
J. Cryptol. (2008) 21: 492–546
DOI: 10.1007/s00145-008-9019-9

On the Relationships between Notions
of Simulation-Based Security

Ralf Küsters, Anupam Datta, John C. Mitchell, and Ajith Ramanathan
Computer Science Department, University of Trier, FB IV, Campus II, 54286 Trier, Germany

kuesters@uni-trier.de
and

CyLab, Computer Science, Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

danupam@cmu.edu
and

Computer Science Department, Stanford University, Stanford, CA 94305-9045, USA
jcm@cs.stanford.edu; ajith@cs.stanford.edu

Communicated by Ran Canetti

Received 2 May 2006 and revised 26 November 2007
Online publication 30 January 2008

Abstract. Several compositional forms of simulation-based security have been pro-
posed in the literature, including Universal Composability, Black-Box Simulatability,
and variants thereof. These relations between a protocol and an ideal functionality are
similar enough that they can be ordered from strongest to weakest according to the log-
ical form of their definitions. However, determining whether two relations are in fact
identical depends on some subtle features that have not been brought out in previous
studies. We identify two main factors: the position of a “master process” in the dis-
tributed system and some limitations on transparent message forwarding within com-
putational complexity bounds. Using a general computational framework, called Se-
quential Probabilistic Process Calculus (SPPC), we clarify the relationships between
the simulation-based security conditions. Many of the proofs are carried out based on a
small set of equivalence principles involving processes and distributed systems. These
equivalences exhibit the essential properties needed to prove relationships between se-
curity notions and allow us to carry over our results to those computational models
which satisfy these equivalences.

Key words. Simulation-based security, Universal Composability, Reactive Simulata-
bility, Black-Box Simulatability, Process calculus.

1. Introduction

Several current projects use ideal functionality and indistinguishability to state and
prove compositional security properties of protocols and related mechanisms. The main
projects include work by Canetti and collaborators on an approach called Universal

© International Association for Cryptologic Research 2008

mailto:kuesters@uni-trier.de
mailto:danupam@cmu.edu
mailto:jcm@cs.stanford.edu
mailto:ajith@cs.stanford.edu

On the Relationships between Notions of Simulation-Based Security 493

Composability [9,12–15] and work by Backes, Pfitzmann, and Waidner on a related ap-
proach that also uses Black-Box Simulatability [4,5,7,30]. Other projects have used the
notion of equivalence in process calculus [19,25,26], a well-established formal model
of concurrent systems. Although some process-calculus-based security studies [1–3] ab-
stract away probability and computational complexity, at least one project [24,27,28,31]
has developed a probabilistic polynomial-time process calculus for security purposes.
The common theme in each of these approaches is that the security of a real protocol is
expressed by comparison with an ideal functionality or ideal protocol. However, there
are two main differences between the various approaches: the precise relation between
protocol and functionality that is required, and the computational modeling of the enti-
ties (protocol, adversary, simulator, and environment). All of the computational models
use probabilistic polynomial-time processes, but the ways that processes are combined
to model a distributed system vary. We identify two main ways that these computational
models vary: one involving the way the next entity to execute is chosen, and the other
involving the capacity and computational cost of communication. We then show exactly
when the main security notions differ or coincide.

Canetti [9] introduced Universal Composability (UC), based on probabilistic poly-
nomial-time interacting Turing machines (PITMs). The UC relation involves a real pro-
tocol and ideal functionality to be compared, a real and ideal adversary, and an envi-
ronment. The real protocol realizes the ideal functionality if, for every attack by a real
adversary on the real protocol, there exists an attack by an ideal adversary on the ideal
functionality, such that the observable behavior of the real protocol under attack is the
same as the observable behavior of the ideal functionality under attack. Each set of ob-
servations is performed by the same environment. In other words, the system consisting
of the environment, the real adversary, and the real protocol must be indistinguishable
from the system consisting of the environment, the ideal adversary, and the ideal func-
tionality. The scheduling of a system of processes (or ITMs) is sequential in that only
one process is active at a time, completing its computation before another is activated.
The default process to be activated, if none is designated by process communication, is
the environment. In this paper, we use the term master process for the default process in
a system that runs when no other process has been activated by explicit communication.

Pfitzmann and Waidner [30] used a variant of UC and a notion of Black-Box Simu-
latability (BB) based on probabilistic polynomial-time IO automata (PIOA). In the BB
relation between a protocol and ideal functionality, the UC ideal adversary is replaced
by the combination of the real adversary and a simulator that must be chosen indepen-
dently of the real adversary. Communication and scheduling in the PIOA computational
model are sequential as in the PITM model. While the environment is the master process
in the PITM studies, the adversary is chosen to be the master process in the Pfitzmann–
Waidner version of UC. In the Pfitzmann–Waidner version of BB, the master process is
the adversary or the simulator [30]. In a later version of the PIOA model (see, e.g., [4]),
the environment is also allowed to serve as the master process, subject to the restriction
that, in any given system, it is not possible to designate both the adversary/simulator
and the environment as the master process. In cryptography proofs, another variant of
BB is often considered where the simulator may depend on the real adversary or its
complexity. We call this variant Weak Black-Box (WBB) and the previous one Strong
Black-Box (SBB).

494 R. Küsters et al.

In [24,28,31,32], Mitchell et al. used a form of process equivalence, where an envi-
ronment directly interacts with the real and ideal protocol. The computational model in
this work is a probabilistic polynomial-time processes calculus (PPC) that allows con-
current (nonsequential) execution of independent processes. The process equivalence
relation gives rise to a relation between protocols and ideal functionalities by allowing
a simulator to interact with the ideal functionality, resulting in a relation that we call
Strong Simulatability (SS) [18]. The difference between SS and SBB is that in SBB, the
environment and the adversary are separated while the SS environment also serves as
the adversary.

Contribution of the Paper In this paper, we clarify the relationships between the vari-
ous security notions, which are obtained by the different ways the entities (environment,
real/ideal adversary, simulator, real/ideal protocol) can be combined and quantified. Be-
sides the different placements of the master process, already mentioned earlier, we also
identify another crucial issue for the relationships between the security notions: the abil-
ity to define a “forwarding” process that forwards communication from one process to
another. Although it seems intuitively reasonable that such a forwarder can be placed
between two processes without changing the overall behavior of the system, this may
violate complexity bounds if a polynomial-time forwarder must be chosen before the
sending or receiving process. If the time bound of the sender, for example, exceeds the
time bound of the forwarder, then some sent messages may be lost because the time
bound of the forwarder has been exhausted. This is relevant to our study because some
equivalence proofs require the existence of forwarders that cannot be exhausted.

When we started our investigation, one problem was that the previously mentioned
models were unsuitable for studying the relationships between the various security no-
tions. The PITM model [8,9] was too inexpressive to formulate all variants of the secu-
rity notions because it lacks a general computational model, i.e., a model of probabilistic
polynomial-time systems defined independently of specific security notions. The PIOA
model [5,30] had some model-specific peculiarities, such as a requirement that IO au-
tomata have to communicate through buffers. This would have made the formulations
of the different security notions and the study of their relationships much more cum-
bersome. Also, as we show in Sect. 6, the model-specific features have some rather
counterintuitive effects on the security notions. The PPC model [24,32] was unsuitable
for our purposes because of the nonsequential execution model. This motivated us to de-
vise a new computational model, the sequential probabilistic polynomial-time process
calculus (SPPC). This calculus can be considered a “meta-model” of PIOA and PITM.
It (1) provides a compact syntax for writing equations between systems of communicat-
ing machines and (2) is flexible enough to capture different variants of security notions
in a concise way. While our results will be formulated over SPPC, Sect. 6 also discusses
implications for and differences to other models. However, the main focus of our work
are not details of specific models but the conceptual differences between the various
security notions and the resulting relationships between these notions.

The rigorously defined formal basis for simulation-based security that SPPC provides
is a crucial prerequisite for the study carried out in this paper. It allows us to devise an
axiom system consisting of a small set of equivalence principles involving processes
and distributed systems. Having such an axiom system at hand has several advantages:

On the Relationships between Notions of Simulation-Based Security 495

Fig. 1. Equivalences and implications between the security notions in SPPC.

(i) It exhibits the essential properties needed to prove relationships between security
notions. (ii) Many proofs are much more concise and simple. (iii) Results proved based
on the axiom system carry over to those models that satisfy the axioms. (iv) Failure of
axioms in certain models brings out weaknesses in these models (see Sect. 6).

Our main results formulated over SPPC and the axiom system are summarized in
Fig. 1 and are further explained in the following. Each of the four boxes in Fig. 1 stands
for a class of equivalent security notions. Specifically, if a real and ideal protocol are
related by one notion in this class, then they are also related by all other notions in this
class. A solid arrow from one class to another indicates that relations in the first class
imply relations in the second class. The implication indicated by the dashed arrow is
contingent on whether the aforementioned forwarding property holds for the processes
in question.

1. Equivalences between security notions.
(a) The different forms of Strong Simulatability and Strong Black-Box obtained

by varying the entity that is the master process are all equivalent. This equiv-
alence class, denoted SS/SBB, is depicted in the top-left box in Fig. 1 and in-
cludes placements of the master process as considered for Strong Black-Box
in [4,30].

(b) All variants of Universal Composability and Weak Black-Box in which the
environment may be the master process are equivalent. This equivalence class,
denoted UC/WBBenv, is depicted in the bottom-left box in Fig. 1 and includes
placements of the master process as considered for Universal Composability
in [4,9].

496 R. Küsters et al.

(c) All variants of Universal Composability and Weak Black-Box in which the
simulator and the adversary may be the master process, but the environment
cannot, are equivalent. This equivalence class, denoted UC/WBBsim, is de-
picted in the top-right box in Fig. 1 and includes placements of the master
process as considered for Universal Composability in [30].

(d) All variants of Weak Black-Box where the adversary may be the master
process, but neither the environment nor the simulator may play this role, are
equivalent. This equivalence class, denoted WBBadv, is depicted in the bottom-
right box in Fig. 1.

2. Implications between the classes.
(a) SS/SBB implies UC/WBBenv. In particular, Strong Black-Box with placements

of the master process as considered in [4,30] implies Universal Composability
with placements of the master process as considered in [4,9].

(b) UC/WBBenv implies WBBadv.
(c) WBBadv implies UC/WBBsim. In particular, Strong Black-Box with placements

of the master process as considered in [4,30] and Universal Composability
with placements of the master process as considered in [4,9] implies Universal
Composability with placements of the master process as considered in [30].

3. Separations between the classes.
(a) The security notions in UC/WBBenv are strictly weaker than those in SS/SBB

in any computational model where the forwarding property (expressed pre-
cisely by the FORWARDER axiom) fails. Since this property fails in the
PITM model [9] and the buffered PIOA model [4] (see Sect. 6), it follows
that UC/WBBenv does not imply SS/SBB in these models. This contradicts
a theorem claimed in [4]. However, the forwarding property holds in SPPC
and the buffer-free PIOA model for most protocols of interest. In these cases,
UC/WBBenv implies SS/SBB.

(b) The security notions in UC/WBBsim are strictly weaker than the notions in
WBBadv, and hence the notions in UC/WBBenv and SS/SBB. In particular, the
Universal Composability relation with placements of the master process as
considered in [30] implies neither the Strong Black-Box relations with place-
ments of the master process as considered in [4,30] nor Universal Compos-
ability relations with placements of the master process as considered in [4,9].

In Sect. 6 we point out implications of our results for other models and discuss dif-
ferences between SPPC and these other models. For the PIOA model, we show that
because it requires buffers certain axioms do not hold and that UC does not imply SBB
even in those cases where the FORWARDER axiom is satisfied and the environment
may play the role of the master process. In other words, the buffers in the PIOA model
are another reason—in addition to the FORWARDER axiom and the placement of the
master process—for the separation between UC and SBB. This rather counter-intuitive
behavior can be avoided if a buffer-free version of PIOA (BFPIOA) is considered. In
this case, all our axioms hold true; hence, all proofs based on these axioms immediately
carry over to BFPIOA. In fact, for BFPIOA we obtain exactly the same relationships
between the security notions as explained in the earlier discussion of classes (1–3, see
also Fig. 1). For the PITM model, as mentioned, the problem is that most security no-
tions that we study cannot be expressed directly. However, based on our results, several

On the Relationships between Notions of Simulation-Based Security 497

general points can be made. For example, the ITMs in the ITM model do not have a
mechanism to block useless messages, such as the guard mechanism in SPPC or length
functions in PIOA. As a result, the FORWARDER axiom fails in this model. It even
fails for classes of protocols for which it is satisfied in the SPPC and BFPIOA model.
Consequently, our results imply that UC does not imply SBB (SS) in this model, even
for classes of protocols for which the implication holds in SPPC and BFPIOA.

We note that the present work concentrates on models for simulation-based security
where processes run in polynomial time in the security parameter alone. Recently, sev-
eral models have been proposed in which the runtime of the processes may depend on
the length of their input [8,20,23]. Many of the results proved in this work, in partic-
ular those involving the issue of placements of the master process, carry over to these
models, and they have in fact already influenced design decisions.

Outline of the Paper In Sect. 2, we introduce the sequential polynomial-time process
calculus SPPC. In Sect. 3, we show that every system and every part of a system can
be turned into a process expression that exactly mimics a single interactive Turing ma-
chine. The security notions are defined in Sect. 4. The main results, i.e., the relationships
between the security notions, are proved in Sect. 5, with consequences for the PIOA and
PITM models developed in Sect. 6. In Sect. 7, we briefly consider a less prominent secu-
rity notion, called Reactive Simulatability in [5] and security with respect to specialized
simulators in [10], and relate it to the other notions. In Sect. 8, we give our conclu-
sions. In [16], we also showed general composition theorems for SPPC and proved that
protocols that satisfy the FORWARDER property preserve this property when they are
composed.

2. Sequential Probabilistic Process Calculus (SPPC)

In this section, we introduce Sequential Probabilistic Process Calculus (SPPC) as a
language-based computational model for studying security notions. Before we formally
define the syntax (Sect. 2.3) and semantics (Sect. 2.4) of our computational model, we
provide an informal description (Sect. 2.1) and introduce the notion of a probabilistic
function (Sect. 2.2). Since most of the material in the subsequent sections can be fol-
lowed only with the information provided in Sect. 2.1 in mind, readers might want to
skip Sects. 2.2 to 2.4 when reading through the paper for the first time.

2.1. Informal Introduction of SPPC

Let us first note that the driving philosophy behind the design of SPPC is to specify
details of the communication model (such as a specific order of activation of entities,
insecure, authenticated, secure channels, specific buffers, synchronous communication,
broadcasting, and corruption) as part of the protocol specification itself rather than to
explicitly encode, and thus fix, these details in the overall computation model. SPPC
is expressive enough to encode such details in the protocol specifications. This makes
SPPC relatively simple and flexible. In particular, a variety of security notions can easily
be formulated in SPPC.

We start by discussing how individual probabilistic polynomial-time machines are
modeled in SPPC and then explain how to build and execute systems of interacting
machines. Our exposition parallels that of related models [5,9,30].

498 R. Küsters et al.

Fig. 2. Probabilistic polynomial-time machines in SPPC.

Single Probabilistic Polynomial-Time Machines In SPPC, single machines are of the
form as depicted in Fig. 2. Syntactically, these machines will later be represented by
process expressions in what we call single machine normal form (see Sect. 3). For the
time being, let us ignore the “guards” and Sect. 3. He variables x1, . . . , xk . Conceptually,
a single machine is a black-box with internal state that receives inputs, performs poly-
nomially bounded computation and then produces outputs. Inputs are received on input
channels and outputs are written on output channels. More precisely, single machines
are restricted to receiving one input and producing at most one output at a time. While
this at first might appear to be a restriction, it is not really a problem since any machine
that sends multiple messages can be converted to a machine that stores internally—
possibly using internal buffers—the messages it wants to send. The machine then sends
the messages one at a time on request. In fact, this style of communication corresponds
exactly to the manner in which communication is defined in other sequential models,
notably the PIOA and PITM models [9,30]. Also, just as in these models, the overall
runtime of a machine is bounded by a polynomial in the security parameter and does
not depend on the number or length of inputs sent to the machine.

The channels of a single machine in SPPC correspond to ports in the PIOA model
and to tapes in the PITM model. However, while messages on channels (and ports) are
removed when read, this is not the case for tapes. Nevertheless, tapes can be modeled by
adding machines, one for each input channel, which simulate the tapes in the obvious
way. The “main machine” will then receive its input from the “tape machines.” In the
PIOA model, buffer machines serve a similar purpose. Note that while in SPPC and
the PIOA model, the number of input and output channels/ports is not restricted, in
Canetti’s PITM model only one pair of input/output and input/output communication
tapes is considered.

In SPPC, machines can preprocess their input using guards (see Fig. 2) which are
deterministic polynomial-time machines that are placed on input channels. Given an in-
put on the channel, a guard may accept or reject the input. If rejected, the process does
not perform any further computation. If accepted, the process receives the output of the
guard. This may be different from the input, e.g., a guard can eliminate unnecessary in-
formation or transform data. The computation performed by the guard may depend on
the current internal state of the process. Its runtime is polynomially bounded in the secu-
rity parameter per invocation and is not factored into the overall runtime of the process
using the guard. In particular, a guard can be invoked an unbounded number of times.

On the Relationships between Notions of Simulation-Based Security 499

Since guards allow a process to discard messages without incurring a computation cost,
attempts to “exhaust” a process by sending many useless messages to the process can
be defeated. Additionally, using guards we can simulate an unbounded number of “vir-
tual” channel names by prefixing each message with a session id and/or party name and
then stipulating that the guards accept only those messages with the right header infor-
mation. Such an ability is required for systems with a polynomial number of machines,
e.g., multiparty protocols, or with multiple instances of the same protocol. Although
mechanisms analogous to guards are absent in other models, notably [9,30], a newer
version of PIOA [6] has a length function that, when set to zero, prevents messages
from being received by the machine. This corresponds to a guard which rejects all in-
puts and so can be used to help avoid exhaustion attacks. However, it does not help in
the creation of a mechanism analogous to virtual channels.

As mentioned above, guards can be invoked an unbounded number of times without
being exhausted and in every invocation their runtime is bounded by a polynomial in the
security parameter—the runtime could even depend on the length of the input. Hence,
the runtime of a single machine including the guards is polynomially bounded in the
security parameter and the number of invocations. However, the overall runtime of a
single machine excluding the guards is polynomially bounded in the security parameter
alone and, hence, such a machine can produce at most polynomially many output mes-
sages overall in the security parameter. Now, because guards can only be triggered by
messages sent by single machines, it follows that in a system of polynomially many ma-
chines guards are invoked only a polynomial number of times in the security parameter.
As shown in Sect. 2.4.3, from this we can conclude that such systems can be simulated
by a probabilistic polynomial time Turing machine.

In SPPC, a machine may have auxiliary input, just like auxiliary input can be given
to the interacting Turing machines in Canetti’s model. This input is written on specific
tapes before a (system of) machines is run. If such auxiliary input is used, it results in a
nonuniform computational model. The tapes are represented by x1, . . . , xk (see Fig. 2).
Just like in Canetti’s model, we allow only the environment machine to use auxiliary
input. However, whether or not the environment machine is uniform does not affect the
results presented in this paper (except for those in Sect. 7).

More formally, in SPPC a single machine is defined by a process expression P . Such
an expression corresponds to a description of an interacting Turing machine in the PITM
model or an I/O automaton in the PIOA model. A process expression is always para-
meterized by the security parameter n and possibly so-called free variables x1, . . . , xk ,
which represent the tapes for the auxiliary input mentioned above. Therefore, we some-
times write P(x1, . . . , xk) instead of P . A process expression with value i chosen for

the security parameter and values
→
a (the auxiliary inputs) substituted for its free vari-

ables
→
x yields a process P(

→
a)n←i . A process corresponds to an interacting Turing

machine where the security parameter is written on the security parameter tape and the
auxiliary input is written on the input tape. Hence, a process can perform computa-
tions as soon as it receives input on the input channels. As an expositional convenience,
we will use the terms “process expression” and “process” interchangeably. A process
expression is called open if it has free variables, and closed otherwise. Hence, open
process expressions correspond to nonuniform machines and closed expressions to uni-
form ones.

500 R. Küsters et al.

Systems of Interacting Machines In SPPC, a system of interacting machines is simply
a multiset of single machines where an output channel of one machine connects directly
to an identically named input channel of another machine. The manner in which these
machines are wired together is uniquely determined by the channel names since we stip-
ulate that no two machines have the same input and output channel names, respectively.
After a machine M1 has sent a message on an output channel, the machine waits to re-
ceive input on an input channel. The message sent on the output channel is immediately
received by the machine M2 that has an identically named input channel. If the guards
on the input channel of this machine accept the message, then M2 may perform some
computation and produce one output message. While M2 now waits for new input on its
input channels, the output message (if any) is processed by the next receiving machine,
and so on. If there is no receiving machine, or the guard of the receiving machine re-
jects the message, or no output message is produced, computation would halt since no
machine is triggered. To avoid this in a system of machines, one machine is always de-
clared to be a master machine, also called master process, and this machine is triggered
if no other machine is.

In SPPC, given process expressions P1, . . . ,Pn, each representing a single machine,
the combined system of machines is denoted by the process expression P1 � · · · � Pn.
Instead of interpreting P1 � · · · �Pn as a system of n single machines, one can consider
this system as a single machine (consisting of n submachines). This corresponds to the
transformation, in the PIOA model, of a system of fixed, finite number of machines
into a single machine. However, in SPPC we can apply such transformations to systems
containing a polynomial number of machines as well.

With the bounded replication operator !q(n) P , where q(n) is some polynomial in the
security parameter and P is a process expression (representing a single machine or a
system of machines), systems containing a polynomial number of machines can be de-
scribed. The process expression !q(n) P stands for a q(n)-fold concurrent composition
P � · · · � P . Note that in such a system, different copies of P have the same input and
output channels. However, as discussed earlier, guards allow us to send messages to (vir-
tual) channels of particular copies of a protocol. Bounded replication can be combined
with concurrent composition to build bigger systems such as !q1(n) (P1 �P2 � !q3(n) P3).

As described earlier, because our execution model is sequential, computation may not
proceed if the currently executing machine produces no output, or a receiving machine
rejects an input. In order to ensure that computation proceeds even in this case, we
identify a master process by using a special input channel start. In case no output is
produced by a machine, a fixed value is written on start thereby triggering the master
process. The master process is also the first machine to be activated when execution
starts.

Additionally, in studying security notions, it will be useful to define the output
of a system. We do so by writing a bit, the output, onto an output channel named
decision. The machine containing this channel is called the decision process. Given

a process expression R(
→
x) with free variables

→
x , we denote by Prob[R(

→
a)n←i � 1]

the probability that R with security parameter i and substitution of values
→
a for its vari-

ables
→
x outputs a 1 on decision. Recall that R(

→
a)n←i denotes the process obtained

from the process expression R by replacing the security parameter n by a value i and

On the Relationships between Notions of Simulation-Based Security 501

replacing the variables
→
x by values

→
a . Two process expressions P(

→
x) and Q(

→
x) are

called equivalent or indistinguishable, written P(
→
x) ≡ Q(

→
x), iff for every polynomial

p(n) there exists i0 such that |Prob[P(
→
a)n←i � 1]−Prob[Q(

→
a)n←i � 1]| ≤ 1/p(i)

for every i ≥ i0 and every tuple
→
a of bit strings.

We call machines which are neither master nor decision processes regular. A machine
which is both master and decision is called a master decision process. In what follows
we use R, M, D, and MD to denote the set of all closed regular processes, closed
master processes, open or closed decision processes, and open or closed master decision
processes, respectively.

2.2. Probabilistic Functions

A probabilistic function F from X to Y is a function of the form X × Y → [0,1] which
satisfies the following two conditions:

1. The cardinality of the set {y ∈ Y | F(x, y) > 0} is finite for every x ∈ X.
2.

∑
y∈Y F (x, y) ≤ 1 for every x ∈ X.

We call F a k-ary probabilistic function if X = Zk = Z × · · · × Z for some set Z.
We refer to X as the domain of F , to Y as the codomain of F , and to the set⋃
x∈X{y ∈ Y | F(x, y) > 0} as the range of F .
If → is a probabilistic function, then instead of writing → (x, y) = p to say that x is

mapped to y with probability p, we often write p = Prob[x → y] or x
p→ y and say

that x is reduced to y (by →) with probability p.
Let → and ⇒ be two probabilistic functions such that the range of → is a sub-

set of the domain of ⇒. Then, the composition → ◦ ⇒ of → and ⇒ defines
the following probabilistic function: Prob[x → ◦ ⇒ y] = ∑

z Prob[x → z ⇒ y]
for all x and y where z ranges over the range of → and Prob[x → z ⇒ y] =
Prob[x → z] · Prob[z ⇒ y].

Let → be a probabilistic function such that domain and codomain coincide and let
i > 0. Then, the probabilistic function (→)i is defined by induction on i as follows:
If i = 0, then (→)0 is the identity function, i.e., Prob[x(→)0y] = 1 if y = x and
Prob[x(→)0y] = 0 otherwise. For i > 0, we define Prob[x(→)iy] = Prob[x →
◦ (→)i−1y].

Let → be a probabilistic function which satisfies the following conditions:

1. Domain and codomain of → coincide, say it is the set X.
2. The directed graph induced by →, i.e., (X, {(x, y) ∈ X ×X | Prob[x → y] > 0})

is cycle free except for self loops.
3. For every x we have Prob[x → x] ∈ {0,1}.

Now, in case X is a finite set, the transitive closure (→)+ of → is defined to be the
following probabilistic function:

Prob
[
x(→)+y

] =
∑

i>0

∑

z1,...,zi−1
zj
=y for all j

Prob[x → z1 → ·· · → zi−1 → y]

502 R. Küsters et al.

for every x and y. Note that, since X is assumed to be a finite set, in the sums only a
finite number of probabilities are different from 0.

Note that a probabilistic polynomial time Turing machine with k input tapes and l

output tapes realizes a probabilistic function F of the form ({0,1}∗)k × ({0,1}∗)l →
[0,1] where we define the size of the input to be the length of the input written on
the first tape, i.e., the Turing machine runs in polynomial time in the length of the first
component of the function it realizes.

2.3. Syntax of SPPC

We now introduce the syntax of SPPC, in particular, we define process expressions. For
this, we first need to introduce terms and channels.

2.3.1. Terms

Let V be an infinite supply of variables. Variables are referred to by x, y, z and dec-

orations thereof. We write
→
x for the sequence x1, . . . , xk of variables. Bit strings, i.e.,

elements of {0,1}∗, are denoted by a, b, and decorations thereof. The empty bit string

is referred to by ε. We write
→
a to denote the sequence a1, . . . , ak of bit strings. Let n be

the security parameter.

C-terms A C-term T = T (
→
x) (“C” being reminiscent of “computation”) is some rep-

resentation of a probabilistic function of the form ({0,1}∗ × ({0,1}∗)k) × {0,1}∗ →
[0,1] which can be realized by a probabilistic polynomial time Turing machine where
the first component, {0,1}∗, in the domain ({0,1}∗ × ({0,1}∗)k) of this function takes

the security parameter n. The variables
→
x are called input variables of T (

→
x) and the set

of input variables of T is denoted by varin(T). We write p = Prob[T n←i (a1, . . . , ak)

↓ a] or simply p = Prob[T ↓ a] to say that T outputs (reduces to) the bit string a on
input a1, . . . , ak and security parameter i with probability p. We assume that the class of
C-terms is complete in the sense that all probabilistic polynomial time realizable prob-
abilistic functions can be described by some C-term. Obviously we can achieve this by
simply taking representations of probabilistic polynomial-time Turing machines to be
C-terms.

C-terms will be used in processes of the form out(c, T) to compute a bit string which
is then placed on the channel c.

M-terms An M-term (also called guard) t = t (
→
x ; →

y) (“M” being reminiscent of

“matching”) with
→
x = x1, . . . , xk and

→
y = y1, . . . , yl is some representation of a (deter-

ministic) function F of the form ({0,1}∗ ×{0,1}∗ × ({0,1})k)× ({0,1}∗ × ({0,1}∗)l) →
{0,1} that can be realized by a deterministic polynomial time Turing machine where the
first component of the domain ({0,1}∗ × {0,1}∗ × ({0,1})k) of this function takes the

security parameter n. The variables
→
x are called input variables of t and the variables

in
→
y , which are required to be distinct from the input variables, are called output vari-

ables. We refer to the input variables of t by varin(t) and to the output variables of t

by varout(t). Intuitively, an M-term t works as follows: Given bit strings
→
a for the

On the Relationships between Notions of Simulation-Based Security 503

input variables (the last k components of the domain of t), on receiving a bit string a

(the second component of the domain of t) the term t either rejects a or accepts it (i.e.,
0 or 1 is returned as the first component of the codomain ({0,1}∗ × ({0,1}∗)l) of t). If t

accepts, it produces l bit strings (the last l components of the codomain of t) which are
substituted for the output variables → y. If t rejects, this output is irrelevant. We assume
that the class of M-terms is complete in the sense that all deterministic functions F re-
alizable by a deterministic polynomial-time Turing machine can be described by some
M-term. Obviously this is possible by taking representations of such Turing machines
as M-terms.

For our purposes, M-terms with only one output variable would suffice. However,
additional output variables make it more convenient to define certain processes.

M-terms will occur in processes of the form P = in(c, t) . P ′. If a bit string a is
received on channel c, the M-term t allows to parse a (maybe depending on external
input) before P actually reads a, and computes substitutions for the output variables in
case a is accepted by t . The output variables of t may occur in P ′.

Often, t is of the form x which we will interpret as an M-term without input variables
and output variable x. This M-term accepts any message and this message is substituted
for x. The runtime of such an M-term is determined by the bandwidth of c, which is a
polynomial in the security parameter (see the following). Conversely, since the compu-
tation of an M-term is polynomial bounded in the security parameter, this polynomial
could be considered the bandwidth of the channel the M-term operates on. Hence, one
could dispense with explicitly assigning bandwidth to channels.

The purpose of M-terms was explained in Sect. 2.1 where M-terms were referred to as
“guards.” As explained there, one reason for introducing M-terms is that they allow us
to create new virtual channels: An M-term can reject all messages that do not start with
a certain bit string b where b stands for a session ID, i.e., it can check whether messages
are of the form (b, x). Later, when different instances of a protocol are modeled—all
of which have their unique SID—then every instance will only accept a message that
is prefixed with the correct SID. Also, every message returned by an instance will be
prefixed by the SID of the instance. This will allow us to send/receive messages to/from
specific instances of protocols without introducing channel variables as in π -calculus
[25,26].

2.3.2. Channels

A channel is a tuple c consisting of a channel name name(c), a bandwidth bw(c), and
a priority prior(c). The bandwidth bw(c) is a polynomial in the security parameter
and determines the maximum length of messages that can be sent through c. Strictly
speaking, as also mentioned above, the bandwidth is not needed since M-terms implic-
itly bound the length of messages read from a channel. However, making this bound
explicit is more convenient. The priority prior(c) of c can take the values high and
low, and accordingly we refer to high and low channels. A message on a high channel
will be scheduled before a message on a low channel. The intuition is that high channels
are used to update the internal state of a process, while low channels are used to commu-
nicate with external processes or internal subprocesses. In Sect. 2.1, we referred only to
low channels and for the sake of presentation did not mention the internal step to update
the internal state that is taken after the output on the low channel has been produced.

504 R. Küsters et al.

Channels are usually referred to by c and decorations thereof. The set of channels is de-
noted by C. We assume that C contains the low channels start and decision. The
channel start will be used as input channel of what we will call the master process
which is activated via the start channel if no further communication is possible. The
environment, which is trying to distinguish a protocol from its ideal version, will use
the decision channel to output its decision.

2.3.3. Sequential Process Expressions and Processes

A sequential process expression P is defined by the grammar depicted in Fig. 3, where
cL and cH stand for low and high channels, respectively, and t and T are M- and C-
terms, respectively. We will require that high channels occurring in a sequential process
expression P are internal. Internal and external channels are defined below. While in
process calculus one typically refers to the operator “‖” by the term “parallel com-
position,” in cryptography “parallel composition” sometimes means composition in a
synchronous model. As the formal semantics will make precise, we mean “concurrent
composition.”

Expressions of the form Pout are called process expressions with initial output. The
notion of process expression refers to both sequential process expressions and process
expressions with initial output.

The set of channels occurring in a process expression P is denoted by C(P). A chan-
nel c is called internal in P if it occurs both in an expression of the form in(c, t) . P ′
and out(c, T); otherwise, it is called external. The set of internal and external chan-
nels of P is denoted by Cint(P) and Cext(P), respectively. The set Cext(P) is further
partitioned into input (Cin(P)) and output channels (Cout(P)) in the obvious way.

Given a non-negative integer i (represented by a bit string), a process P = Pn←i of
a process expression P is obtained from P by replacing every occurrence of !q(i) Qn←i

P ::= 0 | (termination)

S | (wait for input on different channels)
(P ‖ P) | (concurrent/parallel composition)

!q(n) P | (bounded replication)

Pout ::= (OL ‖ OH ‖ P) (process with initial output)
OH ::= out(cH ,T) | (output on high channel cH)

0
OL ::= out(cL,T) | (output on low channel cL)

0
S ::= in(cH , t) .P | (wait for input on high channel cH)

in(cL, t) .Pout | (wait for input on low channel cL)

(S + S) (wait for input on different channels)

Fig. 3. Sequential process expressions.

On the Relationships between Notions of Simulation-Based Security 505

by

q(i) times
︷ ︸︸ ︷
Qn←i ‖ · · · ‖ Qn←i .

We call i the parameter associated with P . In P , M-terms and C-terms are evaluated
using i as the security parameter.

Note that modulo commutativity and associativity of the parallel composition opera-
tor “‖”, a process P is of one of the following forms: P ′, out(c, T) ‖ P ′, out(c′, T ′) ‖
P ′, or out(c, T) ‖ out(c′, T ′) ‖ P ′, where P ′ is a process obtained from a sequential
process expression (i.e., without initial output), c is a high channel, and c′ is a low chan-
nel. In other words, at most two messages are currently on channels (at most one on a
high channel and at most one on a low channel). In what follows, we refer to processes
such as P ′ by processes without output.

Since process expressions and processes are (formal) terms, we sometimes consider
them as finite ordered trees with labeled nodes.

Given a process (expression) P , the set of free variables free(P) of P is the set of
input variables of C-terms occurring in P which are not bound by an input expression.
Formally, free(P) is defined inductively as follows:

• free(0) = ∅,
• free(in(c, t) . P) = free(P) \ varout(t),
• free(out(c, T)) = varin(T),
• free(P ‖ Q) = free(P) ∪ free(Q),
• free(!q(n) P) = free(P),
• free(P + Q) = free(P) ∪ free(Q).

We write P(
→
x) with

→
x = x1, . . . , xk to say that {x1, . . . , xk} ⊆ free(P). A process

(expression) P is called closed if free(P) = ∅.

If P(
→
x) is a process (expression) and

→
a is a sequence of bit strings (of the same

length as
→
x), then P(

→
a) denotes the process (expression) obtained from P(

→
x) by re-

placing every free occurrence of xi by ai . The M-term and C-terms in P(
→
a) containing

a free occurrence of xi will be evaluated with xi replaced by ai .
Let P be a process and t be an M-term. If t accepts a bit string a then, as explained,

it (deterministically) produces bit strings a1, . . . , ak as output and these bit string are
substituted for the output variables varout(t) = {x1, . . . , xk} of t . We write [a/t]P to
denote the process obtained from P by substituting every free occurrence of xi in P

by ai .
The communication size comsize(P) of a process P is the number of occurrences

of input and output processes in P ; for instance, comsize(out(c, T) ‖ out(c, T) ‖
in(c, t) . in(c, t)) = 4.

The communication size comsize(P)(n) of a process expression P is a polynomial
q(n) such that q(i) = comsize(Pn←i) for every i. Clearly, such a polynomial exists.

2.3.4. Contexts

A context C[] is a process where exactly one leaf is labeled with [].

506 R. Küsters et al.

The process C[P] is obtained from the context C[] by plugging the process P into
the hole of C[]. This notation is used to refer to some subprocess P of a given process
P ′ = C[P].

Given a process P , we call a context C[] an input context for P , if there exists a
process of the form in(c, t) . Q, called the input process associated with C[], such
that C[in(c, t) . Q] = P and on the path from the root of C[] to its hole all nodes are
labeled with “‖” or “+”. This implies that P is ready to receive input on channel c (with
M-term t).

2.4. Semantics of SPPC

Processes have interleaving semantics which are defined in terms of reductions.
Roughly speaking, given a process P , the reduction is carried out by iteratively per-
forming the following steps until nothing changes:

1. Reduction. All C-terms occurring in P where all the variables are replaced by bit
strings are reduced. After this step, there is at most one message on a high chan-
nel and at most one message on a low channel in P , i.e., modulo commutativity
and associativity of “‖”, P is of the form P ′, out(c, a) ‖ P ′, out(c′, a′) ‖ P ′, or
out(c, a) ‖ out(c′, a′) ‖ P ′ where P ′ is a process without output, c is a high chan-
nel, and c′ is a low channel.

2. Communication. In the first case (where no message is on any channel), the empty
bit string ε is put on start which is then read by the process. In case there is only
one message on a (high or low) channel, then this message is read. In the last case
(where there is one message on a high channel and one on a low channel), the message
a on the high channel c is read by the process. (Note that, by definition of process
expressions, after reading a on c, the process does not produce new output and in the
next iteration step, the message on the low channel will be read.)

The intuition is that high channels are used to update the current (internal) state of a
process (and therefore have priority over low channels) while low channels are intended
for communication with external processes or internal subprocesses.

In what follows, every single step is defined formally and the steps are put together
in Sect. 2.4.3.

2.4.1. C-term Reduction

The reduction of C-terms occurring in a process is defined by the probabilistic func-

tion ⇀ on closed processes. For open processes P(
→
x), the free variables

→
x are first

substituted by bit strings.

Formally, P
p
⇀ Q is defined by structural induction on P where we assume that the

security parameter associated with P is i:

• 0
1
⇀ 0,

• in(c, t) . P
1
⇀ in(c, t)P ,

• out(c, T)
p
⇀ out(c, a) if p = ∑

b≡a mod 2bw(c)(i) Prob[T ↓ b],

On the Relationships between Notions of Simulation-Based Security 507

• P ‖ Q
p
⇀ P ′ ‖ Q′ if P

q
⇀ P ′, Q

q ′
⇀ Q′, and p = q · q ′,

• P + Q
1
⇀ P + Q.

For the cases not covered above we define P
0
⇀ Q. Note that since we assume P to be

closed, all input variables of the C-term T have been substituted by bit strings.

2.4.2. Communication

To define the communication step, we first introduce a probabilistic function →(c,a) on
closed processes which describes how a message a on channel c is read by a process.

Formally, we define P
p→(c,a) Q iff the following is true: Let N be the number

of different input contexts C[] of P with associated input processes of the form
in(c, t) . P ′ such that t accepts a. In other words, N is the number of input expres-
sions in P ready to receive input a on channel c. Then:

1. If N = 0, then P = Q and p = 1, or P
= Q and p = 0.
2. If N
= 0, then Q = C[[a/t]P ′] and p = 1/N for some C[] and in(c, t) . P ′ as

above, and otherwise p = 0.

Now, we are ready to define a communication step → on closed processes. We set

P
p→ Q if the following is true:

1. If P = out(decision, a) ‖ P ′ for some process P ′, then P = Q and p = 1, or
P
= Q and p = 0. (Since in P output was written on the channel decision, no
further step shall be taken.) Otherwise:

2. If P is a process without output, then p = Prob[P →(start,ε) Q].
3. If P = out(c, a) ‖ P ′ for some process P ′ without output, then p =

Prob[P ′ →(c,a) Q].
4. If P = out(c, a) ‖ out(c′, a′) ‖ P ′ where P ′ is a process without output and c is

a high channel, then p = Prob[out(c′, a′) ‖ P ′ →(c,a) Q].
In all other cases, we define P

0→ Q.

2.4.3. The Complete Reduction of Processes

The probabilistic function ⇒ defines the complete reduction of processes.
For all processes P , Q, and probabilities p we define

P
p⇒ Q iff p = Prob

[
P ⇀ ◦(→ ◦ ⇀)+Q

]
.

The probability p that the decision returned by a closed process P is 1 is written

Prob[P � 1] or P
p� 1 and is defined as

Prob[P � 1] =
∑

Q

Prob[P ⇒ Q],

where Q ranges over all processes of the form out(decision,1) ‖ Q′ (modulo com-
mutativity and associativity of “‖”).

508 R. Küsters et al.

The following theorem tells us that the computation of process expressions can be
simulated by a probabilistic polynomial time Turing machine, where the Turing ma-
chines use probabilistic transitions.

Theorem 1. Let P(x1, . . . , xk) be a process expression. There exists a probabilistic
polynomial-time Turing machine that for all processes Q (modulo associativity of “+”
and “‖”) returns Q on input i,P(x1, . . . , xk), a1, . . . , ak (given on separate input tapes)
with probability p iff P(a1, . . . , ak)

n←i p⇒ Q. The Turing machine runs in polynomial
time in the security parameter i.

2.5. Indistinguishability of Process Expressions

Throughout the paper, we will need the well-established notion of indistinguishability.
The indistinguishability of process expressions is defined as follows:

Definition 2. Two sequential process expressions P(
→
x) and Q(

→
x) are called equiva-

lent or indistinguishable (P(
→
x) ≡ Q(

→
x)) iff for every polynomial p(n) there exists i0

such that for every i ≥ i0 and every tuple
→
a of bit strings we have that

∣
∣Prob

[
P

(→
a

)n←i � 1
] − Prob

[
Q

(→
a

)n←i � 1
]∣
∣ ≤ 1/p(i).

Obviously, ≡ is an equivalence relation on sequential process expressions.
We note that in the PIOA model, a notion of indistinguishability is considered where

a separate machine compares views on runs of systems. However, for the results con-
sidered in this paper, this does not make a difference.

3. Single Machine Normal Form

In this section, we show that sequential process expressions can be turned into what we
call single machine normal form.

As explained informally in Sect. 2.1, these normal forms correspond to probabilistic
polynomial time IO automata (PIOAs) or Interactive Turing Machines (ITMs) which in
every step read exactly one message (on some external channel) as input and produce
at most one message as output, and which, in addition, have guards (M-terms) which
allow them to reject or accept their input. If they reject the input, then the message sent
is dropped and no further computation is carried out. (In this case, the master process
is triggered by reading a message on start.) The guards are deterministic Turing ma-
chines which run in polynomial time in the security parameter. If a process (in SMNF)
is open, i.e., has free variables, then this corresponds to a nonuniform PIOA/ITM (with
guards), and otherwise to a uniform one.

Guards add additional power to processes (or PIOA and ITM extended by guards).
The machine itself could inspect the input and decide whether to accept or reject it,
and in the latter case, would simply produce no output. However, the overall runtime of
machines is bounded by a polynomial in the security parameter and is independent of the
number of invocations to a machine. As a consequence, inspecting the input consumes

On the Relationships between Notions of Simulation-Based Security 509

resources. The idea behind the guards is that they are invoked anytime a message is
sent on an input channel and that their runtime is not added to the runtime of the “main
machine.” Consequently, using guards inspecting the input does not consume resources.
In other words, guards of processes (or PIOA and ITM extended by guards) are devices
of a machine whose runtime may depend on the number of invocations (where within
one invocation the runtime is polynomial in the security parameter).

We will sometimes consider processes in what we call simple single machine normal
form (SSMNF) where the guards accept all messages. We refer to the fragment of SPPC
where all process are concurrent compositions of processes in SSMNF the guard-free
fragment of SPPC.

A process expression in single machine normal form works as follows: Before
processing a message on an input channel (a low channel), an M-term (the “guard”) on
this channel decides whether to accept or reject this message. The message is processed
further only if the M-term accepts the message and otherwise the message is dropped.
In the former case, the internal state is updated (via a high channel) depending on the
current internal state and the current message, and next at most one message is written
on an output channel (a low channel). Further explanation is given in the following.
Formally, the single machine normal form is defined as follows.

Definition 3. We say that a sequential process expression P(
→
z) is in single machine

normal form (SMNF) if it is of the following form:

Sinit
(→
z
)∥
∥!q(n) S

(→
z
)
, (1)

where

S
(→
z
) = in(cs, z) .

∑

c∈Cin(P(
→
z))

in
(
c, tin

(
c, z,

→
z ;x))

.

(

out
(
cns, Tns

(
c, x, z,

→
z
))

∥
∥
∥
∥

(∑

c′∈Cout(P(
→
z))

in
(
cns, tout

(
c′;y, v

))
.
(
out(cs, y)

∥
∥out

(
c′, v

))

+ in
(
cns, tempty(y)

)
. out(cs, y)

))

,

and Sinit(
→
z) is defined in the same way except that in(cs, z) is removed and every

occurrence of z is replaced by ε (representing the initial state of P).
The internal channels cs and cns (which carry the current and the updated state,

respectively) are defined to be high channels while all other channels are (external, and
thus) low channels.

We say that a sequential process expression is in simple single machine normal form

(SSMNF) if it is in SMNF and the M-term tin(c, z,
→
z ;x) accepts all incoming mes-

sages. We call the fragment of SPPC where all processes are concurrent compositions
of processes in SSMNF the guard-free fragment of SPPC.

510 R. Küsters et al.

Intuitively, the variable z stores the current state of P . The M-term tin(c, z,
→
z ;x)

is the guard which is used to decide whether P accepts or rejects the input on c. This
term takes as input the name of the channel c from which input shall be read, the current

state z, and the external inputs
→
z . Its output is written into x. The C-term Tns(c, x, z,

→
z)

computes the new state depending on the current state z, the output x of tin(c, z,
→
z ;x),

and the free variables
→
z . The M-term tout(c

′;y, v) intuitively accepts an input a (which
is the current state) if a encodes that the next output, say b, shall be written on c′. If
tout(c

′;y, v) accepts a, then y is substituted by a and v by b. The M-term tempty(y)

works similarly. It accepts a only if a encodes that nothing shall be written on an output
channel.

The following lemma tells us that every sequential process expression can be turned
into single machine normal form. The proof of the following lemma is rather simple.
Intuitively, the sequential process expressions P1 and P2 in this lemma are independent
processes that may communicate (see also Sects. 2.1 and 4.1).

Lemma 4. Let P1 = P1(
→
z) and P2 = P2(

→
z) be (possibly open) sequential process

expressions such that C(P1) ∩ Cint(P2) = ∅, Cint(P1) ∩ C(P2) = ∅, Cin(P1) ∩
Cin(P2) = ∅, and Cout(P1) ∩ Cout(P2) = ∅. Then, P1 and P2 can be turned into
single machine normal forms P ′

1 and P ′
2, respectively, such that

Prob
[(
P1

(→
a

)∥
∥P2

(→
a

))n←i � 1
] = Prob

[(
P ′

1

(→
a

)∥
∥P2

(→
a

))n←i � 1
]

= Prob
[(
P1

(→
a

)∥
∥P ′

2

(→
a

))n←i � 1
]

= Prob
[(
P ′

1

(→
a

)∥
∥P ′

2

(→
a

))n←i � 1
]

for every i and tuple
→
a . In particular,

P1 ‖P2 ≡ P ′
1 ‖ P2 ≡ P1 ‖P ′

2 ≡ P ′
1 ‖ P ′

2.

Proof. We prove that P1 can be turned into single machine normal form P ′
1 such

that Prob[(P1(
→
a) ‖ P2(

→
a))n←i � 1] = Prob[(P ′

1(
→
a) ‖ P2(

→
a))n←i � 1] for every i

and
→
a . Turning P2 into single machine normal form is done in the same way.

To define P ′
1(

→
z), we need to specify the C-term Tns(c, x, z,

→
z), the M-terms

tin(c, z,
→
z ;x), tout(c

′;y, v), and tempty(y), and the polynomial q(n) in (1).

We start with the definition of tin(c, z,
→
z ;x). The variable z will be substituted by

some representation of a process P1. From P1 together with
→
z , tin(c, z,

→
z ;x) can

determine whether P1 would accept or reject a given input a on c as follows: First,

tin(c, z,
→
z ;x) determines from P1 the set t1, . . . , tl of M-terms occurring in input

processes in(c, ti).P
′
1 associated with input contexts of P1. Note that l is polynomially

bounded in the security parameter. If l = 0, then this means that P1 does not accept any

input on c, and therefore tin(c, z,
→
z ;x) will reject every input on c. Otherwise, given an

On the Relationships between Notions of Simulation-Based Security 511

input a, tin(c, z,
→
z ;x) will apply every ti to a. If every ti rejects a, then tin(c, z,

→
z ;x)

rejects a as well. Otherwise, tin(c, z,
→
z ;x) copies a into the output x.

The C-term Tns(c, x, z,
→
z) evaluates z = P1 based on x and

→
z . More precisely, if

z = ε and the security parameter is i, then Tns(c, a, ε,
→
a) does the following:

Tns(c, a, ε,
→
a) computes and outputs a process Q by first applying →(c,a) to P1(

→
a)n←i

and then, to the result, alternatively applying ⇀ and → until for the current process P1

one of the following is true: (a) P1 is a process without output, (b) P1 = out(c, a) ‖ P ′
1

for some process P ′
1 without output and an external (i.e., low) channel c, or (c) P1 oc-

curred before. (Note that if P1 is a process with output on a high and a low channel, then

Tns(c, a, ε,
→
a) further simulates the computation of P1, i.e., have P1 read the message

on the high channel. This results in a process with output only on the low channel.)

Analogous to Theorem 1, it is easy to see that this reduction of P1(
→
a)n←i can be car-

ried out by a probabilistic polynomial time algorithm. If z
= ε, then z is a process P1.

In this case, Tns(c, x, z,
→
z) simulates the reduction of this process in the same way as

described above.
The M-term tout(c

′;y, v) receives as input a process, say P1. If P1 is a process
without output, tout(c

′;y, v) rejects P1. Otherwise, P1 is of the form out(c, a) ‖ P ′
1

for some process P ′
1 without output and an external channel c. If c
= c′, then again,

tout(c
′;y, v) rejects P1. Otherwise, y is substituted by P ′

1 and v by a.
The behavior of the M-term tempty(y) is analogous to that of tout(c

′;y, v). It accepts
P1 iff it is a process without output, and in this case y is substituted with P1.

We define the polynomial q(n) to be the communication size comsize(P1(
→
z)) of

P1(
→
z). Note that due to the M-term tin(c, z,

→
z ;x), the single machine normal form

of P1 reads an input a on a channel c iff P1 would read a on c. In particular, if P1

currently cannot read a on c (because there is no input process for c or all M-terms
reject a), then the single machine normal form would not read a on c as well, and thus
would not be activated in the first place. This guarantees that the single machine normal
form is activated by receiving external messages exactly as often as P1, and therefore

it suffices to define q(n) as done earlier. Without tin(c, z,
→
z ;x), the decision whether

a can be read by P1 would be made only when evaluating Tns(c, x, z,
→
z). Hence, the

single machine normal form would always be activated even if P1 rejects the input. In
this case, the number of activations of the single machine normal form could not be
bounded by q(n).

Now, Prob[(P1(
→
a) ‖ P2(

→
a))n←i � 1] = Prob[(P ′

1(
→
a) ‖ P2(

→
a))n←i � 1] is easy

to verify. �

We note that Lemma 4 does not hold for SSMNFs because a process in SSMNF has
to process all input messages. For instance, there is no SSMNF equivalent to the process
expression P = in(c0, x) . in(c1, y) . out(c2, y): Assume that there is a process Q in
SSMNF equivalent to P . Let q(n) be the communication size of this machine. An envi-
ronment E could send q(n)+1 random messages on c1 before sending a message on c0,
and then a random message m on c1. The environment E will output 1 on decision
if m is returned on cout; otherwise, if E is triggered on start, it will output 0 on

512 R. Küsters et al.

decision. When interacting with P , the message m will be returned to E on c2.
However, when interacting with Q, no message will be returned since Q has already
terminated as it can process only q(n) messages. Thus, E �P
≡ E �Q, i.e., it is not true
that E �P ≡ E �Q.

Remark 5. Lemma 4 does not hold, in general, when restricted to SSMNFs.

4. Definition of Security Notions

In this section, we introduce the security notions Strong Simulatability, Strong and Weak
Black-Box Simulatability, and Universal Composability. We first need some more no-
tation.

4.1. Channel Configurations

To define the security notions, we need to specify how different processes (describing
the environment, the real/ideal adversary, the simulator, the real/ideal protocol) can be
connected via channels. At the end of this section, we provide an example to illustrate
the definitions.

Recall from Sect. 2 that C(P) denotes the set of channels of P and Cint(P),
Cext(P), Cin(P), and Cout(P) are the sets of internal, external, input, and output
channels of P , respectively.

The set of external channels of a process expression P is further partitioned into the
set of IO channels Cio

ext(P) and the set of network channels Cnet
ext(P). Thus, the set of

external channels of P is partitioned into the set of input IO channels Cio
in(P), output

IO channels Cio
out(P), input network channels Cnet

in (P), and output network channels
Cnet
out(P). We require that if decision ∈ C(P), then decision ∈ Cio

out(P). Also, if
start ∈ C(P), then start ∈ Cio

in(P).
We say that two process expressions P and Q are compatible iff they have the same

set of external channels and these channels are of the same type, i.e., Cnet
in (P) =

Cnet
in (Q), Cio

in(P) = Cio
in(Q), Cnet

out(P) = Cnet
out(Q), and Cio

out(P) = Cio
out(Q). They

are IO-compatible iff they have the same set of IO channels and disjoint sets of network
channels, i.e., Cnet

ext(P) ∩ Cnet
ext(Q) = ∅, Cio

in(P) = Cio
in(Q), and Cio

out(P) = Cio
out(Q).

Given sequential process expressions P and Q, by P � Q we denote the concurrent
composition P ′ ‖ Q′ where P ′ and Q′ are obtained from P and Q by renaming the
internal channels of P and Q, respectively, in such a way that C(P ′)∩Cint(Q′) = ∅ and
Cint(P ′)∩C(Q′) = ∅. The intuition is that P and Q are different processes (machines)
which communicate via their external channels only as explained in Sects. 2.1 and 3.
They should not interfere on their internal channels. It may help to think of P and Q to
be in SMNF (with different high channels). By Lemma 4 this is w.l.o.g. The definition
of � is generalized to sequential process expressions P1, . . . ,Pn in the obvious way.
To really match the intuition that different processes communicate, we introduce what
we call valid process expressions.

A sequential process expression P is valid for a sequential process expression Q if

Cext(P) ∩ Cext(Q) ⊆
⋃

x∈{in,out},y∈{net,io}

(
C

y
x(P) ∩ C

y

x(Q)
)
,

On the Relationships between Notions of Simulation-Based Security 513

where x = in if x = out, and vice versa. That is, external channels used both in P and
Q are of the same “type” w.r.t. being network or IO channels and are of opposite “types”
w.r.t. being input or output channels. Note that being valid is a symmetric relation. Given
a set Z of sequential process expressions, we denote by Z-Valid(Q) the set of all process
expressions in Z valid for Q.

We call P an adversarial (adversarially valid) process expression for Q if P is valid
for Q and Cext(P) ∩ Cio

ext(Q) = ∅. In other words, an adversarial process expression
never connects to another process expression via the IO channels. By Z-Adv(Q) we
denote the set of sequential process expressions in Z adversarially valid for Q. We
write Z-AdvP (Q) to denote the set of all process expressions P ′ ∈ Z-Adv(Q) such that
P ′ �Q and P are compatible.

We say that P is an environmental (environmentally valid) process expression for Q
if P is valid for Q and Cext(P) ∩ Cnet

ext(Q) = ∅. That is, an environmental process ex-
pression never connects to the network channels of a process expression. By Z-Env(Q)

we denote the set of all process expressions in Z environmentally valid for Q.
We call a sequential process expression P

• Regular if start,decision /∈ C(P);
• Master if decision /∈ C(P), i.e., P may use start;
• Decision if start /∈ C(P), i.e., P may use decision; and
• Master decision otherwise.

In what follows, by R, M, D, and MD we denote the set of all closed regular process
expressions, closed master process expressions, (open/closed) decision process expres-
sions, and (open/closed) master decision process expressions, respectively. In those
cases where it is relevant to distinguish between open and closed process expressions,
we explicitly specify D and MD.

Example. To illustrate the above, let us look at the following typical configuration:
E � A � P where A is adversarially valid for P and E is environmentally valid for
A � P . That is, A only connects to (not necessarily all) network channels of P and
E only connects to (not necessarily all) IO channels of P and A. Intuitively E is the
environment process, A is the adversarial process, and P is the real protocol. Moreover,
let us assume that E ∈ MD, i.e., E is a master decision process. It is helpful to think of E
and A to be in SMNF. Often, P is the concurrent composition P1 � · · · �Pn describing
n parties (or machines) running a particular protocol. (As mentioned, by using bounded
replication it is also possible to specify protocols with a polynomial number of parties.)
Again, one can think of every Pi to be in SMNF.

Let us look at a run of such a system. As E is the master process and initially no other
communication is possible since no other process has produced output yet, E can read a
message on the start channel. (In case E does not read a message on this channel or the
guard rejects the message, nothing will happen and the run is completed.) After some
computation, E will typically write a message on one of its external IO channels c to
A or P , say to P . Then, E will have to wait for new input and by reading the message
on c, P will be activated next, in case the guard on c of P , more precisely one of the
subprocesses Pi of P , accepts the message. (Otherwise, E as the master process will be
activated again via the start channel.) After some computation, P will typically send

514 R. Küsters et al.

a message on some external channel, say on a network channel to A, which activates A,
and P has to wait for new input, and so on.

4.2. Security Notions

We now define the various security notions. For Strong Simulatability as well as Strong
and Weak Black-Box Simulatability we define two variants depending on whether or
not the simulator may play the role of the master process.

The first definition will be used if the simulator is a regular process, and thus, not a
master.

Definition 6. Let A (adversaries), I (ideal adversaries), E (environments), and S (sim-
ulators) be sets of sequential process expressions, and P (the real protocol) and F (the
ideal functionality) be sequential process expressions.

Strong Simulatability: SS(S,E)(P,F) iff P and F are IO-compatible and there ex-
ists S ∈ S-AdvP (F) (called simulator) such that E � P ≡ E � S � F for every
E ∈ E-Valid(P) (called environment).

Strong Black-Box Simulatability: SBB(A,S,E)(P,F) iff P and F are IO-compatible
and there exists S ∈ S-AdvP (F) (called simulator) such that E � A � P ≡ E � A �
S � F for every A ∈ A-Adv(P) (called adversary) and E ∈ E-Env(A � P) (called
environment).

Weak Black-Box Simulatability: WBB(A,S,E)(P,F) iff P and F are IO-compatible
and for every A ∈ A-Adv(P) (called adversary) there exists S ∈ S-AdvP (F) (called
simulator) such that E � A � P ≡ E � A � S � F for every E ∈ E-Env(A � P) (called
environment). As we will see, equivalently we can require that the simulator S may
depend only on the communication size of A instead of on A itself. In particular, all
our results hold for both variants, and we therefore do not distinguish between them
explicitly. Necessary adjustments in proofs will be pointed out.

Universal Composability: UC(A,I,E)(P,F) iff P and F are IO-compatible and for
every A ∈ A-Adv(P) (called real adversary) there exists I ∈ I-AdvA �P (F) (called
ideal adversary) such that E �A �P ≡ E � I �F for every E ∈ E-Env(A �P) (called
environment).

In Sect. 5 we will consider a variety of different instances of the above security no-
tions by defining the sets A, I, S, and E to be one of the sets R, M, D, and MD. One such
instance is UC(M,M,MD)(P,F): Note that with A ∈ M-Adv(P), I ∈ M-AdvA �P (F),
and E ∈ MD-Env(A � P) as required by UC(M,M,MD)(P,F) it follows that if A is
a master process expression, i.e., contains start, then E is not allowed to contain
start, i.e., E is just a decision process expression, since otherwise E would not be
environmentally valid for A. Conversely, if A is regular, i.e., does not contain start,
then E may contain start. In other words, it is guaranteed that not both, the adversary
and the environment, are master process expressions at the same time. Only at most one
of them has this role.

We now define versions of Strong Simulatability as well as Strong and Weak Black-
Box Simulatability for the case where the simulator may play the role of the master
process. This is motivated by security notions considered in the PIOA model [4,5,30]

On the Relationships between Notions of Simulation-Based Security 515

where, due to renaming of ports, the simulator may play the role of the master process.
Although only Strong Black-Box Simulatability is considered in the PIOA model, the
versions of Strong Simulatability and Weak Black-Box Simulatability defined below are
inspired by the placement of the master process for Strong Black-Box Simulatability in
the PIOA model. The definitions given below also apply to the case where the simulator
is restricted to be a regular process, and in this case they coincide with the definitions
given above. Hence, it would have been enough to provide only one definition. However,
since the previous definitions are simpler, we separate the two cases.

Definition 7.

Strong Simulatability: SSsim(M,MD)(P,F) iff the following conditions are satisfied:

• P and F are IO-compatible.
• There exists S ∈ M adversarially valid for F and such that P and S � F are

compatible except that, in addition to the external channels in P , S may contain
start as input IO channel and if start occurs in S , then start′ may also
occur in S as a new output IO channel.

• E � P ≡ E ′ � S � F for every E ∈ MD-Valid(P) where E ′ = E if start does
not occur in S and where E ′ is obtained from E by replacing every occurrence
of start by start′ otherwise.

Strong Black-Box Simulatability: SBBsim(M,M,MD)(P,F) iff the following condi-
tions are satisfied:

• P and F are IO-compatible.
• There exists S ∈ M adversarially valid for F and such that P and S � F are

compatible except that, in addition to the external channels in P , S may contain
start as input IO channel and if start occurs in S , then start′ may also
occur in S as a new output IO channel.

• E �A �P ≡ E ′ �A′ � S �F for every A ∈ M-Adv(P) and E ∈ MD-Env(A �P)

where E ′ = E and A′ = A if start does not occur in S and where E ′ and
A′ are obtained from E and A, respectively, by replacing every occurrence of
start by start′ otherwise. (Note that start can not occur both in E and A
since otherwise E would not be environmentally valid for A �P .)

In the above definition of SBBsim, we could also restrict E to be a decision process
if S is a master process, i.e., if S is a master process, then only A may be a master
process, but E may not. In this case, E ′ will always be E . Both of these interpretations
regarding the placement of the master process as defined in [4] for the PIOA model
are possible. However, it is not hard to see that they are equivalent and we therefore
do not explicitly distinguish between them, but simply assume the first mentioned
definition throughout this paper.

Weak Black-Box Simulatability: WBBsim(M,M,MD)(P,F) iff the following condi-
tions are satisfied:

• P and F are IO-compatible.
• For every A ∈ M-Adv(P) there exists S ∈ M adversarially valid for F and such

that P and S �F are compatible except that, in addition to the external channels

516 R. Küsters et al.

in P , S may contain start as input IO channel and if start occurs in S ,
then start′ may also occur in S as a new output IO channel.

• E � A � P ≡ E ′ � A′ � S � F for every E ∈ MD-Env(A � P) where E ′ = E and
A′ = A if start does not occur in S and where E ′ and A′ are obtained from
E and A, respectively, by replacing every occurrence of start by start′
otherwise.

In the above definition of WBBsim, we could also restrict S to be master only if A
is master, i.e., S may contain start only if A does. In this case, we can always
replace E ′ by E . Also, just as for WBB, we can consider a version of WBBsim where
the simulator may depend only on the communication size of A. As we will see, all
(four) variants are equivalent, and we will not distinguish between them explicitly.
However, we point out necessary modifications in proofs.

Variants of SSsim, SBBsim, and WBBsim, including for example,
SSsim(M\R,MD)(P,F), SBBsim(M,M,D)(P,F), and WBBsim(M,M,D)(P,F) are de-
fined in the obvious way.

5. Relationships between the Security Notions

In this section, we examine the relationships between the security notions introduced in
the previous section. We prove some expected equivalences between the security notions
and observe some surprising differences which would not be apparent without detailed
analysis. The proofs are carried out axiomatically. The axiom system is introduced in
Sect. 5.1. We show that all of the axioms are sound, i.e., are satisfied in SPPC, except for
one axiom, which is called FORWARDER. In Sect. 5.2, we show that FORWARDER is
a necessary condition on protocols in order for Universal Composability to imply Black-
Box Simulatability or Strong Simulatability, i.e., if this axiom does not hold, then Uni-
versal Composability does not imply Black-Box Simulatability (Strong Simulatability).
In Sect. 5.3, we compare the security notions for the cases where the environment may
play the role of the master decision process, and in Sect. 5.4 we restrict the environment
to be a decision process. In Sect. 5.5, we study variants of Strong and Black-Box Sim-
ulatability where the simulators may be master processes. All results are summarized
in Sect. 5.6. Based on the FORWARDER axiom, we obtain a complete characterization
of the conditions under which Universal Composability and Black-Box Simulatability
are equivalent. Since the proofs are carried out axiomatically, our results immediately
carry over to those computational models that satisfy the axioms (Sect. 6). These ax-
ioms can also serve as an abstract specification of a “reasonable” computational model
for simulation-based security.

5.1. The Axiom System

To define the axioms (equational principles), we first introduce four variants of so-called
dummy adversaries, which simply forward messages on network channels of protocols
and are used to rename network channels and turn network channels into IO channels.

The first dummy adversary, called regular network dummy adversary, simply for-
wards messages received on channel c ∈ Cout to a copy c′ of this channel and messages

On the Relationships between Notions of Simulation-Based Security 517

received on channel c′ for a copy of a channel c ∈ Cin to channel c. The number of mes-
sages this dummy can forward is bounded by a polynomial in the security parameter.
Formally, a regular network dummy adversary is defined as

Dnet
R

(
Cin,Cout, q(n)

)

= Dnet
R =!q(n)

(∑

c∈Cout

in(c, x) . out
(
c′, x

) +
∑

c∈Cin

in
(
c′, x

)
. out(c, x)

)

, (2)

where Cin and Cout are disjoint and finite sets of channel names, c′ is a new copy
of c, i.e., it has a new name, and q(n) is a polynomial in n. All channels in Dnet

R are
considered network channels. Note that Dnet

R ∈ R.
The regular IO dummy adversary Dio

R (Cin,Cout, q(n)) is defined just as Dnet
R (Cin,

Cout, q(n)) except that the channels c′ are declared to be IO channels. Again, we have
that Dio

R (P) ∈ R.
The following two dummy adversaries are master process expressions. The first one

is called master network dummy adversary and it works just as the regular network
dummy adversary except that it also forwards messages received on start to start′.
More formally, a master network dummy adversary is defined as

Dnet
M

(
Cin,Cout, q(n)

)

= Dnet
M

=!q(n)

(∑

c∈Cout

in(c, x) . out
(
c′, x

) +
∑

c∈Cin

in
(
c′, x

)
. out(c, x)

+ in(start, x) . out
(
start′, x

)
)

, (3)

where Cin, Cout, q(n), and the channels c′ are defined just as in Dnet
R (Cin,Cout,q(n)).

The channel start′ is a new channel and declared to be an IO channel.
The master IO dummy adversary Dio

M (Cin,Cout, q(n)) is defined just as Dnet
M (Cin,

Cout, q(n)) except that the channels c′ are declared to be IO channels.
Now we are ready to state the axioms and equational principles we use. Further ex-

planations follow.

COM. For all sequential process expressions P and Q:

P �Q≡ Q �P .

ASC. For all sequential process expressions P , Q, and R:

P � (Q �R) ≡ (P �Q) �R.

TRN. For all sequential process expression P , Q, and R:

P ≡ Q, Q≡ R =⇒ P ≡ R.

518 R. Küsters et al.

SYM. For all sequential process expressions P and Q:

P ≡ Q =⇒ Q ≡ P .

RENAME. For sequential process expressions P1, . . . ,Pk such that Pi is valid for
Pi+1 � . . . � Pk for every i:

P1 � . . . �Pk ≡ P ′
1 � . . . �P ′

k,

where the P ′
i are derived from Pi by consistently (w.r.t. the other P ′

j) renaming exter-
nal channels (start and decision may not be renamed) and changing network
channels to IO channels and vice versa.

RENAME-START.

E �A ≡ E � !q(n) in(start, ε) . out
(
start′, ε

)
�A′

for every A ∈ M, E ∈ D-Valid(A), and q(n) ≥ comsize(A)(n) where A′ is ob-
tained from A by replacing every occurrence of start by the new channel start′.

REG-S-FORWARDER.

E �P ≡ E ′ �Dnet
R �P

for every P ∈ R, E ∈ MD-Valid(P), and q(n) ≥ comsize(P)(n)+comsize(E)(n)

such that Dnet
R = Dnet

R (Cnet
in (P),Cnet

out(P), q(n)) and E ′ is obtained from E by
replacing every occurrence of network channels c of P by c′ as in the definition
of Dnet

R .
REG-ADV-FORWARDER.

E �A �P ≡ E �A′ �Dnet
R �P

for every P ∈ R, A ∈ M-Adv(P), E ∈ MD-Valid(A � P), and q(n) ≥
comsize(P)(n) + comsize(A)(n) such that Dnet

R = Dnet
R (Cnet

in (P),

Cnet
out(P), q(n)) and A′ is obtained from A by replacing every occurrence of net-

work channels c of P by c′ as in the definition of Dnet
R .

MASTER-S-FORWARDER.

E �P ≡ E ′
M �Dnet

M �P

for every P ∈ R, E ∈ MD-Valid(P), and q(n) > comsize(P)(n)+comsize(E)(n)

such that Dnet
M = Dnet

M (Cnet
in (P),Cnet

out(P), q(n)) and E ′
M is obtained from E by re-

placing every occurrence of network channels c of P by c′ as in the definition of
Dnet

R and replacing every occurrence of start in E (if any) by start′.
MASTER-ADV-FORWARDER.

E �A �P ≡ E �A′
M �Dnet

M �P

for every P ∈ R, A ∈ M-Adv(P), E ∈ D-Valid(A �P), and q(n) > comsize(P)(n)

+ comsize(A)(n) such that Dnet
M = Dnet

M (Cnet
in (P),Cnet

out(P), q(n)) and A′
M is

obtained from A by replacing every occurrence of network channels c of P by c′ as
in the definition of Dnet

R and replacing every occurrence of start in A (if any) by
start′.

On the Relationships between Notions of Simulation-Based Security 519

FORWARDER(P). There exists D ∈ R-Adv(P) such that Cio
ext(D) = ∅, Cnet

in (D) =
Cnet
out(P) ∪ Cnet

in (P)′, Cnet
out(D) = Cnet

in (P) ∪ Cnet
out(P)′, and for every E ∈

MD-Valid(P):

E �P ≡ E ′ �D �P,

where Cnet
in (P)′ consists of new copies c′ of the channels in Cnet

in (P), Cnet
out(P)′

consists of new copies c′ of the channels in Cnet
out(P), and E ′ is obtained from E by

replacing every occurrence of network channels c of P by c′.
MMD-INCLUSION. For every P ∈ R:

∀A ∈ M-Adv(P) . ∀E ∈ MD-Env(A �P) : E �A ∈ MD-Valid(P).

MD-INCLUSION. For every P ∈ R:

∀A ∈ M-Adv(P) . ∀E ∈ D-Env(A �P) : E �A ∈ MD-Valid(P).

The letters “S” in the axioms REG-S-FORWARDER and MASTER-S-FORWARDER
denote “simple.” All axioms, except for the last two, are equational principles on process
expressions. The last two axioms allow us to combine a environment that may only ac-
cess the IO channels of a protocol and an adversary, which may only access the network
channels of a protocol, into an environment that may access both the IO and network
channels of a protocol.

The following lemma states that all axioms, except for FORWARDER, are sound,
i.e., are true in SPPC. These axioms are called basic axioms as they should be satisfied
in most computational models for simulation-based security notions (see Sect. 6). As we
will see, most of the relationships between the security notions require only the basic
axioms to hold. We will only need FORWARDER to show that Universal Composability
implies Black-Box Simulatability (or equivalently, Strong Simulatability). The axiom
FORWARDER is further discussed in Sect. 5.2.

Lemma 8. All axioms mentioned above, except for FORWARDER, are sound, i.e.,
hold for SPPC. This is also true for the guard-free fragment of SPPC.

Proof. The proofs of the properties COM, ASC, TRN, and SYM are trivial. The prop-
erty RENAME is also obvious as the semantics of process expressions do not depend
on the names of channels and whether they are network or IO channels.

In RENAME-START, the additional process expression on the right-hand side simply
forwards the message on start (which by the definition of the semantics is always ε)
via start′ to A′. Since q(n) ≥ comsize(A) = comsize(A′), this process does not
terminate before A (A′) does, and thus the signal on start is always forwarded. Note
that if at some point A (A′) ignores the start signal, then from that point on the system
will not change and, in particular, nothing will be written on the channel decision.

The property MASTER-S-FORWARDER easily follows from the following observa-
tions: First note that E and E ′

M behave exactly the same except that if E outputs/inputs
a message on the (low) channel c ∈ Cnet

ext(P), then E ′
M outputs/inputs a message on

the (low) channel c′. Since these channels are low channels and since by the definition
of sequential process expressions at any time there is at most one message on a low

520 R. Küsters et al.

channel, messages between E ′
M and P are immediately forwarded by Dnet

M . Second, if
E �P , and more precisely E , receives a message on start, then in E ′

M �Dnet
M �P the

dummy adversary Dnet
M receives a message on start and by definition immediately

forwards it to E ′
M on start′. Then, E ′

M behaves exactly as E . Third, note that if Dnet
M

receives a message, then this message comes from E ′
M , P , or start. If the message

comes from start and Dnet
M forwards this message on start′ but E ′

M does not read
the message, then the overall system stops. Thus, this can happen only once, and hence,
in all other cases if Dnet

M receives a message, the communication size of E ′
M or P de-

creases (if the message was sent on start, then the communication size of E ′
M will

decrease when reading start′). By the definition of q(n) it is therefore guaranteed that
Dnet

M will not terminate before E ′ and P do. The argument for REG-S-FORWARDER
is similar.

For MASTER-ADV-FORWARDER note that if MASTER-ADV-FORWARDER re-
ceives a message, then this message must have been received from A′

M , P , or start.
Now, the argument is analogous to the one for MASTER-S-FORWARDER; similarly
for REG-ADV-FORWARDER.

It is clear that MMD-INCLUSION and MD-INCLUSION are sound. The arguments
for the guard-free fragment of SPPC are the same. �

Remark 9. In MASTER-S-FORWARDER it does not suffice to define q(n) indepen-
dently of comsize(E). If q(n) = comsize(P)(n), then consider for instance the en-
vironment E (E ′

M) which triggers Dnet
M via start q(n) + 1 times. When interacting

with Dnet
M , E ′

M will not be triggered via start′ after the q(n) + 1st time, however, E
would be triggered via start. Thus, E (E ′

M) can “observe” Dnet
M (see also the proof

of Theorem 21).
Similarly, in REG-S-FORWARDER it does not suffice to define q(n) =

comsize(P)(n) independently of comsize(E). Assume, for example, that P is of
the form P1 � · · · � Pk where the Pi model parties running a certain protocol. One of
the parties may terminate before others do. Now, if E sends a message to a terminated
party, say Pi , then P will not consume resources as the message is simply ignored by
Pi and no computation will take place. In particular, E can send an unbounded number
of messages to Pi without P consuming any resources. Later, E can send a message to a
nonterminated party Pj and will (possibly) obtain an answer. Now, if the dummy Dnet

R

is plugged in between E and P , then E can exhaust Dnet
R , i.e., force it to terminate, by

sending sufficiently many messages through Dnet
R to the terminated party. Then, when

E sends a message to the nonterminated party, Dnet
R does not have any resources left

to forward this message, and hence, E can detect the presence of Dnet
R because if the

Dnet
R is present no answer will come back from the nonterminated party and if Dnet

R is
absent the nonterminated party will receive the message from E and can send a reply.

5.2. On the Necessity and Validity of FORWARDER

We show that

1. The axiom FORWARDER is necessary for Universal Composability to imply
Black-Box Simulatability and Strong Simulatability (Sect. 5.2.1).

On the Relationships between Notions of Simulation-Based Security 521

2. The axiom FORWARDER is not true for all regular process expressions P ∈
R. But there are interesting classes of regular process expressions for which
FORWARDER is satisfied (Sect. 5.2.2).

5.2.1. Necessity of FORWARDER

We show that the axiom FORWARDER is necessary for Universal Composability to
imply Black-Box Simulatability and Strong Simulatability, respectively.

Let C be a class of sequential process expressions. We say that C is closed under
renaming if P ′ ∈ C for every P ∈ C where P ′ is obtained from P by renaming channels
(this does not include turning a network channel into an IO channel or vice versa).

The following theorem is stated for a certain variant of Universal Composability
(UC(R,R,MD)(P,F)), Strong Black-Box Simulatability (SBB(R,R,MD)(P,F)), and
Strong Simulatability (SS(R,MD)(P,F)). In the following sections, we will identify
various variants of Universal Composability as well as Weak Black-Box Simulatabil-
ity equivalent to UC(R,R,MD)(P,F). Also, there are various variants of Strong Black-
Box Simulatability and Strong Simulatability equivalent to SBB(R,R,MD)(P,F) and
SS(R,MD)(P,F), respectively (see Sect. 5.6 for an overview). To show these equiva-
lences the following theorem is not needed and, hence, this theorem immediately carries
over to other variants of security notions.

Theorem 10. Let C be a class of sequential process expressions closed under renam-
ing.

1. Assume that

UC(R,R,MD)(P,F) ⇒ SS(R,MD)(P,F)

for every P,F ∈ C. Then, FORWARDER(P) for every P ∈ C.
2. Assume that

UC(R,R,MD)(P,F) ⇒ SBB(R,R,MD)(P,F)

for every P,F ∈ C. Then, FORWARDER(P) for every P ∈ C.

Proof. We first prove the case for Strong Simulatability. Let P ∈ C. Under the given
assumptions, we want to show that FORWARDER(P).

Let P ′ be obtained from P by consistently renaming the network channels such that
the set of network channels of P ′ is disjoint from the set of network channels of P .
Obviously, we have that UC(R,R,MD)(P,P ′) since given the real adversary the ideal
adversary can be obtained from the real adversary by renaming the network channels
according to the renaming of network channels of P ′. Now, since with P ∈ C we have
that P ′ ∈ C and by the assumption that Universal Composability implies Strong Simu-
latability, we obtain SS(R,MD)(P,P ′). Hence, there exists a simulator S ∈ R-AdvP (P ′)
such that

E �P ≡ E � S �P ′

for all E ∈ MD-Valid(P). Note that S contains network channels from P and P ′. If c

is a network channel in P , then let c′ denote the corresponding channel in P ′. Let D be

522 R. Küsters et al.

obtained from S by switching the names of network channels, i.e., rename c to c′ and
c′ to c. Now, it is obvious that

E �P ≡ E ′ �D �P

for all E ∈ MD-Valid(P) where E ′ is defined as in FORWARDER(P). Thus,
FORWARDER(P) is true.

The proof for Strong Black-Box Simulatability is similar. Analogous to the pre-
vious case we conclude that SBB(R,R,MD)(P,P ′). Hence, there exists a simulator
S ∈ R-AdvP (P ′) such that

E �A �P ≡ E �A � S �P ′

for all A ∈ R-Adv(P) and all E ∈ MD-Env(A � P). In particular, this is true if A =
Dnet

R as defined in REG-S-FORWARDER where we set q(n) = comsize(P)(n) +
comsize(S)(n) + comsize(E)(n). Now, together with REG-S-FORWARDER we
obtain

E �P ≡ E ′ �Dnet
R �P ≡ E ′ �Dnet

R � S �P ′ ≡ E � S �P ′

for every E ∈ MD-Valid(P) where E ′ obtained from E as described in
REG-S-FORWARDER. Now, defining D as in the previous case, we can conclude
that FORWARDER(P) holds true. �

In the above proof we have used only very basic properties of our computational
model, which should be satisfied in most computational models for simulation-based
security. Hence, the above theorem should be true in all such models.

5.2.2. On the Validity of FORWARDER

We show that not all process expressions satisfy FORWARDER. However, it is possi-
ble to identify an interesting class of process expressions that satisfy this axiom. The
following terminology will become clear in the following.

Definition 11. We call a sequential process expression P network predictable if it
satisfies FORWARDER, i.e., if FORWARDER(P) holds.

Non-network Predictable Process Expressions We now show that not all regular
process expressions satisfy FORWARDER. It is useful to recall Remark 9. Intuitively,
as seen in this remark, if the dummy is defined only depending on P but completely
independent of E , then the dummy should only react to inputs from the environment
if P reacts to these inputs since otherwise the dummy may get “exhausted” by the en-
vironment. In other words, the environment can force the dummy to terminate before
P does and, in this case, the dummy cannot forward messages anymore. However, in
general, the dummy does not know on what channels P expects messages and it also
does not know what messages P accepts. We use this intuition to show:

Proposition 12. There exists P ∈ R which is not network predictable.

On the Relationships between Notions of Simulation-Based Security 523

Proof. Consider

P = (
in(c,0) . in(c0, x) . out(cout, x)

) + (
in(c,1) . in(c1, x) . out(cout, x)

)
,

where c and cout are declared to be IO channels and c0 and c1 are network chan-
nels. That is, the environment determines via a bit sent on the IO channel c (which is
invisible to the dummy) on which network channel—c0 or c1—P will accept a mes-
sage. Now, assume that there is a dummy D which satisfies the required conditions
for FORWARDER(P). It is helpful to think of D to be in SMNF. By Lemma 4 this
is w.l.o.g. Let us first consider the following environment E (which can easily be de-
scribed as process expression): E randomly chooses a bit b and a number i between 1
and comsize(D)(n) + 1. Then, E sends i − 1 randomly chosen messages, say of the
length of the security parameter, on c0 or c1 where for every message E again makes
a random decision on which channel—c0 or c1—to send the message. In all of these
cases, E will not receive any answer but will be triggered on start. Then, for the ith
step E again chooses a random message, say m, then sends b on channel c after which
E will be triggered through start, and then sends m on cb. Now, if E receives m back
on cout, then it outputs 1 on decision and otherwise (if E is triggered by start)
outputs 0.

We argue that E can distinguish between P and D �P , i.e., E �P
≡ E ′ �D �P .
The dummy D can only forward < comsize(D)(n) + 1 messages from c′

0 to c0
and c′

1 to c1 before it terminates. Thus, if E chooses i = comsize(D)(n) + 1, which
happens with non-negligible probability, the probability that D accepts messages on
both c′

0 and c′
1 for all comsize(D)(n) steps before the last message is sent by E must

be negligible: Otherwise when E sends the last message to cb and expects to obtain
input on cout, the probability that E in fact obtains input on this channel is negligible
as D will be terminated with overwhelming probability. Thus, there is a non-negligible
probability that D does not accept a message on some of its input channels—c′

0 or c′
1.

Consequently, E has a non-negligible chance of guessing this position in the run. In
case E guessed correctly, it will output 0 since it will not obtain input on cout but will
be triggered on start. Thus, when interacting with D and P , the environment E will
output 0 with non-negligible probability while when interacting only with P it will
always return 1. Hence, E �P
≡ E ′ �D �P . �

The proof of Proposition 12 indicates that, in order to obtain a class of network pre-
dictable process expressions, one needs to make sure that the dummy can determine
from the traffic on network channels on which channels the process accepts messages
and of what shape the messages have to be in order to be accepted by the M-terms;
otherwise the dummy can be exhausted. This is why we call such process expressions
network predictable.

Using length functions as in the version of PIOA in [6], the process P in the proof of
Proposition 12 can also be expressed in PIOA. Therefore, we can make the following
remark.

Remark 13. In the version of PIOA with length functions, protocols can be expressed
that are not network predictable.

524 R. Küsters et al.

In Sect. 6.1 we will see that FORWARDER can fail in PIOA even without length
functions.

A Class of Network Predictable Process Expressions We now define a class of process
expressions, called standard protocols, which in fact are network predictable.

Definition 14. A process expression P ∈ R is called a standard protocol if it is of the
form P = P1 � · · · �Pn where every Pi is in SSMNF.

We note that the class of standard protocols contains the protocols expressible in the
models proposed in [30] and [9]. As mentioned in Sect. 2.1, in a later version of the
PIOA model [6], length functions allow us to express certain M-terms (guards). Hence,
by Remark 13, this yields a class of protocols which goes beyond the class of standard
protocols.

Proposition 15. Standard protocols are network predictable.

Proof. Let P = P1 � · · · �Pn be a standard protocol. Define

Di = Dnet
R

(
Cnet
in (Pi),Cnet

out(Pi),comsize(Pi)(n)
)
.

(Recall the definition of Dnet
R from Sect. 5.1.) Hence, Di simply forwards all message

on network channels from and to Pi . To see that

E �Pi ≡ E ′ �Di �Pi ,

for all E ∈ MD-Valid(Pi), it suffices to observe that the number of messages that can
be sent to Pi and that can be received from Pi before Pi terminates is bounded by
comsize(Pi)—a bound known by Di—since Pi accepts all messages sent on (net-
work) channels. Thus, Di only needs to forward comsize(Pi) messages. After Pi has
terminated, Di does not need to forward messages anymore.

Now, since the set of network channels of the Pi are pairwise disjoint, it is clear that
with D = D1 � · · · �Dn we obtain that

E �P ≡ E ′ �D �P

for every E ∈ MD-Valid(P). �

Proposition 15 can be extended to bigger classes of protocols. For instance, it can be
extended to a class of protocols with a polynomial number of parties where messages
addressed to a certain party have to be prefixed by the name of the party and its role
in the protocol. More precisely, if the M-terms of parties accept exactly those messages
prefixed with the correct recipient and role, a dummy can predict whether or not a
message is accepted by a party.

On the Relationships between Notions of Simulation-Based Security 525

5.3. Declaring the Environment to be the Master Decision Process

The following theorem states the relationships between the security notions introduced
in Definition 6 in case the environment may play the role of the master decision process.
Among others, it says that the notions Strong Simulatability, Black-Box Simulatability,
and Universal Composability coincide given that the real protocol P is network pre-
dictable, i.e., the axiom FORWARDER(P) is true. However, many of the relationships
between the security notions are true independently of this axiom.

Theorem 16. Let P,F ∈ R.

1. SS(R,MD)(P,F) iff SBB(R,R,MD)(P,F) iff SBB(M,R,MD)(P,F).
2. UC(R,R,MD)(P,F) iff UC(M,M,MD)(P,F) iff WBB(R,R,MD)(P,F) iff

WBB(M,R,MD)(P,F).
3. The notions in 1 imply those in 2.
4. If P is network predictable, i.e., if FORWARDER(P) holds, then the security no-

tions mentioned in 1 and 2 are all equivalent.

The theorem holds both for the case where MD contains only closed process expressions
and for the case where MD may contain open process expressions.

Proof. Statement 1. From MMD-INCLUSION we easily obtain that SS(R,MD)(P,F)

implies SBB(M,R,MD)(P,F). It is easy to see that SBB(M,R,MD)(P,F) implies
SBB(R,R,MD)(P,F). We now show that SBB(R,R,MD)(P,F) implies SS(R,MD)(P,F).

1. Assume that SBB(R,R,MD)(P,F).
2. The definition implies that P and F are IO-compatible and

∃S ∈ R-AdvP (F) . ∀A
∈ R-Adv(P) . ∀E ∈ MD-Env(A �P) : E �A �P ≡ E �A � S �F .

3. Choosing A to be the regular IO dummy adversary Dio
R = Dio

R (Cnet
in (P),

Cnet
out(P), q(n)) we obtain

∃S ∈ R-AdvP (F) . ∀poly . q(n) . ∀E
∈ MD-Env

(
Dio

R �P
) : E �Dio

R �P ≡ E �Dio
R � S �F .

4. Choose S as in 3, let E ∈ MD-Valid(P), and q(n) = comsize(P)(n) +
comsize(E)(n). We have:

E �P ≡ E ′ �Dnet
R �P (REG-S-FORWARDER)

≡ E ′′ �Dio
R �P (RENAME)

≡ E ′′ �Dio
R � S �F (E ′′ ∈ MD-Env(Dio

R �P),3.)

≡ E ′ �Dnet
R � S �F (RENAME)

≡ E � S �F (REG-S-FORWARDER),

where E ′ is defined as in REG-S-FORWARDER and E ′′ is obtained from E ′ by
declaring the renamed network channels c′ of P to be IO channels. Since E is valid

526 R. Küsters et al.

for P and all network channels of P occurring in E have been renamed according
to Dnet

R and declared to be IO channels, it is clear that E ′′ ∈ MD-Env(Dio
R �P).

5. From 4 we immediately obtain that SS(R,MD)(P,F).

Statement 2. It is obvious that UC(M,M,MD)(P,F) implies UC(R,R,MD)(P,F) since if
the real adversary is regular, then so must be the ideal adversary because of the compat-
ibility requirement for A � P and I � F . We now show that UC(R,R,MD)(P,F) implies
UC(M,M,MD)(P,F).

Assume that UC(R,R,MD)(P,F) and let A ∈ M-Adv(P). We need to show (*):
There exists I ∈ M-AdvA �P (F) such that E � A � P ≡ E � I � F for every E ∈
MD-Env(A �P).

If A ∈ R, then (*) follows by the assumption UC(R,R,MD)(P,F).
Assume that A ∈ M \ R. Let A′ be obtained from A by replacing every occur-

rence of start by the new channel start′. Then, A′ ∈ R-Adv(P). By assump-
tion, there exists I ′ ∈ R-AdvA′ �P (F) such that E � A′ � P ≡ E � I ′ � F for every
E ∈ MD-Env(A′ � P). Let I be obtained from I ′ by replacing every occurrence of
start′ by start. Let E ∈ MD-Env(A �P). Since start occurs in A, we know that
E ∈ D. The following completes the proof of the equivalence between the two variants
of UC. In the second equation we use that E � !q(n) (in(start, ε). out(start′, ε)) ∈
MD-Env(A′ �P) where q(n) = comsize(A)(n) + comsize(I)(n).

E �A �P ≡ E � !q(n) in(start, ε) . out
(
start′, ε

)
�A′ �P (RENAME-START)

≡ E � !q(n) in(start, ε) . out
(
start′, ε

)
� I ′ �F (Definition of I ′)

≡ E � I �F (RENAME-START).

Clearly, we have that WBB(M,R,MD)(P,F) implies WBB(R,R,MD)(P,F). It is also ob-
vious that WBB(R,R,MD)(P,F) implies UC(R,R,MD)(P,F) since A � S is the ideal
adversary required in UC(R,R,MD)(P,F) where S is the simulator obtained from
WBB(R,R,MD)(P,F).

We now show that UC(R,R,MD)(P,F) implies WBB(M,R,MD)(P,F) which concludes
the proof of Statement 2.

1. Assume that UC(R,R,MD)(P,F).
2. The definition yields that P and F are IO-compatible and

∀A ∈ R-Adv(P) . ∃I
∈ R-AdvA �P (F) . ∀E ∈ MD-Env(A �P) : E �A �P ≡ E � I �F .

3. Choosing A = Dio
R = Dio

R (Cnet
in (P),Cnet

out(P), q(n)) for some q(n) we obtain:

∃Sq(n) = I ∈ R-AdvDio
R �P (F) . ∀E

∈ MD-Env
(
Dio

R �P
) : E �Dio

R �P ≡ E � Sq(n) �F .

On the Relationships between Notions of Simulation-Based Security 527

4. Let A ∈ M-Adv(P), q(n) = comsize(A)(n) + comsize(P)(n), choose Sq(n)

as in 3 and let E ∈ MD-Env(A �P). We obtain

E �A �P ≡ E �A′ �Dnet
R �P (REG-ADV-FORWARDER)

≡ E �A′′ �Dio
R �P (RENAME)

≡ E �A′′ � Sq(n) �F (E �A′′ ∈ MD-Env(Dio
R �P),3.)

≡ E �A � S ′
q(n) �F (RENAME),

where A′ is defined as in REG-ADV-FORWARDER, Dio
R and A′′ are obtained

from Dnet
R and A′ by declaring the renamed network channels c′ of P to be IO

channels, and S ′
q(n) is obtained from Sq(n) by declaring the IO channels c′ to be

network channels and renaming them to c according to P .
5. By observing that S ′

q(n) ∈ R-AdvP (F) and that S ′
q(n) depends only on F , P , and

(the communication size of) A, 4 immediately implies that WBB(M,R,MD)(P,F)

(for both variants of Weak Black-Box Simulatability).

Statement 3. From SS(R,MD)(P,F) we know that there exists S ∈ R-AdvP (F) such
that E � P ≡ E � S � F for every E ∈ MD-Valid(P). To show UC(M,M,MD)(P,F),
assume that A ∈ M-Adv(P) and E ∈ MD-Env(A � P). From MMD-INCLUSION it
follows that E � A ∈ MD-Valid(P), and thus, E � A � P ≡ E � A � S � F . Obviously,
A � S ∈ M-AdvA �P (F). Thus, defining the ideal adversary I to be A � S concludes
the proof.

Statement 4. Assume that FORWARDER(P). It suffices to show that UC(R,R,MD)(P,F)

implies SS(R,MD)(P,F). Let D be the dummy whose existence is guaranteed by
FORWARDER(P). Let Dio be obtained from D by declaring all the channels c′ to
be IO channels. (The channels c occurring in D remain network channels.)

1. Assume that UC(R,R,MD)(P,F).
2. The definition yields that P and F are IO-compatible and

∀A ∈ R-Adv(P) . ∃I
∈ R-AdvA �P (F) . ∀E ∈ MD-Env(A �P) : E �A �P ≡ E � I �F .

3. Choosing A = Dio we obtain

∃S = I ∈ R-AdvDio �P (F) . ∀E ∈ MD-Env(Dio �P) : E �Dio �P ≡ E � S �F .

4. Choose S as in 3 and let E ∈ MD-Valid(P). We obtain

E �P ≡ E ′ �D �P (FORWARDER(P))

≡ E ′′ �Dio �P (RENAME)

≡ E ′′ � S �F (E ′′ ∈ MD-Env(Dio �P),3.)

≡ E � S ′ �F (RENAME),

where E ′ is defined as in FORWARDER(P), E ′′ is obtained from E ′ by declaring
the renamed network channels c′ of P to be IO channels, and S ′ is obtained from

528 R. Küsters et al.

S by declaring the IO channels c′ (which correspond to the IO channels of Dio)
to be network channels and renaming them to c according to P .

5. By observing that S ′ ∈ R-AdvP (F), 4 immediately implies that SS(R,MD)(P,F).
�

By Theorem 10 and Proposition 12, to show Theorem 16, Statement 4, we cannot
dispense with the assumption that P is network predictable.

5.4. Restricting the Environment to be a Decision Process

In this section, we consider the case where, for Black-Box Simulatability and Universal
Composability, the environment is restricted to be a decision process while the adversary
may play the role of a master process. Interestingly, in this setting not all three security
notions are equivalent even if the real protocol is network predictable.

We first note that certain variants of SS, BB, and UC do not make sense where the
environment is restricted to be a decision process, as every two IO-compatible protocols
would be related.

Remark 17. We have that for all IO-compatible protocols P and F the relationships
SS(R,D)(P,F), SBB(R,R,D)(P,F), UC(R,R,D)(P,F), and UC(R,M,D)(P,F) are true be-
cause there are no master processes and therefore no computation can take place. Note
that in UC if the real adversary is a regular process expression, then so is the ideal
adversary and, thus, the two variants of UC are equivalent.

Theorem 18. Let P,F ∈ R. Then,

1. SS(R,MD)(P,F) iff SBB(M,,R)(P,F)D iff SBB(M\R,R,D)(P,F) iff
SBB(M\R,R,MD)(P,F).

2. WBB(M,R,D)(P,F) iff WBB(M\R,R,D)(P,F).
3. WBB(M,R,MD)(P,F) implies WBB(M,R,D)(P,F).
4. UC(M,M,D)(P,F) iff UC(M\R,M\R,D)(P,F) iff UC(M\R,M\R,MD)(P,F).
5. The notions in 1 imply those in 4, and UC(M,M,MD)(P,F) implies those in 4.

The theorem holds for the case where MD and D contain only closed process expres-
sions and for the case where MD and D may contain open process expressions.

Proof. Statement 1. Using the definitions and MD-INCLUSION, it immediately fol-
lows that SS(R,MD)(P,F) implies SBB(M,R,D)(P,F). Clearly, SBB(M,R,D)(P,F) im-
plies SBB(M\R,R,D)(P,F). The converse is also true: If the real adversary A is regular,
then E � A � P ≡ E � A � S � F because no one of the two process expressions con-
tains start and, thus, no computation takes place. We have that SBB(M\R,R,D)(P,F)

and SBB(M\R,R,MD)(P,F) are equivalent since if the real adversary contains start,
then the environment may not contain start and, hence, belongs to D. Similar to the
proof of Theorem 16, Statement 1, we now show that Black-Box Simulatability implies
Strong Simulatability.

On the Relationships between Notions of Simulation-Based Security 529

1. Assume that SBB(M,R,D)(P,F).
2. The definition yields that P and F are IO-compatible and

∃S ∈ R-AdvP (F) . ∀A
∈ M-Adv(P) . ∀E ∈ D-Env(A �P) : E �A �P ≡ E �A � S �F .

3. Choosing A to be the master IO dummy adversary Dio
M = Dio

M (Cnet
in (P),

Cnet
out(P), q(n)) we obtain

∃S ∈ R-AdvP (F) . ∀polynomials q(n) . ∀E
∈ D-Env

(
Dio

M �P
) : E �Dio

M �P ≡ E �Dio
M � S �F .

4. Choose S as in 3, let E ∈ MD-Valid(P), and q(n) = comsize(P)(n) +
comsize(S �F)(n) + comsize(E)(n). We have

E �P ≡ E ′
M �Dnet

M �P (MASTER-S-FORWARDER)

≡ E ′′
M �Dio

M �P (RENAME)

≡ E ′′
M �Dio

M � S �F (E ′′
M ∈ D-Env(Dio

M �P),3.)

≡ E ′
M �Dnet

M � S �F (RENAME)

≡ E � S �F (MASTER-S-FORWARDER),

where E ′
M is defined as in MASTER-S-FORWARDER and E ′′

M is obtained from
E ′

M by declaring the renamed network channels c′ of P to be IO channels. Since
E is valid for P , all network channels of P occurring in E have been renamed
according to Dnet

M and declared to be IO channels, and start has been renamed
to start′, it is clear that E ′′

M ∈ D-Env(Dio
M �P).

5. From 4 we immediately obtain that SS(R,MD)(P,F).

Statement 2. It suffices to observe that if the real adversary is not a master process, then
no computation will take place.

Statement 3. This statement is obvious.

Statement 4. The reasoning here is similar to the one for the different variants of Black-
Box Simulatability above. In addition we use that if the real adversary contains start,
then so does the ideal adversary.

Statement 5. The first implication was proved in Theorem 16 and the second implication
immediately follows since if the real adversary contains start, then so does the ideal
adversary. �

As illustrated next, UC(M\R,M\R,MD)(P,F), or equivalently UC(M,M,D)(P,F), in
general does not imply SS(R,MD)(P,F) or UC(M,M,MD)(P,F) even if P is network
predictable. Intuitively, in the proof of Theorem 16, Statement 4, if the adversary may
be a master process, then the simulator S = I we obtain is also a master process. How-
ever, to show Strong Simulatability the simulator needs to be a regular process expres-
sion. The example used to prove the following theorem shows that in general master

530 R. Küsters et al.

process expressions cannot be turned into regular process expressions without changing
the behavior of the overall system. Therefore, the proof of Theorem 16 would not go
through if the adversary may be a master process while the environment is a decision
process.

Theorem 19. There exist P,F ∈ R such that P is network predictable and
UC(M,M,D)(P,F) does not imply SS(R,MD)(P,F) and WBB(M,R,D)(P,F).

To prove the theorem, we construct P,F ∈ R and show the properties claimed.
Roughly speaking, P receives a bit x from the environment on an IO channel, returns

an acknowledgment of receipt on a network channel, waits for a send request on a
network channel, and then returns x on a network channel. The process F works exactly
in the same way but if x = 0, then in the last step it will not return x.

Intuitively, a master process S which has access only to the network channels of
F can simulate P using F because if in the last step F does not return an answer, S
will be triggered, i.e., receives input on the channel start, and thus knows that F ’s
answer was 0. If S is not a master process, then there is no way for S to know what
x was, and therefore will not be able to simulate P (using F). Now, the reason that
UC(M,M,D)(P,F) holds but SS(R,MD)(P,F) and WBB(M,R,D)(P,F) do not hold is that
for the latter two security notions one requires that P can be simulated using F by a
simulator that is not a master process, while for UC(M,M,MD)(P,F) the simulator (i.e.,
the ideal adversary) may be a master process.

Formally, the process expression P uses the following channels: Cio
in(P) = {c0},

Cnet
out(P) = {c1, c2}, and Cnet

in (P) = {c3}. Now, P is defined as

P = in
(
c0, tx∈{0,1}

)
.
(
out(c1,received) ‖ in(c3,send-req) . out(c2, x)

)
,

where the M-term tx∈{0,1} accepts only a bit string a if it is 0 or 1. In this case, x is set
to a. Clearly, P is network predictable: A possible dummy is

D = in(c1,received) .
(
out

(
c′

1,received
)

∥
∥in

(
c′

3,send-req
)
.
(
out(c3,send-req)

∥
∥in(c2, x) . out

(
c′

2, x
)))

.

The channels of F are defined just as for P except that the network channels c1, c2, c3
are renamed to c′

1, c
′
2, c

′
3. Also, F uses the internal channel c′

int.

F = in
(
c0, tx∈{0,1}

)
.
(
out

(
c′

1,received
)

∥
∥in

(
c′

3,send-req
)
.
(
out

(
c′
int, x

)∥
∥in

(
c′
int,1

)
. out

(
c′

2, x
)))

,

where, formally, 1 is an M-term which only accepts the input if it is 1.
We now show:

Claim I. UC(M,M,D)(P,F).

Proof sketch of Claim I. By Theorem 18, we know that UC(M,M,D)(P,F) iff
UC(M\R,M\R,D)(P,F). To prove the claim, let A ∈ (M\R)-Adv(P). We need to show

On the Relationships between Notions of Simulation-Based Security 531

that there exists I ∈ (M\R)-AdvP (I) such that E � A � P ≡ E � I � F for every
E ∈ D-Env(A � P). We will define a master process expression S which uses F to
simulate P . Then, I will be the concurrent composition of A (with start renamed)
and S .

The simulator S works as follows: It forwards messages on F ’s network channels
from/to the adversary A. If right after forwarding a message from the adversary A on c3
to F on c′

3, S receives a message on start, then S sends 0 on c2 because this situation
occurs exactly when F is expected to send a message on c′

2 but does not do so because
x = 0. In all other situations where S receives a message on start, S forwards it on
start′ (to the adversary A). One can now show that E � A � P ≡ E � (A � S) � F
where I = A � S is the ideal adversary, which concludes the proof of the Claim I. We
point to [16] for a formulation of S as a process expression and a more detailed proof. �

Claim II. SS(R,MD)(P,F) does not hold.

Proof sketch of Claim II. The proof of Claim II is by contradiction. Assume that
there exists a simulator S ′ ∈ R-AdvP (F) such that E � P ≡ E � S ′ � F for every
E ∈ MD-Valid(P). We construct a closed master decision process expression E ′ ∈
MD-Valid(P) such that E ′ � P
≡ E ′ � S ′ � F . The environment E ′ works as follows:
It generates a random bit, sends it on channel c0, waits for acknowledgment of receipt
(on channel c1), sends a “send request” on c3, and then checks whether the bit returned
on c2 is the one sent before. If at some point except at the beginning, E ′ receives a
message on start, then E ′ writes 0 on decision and terminates. In other words, E ′
always expects to receive a message back from the process with which it is interacting.
Now, while in E ′ � P the environment E ′ will output 1 with probability 1, it is not hard
to show that in E ′ � S ′ �F the environment outputs 1 with at most probability 1/2 since
the simulator does not know which bit was sent by E ′ to F . Hence, E ′ �P
≡ E ′ � S ′ �F .
This concludes the proof of Claim II. We point to [16] for a more precise formulation
of E ′ as a process expression and a more detailed argument. �

Claim III. WBB(M,R,D)(P,F) does not hold.

The proof is similar to the one of Claim II. One simply chooses A to be a dummy
adversary that forwards messages between E ′ and S ′.

This concludes the proof of Theorem 19. Note that by Theorems 10, 16, and 18 it
follows that SS(R,MD)(P,F) implies WBB(M,R,D)(P,F) (but that the converse is not
true if P is not network predictable). Hence, Claim III implies Claim II. It is open
whether WBB(M,R,D)(P,F) implies SS(R,MD)(P,F) if P is network predictable.

5.5. Making the Simulator the Master Process

Theorems 18 and 19 show that SS (SBB) and UC (WBB) are not equivalent if the
adversary may play the role of the master process and the environment is restricted to
be a decision process even if the real protocol is network predictable. As mentioned, the
reason for this is that to show that UC implies SS, we want to use the ideal adversary
in UC as the simulator in SS. However, in SS the simulator has to be a regular process

532 R. Küsters et al.

expression while in UC the ideal adversary may be a master process expression. In
general, it is not possible to turn a master process expression into a regular process
expression without changing the behavior of the overall system.

It is tempting to think that allowing the simulator to play the role of the master process
would solve the above problem and, thus, would make UC (WBB) and SS (SBB) equiv-
alent even if the environment may only be a decision process. In this section, we will
see that this is not so. In a nutshell, the reason for this is that in UC the runtime of the
ideal adversary may depend on the runtime of the real adversary while the runtime of
the simulator in SS and BB has to be independent of the runtime of the real adversary
and the environment and, therefore, the simulator can be exhausted by these entities.

However, WBB is equivalent to UC if the simulator may play the role of the master
process both in case the environment is the master process and in case the environment
is restricted to be a decision process.

Recall that we have defined variants SSsim, SBBsim, and WBBsim of SS, SBB, and
WBB in which the simulator may play the role of the master process in Definition 7.

We note that certain variants of SSsim, SBBsim, and WBBsim do not make sense as
all IO-compatible protocols would be related:

Remark 20. We have that SSsim(M,D)(P,F), SSsim(M\R,D)(P,F),
SBBsim(R,M,D)(P,F), SBBsim(R,M\R,D)(P,F), WBBsim(R,M,D)(P,F), and
WBBsim(R,M\R,D)(P,F) are true for every IO-compatible protocols P and F since
the left-hand side of E � P ≡ E ′ � S � F and E � A � P ≡ E � A′ � S � F do not contain
start and, thus, no computation can take place. Consequently, if S does “nothing,”
then the process expressions on both sides are indistinguishable.

Theorem 21.

1. There are no IO-compatible protocols P and F such that
SSsim(M\R,MD)(P,F), SBBsim(M,M\R,MD)(P,F), SBBsim(M,M\R,D)(P,F),
or SBBsim(R,M\R,MD)(P,F).

2. For every P,F ∈ R: SS(R,MD)(P,F) iff SSsim(M,MD)(P,F) iff
SBBsim(M,M,MD)(P,F) iff SBBsim(R,M,MD)(P,F) iff SBBsim(M,M,D)(P,F).

3. For every P,F ∈ R:
WBBsim(R,M,MD)(P,F) iff WBBsim(M,M,MD)(P,F) iff WBB(M,R,MD)(P,F).

4. For every P,F ∈ R:
WBBsim(M,M,D)(P,F) iff WBBsim(M\R,M,D)(P,F) iff UC(M,M,D)(P,F).

5. The notions in 3 imply those in 4.

Proof. Statement 1. Assume that there exists P and F such that
SSsim(M\R,MD)(P,F). Hence, there exists S ∈ (M\R)-AdvP (F) with E � P ≡
E ′ � S � F . Let q(n) = comsize(S). Now, to distinguish P from S � F , we define
an E that does the following: E triggers itself via start q(n) + 1 times. (It is straight-
forward to formulate E as a process expression.) If it interacts with P , then E is in
fact triggered q(n) + 1 times, and in this case, E outputs 1 on decision. If E (E ′)
interacts with S � F , then E ′ must be triggered through S via start′. However, since
the communication size of S is q(n), S cannot trigger E q(n) + 1 times and, thus,
E �P
≡ E ′ � S �F . The argument for the variants of SBBsim is similar.

On the Relationships between Notions of Simulation-Based Security 533

Statement 2. This is an immediate consequence of the first statement, Theorem 16, and
Theorem 18.

Statement 3. The implications from right to left are obvious. To see that
WBBsim(R,M,MD)(P,F) implies WBB(M,R,MD)(P,F), first note that by Theorem 16
WBB(M,R,MD)(P,F) is equivalent to WBB(R,R,MD)(P,F). Now, if
WBBsim(R,M,MD)(P,F) is the variant of WBBsim where the simulator may only
be master if the adversary is, then it immediately follows that the simulator has to
be regular. Hence, WBBsim(R,M,MD)(P,F) implies WBB(R,R,MD)(P,F) (and thus
WBB(M,R,MD)(P,F)). In case, we consider the variant of WBBsim(R,M,MD)(P,F)

where the simulator may be master independent of whether the adversary is master,
we obtain that if the simulator is master even though the adversary is not, then the en-
vironment can be a master and can exhaust the simulator just as shown in Statement 1.
Consequently, this case cannot occur. Hence, the simulator has to be regular if the ad-
versary is.

Statement 4. The first equivalence follows from the fact that if the adversary is a regular
process expression, then no computation can take place. It is also clear that WBBsim
implies UC since the real adversary in parallel with the simulator provides the ideal
adversary needed for UC. The implication in the other direction is more interesting:

1. Assume that UC(M,M,D)(P,F).
2. The definition yields that P and F are IO-compatible and

∀A ∈ M-Adv(P) . ∃I
∈ M-AdvA �P (F) . ∀E ∈ D-Env(A �P) : E �A �P ≡ E � I �F .

3. Choosing A = Dio
M = Dio

M (Cnet
in (P),Cnet

out(P), q(n)) for some q(n) we obtain

∃Sq(n) = I ∈ M-AdvDio
M �P (F) . ∀E

∈ D-Env
(
Dio

M �P
) : E �Dio

M �P ≡ E � Sq(n) �F .

4. Let A ∈ (M\R)-Adv(P), q(n) = comsize(A)(n) + comsize(P)(n) + 1,
choose Sq(n) as in 3 and let E ∈ D-Env(A �P). We obtain

E �A �P ≡ E �A′
M �Dnet

M �P (MASTER-ADV-FORWARDER)

≡ E �A′′
M �Dio

M �P (RENAME)

≡ E �A′′
M � Sq(n) �F (E �A′′

M ∈ D-Env(Dio
M �P),3.)

≡ E �A′ � S ′
q(n) �F (RENAME),

where A′
M is defined as in MASTER-ADV-FORWARDER, Dio

M and A′′
M are ob-

tained from Dnet
M and A′

M , respectively, by declaring the renamed network chan-
nel c′ of P to be IO channels, A′ is defined as in the definition of WBBsim, and
S ′

q(n) is obtained from Sq(n) by declaring the IO channels c′ to be network chan-
nels and renaming them to c according to P .

534 R. Küsters et al.

5. Observe that S ′
q(n) is adversarially valid for F and that P and S ′

q(n) � F are
compatible except that S ′

q(n) contains start and start′. Also, S ′
q(n) depends

only on F , P , and (the communication size of) A. Consequently, 4 implies
WBBsim(M\R,M,D)(P,F) (for both variants of WBBsim).

Statement 5. It suffices to observe that WBB(M,R,MD)(P,F) implies
WBBsim(M,M,D)(P,F), which is obvious. �

5.6. Summary of the Relationships

In this section, we summarize the results proved in the previous sections. We have four
classes of pairwise equivalent (variants of) security notions. In the following four corol-
laries we present these classes. We then study the relationships between these classes.
All results are also depicted in Fig. 1. In this figure, (non-)implications that immediately
follow from the ones depicted are not drawn.

The first class, which we call SS/SBB, consists of all variants of Strong Simulatabil-
ity and Strong Black-Box Simulatability. There equivalence follows immediately from
Theorems 16, 18, and 21.

Corollary 22. All security notions in the class SS/SBB are equivalent, i.e., for every
P,F ∈ R, we have SS(R,MD)(P,F) iff SSsim(M,MD)(P,F) iff SBB(R,R,MD)(P,F)

iff SBB(M,R,MD)(P,F) iff SBB(M,R,D)(P,F) iff SBB(M\R,R,D)(P,F) iff
SBB(M\R,R,MD)(P,F) iff SBBsim(M,M,MD)(P,F) iff SBBsim(R,M,MD)(P,F) iff
SBBsim(M,M,D)(P,F).

The second class, which we call UC/WBBenv, consists of all variants of Universal
Composability and Weak Black-Box Simulatability where the environment may be a
master process. Their equivalence follows immediately from Theorems 16 and 21.

Corollary 23. All security notions in the class UC/WBBenv are equivalent, i.e.,
for every P,F ∈ R, we have UC(R,R,MD)(P,F) iff UC(M,M,MD)(P,F) iff
WBB(R,R,MD)(P,F) iff WBB(M,R,MD)(P,F) iff WBBsim(M,M,MD)(P,F) iff
WBBsim(R,M,MD)(P,F).

The third class, which we call UC/WBBsim, consists of all variants of Universal Com-
posability and Weak Black-Box Simulatability where the simulator is a master process
and the environment is restricted to be a decision process. There equivalence follows
immediately from Theorems 18 and 21.

Corollary 24. All security notions in the class UC/WBBsim are equivalent, i.e.,
for every P,F ∈ R, we have UC(M,M,D)(P,F) iff UC(M\R,M\R,D)(P,F) iff
UC(M\R,M\R,MD)(P,F) iff WBBsim(M,M,D)(P,F) iff WBBsim(M\R,M,D)(P,F).

For the version UC(M\R,M\R,MD)(P,F) of Universal Composability, note that since
real and ideal adversary have to be master processes, the environment cannot be a master
process.

On the Relationships between Notions of Simulation-Based Security 535

The fourth class, which we call WBBadv, consists of all variants of Weak Black-Box
Simulatability where the simulator is a regular process and the environment is restricted
to be a decision process. There equivalence follows immediately from Theorem 21.

Corollary 25. All security notions in the class WBBadv are equivalent, i.e., for every
P,F ∈ R, we have: WBBsim(M,R,D)(P,F) iff WBBsim(M\R,R,D)(P,F).

We now summarize some of the basic relationships between the different classes.
Given a class C of regular process expressions we will write, for instance, SS/SBB ⇒

UC/WBBenv for C to say that, for every P,F ∈ C, if P and F are related with respect to
some security notion in SS/SBB (since all of the security notions in one class are equiv-
alent, it does not matter which one is chosen), then they are also related with respect to
(all of) the security notions in UC/WBBenv. In particular, UC/WBBsim
⇒ WBBadv for C
means that there exist P,F ∈ C such that P and F are related w.r.t. the security notions
in UC/WBBsim but not w.r.t. those in WBBadv. In case C = R, we will omit C and simply
say, for instance, SS/SBB ⇒ UC/WBBenv.

Corollary 26.

1. SS/SBB ⇒ UC/WBBenv.
2. UC/WBBenv ⇒ WBBadv.
3. WBBadv ⇒ UC/WBBsim.
4. UC/WBBsim
⇒ WBBadv.
5. In particular:

(a) UC/WBBenv ⇒ UC/WBBsim.
(b) UC/WBBsim
⇒ UC/WBBenv.
(c) SS/SBB ⇒ UC/WBBsim.
(d) SS/SBB
⇒ UC/WBBsim.

Proof. The first implication follows immediately from Theorem 16. The second im-
plication was shown in Theorem 18, while the third one was proved in Theorem 21.
Finally, 4 was stated in Theorem 19. The statements in 5 immediately follow from the
previous ones. �

We note that the real (and ideal) protocol chosen to prove 4 is network predictable,
i.e., it satisfies FORWARDER.

We emphasize the following:

Remark 27. The equivalences among the security notions in the different classes—
SS/SBB, UC/WBBenv, WBBadv, and UC/WBBsim—as well as the relationships between
these classes, as stated in Corollary 26, are proved based on only quite basic prop-
erties of the computational model, namely, the axioms listed in Sect. 5.1, excluding
FORWARDER, plus the assumption that the runtime of processes are polynomially
bounded in the security parameter (except for guards), which is the case for the models
proposed in [5,9,30] (but not for some more recent models [8,20,23]). Also, the example
showing that UC/WBBsim does not imply WBBadv is quite basic. Hence, our work has

536 R. Küsters et al.

identified basic properties relevant for the relationships between security notions. Also,
the axiomatic approach allows us to carry over some of our results to other models and
to more easily identify differences between the models (see Sect. 6).

It is open whether or not WBBadv implies UC/WBBenv. However, from Corollary 26
and Corollary 28, it follows that WBBadv does not imply SS/SBB for protocols that are
not network predictable, i.e., protocols that do not satisfy FORWARDER. (Otherwise,
SS/SBB and UC/WBBenv would be equivalent even for protocols that do not satisfy
FORWARDER, which is a contradiction to Corollary 28.)

In Theorem 10, we showed that for UC/WBBenv to imply SS/SBB it is necessary
that FORWARDER is satisfied. This allows us to characterize when UC/WBBenv and
SS/SBB are equivalent. We write UC/WBBenv ⇔ SS/SBB for C if UC/WBBenv ⇒
SS/SBB for C and SS/SBB ⇒ UC/WBBenv for C.

Corollary 28. Let C be a class of regular process expressions closed under renaming
of channels (in the same sense used in Theorem 10). Then,

UC/WBBenv ⇔ SS/SBB for C iff FORWARDER(P) for every P ∈ C.

Proof. The only-if direction immediately follows from Theorem 10. For the if direc-
tion, first note that by Corollary 26 we know that SS/SBB ⇒ UC/WBBenv for R. Given
that FORWARDER(P), we obtain that UC/WBBenv ⇒ SS/SBB for C by Theorem 16. �

We emphasize:

Remark 29. The proof of Corollary 28 only uses very basic properties (axioms) which
should be satisfied in most computational models. Hence, the corollary should carry
over to such models.

Together with Proposition 15, Corollary 28 implies:

Corollary 30. Let C be the class of standard protocols (see Definition 14). Then,

UC/WBBenv ⇔ SS/SBB for C.

We note that this corollary does not hold for the class of all regular process ex-
pressions as there exist regular process expressions which are not network predictable
(Proposition 12). By Corollary 28, for those protocols, UC/WBBenv does not imply
SS/SBB.

Corollary 30 tells us that if the environment may play the role of the master process,
then for standard protocols (i.e., the class of protocols considered in the computational
models by Pfitzmann and Waidner [30] and Canetti [9]) Strong Simulatability/Strong
Black-Box Simulatability and Universal Composability/Weak Black-Box Simulatabil-
ity are equivalent notions in SPPC. The main reason is that in SPPC, for standard pro-
tocols, the axiom FORWARDER is true (Proposition 15). Here we use the fact that
processes correspond to IO automata/ITMs with guards. Without guards, the proposi-
tion would not hold true.

On the Relationships between Notions of Simulation-Based Security 537

6. Implications for Other Models

In this section, we discuss the implications of our results in SPPC for the PIOA
(Sect. 6.1) and PITM models (Sect. 6.2), including differences between the models.
In Sect. 6.3, we also briefly discuss the PPC and the Task-PIOA model.

6.1. The PIOA Model and Variants

We refer the reader to [5,30] for a detailed description of the PIOA model. We examine
the relationships between the security notions as considered for PIOA model. It turns
out that the security notions UC and SBB are not equivalent in PIOA even if we assume
that the environment may play the role of the master process and the FORWARDER
axiom holds true. This seems counter-intuitive and suggests to slightly modify PIOA.
We call the new version the buffer-free version of PIOA (BFPIOA). In BFPIOA, all our
axioms are satisfied and all relationships obtained for SPPC carry over. Before study-
ing the relationships between the security notions, we go through the axioms listed in
Sect. 5.1 and see which ones are satisfied in the PIOA model and which ones are not.
This will help us to explain the differences between the PIOA model and SPPC. All of
the following is independent of whether or not buffers can be queried an unbounded
number of times.

On the Validity of the Axioms in Sect. 5.1 It is easy to see that the axioms COM,
ASC, TRN, SYM, RENAME, RENAME-START, MMD-INCLUSION, and MD-
INCLUSION are satisfied in PIOA. We will see that MASTER-S-FORWARDER, and
MASTER-ADV-FORWARDER are satisfied as well.

However, the axioms REG-S-FORWARDER, REG-ADV-FORWARDER, and
FORWARDER are not satisfied in cases where the environment/adversary connects
only to the channels (or ports, to use the terminology of the PIOA model) of the dummy
process, i.e., the environment/adversary is not allowed to access the channels of the
protocol directly by renaming of channels. While without this assumption there is a
configuration of the entities that makes the axioms true, our assumption better explains
the problem pointed out in Theorem 32.

Proposition 31. The axioms REG-S-FORWARDER, REG-ADV-FORWARDER, and
FORWARDER are not satisfied in the PIOA model in case the environment/adversary
connects only to ports of the dummy process.

Proof. The following example shows that REG-S-FORWARDER is not satisfied. The
same example works for REG-ADV-FORWARDER and FORWARDER. The example
uses that in the PIOA model entities always communicate through buffers which have
to be triggered to deliver messages and which may be triggered by machines (typically
the adversary/environment) other than those who write messages into the buffer.

Let P consist of one IO automaton M which receives a bit on an IO channel and
forwards it on a network channel, i.e., writes it into a buffer connected to the adver-
sary/environment. We assume that the buffer is scheduled by the adversary/environment.
In what follows, we argue that REG-S-FORWARDER does not hold for P .

538 R. Küsters et al.

If the environment (for which we may assume that it plays the role of the master
process) sends a bit to P , then P outputs the bit on the network channel and according
to the computational model of PIOA, this bit is written into the buffer. Next the envi-
ronment is triggered and it will trigger the buffer in which it expects to find the bit sent
to P via the IO channel. In case there is no dummy between P and the environment,
the environment will obtain the bit. Otherwise, if the environment and P are separated
by a dummy, then the environment triggers the buffer which “sits” in between the en-
vironment and the dummy, and this buffer does not contain the bit since the dummy
was never activated and, thus, could not write into this buffer. Thus, the environment
can distinguish whether it interacts only with the protocol P or with the dummy and the
protocol. Consequently, REG-S-FORWARDER does not hold in PIOA. �

We note that by Remark 13, the axiom FORWARDER fails in PIOA (for the same
reason it fails in SPPC) even if all machines trigger their own buffers.

The above example does not work for the axioms MASTER-S-FORWARDER and
MASTER-ADV-FORWARDER because after P wrote the bit into the network buffer,
the dummy will be triggered next as it is the master process. Hence, the dummy can
write the bit into the buffer that sits in between the environment and the dummy, and
then can activate the environment. More generally, since the dummy is the master it
can copy all messages written by P to the buffers sitting in between the dummy and
the protocol into the buffers which sit in between the environment and the dummy,
and only then activates the environment. Therefore, MASTER-S-FORWARDER and
MASTER-ADV-FORWARDER are satisfied in PIOA.

Relationships between the Security Notions in the PIOA Model We first show that,
unlike SPPC, in the PIOA model UC does not imply SBB in case the environment may
play the role of the master scheduler even for standard protocols. (Recall Definition 14
for standard protocols.) This is mainly due to the fact that in the PIOA model IO au-
tomata have to communicate through buffers. Before we prove this statement, we note
a difference in the definition of SBB as stated in the present work and the definition of
SBB in the PIOA model.

In our definition of SBB we assume that the simulator sits between the adversary and
the ideal protocol. In contrast, in the PIOA model, the simulator can completely “en-
capsulate” the adversary. In particular, messages sent from/to the environments to/from
the adversary, may first go through the simulator, which can forward, drop, or modify
these messages. We refer to this version of SBB by SBBPIOA. Unfortunately, the way
the adversary and the simulator are combined does not seem to have been rigorously
defined in the PIOA model. We will therefore consider all interpretations that appear to
be reasonable.

Theorem 32. UC does not imply SBBPIOA in the case where the environment may
play the role of the master scheduler, even for standard protocols.

Proof. We define two standard protocols, a real protocol P and an ideal protocol F ,
and show that P is at least as secure as F w.r.t. UC, but not w.r.t. SBBPIOA.

On the Relationships between Notions of Simulation-Based Security 539

Let P consist of one IO automaton M which receives a bit on an IO channel and
forwards it on a network channel, i.e., writes it into a buffer connected to the adver-
sary/environment. We assume that the buffer is scheduled by the adversary/environment.

Let F consist of one IO automaton M ′ which, just as M , has an IO channel and a
network channel where the corresponding buffer is scheduled by the adversary. In ad-
dition, M ′ has a secure channel to itself. (Alternatively, one could introduce another
machine M ′′ and two channels, one from M ′ to M ′′ and one from M ′′ to M ′, controlled
by the sending machine, respectively.) M ′ works as follows: It receives a bit b1 from
the environment, generates a random bit b2, and writes the two messages (b1, “envi-
ronment”) and (b2, “random”) into the network buffer. M ′ chooses the order in which
these messages are written into the buffer uniformly at random. Also, the messages are
written into two different cells of the network buffer. This is possible by using the se-
cure channel: First, M ′ writes the first message into the buffer, then M ′ uses the secure
channel to trigger itself, and third M ′ writes the second message into the buffer. �

Claim I. P is at least as secure as F w.r.t. UC.

Proof sketch of Claim I. The ideal adversary simply simulates the real adversary. In
case the real adversary triggers the buffer to M to obtain the first message, the ideal
adversary would trigger the buffer to M ′ two times to obtain both messages (if any) and
would only use b1 to simulate the real adversary. The tag “environment” tells the ideal
adversary which of the two bits to use. �

Claim II. P is not at least as secure as F w.r.t. SBBPIOA.

Proof sketch of Claim II. Assume that P is at least as secure as F w.r.t. SBBPIOA.
We distinguish four cases and lead them to a contradiction.

1. The simulator S is “empty”, i.e., the ideal adversary A′ (obtained by renaming
channels of the real adversary A) connects to the network buffer of M ′. This ob-
viously does not work because the network buffers of M and M ′ contain different
information such that it is easy to specify A, A′, and an environment that tell P
and F apart.

2. The simulator S connects to the network buffer of M ′ but the ideal adversary A′
controls the clock channel of this buffer. This also does not work. Let the real
adversary A be one that is triggered by the environment to read out the bit of the
network channel. More precisely, A triggers the buffer to read out the first entry
and forwards it to the environment. If A′ triggers the first entry of the network
channel of M ′, then this entry would be given to S . In half of the cases this entry
is (b2, random), and thus, the simulator cannot figure out b1. Hence, the bit for-
warded by S to A′ is wrong in half of the cases and, thus, so is the bit forwarded
by A′ to the environment.

3. The simulator S completely controls the network buffer of M ′, but the environ-
ment directly connects to A′. There seem to be at least two reasonable, different
ways of how S and A′ can be connected in this case. Recall that A′ assumes
connection to an input buffer that it schedules and P writes to:

540 R. Küsters et al.

(a) There is a buffer from S to A′ controlled by A′. Now the problem is that
after F wrote the two messages into the buffer (which “sits” between S and
F), the environment, which is assumed to be a master scheduler, is scheduled
and asks A (A′) to deliver the bit from the network channel. The adversary
A does this by triggering the network channel and forwarding the bit to the
environment. If A′ does the same, the buffer will be empty since the simu-
lator was never triggered and, thus, could not write anything into the buffer
between A′ and S . We note that this situation corresponds to the failure of
REG-ADV-FORWARDER explained above.

(b) There is a buffer from A′ to S controlled by S and a buffer from S to A′
controlled by S . The former buffer takes the scheduling messages from A′
(which S has to pull by scheduling the buffer) and the latter buffer takes the
message from S (P from the point of view of A′) to A′. But if now A′ writes
a (scheduling) message into the buffer to S , then first the master scheduler,
which is the environment, is scheduled. Hence, while interacting with the real
protocol, the environment would obtain the expected bit from the adversary; in
the ideal protocol, the environment is activated without obtaining a bit. Con-
sequently, the environment can distinguish between the real and ideal setting.
We note that even if the S were declared to be a master scheduler, this would
not help, since in this case S can be exhausted by the environment, similarly
to the next case.

4. The simulator S completely encapsulates A′, i.e., all communication from/to A′
first goes through S . Now, no matter how the combination of A′ and S is defined,
the environment can distinguish between the real and the ideal setting by exhaust-
ing S as follows: The environment picks a number i between 1 and p(n) for some
polynomial p(n) bigger than the runtime of S . Since the runtime of S is indepen-
dent of the runtime of the adversary and the environment, we may assume that
the runtime of the adversary is chosen in such a way that the adversary is never
exhausted when executed with the environment, the real/ideal protocol and, in the
ideal setting, the simulator. Now, the environment asks the adversary to deliver the
bit i − 1 times. Before asking the ith time, the environment sends a random bit to
the real/ideal protocol. Then, the environment asks the adversary again to deliver
this bit. In the real setting, the environment will always obtain the bit. In the ideal
setting, there is a non-negligible chance that the bit is not returned. The reason
is that S does not know when F actually wrote a bit into the buffer and, hence,
always has to check when asked to deliver the bit (via the adversary). But then, if
i is big enough (and it is with non-negligible probability), S will be exhausted at
some point and will not be able to deliver the bit. (The proof can be made more
rigorous along the lines of the proof of Proposition 12.) �

We note that the security notions in the classes UC/WBBsim and WBBadv are, just as
for SPPC, also equivalent in the PIOA model. (Recall that these classes contain security
notions where the environment may not play the role of the master scheduler.) Also,
the relationships between these classes are as in the case of SPPC (see the right-hand
side of Fig. 1). This follows from the fact that the axioms needed to prove these re-
lationships hold in the PIOA model. The nonimplication from UC/WBBsim to WBBadv

On the Relationships between Notions of Simulation-Based Security 541

can be shown by the same example as the one used for SPPC. Also, as for the case of
SPPC, UC/WBBenv implies UC/WBBsim. Together with Proposition 32, this allows us to
conclude that UC/WBBsim does not imply SBBPIOA, even for standard protocols.

Proposition 32 and the failure of the axioms REG-S-FORWARDER and REG-ADV-
FORWARDER seem counterintuitive. The problem vanishes if the PIOA model is mod-
ified so that machines always trigger their own buffers. In effect, this is equivalent to not
having buffers at all, which is why we call this fragment of the PIOA model the buffer-
free PIOA model (BFPIOA). This fragment is essentially as expressive as PIOA and
very closely related to SPPC (except that SPPC can express systems with a polynomial
number of copies of protocols, which can be addressed using the guard mechanism).

Relationships between the Security Notions in the BFPIOA Model In BFPIOA, exactly
the same axioms as in SPPC are satisfied and the examples used to prove separation
results also carry over from SPPC to BFPIOA. As mentioned in Sect. 2, starting from
the work in [6], PIOA (and thus, BFPIOA) has a restricted form of guards. Similar to
SPPC, this mechanism suffices to satisfy the forwarder property for standard protocols,
but just as in SPPC there are protocols expressible in BFPIOA which do not satisfy this
property. In conclusion, we obtain for BFPIOA exactly the same relationships as for
SPPC (see Fig. 1).

6.2. The PITM Model

The PITM model [9] is tailored towards defining UC where the environment is a master
process and the adversaries are regular processes, i.e., UC(R,R,MD)(P,F). Depending on
which entities are involved, different computational models are defined: the real model
(involving the environment, the real adversary, and the real protocol); the ideal model
(involving the environment, the ideal adversary, and the ideal functionality together
with dummy parties); and the hybrid model which is a combination of the previous two
models.

Therefore, it is not immediately clear how the security notions SS, SBB, and WBB,
which involve a simulator, would be defined in PITM. Different variants are possible
and, as we have seen, differences in the definitions may affect the relationships between
the security notions. It is out of the scope of this paper to extend PITM in order to define
SS, SBB, and WBB. However, general points can be made.

The version of PITM as introduced in [9] does not have a mechanism, such as guards
of SPPC, that would allow the FORWARDER axiom to be satisfied. In fact, in the
PITM model this axiom fails even for classes of protocols for which it is satisfied in
the SPPC and BFPIOA models. As a consequence of our results, which show that the
FORWARDER axiom is necessary for SBB (SS) to imply UC, we obtain that UC does
not imply SBB (SS) in the PITM model.

6.3. Other Models

In this section, we discuss in detail how SPPC is related to the Probabilistic Polytime
Process Calculus (PPC) [24,27–29] and the Task-PIOA framework [11].

542 R. Küsters et al.

PPC Though PPC and SPPC share a similar notation, there are some important dif-
ferences in the execution model that mean that the results proven in this paper do not
transfer. The first difference lies in the fact that SPPC’s execution model is sequential
in nature, just as in the PIOA and PITM models, while PPC’s execution model is con-
current. In particular, SPPC is carefully designed to guarantee that, at any time, only
one output command is ready to send. This is not a purely syntactic constraint, but is
also enforced in the execution model by partitioning channels into high and low pri-
orities. In contrast, in PPC there might be several possible output commands ready to
transmit to any of several possible inputs. The result is that communication can proceed
arbitrarily, and any machine can talk to any other machine on any channel at any time,
an execution model that is more closely related to that of the pi-calculus. Secondly, the
“+”-operator in SPPC and the M-terms in SPPC cannot be expressed in PPC. However,
these constructs are essential for formulating probabilistic polynomial-time machines
with guards. Also, the inability of simulating M-terms in PPC means that the dummy
axioms do not transfer. The problem here is that an attacker can exhaust any PPC ex-
pression by sending lots of useless messages. The match terms employed in PPC do not
help because sending a message that fails a match term allows the attacker to “zero” out
entire processes at the cost of very few messages. Altogether, the expressivity of PPC
seems unsuitable for the purpose of this paper.

Time-Bounded Task-PIOA The Time-bounded Task-PIOA framework also differs in
significant ways from the PITM, PIOA, and SPPC execution models. So the SPPC re-
sults do not carry over directly to that model and a detailed study is out of the scope
of this paper. Similar to PPC, one important point of difference is that in the Task-
PIOA framework, the scheduling is nonsequential, rather than sequential as in SPPC,
PIOA, and PITM. Also, task-PIOAs may be invoked an unbounded number of times; for
example, as in recent simulation-based models [8,23]. Finally, while task-PIOAs may
take nondeterministic actions, this is not the case for SPPC (and other simulation-based
models).

7. Reactive Simulatability and Extensions of SPPC

In this section, we consider another security notion, called Reactive Simulatability in [5]
and security with respect to specialized simulators in [10]. This notion has not drawn
as much attention as the other notions studied in the present work because a general
composition theorem for composing a polynomial number of copies of protocols along
the lines of [9] or the present work was not known. As was recently shown in [22], it
is in fact not possible to obtain such a theorem in case the environment is uniform and
strict polynomial-time. Therefore, in the previous sections, we have concentrated on the
other security notions and only very briefly cover Reactive Simulatability here. In our
terminology, Reactive Simulatability is defined as follows:

Reactive Simulatability RS(A,I,E)(P,F) iff P and F are IO-compatible and for every
A ∈ A-Adv(P) and for every E ∈ E-Env(A � P) there exists I ∈ I-AdvA �P (F) such
that E �A �P ≡ E � I �F .

On the Relationships between Notions of Simulation-Based Security 543

The only difference between Reactive Simulatability and UC is that for the former
notion the ideal adversary is allowed to depend on the environment.

It was shown by Canetti [8] that Reactive Simulatability is equivalent to UC for
nonuniform environments whose runtime may depend on the lengths of their input on
the input tape. The fact that UC implies Reactive Simulatability follows simply from the
order of quantifiers. For the other direction, one considers a “universal” environment
which interprets (part of its) input as an encoding of another environment and simu-
lates this environment. In this way, one effectively can quantify over all environments
and, hence, switch the order of quantification over environments and ideal adversaries.
When allowing the runtime of the environment to depend on the length of the input on
its start channel, then in SPPC we obtain the same result. Moreover, one can show
that with this extension of SPPC, the security notions in the classes UC/WBBenv and
UC/WBBsim are equivalent, respectively; the axioms used to prove these relationships
also hold true for the extension of SPPC.

Hofheinz and Unruh [21] showed that for strictly polynomial-time, uniform envi-
ronments Reactive Simulatability does not imply Universal Composability. While this
result is shown in the PIOA model, it immediately carries over to SPPC in cases where
the environment does not get auxiliary input, i.e., initially ε is written on the start
channel.

8. Conclusion

This paper presents a thorough study of the relationships between various notions of
simulation-based security. We identified two properties of the computational model
that determine equivalence between these notions, namely the placement of the mas-
ter process and the FORWARDER property. Our main results are that all variants of
Strong Simulatability (SS) and Strong Black-Box Simulatability (SBB) are equivalent,
regardless of the selection of the master process. Our results imply that Universal Com-
posability (UC) and Weak Black-Box Simulatability (WBB) are equivalent as long as
the role (master process or not) of the environment is the same in both. However, the
variant of UC in which the environment may be a master process (as in [4,9]) is strictly
stronger than the variants in which the environment cannot assume this role (as in [30]).
In addition, the weaker forms of WBB do not imply SS/SBB. Generally, making the en-
vironment the master process yields a stronger security notion. Hence, we recommend
that in subsequent developments of the various models, the environment is always as-
signed the role of the master process. Current work on simulation-based security seems
to follow our suggestion (see, e.g., [8,20,23]). We also prove a necessary and sufficient
condition for UC/WBB to be equivalent to SS/SBB, based on the ability to define for-
warders. This result has already influenced current work on simulation-based security in
that it motivates us to consider computational models in which the runtime of machines
may depend on the length of the input (see, e.g., [8,20,23]).

Our results show that the relationship between Universal Composability and Black-
Box Simulatability is more subtle than previously described. In particular, composition
theorems based on UC do not necessarily imply those based on Black-Box Simulatabil-
ity over any computational model in which the forwarding property is not satisfied.

544 R. Küsters et al.

The axiom system that we developed to prove many of our results allowed us to
demonstrate essential properties needed for establishing relationships between security
notions. In the process, many proofs became concise and simple. Finally, failure of
axioms in certain models brought out weaknesses in these models. For example, it seems
reasonable to adopt a buffer-free variant of PIOA and to consider different kinds of ITMs
in the ITM model.

While our study concentrates on models where the runtime of processes is bounded
by a polynomial in the security parameter, some of our results, in particular those in-
volving the issue of placements of the master process, should also carry over to models
where the runtime of processes may depend on the number of invocations and the length
of inputs [8,20,23], e.g., the necessary condition for the FORWARDER property, the re-
lationships among notions for Strong and Black-Box Simulatability for all placements
of the master process, and the nonimplication of UC and SS (SBB) in cases where the
environment for UC may not play the role of the master process. Our results have al-
ready influenced design decisions made in these models. However, we leave to future
work a more rigorous study of the relationships between the security notions in such
models.

Acknowledgements

We thank Michael Backes, Ran Canetti, Birgit Pfitzmann, Andre Scedrov, and Vitaly
Shmatikov for helpful discussions.

An abridged version of this work was published in TCC 2005 [17]. Our work was
partially supported by the DoD University Research Initiative (URI) program adminis-
tered by the Office of Naval Research under Grant N00014-01-1-0795; by OSD/ONR
CIP/SW URI “Trustworthy Infrastructure, Mechanisms, and Experimentation for Dif-
fuse Computing” through ONR Grant N00014-04-1-0725; by NSF CCR-0121403,
Computational Logic Tools for Research and Education; by NSF CyberTrust Grant
0430594, Collaborative research: High-fidelity methods for security protocols; and the
US Army Research Office contract on Perpetually Available and Secure Information
Systems (DAAD19-02-1-0389). Part of this work was done when the first and second
authors were at Stanford University.

References

[1] M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in 28th ACM Symposium
on Principles of Programming Languages, 2001, pp. 104–115

[2] M. Abadi, A.D. Gordon, A bisimulation method for cryptographic protocol, in Proc. ESOP’98. Lecture
Notes in Computer Science, vol. 1381 (Springer, Berlin, 1998), pp. 12–26

[3] M. Abadi, A.D. Gordon, A calculus for cryptographic protocols: the spi calculus, Inf. Comput. 143,
1–70 (1999). Expanded version available as SRC research report 149, January 1998

[4] M. Backes, B. Pfitzmann, M. Waidner, A general composition theorem for secure reactive systems, in
Proceedings of the 1st Theory of Cryptography Conference (TCC 2004). Lecture Notes in Computer
Science, vol. 2951 (Springer, Berlin, 2004), pp. 336–354

[5] M. Backes, B. Pfitzmann, M. Waidner, Secure asynchronous reactive systems. Technical report 082,
Eprint, 2004

On the Relationships between Notions of Simulation-Based Security 545

[6] M. Backes, B. Pfitzmann, M. Steiner, M. Waidner, Polynomial fairness and liveness, in Proceedings
of 15th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia, Canada, 2002,
pp. 160–174

[7] M. Backes, B. Pfitzmann, M. Waidner, Reactively secure signature schemes, in Proceedings of 6th In-
formation Security Conference. Lecture Notes in Computer Science, vol. 2851 (Springer, Berlin, 2003),
pp. 84–95

[8] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols. Technical re-
port, Cryptology ePrint Archive, December 2005. Online available at http://eprint.iacr.org/2000/067.ps

[9] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in Proc. 42nd
IEEE Symp. on the Foundations of Computer Science (IEEE, New York, 2001)

[10] R. Canetti, Personal communication, 2004
[11] R. Canetti, L. Cheung, D.K. Kaynar, M. Liskov, N.A. Lynch, O. Pereira, R. Segala, Time-bounded

task-pioas: a framework for analyzing security protocols, in DISC, 2006, pp. 238–253
[12] R. Canetti, M. Fischlin, Universally composable commitments, in Proc. CRYPTO 2001, Santa Barbara,

California. Lecture Notes in Computer Science, vol. 2139 (Springer, Berlin, 2001), pp. 19–40
[13] R. Canetti, H. Krawczyk, Universally composable notions of key exchange and secure channels, in

Advances in Cryptology—EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332 (Springer,
Berlin, 2002), pp. 337–351

[14] R. Canetti, E. Kushilevitz, Y. Lindell, On the limitations of universally composable two-party compu-
tation without set-up assumptions, in Advances in Cryptology—EUROCRYPT 2003. Lecture Notes in
Computer Science, vol. 2656 (Springer, Berlin, 2003), pp. 68–86

[15] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two-party and multi-party secure
computation, in Proc. ACM Symp. on the Theory of Computing, 2002, pp. 494–503

[16] A. Datta, R. Küsters, J. Mitchell, A. Ramanathan, On the relationships between notions of simulation-
based security. Technical report 2006/153, Cryptology ePrint Archive, 2006

[17] A. Datta, R. Küsters, J.C. Mitchell, A. Ramanathan, On the relationships between notions of simulation-
based security, in Proceedings of the 2nd Theory of Cryptography Conference (TCC 2005), ed. by
J. Kilian. Lecture Notes in Computer Science, vol. 3378 (Springer, Berlin, 2005), pp. 476–494

[18] A. Datta, R. Küsters, J.C. Mitchell, A. Ramanathan, V. Shmatikov, Unifying equivalence-based defini-
tions of protocol security, in ACM SIGPLAN and IFIP WG 1.7, 4th Workshop on Issues in the Theory
of Security, 2004. No formal proceedings

[19] C.A.R. Hoare, Communicating Sequential Processes (Prentice Hall, New York, 1985)
[20] D. Hofheinz, J. Müller-Quade, D. Unruh, Polynomial runtime in simulatability definitions, in 18th IEEE

Computer Security Foundations Workshop (CSFW-18 2005) (IEEE Computer Society, Los Alamitos,
2005), pp. 156–169

[21] D. Hofheinz, D. Unruh, Comparing two notions of simulatability, in Theory of Cryptography, Proceed-
ings of TCC 2005, ed. by J. Kilian. Lecture Notes in Computer Science, vol. 3378 (Springer, Berlin,
2005), pp. 86–103

[22] D. Hofheinz, D. Unruh, Simulatable security and concurrent composition, in Proceedings of the 2006
IEEE Symposium on Security and Privacy (IEEE Computer Society, Los Alamitos, 2006), pp. 169–183

[23] R. Küsters, Simulation-based security with inexhaustible interactive Turing machines, in Proceedings
of the 19th IEEE Computer Security Foundations Workshop (CSFW-19 2006) (IEEE Computer Society,
Los Alamitos, 2006), pp. 309–320

[24] P.D. Lincoln, J.C. Mitchell, M. Mitchell, A. Scedrov, Probabilistic polynomial-time equivalence and
security protocols, in Formal Methods World Congress, vol. I, Toulouse, France, ed. by J.M. Wing,
J. Woodcock. Lecture Notes in Computer Science, vol. 1708 (Springer, Berlin, 1999), pp. 776–793

[25] R. Milner, A Calculus of Communicating Systems (Springer, Berlin, 1980)
[26] R. Milner, Communication and Concurrency. International Series in Computer Science (Prentice Hall,

New York, 1989)
[27] J.C. Mitchell, M. Mitchell, A. Scedrov, A linguistic characterization of bounded oracle computation and

probabilistic polynomial time, in Proc. 39th Annual IEEE Symposium on the Foundations of Computer
Science, Palo Alto, California (IEEE, New York, 1998), pp. 725–733

[28] J.C. Mitchell, A. Ramanathan, A. Scedrov, V. Teague, A probabilistic polynomial-time calculus for
the analysis of cryptographic protocols (preliminary report), in 17th Annual Conference on the Mathe-
matical Foundations of Programming Semantics, Arhus, Denmark, May, 2001, ed. by S. Brookes, M.
Mislove. Electronic Notes in Theoretical Computer Science, vol. 45, 2001

546 R. Küsters et al.

[29] J.C. Mitchell, A. Ramanathan, A. Scedrov, V. Teague, A probabilistic polynomial-time process calculus
for the analysis of cryptographic protocols, Theor. Comput. Sci. 353(1–3), 118–164 (2006)

[30] B. Pfitzmann, M. Waidner, A model for asynchronous reactive systems and its application to secure mes-
sage transmission, in IEEE Symposium on Security and Privacy (S&P 2001) (IEEE Computer Society
Press, Los Alamitos, 2001), pp. 184–200

[31] A. Ramanathan, J.C. Mitchell, A. Scedrov, V. Teague, Probabilistic bisimulation and equivalence for
security analysis of network protocols. Unpublished, see http://www-cs-students.stanford.edu/~ajith/,
2004

[32] A. Ramanathan, J.C. Mitchell, A. Scedrov, V. Teague, Probabilistic bisimulation and equivalence for se-
curity analysis of network protocols, in FOSSACS 2004—Foundations of Software Science and Compu-
tation Structures. Lecture Notes in Computer Science, vol. 2987 (Springer, Berlin, 2004), pp. 468–483.
Summarizes results in [31]

http://www-cs-students.stanford.edu/~ajith/

	On the Relationships between Notions of Simulation-Based Security
	Abstract
	Introduction
	Contribution of the Paper
	Outline of the Paper

	Sequential Probabilistic Process Calculus (SPPC)
	Informal Introduction of SPPC
	Single Probabilistic Polynomial-Time Machines
	Systems of Interacting Machines

	Probabilistic Functions
	Syntax of SPPC
	Terms
	C-terms
	M-terms

	Channels
	Sequential Process Expressions and Processes
	Contexts

	Semantics of SPPC
	C-term Reduction
	Communication
	The Complete Reduction of Processes

	Indistinguishability of Process Expressions

	Single Machine Normal Form
	Definition of Security Notions
	Channel Configurations
	Security Notions

	Relationships between the Security Notions
	The Axiom System
	On the Necessity and Validity of FORWARDER
	Necessity of FORWARDER
	On the Validity of FORWARDER
	Non-network Predictable Process Expressions
	A Class of Network Predictable Process Expressions

	Declaring the Environment to be the Master Decision Process
	Restricting the Environment to be a Decision Process
	Making the Simulator the Master Process
	Summary of the Relationships

	Implications for Other Models
	The PIOA Model and Variants
	On the Validity of the Axioms in Sect. 5.1
	Relationships between the Security Notions in the PIOA Model
	Relationships between the Security Notions in the BFPIOA Model

	The PITM Model
	Other Models
	PPC
	Time-Bounded Task-PIOA

	Reactive Simulatability and Extensions of SPPC
	Reactive Simulatability

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

