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Abstract 3D urban maps with semantic labels and metric
information are not only essential for the next generation
robots such autonomous vehicles and city drones, but also
help to visualize and augment local environment in mobile
user applications. The machine vision challenge is to gen-
erate accurate urban maps from existing data with minimal
manual annotation. In this work, we propose a novel method-
ology that takes GPS registered LiDAR (Light Detection
And Ranging) point clouds and street view images as inputs
and creates semantic labels for the 3D points clouds using
a hybrid of rule-based parsing and learning-based labelling
that combine point cloud and photometric features. The
rule-based parsing boosts segmentation of simple and large
structures such as street surfaces and building facades that
span almost 75% of the point cloud data. For more com-
plex structures, such as cars, trees and pedestrians, we adopt
boosted decision trees that exploit both structure (LiDAR)
and photometric (street view) features. We provide qualita-
tive examples of our methodology in 3D visualization where
we construct parametric graphical models from labelled data
and in 2D image segmentation where 3D labels are back
projected to the street view images. In quantitative evalua-
tion we report classification accuracy and computing times

B Pouria Babahajiani
pouria.babahajiani.ext@nokia.com

Lixin Fan
Lixin.Fan@nokia.com

Joni-Kristian Kämäräinen
joni.kamarainen@tut.fi

Moncef Gabbouj
Moncef.Gabbouj@tut.fi

1 Nokia Technologies, Tampere, Finland

2 Department of Signal Processing, Tampere University
of Technology, Tampere, Finland

and compare results to competing methods with three popu-
lar databases: NAVTEQ True, Paris-Rue-Madame and TLS
(terrestrial laser scanned) Velodyne.

Keywords Urban 3D · Point cloud · LiDAR · Street view ·
Semantic segmentation · Robotics

1 Introduction

3D urban map model is a digital representation of the earths
surface at city locations consisting of terrestrial objects such
as buildings, trees, vegetation and manmade objects belong-
ing to the city area. 3D maps are useful in different applica-
tions such as architecture and civil engineering, virtual and
augmented reality, and modern robotics (autonomous cars
and city drones). Creating photorealistic and accurate 3D
urban maps requires high volume and expensive data col-
lection. For example, Google and Nokia HERE have cars
mounted with cameras and Light Detection And Ranging
(LiDAR) scanners to capture 3D point cloud and street view
data along streets throughout the world.While laser scanning
or LiDAR systems provide a readily available solution for
capturing spatial data in a fast, efficient and highly accurate
way, the semantic labelling of data would require enormous
man power if done manually. Therefore, the problem of
automatic labelling (parsing) of 3D urban data to associate
each 3D point with a semantic class label (such as “car”,
“tree”) has gained momentum in the computer vision com-
munity [11,17,24,42].

Automatic segmentation and labelling of urban point
cloud data is challenging due to a number of data specific
challenges. First, high-end laser scanning devices outputmil-
lions of data points per second, and therefore the methods
need to be efficient to cope with the sheer volume of the
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urban scene datasets. Second, point cloud sub-regions corre-
sponding to individual objects are imbalanced, varying from
sparse representations of distant objects to dense clouds of
nearby objects, and incomplete (only one side of objects is
scanned by LiDAR). Third, for accurate object recognition
a sufficiently large labelled training data (ground truth) are
needed to train the best supervised methods.

In this work, we tackle the efficiency issue by propos-
ing a hybrid method which consists of following three steps:
First, certain simple but frequently occurring structures, such
as building facades and ground surface, are quickly seg-
mented by rule-based methods. The rule-based method can
typically label 70–80% of the point cloud data and rule-
based methods are more than 6× faster than the otherwise
efficient boosted decision trees [17]. Second, the remain-
ing points are processed with our fast supervised classifier.
To construct high-quality features for our classifier, we first
over-segment the points to 3Dvoxelswhich are further joined
into super-voxels fromwhich structure features are extracted.
Moreover, as the 3D points are aligned with street view
images we also extract photometric features. Our classifier
of choice is a boosted decision tree classifier which is trained
to label the remaining points using the super-voxel features.
Third, We solve the problem of incomplete data by utilizing
parametric 3D templates of certain classes (cars, trees and
pedestrians) and fit them to the boosted decision tree labelled
super-voxel point clouds. The final step also improves the
visual quality of the semantic 3D models output from our
processing pipeline, especially for those sparse and incom-
plete point clouds corresponding to small objects. Another
application of our method is semantic segmentation of street
view images which is achieved by backprojecting the seman-
tic labels of the point cloud points to the corresponding street
view images. Figure 1 depicts the overall workflow of our
method. We provide qualitative examples of 3D visualiza-
tion and 2D segmentation and in quantitative experiments
we report and compare our segmentation accuracy and com-
puting time to previous works. This work is based on the
preliminary results in [2,3], but provides a significant exten-
sion since it contains experimental results on three publicly
available datasets, comparison to other recent works, refined
processing steps and an extensive ablation study over the
method parameters.
Contributions Preliminary results on components of our pro-
cessing pipeline have been reported in [2,3], and in this work
we make the following novel contributions:

– We have demonstrated a complete urban map data pro-
cessing pipeline, which annotate all 3D LiDAR points
with semantic labels. Our method is made efficient by
combining fast rule-based processing for building and
street surface segmentation and super-voxel-based fea-

ture extraction and classification for remaining map
elements (cars, pedestrians, trees and traffic signs).

– We propose two back ends for semantically labelled
urban 3D map data that exemplify two important appli-
cations: (i) 3D urban map visualization and (ii) semantic
segmentation of 2D street view images by backprojection
of the 3D labels.

– Parameters of the different processing stages have clear
physical and intuitive meaning, and therefore they are
easy to set for novel data or optimize by cross-validation
over certain ranges.We havemade extensive experiments
on larger datasets, and moreover, optimal parameter
settings are cross-validated against labelled datasets.
Experimental results verify superior accuracy and effi-
ciency of our method as compared to the existing works
on three difficult datasets.

As such we provide full processing pipeline from 3D
LiDAR point cloud and street view image data (cf. Google
Maps and Nokia HERE) to urban 3D map data visualiza-
tion and to 2D semantic segmentation. All parameters have
physical meaning, and the system automatically adapts to the
dataset size.

2 Related work

3D segmentation and labelling (classification) using image
and point cloud data of urban environments have many
potential applications in augmented reality and robotics and
therefore research on these topics has gainedmomentumdur-
ing the last few years. In the following, we briefly mention
the most important 2D approaches, but focus on 3D point
cloud methods and methods particularly tailored for urban
3D processing. Several important surveys have been recently
published where more details of specific approaches can be
found [26,27,37].
Image-based methodsDue to the lack of affordable and high-
quality 3D sensors until the introduction ofKinect in 2010 the
vast majority of the works is still based on 2D (RGB) image
processing. Progress in 2D over the years has been remark-
able and for 2D object classification and detection there have
been several breakthrough methodologies [23,45], in partic-
ular, the visual Bag-of-Words (BoW) [6,35], Scale Invariant
Feature Transform (SIFT) [46] and the Deformable Part
Model (DPM) [9]. Recently, these methods have been super-
seded by methods using deep convolutional neural networks,
e.g. AlexNet [19] and R-CNN [10]. Direct applicability of
these methods is unclear since the datasets used in training
contain objects in various non-urban environments (Ima-
geNet, Pascal VOC) and sources of detection failures may
therefore be different. The deep neural networkmethods also
require large annotated datasets. Moreover, mapping the 2D

123



Urban 3D segmentation and modelling from street view images and LiDAR point clouds 681

Fig. 1 The overall workflow of
the proposed methodology

bounding boxes to 3D point cloud object boundaries is not
trivial. To summarize, state-of-the-art 2D methods provide a
potential research direction as combinedwith state-of-the-art
3D methods, but in this work we focus on methods particu-
larly developed for urban 3D map data segmentation.
Point cloud-based methods The success of local descriptors
in 2D has inspired to develop 3D local descriptors for point
cloud data, e.g. 3D SURF (speeded up robust features) [18]
and 3D HOG (histogram of oriented gradients) and DoG
(difference of Gaussians) [43], and their comparison can be
found from the two recent surveys [13,14]. These meth-
ods and also many direct point cloud-based methods, e.g.
[4,15,28], are designed to recognize a specific object stored
as a point cloud model, and therefore practical use of these
methods for urban 3D often requires various geometric fea-
tures to robustify matching [38].
Urban 3D segmentationMost of the existing city modelling
approaches directly or indirectly tackle the problem through
3D point cloud analysis. Lafarge and Mallet [20] applied a
Markov Random Field (MRF) -based on optimization tech-
nique, using the graph-cut framework for object detection
using airborne laser scanner (ALS)data. In thiswork,weomit
3D data generated by airborne devices (see, e.g. [12,20]) and

assume that the 3D map data have been collected via terres-
trial andmobile laser scanning—this kind of data is available,
for example, in Google Maps and Nokia HERE maps where
the 3Ddata aremobile laser scanner (MLS)LiDARgenerated
point cloud. It is noteworthy that urban 3D segmentation has
also been investigated for stereo-generated point clouds [32],
but there noise level is orders of magnitude higher and there-
forewe focus on high-qualityLiDARdata.Douillard et al. [8]
compared various segmentation approaches for dense and
sparse LiDAR data and found simple clustering methods
the best and noted that street pre-segmentation improves the
results. These findings were verified in the survey by Nguyen
andLe [27]who also pointed that learning-basedmethods are
needed formore complexobjects due to noise, unevendensity
and occlusions. Inspired by these two important findings, we
adopt a fast rule-based approach for simple and frequently
appearing structures (streets and building facades) and the
learning-based approach for more complex structures. The
combination of clustering, extracting geometric features and
using a supervised classifier to recognize objects was pro-
posed in [11], but in our approach we accelerate computation
by the rule-based pre-processing and by adopting the efficient
super-voxel clustering that has been used in video process-
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Fig. 2 Example of rule-based
segmentation of road surfaces. a
3D LiDAR point cloud
segmented to road surface
points (red) and other points
(black); b a sketch illustrating
our plane fitting to one tile

ing [41]. Fast 3D-only methods exist [24], but it has also
been argued that joint 2D image cues (e.g. colour, texture,
shape) and 3D information (point cloud) provide higher accu-
racy [40,42,44] and therefore we collect features from 3D
and 2D for our classifier.

3 Proposed methodology

The overall processing steps of our approach are illustrated in
Fig. 1. The input to our processing algorithm is 3D LiDAR
point cloud P = {

pi
}
( p ∈ R

3) and street view images
I = {I i } (I ∈ R

W×H×3). The camera and LiDAR sensors
are calibrated with respect to each other. The first process-
ing step of our methodology is the rule-based segmentation
of the ground surface (Sect. 3.1.1) and building facades
(Sect. 3.1.2). The points labelled by the rule-based process-
ing cover approximately 75% of the urban city data, and
the remaining points proceed to the next step. The next step
is super-voxel clustering (Sect. 3.2.1) and feature extraction
from each super-voxel after which the super-voxels are clas-
sified using the boosted decision tree classifier (Sect. 3.2.2).
The output of the method is a fully labelled 3D point
cloud where each point is labelled to belong to one of the
pre-defined semantic classes (Fig. 1). We also present two
different applications of our system: (i) 3D urbanmap visual-
ization (Sect. 4.1) byusingparametricmodels generated from
the labelled super-voxels and (ii) 2D segmentation (Sect. 4.2)
by mapping the 3D labels to the RGB images.

3.1 Rule-based segmentation of simple structures

Our empirical findings are in align with [8,27] which pointed
clear computational advances for using pre-processing to
segment geometrically simple and dominating structures.
Therefore, we devise simple rule-based detectors for road
surfaces and building facades that span majority of urban
scene point clouds (75% on average in the datasets used in
the experiments). Both road surfaces and building facades
form large and dense horizontal and vertical planar regions,
and therefore it is easy to devise geometric rules constrain-
ing them and providing fast segmentation as compared to

the learning-based approaches. The rule-based steps detect
and label the road surface points Proad, and building points
Pbuilding which are removed from the original point cloud
P ′ = P\ (Proad ∪ Pbuilding

)
and then passed to the next pro-

cessing step (learning-based segmentation).

3.1.1 Road surfaces

The goal of the first step is to detect road surface points
including the car path and side-walk, and as a result, the
original point cloud is divided into road surface (Proad) and
other (Pother = P\Proad) points (Fig. 2). Starting from the
road surfaces is also beneficial for the later steps that are
based on point cloud connectivity as the road and ground
surfaces connect almost all points together. We apply the
fast and robust Random sample consensus (RANSAC)-based
plane fitting similar to Lai and Fox [21]who used it to remove
planar regions from Google 3D Warehouse point clouds.

To adapt the Lai and Fox algorithm for our case of large
urban city maps we need to do two additional steps: (i) local
fitting and (ii) windowed candidate surface point selection.
The first step is needed to allow varying street slope (cf. “San
Francisco” landscape). The second step is needed to decrease
the total number of points for plane fitting to make it faster.

Therefore, our adapted algorithm consists of following
three steps: First, the original point cloud is divided into
smaller point clouds {P10 m×10 m}k which span 10 × 10 m
square areas. Secondly, each {P10 m×10 m}k point cloud is
further divided into 0.25 m × 0.25 m cells, and for each
cell the Minimal-Z-Value (MZV) is computed by averaging
10 lowest z-value points.1 Thirdly, for each cell, all points
lying within ±τMZV distance from MZV are selected for
plane fitting (Fig. 2). The selection process reduces the num-
ber of points to around 0.1% from the original, and in all
experiments we fixed the threshold to τMZV = 0.02 m. For
each local point cloud the points that are within the distance
τroad = ±0.08 m from the fitted plane are added to Proad.
The average processing time of a single 10 m× 10 m region
is about 15 ms. This approach is not sensitive to the selec-

1 Using 10 lowest z-value points is to make the MZV estimation insen-
sitive to outliers.
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tion of the two thresholds and efficiently segments the road
surface points.

3.1.2 Building facades

Theworkflowofour rule-basedbuilding facade segmentation
is shown in Fig. 3. At first, we form a GPS-defined x-y plane
similar to the road surface detection and divide the plane to
0.25 m × 0.25 m cells. Our detection rules are derived from
the dominant characteristics of building facades in LiDAR
point clouds: LiDAR provides high (z dimension) and dense
regions. Since the x-y plane is now divided to the discrete
cells, Δx ,Δy , we can compute height and density features.
We use proportional measures that make them invariant to
the average height of a city (e.g. Paris vs. New York City).
As a height feature we use

Ph(Δx ,Δy) =
argmax

z
P(Δx ,Δy, z)

argmax
z

p(:, :, z) , (1)

and as a density feature

Pd(Δx ,Δy) = |P(Δx ,Δy, z)|
max
Δx ,Δy

|P(Δx ,Δy, z)| . (2)

Equations. (1) and (2) are combined to the final “building
score”:

Pbuilding(Δx ,Δy) = Ph(Δx ,Δy) + λd Pd(Δx ,Δy). (3)

In our experiments we used simple maximum heights, but
more robust score can be constructed by adopting robust
statistics (rank-order statistics) where the maximum value
is replaced, e.g. by the value that is higher than 95% of all
points. The maximum value performed well in our experi-
ments and we fixed the balancing factor λd = 1.0 for equal
weighting for the height and density scores. Moreover, this
approach is insensitive to the number of points to compute
the score number. In our experiments a notable speed up

is attained without significant loss in accuracy, in the case
that up to 30% of input points have been randomly removed
from computation. The rule-based segmentation of buildings
is achieved by computing the building score in (3) to the cells
of size 0.25 m × 0.25 m (the same as before) and threshold-
ing each cell by τbuilding = 1.80. This generates a binary
x-y map (Fig. 3) for which we compute the standard shape
compactness features for each connected shape Si [22]:

P(Si ) = π · diameter2(Si )

4 · area(Si ) . (4)

Again P(Si ) score is thresholded by τP(Si ) = 15 and
the binary label as {building,¬building} is backprojected
to each 3D point within each cell. Note that this process
is executed for a point set from which the street surface
points have already been removed Pother and this rule-
based step creates another set P ′other = Pother\Pbuilding =
P\ (Proad ∪ Pbuilding

)
.

3.2 Boosted decision tree detector for super-voxel
features

In our case, the number of 3Dpoints is still large after the rule-
based segmentation of roads and buildings and therefore we
must consider both performance and efficiency issues for the
supervised detection stage. In Fig. 4 is depicted the workflow
of our supervised detection that processes the point cloud
P ′other. Our approach is inspired by the super-voxel-based
processing successfully used in video analysis [41].

3.2.1 Super voxels

The first step is 3D point-wise agglomerative clustering that
over-segments the input point cloud to voxels (Fig. 4b).
The clustering algorithm incrementally picks a random seed
points, adds points to the seed cluster to construct a voxel
until no more points pass a distance-based merging rule and
then pick a new seed point until all points have been pro-
cessed. For the random seed point Pi new points p j are
added Pi = Pi ∪ p j if they pass the distance rule,

Fig. 3 Example of rule-based segmentation of building facades. a original 3D point cloud and GPS-define x-y plane for projection; b x-y projected
points; c binary x-y map; d points that pass the building facade detection step; e backprojection of the detected points to 3D
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Fig. 4 The workflow of our supervised detection. a InputP′other point cloud where road surface and building facade 3D points have been removed;
b point cloud over-segmentation to 3D voxels by agglomerative clustering; c super-voxelization by voxel-level agglomerative clustering

min
i

dist(P i , p j ) ≤ τvoxel, (5)

where dist(·, ·) is the minimal distance between a set and a
point, and the distance threshold is set to τvoxel = 0.005 m.
After the first step, all points have been assigned to a single
voxel. The distance threshold avoids setting the number of
clusters which highly depends on the size of the point cloud
and therefore metric threshold is more intuitive. We refer
acute readers to Sect. 5.2 for ablation study concerning the
setting of this crucial distance threshold.

Theprocedure of super-voxelization is tomerge those vox-
els that are close to each other and share similar orientation.
Formally, the proximity between two voxels Pi and P j is
defined as

min
i, j

dist(Pi ,P j ) ≤ τsv_prox (6)

which is equivalent to the minimum-link distance rule in
agglomerative clustering. The surface orientation is com-
puted using the PCA method in [39] for each voxel and two
voxels are combined if their normals are similar

arccos
(
normPCA(Pi ), normPCA(P j )

) ≤ τsv_orient. (7)

We set the super-voxelization thresholds to τsvoxel1 = 0.01m
and τsvoxel2 = 15 which produce high-quality super-voxels
on all our datasets (see Fig. 4). The two thresholds with intu-
itive physical interpretation again avoid setting the number
of clusters that would depend on the size of the point cloud.

3.2.2 Super-voxel classification

The automatically generated super-voxels can be classified
by computing the popular 3D shape descriptors as fea-
tures [13,14], but we found these slow to compute and due
to variance in point density their robust usage would require
re-samplingwhich is a slow procedure as well. Instead, moti-
vated by success of features with true physical meaning in
voxelization and super-voxelization,we adopt several fast-to-
compute physical measures as features. The selected features
are listed in Table 1.

The features are fed to the boosted decision tree clas-
sifier [5] which is extremely efficient and produces high
accuracy for multi-class classification tasks. The boosting
is based on minimizing the exponential loss:

M∑

i=1

exp(−yi fλ(xi )) (8)

where xi are the input features and yi the ground-truth class
labels and fλ(·) is the estimated label constructed from

fλ(x) =
N∑

j=1

λ j h j (x) (9)

where h j (·) is a weak learner and λ j its corresponding
weight parameter. Selection of the weak learners and opti-
mization of the weights to minimize the loss function can be
done efficiently by parallel updating which is faster than the
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Table 1 Simple geometric and photometric primitives used to classify
super-voxels into pre-defined categories

Feature Motivation

Geometric features

Area Small versus large objects

Edge ratio Maximum and minimum edges

Max edge Longest dimension

Covariance overall shape

Location and orientation features

Height above road

Distance to street Horizontal distance to the car GPS

Normal angle With respect to the surface orientation

3D and photometric texture features

Mean intensity Overall reflection property of the voxel

Density Density of the points

Planarity Average distance to the best fitted plane

sequential-update algorithm [5], but we adopted the sequen-
tial version due to its simplicity and widespread availability.
In the experiments, we used a forest of ten decision trees with
each of them having six leaf nodes and this classifier leads to
satisfactory classification results for the benchmark datasets
used in our work.

4 Applications

The outputs of the two rule-based steps and the supervised
detector based step are two large point clouds Proad and
Pbuilding and a number of smaller point clouds Pi with
assigned labels

lroad, lbuilding, li ∈ {road, building, tree, car, pedestrian, . . .} .

Using the point clouds, street view images and the labels
we introduce two important applications: (1) enhanced
3D visualization using model-based rendering and (2) 2D
semantic segmentation. In the first application we replace
the annotated point clouds with 3D graphical models whose
parameters are derived from the point cloud properties which
provides visually more plausible view to the 3Dmap data. In
the second application we back project the point cloud labels

to 2D street view images and demonstrate their usage in 2D
semantic segmentation.

4.1 Visualization of 3D urban maps

Our LiDAR point cloud and street view images are regis-
tered, i.e. the 3D projective transformations from the street
view images to the point clouds are available, due to the
common data acquisition by a data collection vehicle. A tex-
tured 3Dmodel is typically generated by directly using image
values or using parametric models [26]. Image RGB map-
ping is a fast procedure, but requires mesh generation as the
pre-processing step which is time-consuming for large point
clouds and is error-prone for noisy datasets. In this section,
we introduce our fast rendering-friendly approach that recon-
structs 3D urban mapmodel in two stages (Fig. 5). Firstly we
use the enhanced ShadVis algorithm [36] to fast render the
building facadeswith high-quality details. The algorithm cal-
culates the illumination of a point cloudwith the light coming
from a theoretical hemisphere or sphere around the object.
In the second step we apply methods to fit pre-designed tem-
plate models to non-building labelled point clouds.

4.1.1 Building facade rendering

For fast rendering with a high level of details we apply the
ShadVis technique in [36]. ShadVis estimates model illumi-
nants as if the lightwas coming froma theoretical hemisphere
or sphere around the object. The graphics hardware render-
ing pipelines have been designed for polygons, but in our
case it is computationally more attractive to render only the
points. Therefore,we adopt the simple but effective algorithm
in [25]. The accuracy of the result depends on the resolution
of the 3D point cloud dataset (see Fig. 6 for a typical case).

4.1.2 Rendering object models

Buildings are large objects with sufficient number of 3D
points for high-quality point-wise rendering, but this is not
the case for small objects such as cars, trees and pedestri-
ans. However, there are available numerous high-quality 3D
models of many visual classes (e.g. 3D Warehouse http://
3dwarehouse.sketchup.com) and these can be used to con-
struct more plausible map view. The main problem in using

Fig. 5 Example urban 3D map
with rendered object models
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Fig. 6 Example of 3D points in
Pbuilding (approx. 15m
distance, top) and results of our
point rendering algorithm
(bottom)

3D models is fitting model to a 3D point cloud. The fitting
method is categorized into two types, depending on whether
orientation of an object in question plays an important role in
rendering (which is critical in our system where better visu-
alization is the goal). The first type of fittings is related to the
object classes which their pre-designedmesh structure orien-
tation is not important and their object models will be based
on their position and dimension only. The first object type
fitting includes trees, pedestrians and sign symbols. Unlike
a lot of work which calculate the distance of a given points
to the closest surface and use time-consuming iterative pro-
cedure to fit the pre-designed model into the point cloud or
reconstructed surface [7], we propose a novel approach to
solve this problem in a straightforward and computationally
lightweight manner. For each separated point cloud Pi , the
centre and its boundaries (3D bounding box) will be calcu-
lated. Based on the size of the existing pre-designed library
meshes, we localize the best isodiametric meshes to the point
cloud. Then, as the object orientation is not important we fit
the mesh by stretching it to get an appropriate size. This is a
similarity transformation of estimated isotropic scale s and
transformation t = (tx , ty, tz)T . It is also possible to esti-
mate a similarity transformation where scale is applied to
each dimension s = (sx , sy, sz)T .

The second type object requires also x-y orientation angle
θ and is needed for different types of vehicles in our data (car,
bus, bike). First, the centre of pre-designedmesh is computed
and point cloud will be matched and then the corresponding

model will be chosen from library based on the dimension
of the vehicle 3D bounding box. Then Iterative Closet Point
(ICP) algorithm [30] is applied to automatically refine the
registration of point clouds with desired mesh. The scene
prior knowledge reduces the number of possible vehicle ori-
entations as the road surface is determined (sect. 3.1.1) and
only rotations around the z-axis of the road are considered.
The ICP algorithm that we apply optimizes the RMS (Root
mean Square) distance between closest point pairs of the
models vertices to the point cloud [30]

errRMS(Pmodel,Pi )=
√√√√ 1

N

N∑

n=1

|| pn,model − pn,Pi
||2 (10)

In Fig. 7 is illustrated model fitting to a point cloud. Notice
that even with a different target model of the car (sedan vs.
hatchback) correct pose is readily estimated.

4.2 Semantic segmentation in 2D

Thanks to the Global Positioning System (GPS) and Iner-
tial Measurement Unit (IMU) measurements in the mobile
LiDAR and RGB data acquisition system there is accurate
information to register the 3D point cloud and street view
(RGB) data (Fig. 8). Therefore, it is straightforward to map
the semantic labels of 3D point cloud points to the street
view images. For computational efficiency, input images
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Fig. 7 Example of a 3D car model fitted and rendered to a point cloud

Fig. 8 Mapping between the
3D LiDAR points and 2D street
view images

are over-segmented into super-pixels and each image plane
super-pixel is associated with a collection of labelled 3D
points (Fig. 8). For projection 3D points to image plane we
use the generic camera model (images are already rectified
to remove the optical distortions) [16]:

pimg = K [R|t] p3d (11)

where t is a 3 × 1 translation vector, R is a 3 × 3 rota-
tion matrix and K is a 3 × 3 camera matrix. The input and
output data are given in the homogeneous coordinate sys-
tem. All LiDAR points are transformed to each street view
image and mapped to the closest super-pixel. The mapping
uses z-buffering (within the same pixel only the closest 3D
is selected), and majority vote label of 3D points projected
to the same super-pixel is selected. The image super-pixels
without any label are labelled as “sky”.

5 Experiments

In this section, we provide qualitative and quantitative results
for the applications of visualization of urban 3Dmap data and
semantic 2D segmentation. We compute the point-wise and

pixel-wise classification accuracies and compare our method
to various recently proposed methods.

5.1 Datasets

NAVTEQ True the dataset used in this work is described in
our previous work [2] and is composed of 500 high-quality
street view images of 1032 × 1032 resolution and corre-
sponding LiDAR point clouds collected from three cities:
Chicago, Paris and Helsinki. The data were collected using
the NAVTEQ True systems of high-density 360◦ rotating
LiDAR system, 360◦ panoramic camera and an inertial nav-
igation system (IMU/GPS) for precise position, orientation
and attitude tracking of the sensors. Information from all
these sensors is synchronized to create an accurate and com-
prehensive dataset. The LiDAR system has 64 lasers and
rotates at 600 rpm covering a full 360◦ field of view around
the car. The LiDAR system scans 3D points at the rate of
around 1.2 million points per second. NAVTEQ dataset is
acquired in various weather conditions and urban landscapes
and represents the most challenging data available at the
moment. Seven semantic object classes are defined to label
the LiDAR dataset and its corresponding street view images:
building, tree, car, traffic sign, pedestrian, road, water (and
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sky for unlabelled super-pixels in 2D images). Since the
two other datasets do not contain street view images cor-
responding to LiDAR point clouds we use only this dataset
to experiment 2D semantic segmentation.
Paris-Rue-Madame dataset presented in [34] is used to com-
pare our methodwith other recent works on 3D segmentation
and labelling. This dataset is used for urban detection-
segmentation-classification methods, consists of accurate
annotated 3D point clouds acquired by MLS system on
Madame Street in Paris. The division of data to the train-
ing and test sets is described in [33,34] and we compare our
results to their reported accuracies.
TLS (terrestrial laser scanning)Velodynedataset [21] includes
ten high-quality 3D point cloud scenes collected by a Velo-
dyne LiDARmounted on a car navigating through theBoston
streets. Due to the specific nature of this dataset, we evalu-
ate our method using each LiDAR rotation as a single scene
(approximately 70,000 points).
Performance measure Both 3D LiDAR point segmentation
and 2D street view segmentation are evaluated point/pixel-
wise. We report accuracies for each label and compute other
metrics, such as average precision, to compare to the existing
works.

5.2 Urban 3D segmentation and classification

Paris-Rue-Madame
The point-wise classification results for our method and for
the two recently proposed methods by Aijazi et al. [1] and
Serna andMarcotegui [33] are shown in Table 2. Our method
achieved an average accuracy of 94.1% with notable mar-
gin of 8.5 and 22.2% with respect to existing methods [1]
and [33], respectively. Note that even for this relatively easy
dataset, the traffic sign class turned out to be particularly chal-
lenging due to lack of sufficient training samples. Significant
performance deteriorations were observed for all methods:

the drop in our method was about 10% while for existing
methods 15 and 71%, respectively.

TLS Velodyne
It is notable that our algorithm was initially designed to anal-
yse MLS LiDAR point clouds. One of the main advantages
of our method is that it easily adapts to other types of LiDAR
datasets such as terrestrial laser scanning (TLS) and airborne
laser scanning (ALS) point clouds without major modifica-
tion as long as the point units are inmetric system (thresholds
are set inmetres). To exemplify this we evaluated ourmethod
with the same fixed parameters on the TLS Velodyne LiDAR
dataset which contains 3D point clouds in local coordinate
system of the LiDAR. The total number of points in each ten
scene is nearly 70,000 and the average point density is about
12 points/m2. We compare our method to Lai and Fox [21].
We selected seven scenes for training and the three remaining
scenes for testing similar to them and report per class average
precision and F-score computed as

2 × recall × precision

recall + precision
.

The results in Table 3 show that for 5 out of 6 classes our
method is clearly better and our F-score for each class is
better than the average F-score of Lai and Fox.

NAVTEQ True
The NAVTEQ True dataset is our main target - high-quality
large-scale ground acquired dataset. NAVTEQ True col-
lected fromBoston, Paris and Chicago contains more than 80
million points and covers approximately 2.4 km of road alto-
gether. Seven semantic object classes are defined to label the
scenes: building, road, river, car, tree, traffic sign and pedes-
trian. The point clouds from the three cities are divided into
two portions: the training set, and the testing set. The 70%
of the total street length is selected for training and 30% for

Table 2 Comparison of our
method to other reported results
on 3D point cloud classification
with the Paris-Rue-Madame
dataset

Method Building Road Tr. sign Car Class AVE ACCY

Aijazi et al. [1] 0.914 0.901 0.710 0.900 0.856

Serna et al. [33] 0.986 0.940 0.000 0.950 0.719

Our 0.991 0.950 0.841 0.982 0.941

The bold numbers are related to best results comparing different methods

Table 3 Comparison of our method to other reported results on 3D point cloud classification with the TLS Velodyne dataset

Measure Method Tree Car Tr. sign Pedestrian Fence Building Class AVE ACCY

Precision Lai and Fox [21] 0.83 0.91 0.80 0.41 0.61 0.86 0.73

Our 0.89 0.95 0.72 0.88 0.85 0.95 0.87

F-score Lai and Fox [21] 0.76 0.79 0.69 0.47 0.42 0.91 0.67

Our 0.85 0.93 0.69 0.88 0.80 0.95 0.85

The bold numbers are related to best results comparing different methods
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Fig. 9 Segmented and
classified 3D LiDAR points of
the NAVTEQ True dataset from
Helsinki (colours encode the
different labels)

Table 4 Confusion matrix of
our method for classification of
the the NAVTEQ True dataset

Building Road River Car Tree Tr. sign Pedestrian

Building 0.885 0.083 0.000 0.000 0.115 0.000 0.000

Road 0.041 0.958 0.000 0.003 0.015 0.001 0.000

River 0.000 0.249 0.733 0.000 0.000 0.000 0.000

Car 0.000 0.018 0.000 0.847 0.000 0.007 0.000

Tree 0.004 0.001 0.000 0.000 0.897 0.007 0.000

Tr. sign 0.000 0.002 0.000 0.000 0.113 0.735 0.002

Pedestrian 0.000 0.049 0.000 0.000 0.008 0.000 0.782

Table 5 Computing times of our method with and without the rule-
based steps quick for road surface and building detection. Without
the rule-based step all points are classified using the super-voxel and
boosted decision tree method

Our method # of voxels Comp. time (mins) Overall accuracy

w rule-based 32,891 46 86%

w/o rule-based 246,548 291 75%

testing. Some typical results are illustrated in Fig. 9. Confu-
sion matrix in Table 4 shows that the average accuracy (over
all classes) is about 83%, with rule-based classification accu-
racies above 88%. Relatively low accuracies were reported
for certain classes, e.g. pedestrian (78%), traffic sign (73%)
and river (73%). These challenging cases are ascribed to the
lack of sufficient training samples for each class.

Computing time
The proposed method has various advantages. The main
contribution of this work is about achieving high accu-

racy within reasonable computing time. Considering the
large-scale LiDAR datasets, we believe that fully supervised
classification methods are computationally too expensive.
In this experiment, we switched off the rule-based pro-
cessing stage, but performed super-voxel-based supervised
training and classification in Sect. 3.2. The results are col-
lected to Table 5, and the computing time is wall time on
Intel (R) Core(TM) i7-4710MQ 2.5 GHz CPU with 32 GB
RAM. The results show that without the rule-based seg-
mentation step the supervised classifier must construct and
classify 7.5× more voxels and thus the computation time
is 6.3× longer and requires much more memory usage.
Moreover, without rule-based processing, the classification
accuracy degraded significantly, partially due to the con-
nectedness problem, i.e. roads surfaces and buildings are
mis-segmented with other objects. In contrast, the removal
of road surfaces and building facades created better isolated
point clouds and hence improved classification accuracy
from 75 to 86%.
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Fig. 10 Super-voxel classification accuracy on NAVTEQ True dataset (left) and computing time (right) with respect to the distance threshold
τvoxel in (5)

Table 6 Confusion matrix of
pixel-wise accuracies of our
method for 2D semantic
classification of the NAVTEQ
True street view images

Sky Building Road Tree Car Tr. sign Pedestrian River

Sky 0.960 0.020 0.000 0.020 0.000 0.000 0.000 0.000

Building 0.030 0.870 0.024 0.075 0.000 0.000 0.000 0.000

Road 0.000 0.015 0.920 0.000 0.065 0.000 0.000 0.000

Tree 0.000 0.280 0.080 0.640 0.000 0.000 0.000 0.000

Car 0.050 0.000 0.250 0.020 0.680 0.000 0.000 0.000

Tr. sign 0.010 0.280 0.090 0.000 0.000 0.370 0.250 0.000

Pedestrian 0.010 0.340 0.020 0.020 0.000 0.330 0.280 0.000

River 0.000 0.050 0.250 0.050 0.000 0.000 0.000 0.650

Parameter settings
An important parameter controlling our method’s accuracy
and computing time is the threshold used to generate super-
voxels (Sect. 3.2.1). In our experiments this was set to
τvoxel = 0.005m, but to further study the effect of this param-
eter we conducted an ablation study with the NAVTEQ True
dataset by varying the threshold value. The results of this
experiment are shown in Fig. 10 (displayed in black curves)
where the setting 5 mm clearly provides high accuracy with
reasonable computation time.

The performance is evaluated in both robustness and accu-
racy terms with four sub-sampled of original point clouds.
The testing point clouds are down-sampled uniformly to 75,
80, 85, 95% of the original point cloud density [31]. Refer
Fig. 10 (colourful curves) for a summary of the algorithmper-
formance results. Note that the dataset was down-sampled in
multiple runs and the average accuracies as well as devi-
ations were plotted in Fig. 10. The results show that the
optimal threshold is consistent (around 5mm) in despite that
the average accuracy decreases with the percentage of down-
sampling.

5.3 Semantic 2D segmentation

Dense scene labelling/segmentation is an important prob-
lem in robot and computer vision [24,29,44] and in our

case this can be achieved by backprojecting the labelled
3D points to 2D camera view plane (Sect. 4.2). For eval-
uation of 2D semantic segmentation we generated 2D
ground truth by backprojecting the ground-truth 3D labels
to the corresponding street view images in 500 randomly
selected images in the NAVTEQ True test set. The back-
projection results were manually verified and corrected.
Pixel-wise classification accuracies are in Table 6. The
sky, building and road regions were accurately labelled in
(≥85% accuracy). The traffic signs and pedestrians were
more poorly segmented, and this can be explained by
the fact that there are not many examples for our classi-
fier and therefore it makes misclassifications to the more
frequent classes. However, the pixel-wise accuracies may
give wrong interpretation of the results which qualita-
tively looked good as shown in the illustrative examples in
Fig. 11.

6 Discussion

Firstly, rule-based classification is dedicated to the dominant
objects, i.e. roads and buildings presented in LiDARdatasets,
whereas rules are designed based on prior knowledge of these
objects in terms of their sizes, relative positions, etc. A sys-
tematic approach to fine-tuning rules is to cross-validate rule
parameters with respect to a separate dataset accompanied
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Fig. 11 2D street view image
segmentation using 3D label
back projection. Left test image;
middle ground truth; right our
results

with ground-truth labels. Adding new rules can be treated
in the similar manner. Nevertheless, a great deal of ground-
truth labels is required to pursue this approach, making it
only suitable for applications with ample ground-truth data
available. Secondly, the street view 3Dmodelling application
is restricted to the diversity and number of the pre-designed
mesh templates in library. This problem can be solved by

creating a big library of street view objects such as trees and
cars to generate more real 3D models.

7 Conclusions

Wehave proposed an efficient and accurate two-stagemethod
to segment and semantically label urban 3D city maps of reg-
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isteredLiDARpoint clouds andRGBstreet view images.Our
method can process 80 million 3D points (2.4 km street dis-
tance) in less than an hour on commodity desktop hardware.
The first processing stage uses rule-based detectors for road
surfaces and building facades that span more than 75% of
city point clouds. The rules are based on robust and adaptive
processing (e.g. to the average building height of a spe-
cific city) with thresholds that have clear physical meaning
and setting them is therefore intuitive. The remaining point
cloud is processed by methodology that first constructs vox-
els (point clusters), and the super-voxels are then classified
by an ensemble of boosted decision trees. Voxel construction,
super-voxel construction and the extracted features are also
based on thresholds and measures with clear physical mean-
ing which allows their intuitive setting for other types of 3D
map data. The rule-based stage makes computing 6× faster
as compared to classifier-only and improves the segmenta-
tion accuracy. Moreover, we proposed two applications of
our method: 1) model-based 3D visualization for better user
experience and 2) 2D semantic segmentation for 2D applica-
tions. Both applications were also experimentally validated
and our method performs favourably as compared to other
existing methods. Our future work will address adaptation of
the method for other 3D map data than urban city centres.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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