕ P3) ⊕ LSB
(
s1).

Note that since p1 = X2
1 ⊕ X2

2 and the subkey Z1
5 is included in Kc , we can choose the

values of X2
1 and X2

2 according to the value of Z1
5 in such a way that s1 = p1 � Z1

5 is
fixed in all encountered encryptions. Furthermore, if we guess the LSB of the subkey Z2

3
(i.e., bit 40) at the beginning of the attack, we can choose the values X2

2 and Y 2
3 such

that LSB(X2
2 ⊕X2

3) is fixed in all encryptions encountered in the attack. By the equation
above, this means that we can choose X1

2,X
2
2, and Y 2

3 in such a way that LSB(P2 ⊕ P3)

is fixed for all plaintexts encountered in the attack. This reduces the data complexity by
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an additional factor of 2, at the expense of increasing the time complexity by the same
factor (due to the external guess of bit 40).

The two reductions of the data complexity can be combined, resulting in data com-
plexity of 238 chosen plaintexts, and time complexity of about 2123 encryptions.

5.4. Reducing the Data Complexity for 7.5-Round IDEA

In the case of the first 7.5 rounds of IDEA, the data complexity can be reduced to 263

chosen plaintexts, using the second improvement of the 7-round attack described above.
We use the equation

LSB
(
X2

2 ⊕ X2
3

) = LSB(P2 ⊕ P3) ⊕ LSB
(
Z1

2 ⊕ Z1
3

) ⊕ LSB
(
s1).

As described above, we can choose X1
2,X

2
2, and Y 2

3 in such a way that LSB(X2
2 ⊕

X2
3) and LSB(s1) are fixed for all encryptions encountered in the attack. If we guess

LSB(Z1
2 ⊕ Z1

3) at the beginning of the attack, then we can adjust the choice of X1
2,X

2
2,

and Y 2
3 such that LSB(X2

2 ⊕ X2
3) ⊕ LSB(Z1

2 ⊕ Z1
3) ⊕ LSB(s1) will be fixed throughout

the attack. By the equation, this implies that LSB(P2 ⊕P3) will be fixed for all plaintexts
encountered in the attack.

This reduces the data complexity to 263 chosen plaintexts, while increasing the time
complexity to slightly less than 2114 encryptions.

6. Reducing the Time Complexity of Exhaustive Key Search on the Full IDEA

In this section we show that the techniques presented in Sect. 5 can be used to marginally
reduce the time complexity of exhaustive key search on the full 8.5-round IDEA to
2126.8 encryptions, at the expense of slightly increasing the data complexity to 16 chosen
plaintexts. After the first version of this paper was submitted, Khovratovich et al. [21]
obtained (independently) another attack on the full IDEA, which reduces the complexity
of exhaustive search to 2126.0 encryptions, but at the expense of a much higher data
complexity of 252 chosen plaintexts.

We present our attack in Sect. 6.1, and in Sect. 6.2 we compare it with generic meth-
ods of optimized exhaustive search, and with the results of [21].

6.1. Splice-and-Cut Biryukov–Demirci Attack on the Full IDEA

The Splice-and-Cut BD attack presented in Sect. 5 cannot be extended directly to the
full 8.5-round IDEA, since for any division of the terms of Eq. (6) into two sets, the
computation of each set requires the knowledge of the entire secret key. What we can
do is to reduce the complexity of exhaustive key search by computing most of the terms
before guessing the entire key, such that only a few operations have to be performed for
every guess of the full key.

The attack is similar to the basic Splice-and-Cut BD attack presented in Sect. 5.1.
First, we treat the full IDEA in a cyclical manner, and choose the “starting point”—
the intermediate value I . In order to minimize the data complexity, we choose I to
be as close to the plaintext as possible. The choice, which is I = (X1

1, Y
1
2 ,X1

3,X
1
4) is

demonstrated in Fig. 6.
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Fig. 6. The 8.5-round splice-and-cut location.

Second, we divide the terms of the BD-relation into two sets. Note that we use the
original variant of the BD-relation and not the keyless one, since the keyless relation
requires examining two (plaintext, ciphertext) pairs, which would double the encryption
time, thus eliminating most of the time saving. The representation of the BD-relation
we use is the following:

LSB
(
Z1

2 ⊕ Z1
3 ⊕ Z2

2 ⊕ Z2
3 ⊕ Z3

2 ⊕ Z3
3 ⊕ Z4

2 ⊕ Z4
3 ⊕ Z5

2 ⊕ Z5
3 ⊕ Z6

2 ⊕ Z6
3 ⊕ Z7

2

⊕ Z7
3 ⊕ Z8

2 ⊕ Z8
3 ⊕ Z9

2 ⊕ Z9
3 ⊕ s1 ⊕ s2 ⊕ s3)

= LSB
(
P2 ⊕ P3 ⊕ C2 ⊕ C3 ⊕ s4 ⊕ s5 ⊕ s6 ⊕ s7 ⊕ s8). (9)

We observe that the left-hand-side of the equation can be computed entirely using
the knowledge of the value at state I and bits 0–15 and 25–127 of the secret key. On
the other hand, all terms in the right-hand-side, except for s4, s5, s6, can be computed
using the value at state I , bits 0–12 and 16–127 of the key, and the encryption oracle
(which will be later replaced by the appropriate chosen plaintext queries). Note that the
two sets of bits have key bits 0–12 and 25–127 in common.

Now we are ready to present the attack algorithm.

Attack algorithm:

1. Choose an arbitrary value of I = (X1
1, Y

1
2 ,X1

3,X
1
4).

2. For each value of bits 0–12 and 25–127 of the key, perform the following:
(a) For each value of bits 13–15 of the key, perform the following:

(i) Compute the value

LSB
(
Z1

2 ⊕ Z1
3 ⊕ Z2

2 ⊕ Z2
3 ⊕ Z3

2 ⊕ Z3
3 ⊕ Z4

2 ⊕ Z4
3 ⊕ Z5

2 ⊕ Z5
3 ⊕ Z6

2

⊕ Z6
3 ⊕ Z7

2 ⊕ Z7
3 ⊕ Z8

2 ⊕ Z8
3 ⊕ Z9

2

)
. (10)

(ii) Partially encrypt I through rounds 1,2,3, and compute the values
s1, s2, s3 (which allow to compute the left-hand-side of Eq. (9).
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(iii) Store the value of the LHS of Eq. (9), along with the intermediate
value p3, in a table entry corresponding to the value of bits 13–15.

(b) For each value of bits 16–24 of the key, perform the following:
(i) Decrypt I through the key addition with Z1

2 to obtain the corresponding
plaintext. Consider the corresponding ciphertext,5 and partially decrypt
it6 through rounds 9,8,7 to obtain the values s7, s8.

(ii) For each value of bits 13–15 of the key, continue the partial decryption
to compute the values s4, s5, s6 (which allow to compute the right-hand-
side of Eq. (9)).

(iii) Check, using the corresponding entry in the table, whether Eq. (9) holds.
If not, discard the key guess.

(iv) For the remaining keys, continue the partial decryption through rounds 5
and 4 and check whether the value of p3 = X4

1 ⊕ X4
2 matches the corre-

sponding value in the table. As this is a 16-bit filtering, most of the key
guesses are discarded at this stage.

(v) Check the remaining key guesses by a trial encryption.

Reducing the Data Complexity As we show below, this algorithm allows to speed-up
exhaustive search by a factor of about 2.5. However, in a naive implementation, it in-
creases the data complexity to 216 chosen plaintexts, since for different values of key
bits 16–31, the intermediate value I leads (by partial decryption) to 216 different plain-
texts. The data complexity can be reduced by varying the value at the state I according
to the value of (part of the) bits 16–31.

Specifically, we can reduce the complexity to 29 chosen plaintexts by setting the
7 LSBs of Y 1

2 to be equal to bits 25–31 of the key (which are guessed in the external loop
of the attack), which assures that the 7 LSBs of P2 are zero in all encountered plaintexts.

The complexity can be reduced even further by adding part of bits 16–24 to the ex-
ternal loop of the attack. For example, adding bits 20–24 to the external loop increases
the time complexity of the attack by less than 5 %, while reducing the data complexity
to only 16 chosen plaintexts. The data complexity can be reduced even further, but at
the expense of increasing the time complexity. We compute below the time complexity
for the variant of the attack that requires 16 chosen plaintexts.

The Time Complexity of the Attack The most time-consuming step of the attack is
Step 2(b)(ii), consisting of 11 multiplications, 10 additions, 20 XORs, and 1 table
lookup, is performed for all the keys. After adding the effect of the other steps, and
using the assumption that additions and XORs are negligible (compared to a modular
multiplication), we conclude that the average number of modular multiplications for
each key guess is 14.75. Since the full 8.5-round IDEA contains 34 multiplications, the
time complexity of the attack is 14.75

34 · 2128 = 2126.8 encryptions.

5 As shown below, the data complexity of the attack is only 16 chosen plaintexts. Hence, the plain-
text/ciphertext pairs can be stored in a table of size 16, and the corresponding ciphertext can be retrieved
by a single table lookup.

6 Note that this operation can be performed more efficiently using the fact that key bits 125–12 are not

used in the decryption direction until the multiplication with the subkey Z7
5 . This allows us to perform all the

operations in this step except for the last multiplication only once for each value of bits 125–12, which makes
the complexity of all these operations negligible (compared to the other parts of the attack).
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6.1.1. An attack on 7.5-Round IDEA

We note that a similar attack can be applied to 7.5-round IDEA, starting at the plaintext.
In this case, I is chosen as in the attack on the full IDEA, and the adversary uses the fact
that key bits 100–124 are not used between the plaintext and I , in rounds 8,7, and in part
of round 6. The data complexity of the attack is 16 chosen plaintexts, and its time com-
plexity is 7.25 multiplications on average for each key, which are equivalent to 2125.9

7.5-round encryptions. This attack has a higher time complexity than the 7.5-round at-
tack presented in Sect. 5 (2125.9 vs. 2114), but we mention it due to its greatly reduced
data complexity (16 vs. 263).

6.2. Comparison with Optimized Exhaustive Search and with the Results of [21]

When comparing our attack to optimized exhaustive search, we take into considerations
well-known optimizations such as those implemented in the EFF DES cracking ma-
chine [16] or in [10]. For sake of comparison, we describe the case of an attack which
divides the key into two (not necessarily disjoint) sets, and note that in many attacks
these sets may contain the entire key.

The basic idea behind these optimizations is to use a meet-in-the-middle approach,
deploying the following observation: Assume that there exist subsets Kt,Kb of the se-
cret key, such that the first few operations of the encryption process require only the
knowledge of Kt , and the last few operations require only the knowledge of Kb . Let
Kc = Kt ∩ Kb denote the set of common key bits. Then, exhaustive key search can be
trivially enhanced by the following algorithm:

For each value of Kc , perform the following:

1. For each value of Kt \ Kc, perform the first few operations of the encryption
process (which require only the knowledge of Kt ) for the given plaintext. Create7

a table that contains the intermediate values corresponding to the values of the bits
in Kt \ Kc .

2. For each value of Kb \ Kc , perform the last few operations of the encryption pro-
cess (which require only the knowledge of Kb) in the decryption direction for the
given ciphertext. Then, guess the remaining bits of K , compute the rest of the op-
erations until the intermediate values, and check the match with the values stored
in the pre-computed table.

In the case of IDEA, most operations in the first two rounds can be performed without
the knowledge of bits 112-127 of the key. In particular, the value p2 = X3

1 ⊕ X3
2 can be

computed without the knowledge of these 16 key bits. In the decryption direction, all
operations of rounds 8,9 and the multiplication with Z7

5 can be performed without the
knowledge of bits 13–21 of the key.

Hence, using the above algorithm with Kt = {0–111}, Kb = {0–12,22–127} and
matching at the value V = p3, the number of modular multiplications performed for
each key guess can be reduced to 18 out of 34 total multiplications in IDEA. Therefore,
we estimate the time complexity of optimized exhaustive search as 18

34 · 2128 = 2127.1

7 We note that when Kt or Kb compose the entire key, there is no need in a table, as the gain comes from
the partial evaluation.
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encryptions. The data complexity of optimized exhaustive key search is, of course,
2 known plaintexts.

For comparison, our attack presented in Sect. 6.1 allows reducing the time complexity
to 2126.8 encryptions, at the expense of increasing the data complexity to 16 chosen
plaintexts. The attack presented in [21] allows further reducing the time complexity to
2126.0 encryptions, at the expense of significantly increasing the data complexity to 252

chosen plaintexts.
The main difference between our attack and the attack of [21] is that the attack of [21]

places the “starting point” of the attack at I = (X2
1,X

2
2, Y

2
3 , Y 2

4 ), like in our 7.5-round
attack. On the one hand, this allows to slightly reduce the time complexity since more
operations can be performed before the full key must be guessed. On the other hand,
since the “starting point” is farther from the plaintext, the data complexity is increased
significantly.

6.2.1. The Case of 7.5-Round IDEA

In the case of 7.5-round IDEA (where the targeted rounds are the first 7.5 rounds), the
time complexity of optimized exhaustive search is slightly lower than in the case of
the full IDEA, since the last 2.5 rounds of encryption can be computed without the
knowledge of key bits 100–115. Applying the algorithm above with Kt = {0–111},
Kb = {0–99,116–127} and V = p2 leads to 11 multiplications on average for each
subkey guess. Since the total number of multiplications in 7.5-round IDEA is 28, the
time complexity of optimized exhaustive search is 11

28 · 2128 = 2126.7 encryptions.
In [21], two attacks on this variant were presented. The first allows to slightly reduce

the time complexity to 2126.5 encryptions, at the expense of increasing the data complex-
ity to 218 chosen plaintexts. The second allows to further reduce the time complexity to
2123.9 encryptions, but requires a larger amount of 252 chosen plaintexts.

For comparison, our attack presented in Sect. 6.1 has time complexity of 2125.9 en-
cryptions, and requires 16 chosen plaintexts. Hence, our attack is strictly better than the
first attack of [21], and is incomparable with the second attack of [21]. A comparison of
exhaustive search speedups on 7.5-round and 8.5-round IDEA is presented in Table 3.

Table 3. Comparison of exhaustive search speedups on 7.5-round and 8.5-round IDEA.

Rounds Attack type Complexity Source
Data Time

7.5 Opt. exhaustive search 2 KP 2126.7 Sect. 6.2
7.5 Biclique BD-relation 218 CP 2126.5 [21]
7.5 Biclique BD-relation 252 CP 2123.9 [21]
7.5 SaC MitM BD-relation 16 CP 2125.9 Sect. 6.1

8.5 Opt. exhaustive search 2 KP 2127.1 Sect. 6.2
8.5 Biclique BD-relation 252 CP 2126.0 [21]
8.5 SaC MitM BD-relation 16 CP 2126.8 Sect. 6.1

KP/CP—Known/Chosen Plaintext. Time complexity is measured in encryptions.
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7. Zero-in-the-Middle Biryukov–Demirci Attack on Reduced-Round Variants of
IDEA

The keyless Biryukov–Demirci relation was used to attack reduced-round variants of
IDEA in several previous papers [4,5,28]. All these papers used a technique that can
be called “Zero-in-the-Middle” (ZitM BD attack), in which the adversary uses proper
choice of plaintext/ciphertext pairs, in conjunction with additional differential-type
techniques, in order to ensure that some terms of the BD-relation are canceled. While
all the attacks presented in [4,5,28] are inferior to the MitM BD attacks presented in the
previous sections, we show in this section that there are other scenarios in which the
ZitM BD technique is more efficient than the MitM BD technique.

The first such scenario is practical-time attacks. All the MitM attacks presented in the
previous sections have a completely non-practical-time complexity of beyond 2100 en-
cryptions. Moreover, as we argue in Sect. 8, the MitM technique is not expected to pro-
duce practical-time attacks on reduced-round variants of IDEA with at least 2 rounds.
In contrast, we show in Sect. 7.2 that the ZitM BD technique can be used to distinguish
2.5-round IDEA from a random permutation using only 218 data and time. This is the
first attack of practical complexity of a variant of IDEA with at least 2 rounds.

The second such scenario is related-key attacks. The MitM BD attacks presented in
the previous sections cannot take advantage of the ability to ask for encryptions under
related (but unknown) keys. On the other hand, we show in Sect. 7.3 that the ZitM
BD technique can use related-key differentials to attack a 7.5-round variant of IDEA
which starts at the first round, with data complexity of 225 chosen plaintexts and time
complexity of 2103.5 encryptions. This is the only attack on 7.5-round IDEA (in any
model) with a practical data complexity and a non-marginal time complexity.

We begin this section with briefly describing the previous ZitM BD attacks pre-
sented in [4,5,28], which are inferior to the MitM BD attacks presented in this paper.
This description spans Sect. 7.1. The new ZitM BD attacks on 2.5-round IDEA and on
7.5-round IDEA in the related-key model are presented in Sects. 7.2 and 7.3, respec-
tively.

7.1. Previous Zero-in-the-Middle Keyless Biryukov–Demirci Attacks

The Zero-in-the-Middle Biryukov–Demirci attack was used in several papers to attack
5-round, 5.5-round, and 6-round variants of IDEA:

1. Differential BD attack on 5 rounds: The first attack that exploited the keyless
BD-relation is [4]. In the attack, the reduced-round variant starts after the KA
layer of round 3 and ends after the KA layer of round 8, and a differential property
is used to cancel the term �s4 in the BD-relation. The data complexity of the
attack is 219 known plaintexts, and the time complexity is 2103 encryptions. In [5]
it was shown that the data complexity can be reduced to 16 known plaintexts, at
the expense of increasing the time complexity to 2114 encryptions, and a slightly
improved variant of the attack of [4] which uses only 218.5 known plaintexts was
presented.

2. Square BD attack on 5.5 and 6 rounds: The second attack that exploited the key-
less BD-relation in larger versions of IDEA appeared in [5]. In this attack, the
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reduced-round variant starts either after the KA layer of round 2 or at the begin-
ning of round 3 and ends after the KA layer of round 8, and a Square property
is used to cancel the terms �s3 and �s4 in the BD-relation. The data complex-
ity of the attack on 6-round IDEA is almost the entire codebook, and the time
complexity is 2126.8 encryptions.

3. Key-Dependent Differential BD attack on 5.5 and 6 rounds: The third attack that
exploited the keyless BD-relation is [28]. The attack targets the same variant as [5]
and uses a differential-type technique called key-dependent attack to cancel the
terms �s3 and �s4 in the BD-relation (instead of the Square technique used
in [5]). This allows to reduce the data and time complexities of the attack on
6-round IDEA to 249 chosen plaintexts and 2112.1 encryptions, respectively.

All these attacks are clearly inferior to the MitM BD attack on 6-round IDEA pre-
sented in Sect. 4, whose data complexity is just 16 known plaintexts, and whose time
complexity is less than 2112 encryptions.

7.2. A Zero-in-the-Middle Biryukov–Demirci Distinguishing Attack on 2.5-Round
IDEA

In this section we present an extremely efficient distinguishing attack on 2.5-round
IDEA, based on the Zero-in-the-Middle Biryukov–Demirci technique. The attack ap-
plies to any 2.5 consecutive rounds starting with the KA layer, and does not depend on
any property of the IDEA key schedule. The time complexity of the attack is 218, which
is significantly lower than the complexity of any previously published attack on IDEA
(including attacks on 2 and 2.5 rounds).

For 2.5 rounds of IDEA, Eq. (6) is reduced to

LSB
(
P 1

2 ⊕ P 1
3 ⊕ P 2

2 ⊕ P 2
3 ⊕ �s1 ⊕ �s2) = LSB

(
C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3

)
. (11)

Note that if for some round of IDEA, �pr = 0, then �sr = 0 as well. Hence, if the
plaintexts and the ciphertexts are chosen such that �p1 = �p2 = 0, then the terms �s1

and �s2 in Eq. (11) are canceled, and the equation reduces to a simpler form:

LSB
(
P 1

2 ⊕ P 1
3 ⊕ P 2

2 ⊕ P 2
3

) = LSB
(
C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3

)
, (12)

whose validity can be checked using only the plaintexts and the ciphertexts, indepen-
dently of the key.

In order to satisfy the relation �p1 = 0, we can consider pairs of chosen plaintexts
(P 1,P 2) such that �(X1

1,X
1
2,X

1
3,X

1
4) = (0, β,0, γ ) for arbitrary values of β and γ .

For such pairs, �Y 1
1 = �Y 1

3 = 0 (independent of the values of Z1
1,Z1

3), and hence,
�p1 = 0. We note that the same idea was used in [19].

Similarly, if we take only ciphertext pairs satisfying �(Y 3
1 , Y 3

2 , Y 3
3 , Y 3

4 )= (0,0, β ′, γ ′)
for arbitrary values of β ′ and γ ′, then �X3

1 = �X3
2 = 0, and thus, �p2 = 0.

Based on these observations, we can mount a simple distinguishing attack on
2.5-round IDEA, using the following algorithm:

1. Ask for the encryption of 218 plaintexts of the form (A,Z,B,W), where A and B

are fixed and Z and W assume arbitrary random values.
2. Insert the ciphertexts into a hash table sorted by the first two ciphertext words.
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3. For every pair of ciphertexts in the same bin of the hash table, check whether
Eq. (12) holds for the corresponding plaintext/ciphertext pair.

4. If there is a pair for which the equation does not hold, conclude that the cipher is
not 2.5-round IDEA. Otherwise, conclude that the cipher is 2.5-round IDEA.

Due to the choice of the structure, for every pair of plaintexts in the structure we have
�p1 = 0. Furthermore, for every pair of ciphertexts in the same bin of the hash table,
we also have �p2 = 0. Hence, for all the checked pairs, Eq. (12) must be satisfied.

The 218 plaintexts can be combined into about 235 possible pairs, and a fraction
of 2−32 of them is expected to have the required ciphertext difference of the form
(0,0, β ′, γ ′). Hence, the expected number of pairs analyzed in Step 3 is 8. If there is a
pair for which Eq. (12) fails, we know for sure that the cipher is not 2.5-round IDEA. On
the other hand, for a random permutation, the probability that the equation holds for all
the eight pairs is 1/256. Hence, the distinguisher succeeds with a very high probability.

Since the second and the third steps of the attack are implemented using a hash table,
the time complexity of the attack is dominated by the time complexity of the encryptions
in the first step of the attack. Hence, the data complexity of the attack is 218 chosen
plaintexts and the time complexity is 218 encryptions.

7.3. Related-Key Zero-in-the-Middle Biryukov–Demirci Attack on 7.5-Round IDEA

In this section we present a related-key attack on the first 7.5 rounds of IDEA based
on the Zero-in-the-Middle Biryukov–Demirci technique. In the attack, we use the dif-
ference between the keys to construct pairs of plaintexts for which the intermediate
values (when encrypted under the two different keys) are equal during 2.5 rounds.
In conjunction with an appropriate choice of the plaintext/ciphertext pairs, the terms
�s1,�s2,�s3, and �s4 in the keyless Biryukov–Demirci relation are canceled.

The Related-Key Differential Let K and K∗ be two keys that differ only in the two
bits 34 and 49. We observe that if for two plaintexts P and P ∗, encrypted under K

and K∗, respectively, the intermediate values of Y 2 (i.e., the values after the KA layer
of round 2) are equal, then the intermediate encryption values remain equal until the
MA layer of round 4. Indeed, bits 34 and 49 of the key are not used in the MA layer of
round 2, in the entire round 3, and in the KA layer of round 4. Furthermore, these key
bits are also not used in the subkey Z4

5 , and hence, the terms �s2,�s3, and �s4 in the
BD-relation are equal to zero.

Therefore, for such pairs, Eq. (6) (for the first 7.5 rounds of IDEA) is reduced to

LSB
(
P2 ⊕ P3 ⊕ P ∗

2 ⊕ P ∗
3 ⊕ �s1 ⊕ �s5 ⊕ �s6 ⊕ �s7)

= LSB
(
C2 ⊕ C3 ⊕ C∗

2 ⊕ C∗
3

)
. (13)

All terms of this equation can be computed given the plaintexts, the ciphertexts, and
103 key bits (specifically, bits 125–99 of the key). Hence, if the adversary can construct
25 pairs (P,P ∗) for which the intermediate Y 2 values are equal, the attack can be
completed within time complexity of about 2103 encryptions.

The Choice of the Plaintexts In order to obtain the required pairs (P,P ∗) efficiently,
we consider 28 pairs of structures (Si, S

∗
i ) of 216 chosen plaintexts each, to be encrypted

under the keys K and K∗, respectively. In both structures Si and S∗
i , the three first words
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are fixed to constants (Ai,Bi,Ci) and (A∗
i ,B

∗
i ,C∗

i ), respectively, and the fourth word
assumes all the 216 possible values. The values Ai,Bi,Ci,A

∗
i ,B

∗
i ,C∗

i are chosen such
that

Ai = A∗
i ; Bi ⊕ B∗

i = 0040x; Ci ⊕ C∗
i = 2000x.

Note that by the chosen key difference, there is no difference in the subkeys Z1
1 and Z1

2 ,
and the difference in the subkey Z1

3 is in the third-most significant bit (which is bit 34
of the secret key). Hence, the difference between the structures Si and S∗

i in the first
three words of the state Y 1 (i.e., after the KA layer of round 1) equals (0,0040x,0) with
probability 2−2.

In order to bypass the MA layer of round 1, we consider only pairs (Pi ∈ Si,P
∗
i ∈ S∗

i )

for which the difference in Y 1
4 is 0040x . For each pair of structures (Si, S

∗
i ) and for any

value of the subkey Z1
4 , the pair of structures contains 216 pairs (Pi,P

∗
i ) for which

this condition is satisfied. Therefore, the data contains 28 · 2−2 · 216 = 222 pairs with
difference (0,0040x,0,0040x) in the state Y 1.

Detection of the Right Pairs The right pairs, i.e., the pairs (Pi ∈ Si,P
∗
i ∈ S∗

i ) for which
�Y 2 = 0, are detected in a two-step procedure. First the adversary guesses the value of
bits 0–63 of the key, encrypts all plaintexts through the KA layer of round 1 (under
the corresponding keys), and chooses the 222 pairs for which the difference �Y 1 is
(0,0040x,0,0040x). The time complexity of this step is less than 225 · 264 = 289 en-
cryptions.

In the second step, the adversary guesses the value of bits 64–95 of the key, and for
each of the 222 remaining pairs, she checks whether �Y 2 = 0.

Note that for each of the 222 pairs, we have �X2 = (0,0,0040x,0040x). Since there
is no difference in the subkeys Z2

1 and Z2
2 , it is assured that �Y 2

1 = �Y 2
2 = 0, as re-

quired.8

In the third word, we have �X2
3 = 0040x , and there is key difference in the seventh

least significant bit (which is bit 34 of the secret key), and hence, �Y 2
3 = 0 holds with

probability 1/2. In the fourth word, since the operation is modular multiplication and
both the state difference and the subkey difference are non-zero, we make the random-
ness assumption that the values after the KA layer are equal with probability9 2−16.
Hence, the expected number of pairs satisfying �Y 2 = 0 is 222 · 2−1 · 2−16 = 32.

The time complexity of detecting these pairs is 264 · 232 · 222 = 2118 partial encryp-
tions, which are roughly equivalent to 2115 full encryptions.

Checking Whether Eq. (13) Holds After the right pairs are detected, the adversary
guesses 7 additional key bits (i.e., bits 96–99 and 125–127 of the key), and checks
whether Eq. (13) holds. As this is a 32-bit filtering, only 2103 · 2−32 = 271 key sug-
gestions are expected to remain, and these suggestions can be checked by guessing the
remaining 25 key bits and performing a trial encryption.

8 Note that it is important that this difference is fixed to zero independently of the subkeys Z2
1 and Z2

2 ,
since these two subkeys use bits 96–127 of the secret key, and 25 of these 32 bits are not included in the 103
key bits guessed in the attack (which are bits 125–99).

9 We have experimentally verified this claim, and we found that for all subkey pairs, this probability is

at least 2−16. Furthermore, our experiments revealed that for 31/32 of the subkey pairs, this probability is
actually 2−15. Thus, in most of the cases, the data complexity of the attack can be reduced by a factor of 2.
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Checking whether Eq. (13) holds requires partial decryption of the ciphertexts
through 2.5 rounds. (Note that there is no need to compute �s1, as for all the right
pairs, �p1 = 0, and thus, �s1 = 0). Hence, a naive application of this step requires
2103 · (32 · 2) · (2.5/8) = 2107.3 encryptions.

This step can be performed more efficiently by noting that half of the key guesses
are discarded after considering the first right pair, half of the remaining key guesses are
discarded after the second right pair, etc. Hence, instead of decrypting all the pairs at
once, the adversary can decrypt the first pair and check whether the equation holds, then
(if the key guess was not discarded) decrypt the second pair and check the equation for
it, etc. Using this improvement, the time complexity of this step is 2104 + 2103 + 2102 +
· · · ≈ 2105 partial decryptions, which are roughly equivalent to 2103.3 full encryptions.

However, the overall time complexity of the attack is dominated by the detection
of the right pairs, whose complexity is about 2115 encryptions. In the next paragraph
we present a more efficient algorithm that allows to detect the right pairs with time
complexity of less than 2100 encryptions, thus reducing the overall complexity of the
attack to about 2103.5 encryptions.

An Efficient Algorithm for Detecting the Right Pairs As shown above, the first step
in the detection of right pairs, which consists of guessing bits 0–63 of the key and
detecting 222 pairs with difference �Y 1 = (0,0040x,0,0040x), requires less than 289

encryptions. We thus concentrate on the second step that consists of guessing bits 64–95
of the key and checking, for each of the 222 pairs, whether �Y 2 = 0.

Consider the modular multiplication with the subkey Z2
4 in the KA layer of round 2.

We observe that for all 222 pairs, the difference before this multiplication is �X2
4 =

0040x , and for the right pairs, the difference after the multiplication is �Y 2
4 = 0. In

addition, the subkey Z2
4 consists of bits 41–55 of the key, and thus is included in bits

0–63 that are guessed during the first step of the right pairs detection.
Hence, the adversary can go over all 216 pairs of 16-bit values with difference 0040x ,

multiply them by the known value of Z2
4 and find those pairs for which the difference

after the multiplication is zero. For each guess of Z2
4 , one or two pairs with differ-

ence 0040x lead after the subkey multiplication to zero difference, and thus, the ad-
versary can compute the actual values (X2

4,X
∗2
4 ) which a pair must have in order to

be a right pair. The time complexity of this computation is less than 264 · 216 = 280

encryptions.
After the adversary computes the “required” (X2

4,X
∗2
4 ) values, she guesses bits 64–79

of the key (i.e., the subkey Z1
5), and partially encrypts the 222 pairs through the MA layer

of round 1. Then, for each pair, she assumes that indeed it is a right pair, and using the
required values of (X2

4,X
∗2
4 ) on the one hand and u1, s1, q1 (that can be computed

from the partial encryption and the required values (X2
4,X

∗2
4 )) on the other hand, she

computes the input and the output of the modular multiplication with the subkey Z1
6 .

This gives the adversary an equation of the form a � Z1
6 = b, where a, b are known.

Since the modular multiplication is performed in a field, the adversary can invert the
equation and get the value of Z1

6 with only a few operations. (For example, she can
store the inverses of all elements in the field in a table of size 216, and perform a single
table lookup and a single modular multiplication to compute Z1

6 = a−1 � b). Hence, for
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each of the 222 pairs, the adversary can find the value of Z1
6 for which that pair is a right

pair.
Finally, the adversary inserts the tuples (P1,P2,Z

1
6) into a hash table sorted according

to the value of Z1
6 , and then for each value of Z1

6 , she can get the 32 right pairs with
respect to that key by a single table lookup. The time complexity of this step is 264 ·216 ·
222 = 2102 simple computations, which are less than 2100 encryptions.

Summary Using this improved algorithm, the time complexity of the attack is re-
duced to less than 2103.5 encryptions. The data complexity of the attack is 225 chosen
plaintexts, and the memory complexity is 222 32-bit blocks, or equivalently, 221 64-bit
blocks.

A Known Plaintext Variant of the Attack We note that a similar attack can be per-
formed in the known-plaintext model. In the attack, the adversary considers two struc-
tures of 243 known plaintexts encrypted under the keys K and K∗, and for each guess
of bits 0–63 of the key, she inserts the plaintexts into a hash table and detects the 222

pairs (P,P ∗) for which �Y 1 = (0,0040x,0,0040x). The rest of the attack is the same
as the chosen-plaintext attack described above. Since the first step can be performed
efficiently, the overall time complexity of the attack is the same as that of the chosen
plaintext attack. The memory complexity is increased to 243 64-bit blocks.

8. Discussion and Open Problems

In this paper, we presented the keyless Biryukov–Demirci relation and combined it with
Meet-in-the-Middle type techniques to devise new attacks on up to 7.5-round IDEA,
whose complexities are significantly lower than that of exhaustive search. For up to
6.5 rounds, the data complexities of the attacks are practical. All these results are major
improvements over previously published attacks, which could handle at most 6 rounds
using impractical amounts of chosen plaintexts. In the stronger model of related-key
attacks, we could attack up to 7.5 rounds with a practical data complexity.

The two major techniques we used in this paper are Meet-in-the-Middle Biryukov–
Demirci (MitM BD) and Zero-in-the-Middle Biryukov–Demirci (ZitM BD) attacks. In
general, the MitM BD technique yields better attacks in terms of the number of rounds
that can be attacked, but there are scenarios in which the ZitM BD technique yields
better results. It seems that such scenarios are of two types:

1. Low time complexity attacks: The MitM BD attack inevitably requires a large
time complexity, since computing even a single �sr value requires to guess at
least 48 key bits (subkeys Zr

1,Z
r
3, and Zr

5 in the encryption direction, or subkeys
Zr+1

1 ,Zr+1
2 , and Zr

5 in the decryption direction). Hence, it appears that any MitM
BD attack would have time complexity of at least 248. In contrast, there is no lower
bound on the complexity of a ZitM BD attack, since the adversary can choose the
plaintexts such that some �sr terms are canceled, independently of the key. This
is demonstrated in the case of 2.5-round IDEA, where the ZitM BD technique
allows to mount a distinguishing attack with an extremely low time complexity
of 218.
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2. Low data complexity attacks on a large number of rounds: Due to the key schedule
of IDEA, the computation of any four consecutive �sr values requires knowledge
of the entire secret key. Hence, if the number of �sr terms in the BD equation is
greater than 6, the equation is not vulnerable to the MitM BD attack. This obsta-
cle can be overruled by using the splice-and-cut technique (like in our 7.5-round
attack), but only at the price of a higher data complexity. In contrast, there may
be special scenarios, such as the related-key model, in which a special choice of
plaintexts allows to cancel more than three consecutive �sr values. This is demon-
strated in the case of 7.5-round IDEA, where the BD-relation contains seven terms
of the form �sr , but a special choice of plaintexts according to a related-key dif-
ferential allows to cancel four consecutive �sr terms.

Summarizing, it seems that the MitM BD technique is better in the “usual” scenar-
ios, where the required complexity of the attack is not “too low”. However, in specific
scenarios, and especially in the related-key scenario, the ZitM BD attack can perform
better. It would be nice to combine these two techniques into a unified framework.

The main open problem left in this paper is to find a “real” attack on the full 8.5-round
IDEA, whose running time is considerably faster than the 2128 complexity of exhaustive
search. In our opinion, the 2126.8 attack we described in this paper, and even the 2126.0

attack presented in [21], are too marginal to justify a claim that the full IDEA is (even
academically) broken, and we encourage other researchers to try to improve them.
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Appendix A. A Simple Meet-in-the-Middle Attack on 4.5-Round IDEA

In this appendix we present a simple MitM attack on a 4.5-round variant of IDEA start-
ing at the beginning of round 4, which allows to recover the full key using only 2 known
plaintexts, 225 memory and 2103 operations. Note that this is the most data-efficient at-
tack possible, since the unicity distance of a 64-bit block cipher with a 128-bit key
is 2. We were surprised by the fact that this simple attack breaks more rounds of IDEA
with so little data compared with numerous previously published sophisticated attacks,
including the differential [23], differential-linear [9], Square [19], and impossible dif-
ferential [3]10 attacks.

Consider a 4.5-round variant of IDEA which starts at the beginning of round 4 and
ends after the KA layer of round 8. The basic observation behind the attack is that the
value V = p5 can be computed from the “plaintext” (i.e., the input of round 4) given
only bits 75–49 of the key, and from the “ciphertext” (i.e., the value after KA of round 8)
given only bits 125–99 of the key. This allows us to apply the standard MitM attack
described in Sect. 3.1. The attack algorithm is described in Fig. A.1.

10 The impossible differential attack of [3] can break the same number of rounds, but with a significantly
higher data, memory, and time complexities.
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Input: Two “plaintext”/“ciphertext” pairs (P1,C1), (P2,C2).
for any key guess of key bits 0–49, 75–99, 125–127 do

Initialize an empty hash table H .
for any guess of key bits 100–124 do

Compute p5
1 and p5

2 from P1 and P2, respectively, and store in H the value
(p5

1,p
5
2,K[100–124]).

end for
for any guess of key bits 50–74 do

Compute p′5
1 and p′5

2 from C1 and C2, respectively, and check whether
(p′5

1 ,p′5
2 ) is in H .

If so, perform trial encryption under the key bits 0–49, 75–99, 125–127, the
current guess of key bits 50–74, and the guess of bits 100–124 suggested in
the corresponding entry of H .

end for
end for

Fig. A.1. The algorithm of a meet-in-the-middle attack on 4.5-round IDEA (starting at round 4).

Note that each match in the hash table H suggests a value for the entire key (which
is then checked by trial encryption), and that the correct key must be suggested by one
of the matches. Since the total number of matches is 2128 · 2−32 = 296, all wrong key
suggestions are filtered after two trial encryptions, and only the correct key remains.

In order to evaluate the complexity of the attack, we compute |Kt |, |Kb|, |Kc|, |V |
(see Sect. 3.1). Since Kt consists of bits 75–49 and Kb consists of bits 125–99, we
have |Kt | = |Kb| = 103, and |Kc| = 78. Also, |V | = 16, since V = p5 is a 16-bit value.
Hence, the data complexity is 
min(|Kt |,|Kb|)−|Kc|

|V | � = 2 known plaintexts, and the mem-

ory complexity is 2min(|Kt |,|Kb|)−|Kc| = 225 64-bit blocks. The time complexity of the
attack is 2max(|Kt |,|Kb|) = 2103 partial encryptions of two plaintexts, which are less than
2103 encryptions.

For the sake of completeness, we considered all reduced-round variants of IDEA
consisting of 4.5 consecutive rounds. We found two other 4.5-round variants that can be
attacked using the standard MitM technique:

• A variant that starts after the KA layer of round 2 and ends at the end of round 6—
the complexity of the attack on this variant is identical to the complexity of the
attack described above.

• A variant that starts after the KA layer of round 1 and ends at the end of round 5—
the time complexity of the attack on this variant is increased to 2112 encryptions,
whereas the memory complexity is decreased to 215 64-bit blocks.
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