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Abstract
Aims/hypothesis Pancreatic islets produce non-coding microRNAs (miRNAs) that regulate islet cell function and survival. Our
earlier investigations revealed that human islets undergo significant damage due to various types of stresses following transplan-
tation and release miRNAs. Here, we sought to identify and validate exosomal miRNAs (exo-miRNAs) produced by human
islets under conditions of cellular stress, preceding loss of cell function and death. We also aimed to identify islet stress signalling
pathways targeted by exo-miRNAs to elucidate potential regulatory roles in islet cell stress.
Methods Human islets were subjected to proinflammatory cytokine and hypoxic cell stress andmiRNA from exosomes was isolated
for RNA sequencing and analysis. Stress-induced exo-miRNAs were evaluated for kinetics of expression and release by intact islets
for up to 48 h exposure to cytokines and hypoxia. A subset of stress-induced exo-miRNAs were assessed for recovery and detection
as biomarkers of islet cell stress in a diabetic nude mouse xenotransplant model and in patients undergoing total pancreatectomy with
islet auto-transplantation (TPIAT). Genes and signalling pathways targeted by stress-induced exo-miRNAs were identified by Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis and direct interactions of miRNAs with downstream signalling targets were
validated in human islet cells using the miRNATests for Read Analysis and Prediction (MirTrap) system.
Results Global exo-miRNA sequencing revealed that 879 miRNA species were released from human islets and 190 islet exo-
miRNAs were differentially expressed in response to proinflammatory cytokines, hypoxia or both. Release of exo-miRNAs hsa-
miR-29b-3p and hsa-miR-216a-5p was detected within 6 h of exposure to cytokines and hypoxia. The remaining subset of stress-
induced exo-miRNAs, including hsa-miR-148a-3p and islet cell damage marker hsa-miR-375, showed delayed release at 24–
48 h, correlating with apoptosis and cell death. Stress and damage exo-miRNAs were significantly elevated in the circulation in
human-to-mouse xenotransplant models and in human transplant recipients. Elevated blood exo-miRNAs negatively correlated
with post-transplant islet function based on comparisons of stress and damage exo-miRNA indices with Secretory Unit of Islet
Transplant Objects (SUITO) indices. KEGG analysis and further validation of exo-miRNA targets by MirTrap analysis revealed
significant enrichment of islet mRNAs involved in phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase signal-
ling pathways.
Conclusions/interpretation The study identifies exo-miRNAs differentially expressed and released by islets in response to
damage and stress. These exo-miRNAs could serve as potential biomarkers for assessing islet damage and predicting outcomes
in islet transplantation. Notably, exo-miRNAs 29b-3p and 216a-5p could be detected in islets prior to damage-released miRNAs
and indicators of cellular apoptosis and death. Thus, these stress-induced exo-miRNAs may have potential diagnostic value for
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detecting early islet stress prior to progressive loss of islet cell mass and function. Further investigations are warranted to
investigate the utility of these exo-miRNAs as early indicators of islet cell stress during prediabetic conditions.

Keywords Cellular stress . Exosomal miRNA . Islet cell damage . Islet transplantation . PI3K–Akt signalling pathway

Abbreviations
BAD BCL2-associated death promoter
Casp-3 Caspase-3
CC Cytokine cocktail
c-Casp-3 Cleaved Casp-3
CHOP CCAAT-enhancer-binding protein homolo-

gous protein
DMI Damage miRNA index
D-miR Damaged-induced exo-miRNA
ER Endoplasmic reticulum
exo-miRNA Exosomal miRNA
FDA Fluorescein diacetate
FOXO1 Forkhead box protein O1
HIF-1α Hypoxia inducible factor 1α
Hsp70 Heat-shock protein 70
HYP Hypoxia (experimental treatment)
IEQ Islet equivalent
IRE Inositol-requiring enzyme
KEGG Kyoto Encyclopedia of Genes and Genomes
miRNA MicroRNA
MirTrap miRNATests for Read Analysis and Prediction

mTOR Mammalian target of rapamycin
NTA Nanoparticle tracking analysis
PI Propidium iodide
PI3K Phosphoinositide 3-kinase
qPCR Quantitative PCR
SMI Stress miRNA index
S-miR Stress-induced exo-miRNA
STZ Streptozotocin
SUITO Secretory Unit of Islet Transplant Objects
TEM Transmission electron microscopy
TPIAT Total pancreatectomy with islet

auto-transplantation
XBP1 X-box binding protein 1 isoform

Introduction

Pancreatic islets express inflammatory mediators such as che-
mokine (C-C motif) ligand 2 (CCL2), C-X-C motif chemo-
kine 10 (CXCL10), IL-1β, TNF-α and IL-6 in response to
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metabolic, inflammatory, oxidative and hypoxic stress sig-
nals to adapt, repair or restore islet function [1–5]. These
inflammatory mediators have been observed in islets under
conditions of type 1 and type 2 diabetes as well as during
islet transplantation [1, 2, 6]. Currently known non-
invasive biomarkers of islet beta cell dysfunction include
circulating proinsulin, C-peptide, glucose tolerance tests
and HbA1c. However, these biomarkers are limited to de-
tection of beta cell dysfunction at or after diagnosis of
diabetes when islet cell function has already been signifi-
cantly depleted. As yet, there are no reliable methods to
detect islet cell stress during transplantation and in the pre-
diabetic state prior to loss of islet cell mass and function.
Thus, molecules specifically expressed in islets during cel-
lular stress may qualify as stress-selective biomarkers to
track the status of islets during prediabetic conditions.
Such investigations would be useful for identifying timely
interventions to preserve islet function after transplantation
and in the prediabetic state.

Islet microRNAs (miRNAs) are known to play important
roles in the regulation of islet function and survival [7–10].
Indeed, multiple miRNAs are associated with type 1 and 2
diabetes [11]. In islet transplantation, islets are subjected to
stresses during procurement, isolation and engraftment.
Upon transplantation, islets release miRNAs that are detect-
ed in the circulation [12, 13]. These miRNA species are
packed in exosomes that confer resistance to degradation.
Exosomes, ~100–200 nm in diameter, play important roles
in cell communication and transfer of molecular species
between cells. Thus, plasma-derived exosomal miRNAs
(exo-miRNAs) are attractive candidates in the search for
non-invasive biomarkers of islet cell stress and may enable
tracking early progression of disease by stage-specific mo-
lecular signatures.

Several miRNAs correlate with islet damage and transplant
outcomes. Notably, elevated hsa-miR-375 in the transplant
medium and in sera of islet transplant recipients correlates
with lower islet yield and poor transplant outcomes, respec-
tively [12–14]. Elevated hsa-miR-200c is a predictive bio-
marker of endocrine outcome 1 year after islet auto-
transplantation [11]. Although hsa-miR-375 is a beta cell-
specific biomarker that is sensitive and reliable for monitoring
islet cell damage, it is limited to islets that have already been
extensively damaged. In this study, we sought to identify and
validate miRNAs induced in response to cellular stress before
cells enter apoptosis using ex vivo studies and in vivo studies
in mouse models of islet transplantation and during islet infu-
sion in patients undergoing total pancreatectomy with islet
auto-transplantation (TPIAT). Further analyses of downstream
miRNA targets were performed and validated by Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis and
the miRNATests for Read Analysis and Prediction (MirTrap)
system.

Methods

Human islets For ex vivo studies, human islets were procured
from the Integrated Islet Distribution Program (City of Hope,
Los Angeles, CA, USA). Blood samples were also tested from
six patients admitted for TPIAT at Baylor University Medical
Center. Islets were isolated from the pancreas (procured after
total pancreatectomy) as described previously (see electronic
supplementary material [ESM] Method 1) [12]. Islets were
cultured in CMRL 1066 medium containing 10% exosome-
depleted FBS, 2 mmol/l glutamine, 100 U/ml penicillin and
100 μg/ml streptomycin at 37°C and 5% CO2. For studies
using cytokines and hypoxia, the islets were treated with pro-
inflammatory cytokine cocktail (CC) containing IL-1β
(100 U/ml), TNF-α (1000 U/ml) and IFN-γ (1000 U/ml)
and exposed to hypoxia (HYP; 1% O2, 5% CO2 and 94%
N2) for 6, 12 and 24 h ex vivo. Viability of islets was deter-
mined using propidium iodide (PI)/fluorescein diacetate
(FDA) staining. All human islet investigations were approved
by the institutional review board.

Animal studies Male nude mice (NU/J-Foxn1nu, The Jackson
Laboratory, Sacramento, CA, USA) aged 8 weeks, n = 5 in
streptozotocin (STZ)-induced diabetic control, and kidney
capsule and intraportal transplant groups, were housed indi-
vidually with a 12 h dark–light cycle and fed standard rodent
diet ad libitum. Mice were fasted overnight and dosed with
STZ (160 mg/kg). Diabetes was established after two consec-
utive blood glucose measurements >22.2 mmol/l. Human is-
lets (2500 islet equivalents [IEQs], cultured routinely at 37°C,
with 5% CO2 before transplantation) were transplanted under
the kidney capsule or intraportally. Blood plasma samples
were collected 24 h post transplantation and stored at −80°C
until further analyses. The human islet grafts were then
resected from the kidney capsule for gene expression analyses
using quantitative PCR (qPCR; see ESM Method 2). All an-
imal procedures followed protocols of the institutional animal
care and use committee.

Isolation and characterisation of exosomes Exosomes were
isolated using the miRCURY exosome isolation kit (Exiqon,
Woburn, MA, USA). Briefly, plasma or islet culture superna-
tant fraction was centrifuged at 10,000 or 3000 g for 5 min and
exosomes were precipitated using precipitation buffer over-
night at 4°C, followed by centrifugation at 10,000 g at 20°C.
Transmission electron microscopy (TEM) and nanoparticle
tracking analysis (NTA) analyses were performed to charac-
terise exosomes (see ESM Method 3).

Exosomal miRNA transcriptome analysis Total RNA was ex-
tracted from exosomes using the miRCURY RNA isolation
kit (Exiqon) following manufacturer’s instructions. Exosomal
miRNA (exo-miRNA) expression was analysed using LNA-
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based miRNA primers (Exiqon) and miRCURY Universal
RT-PCR (Exiqon). For miRNA transcriptome analysis, a mul-
tiplex miRNA transcriptome library was constructed using a
TruSeq RNA Library Prep Kit (Illumina, San Diego, CA,
USA) (see ESM Method 4, 5).

Immunoblotting Expression of inositol-requiring enzyme
(IRE-1α), X-box binding protein 1 isoform (XBP1), hypoxia
inducible factor 1α (HIF-1α), CCAAT-enhancer-binding pro-
tein homologous protein (CHOP), caspase-3 (Casp-3),
cleaved Casp-3 (c-Casp-3), CD9 and β-actin in exosomes or
islet extracts was determined using standard immunoblotting
protocol (see ESM Method 6 for details of methods and
antibodies).

Plasma exo-miRNA analyses during TPIAT During TPIAT,
blood samples were collected 1 h before islet infusion, during
islet infusion, upon completion of islet infusion and at 6 h,
1 day and 7 days after completion of islet infusion. After
transplantation, patients were followed up to 1 year to monitor
islet graft function using C-peptide, HbA1c and Secretory Unit
of Islet Transplant Objects (SUITO) index using established
methods (see ESM Method 1).

KEGG analysis and MirTrap system In silico KEGG analysis
was performed using DIANA tools mirPath (v.3, http://www.
microrna.gr/miRPathv3) to predict the pathways influenced
by stress/damage-specific miRNAs. The MirTrap system
(Clontech, Mountain View, CA, USA) was used to identify
specific miRNA targets and validate KEGG pathway predic-
tion (see ESM Method 7 and Fig. 6b).

Statistical analysis Data were represented as mean ± SEM.
Student’s t test was performed for statistical analysis or one-
way ANOVAwith Tukey–Kramer post hoc tests for analysis,
wherever applicable. A p value <0.05 was considered statisti-
cally significant. For correlation studies, Pearson’s two-tailed
correlation analysis was performed. Randomisation and
blinding were not carried out for any analysis. All analyses
were carried out using GraphPad Prism (version 7, GraphPad
Software, San Diego, CA, USA).

Results

Induction of stress and apoptosis in human islets CC+HYP
treatment increased the expression of HIF-1α, IRE-1α, XBP1
and CHOPwithin 6 h (Fig. 1a–e, p < 0.01 to p < 0.001). CC +
HYP induced apoptotic marker c-Casp-3 within 24 h (Fig.
1f,g, p < 0.001). Casp-3 activation correlated with a progres-
sive increase in PI+/FDA+ cell frequency/IEQ from 12 h to
48 h (Fig. 1h,i, p < 0.001). Thus, CC + HYP effects on islets
progressed from activation of endoplasmic reticulum (ER)

stress response within 6 h to apoptosis within 12 h, to >50%
cell death by 24 h.

Exosome characterisation and exo-miRNA sequencing analy-
ses Approximately 0.8× 107/ml exosomes per sample were
recovered from human islets (2500 IEQ). TEM demonstrated
round islet exosomes with cuplike concavity and a diameter of
~100 nm (Fig. 2a–c). NTA confirmed a peak islet exosome
size distribution of ~110 nm (Fig. 2d). Islet exosomes
expressed exosomal tetraspanin surface protein marker CD9
and heat-shock protein 70 (Hsp70) (Fig. 2d). Biospectral
analysis confirmed that exosome RNAs were 18–23
nucleotides in length, with >80% matches, consistent with
average size of miRNAs (ESM Fig. 1a). CC and HYP
treatments had a significant influence on miRNA expression
in islet exosomes compared with control untreated islets and
islets only treated with CC (ESM Fig. 1b).

RNA sequencing analysis revealed 879 exo-miRNA spe-
cies released from human islets; 190 exo-miRNAs were dif-
ferentially expressed in response to CC and/or HYP compared
with control islets (Fig. 2e). Among this group, subgroups of
14, 52 and 33 exo-miRNAs were selectively expressed by
human islets under conditions of stress (CC, HYP and CC +
HYP, respectively, Fig. 2f).

Release of exo-miRNA from isolated human islets Of the 29
exo-miRNAs differentially expressed with statistical signifi-
cance (p < 0.01, except for hsa-miR-216a-5p and hsa-miR-
200c-3p), 11 were expressed under all stress conditions (Fig.
2f, Table 1). Eight of the 29 miRNA species (hsa-miR-375,
-216a-5p, -29b-3p, -148a-3p, -92a-3p, -200c-3p, -7-5p and
-125b-5p) were validated by qPCR to be differentially released
in exosomes from human islets exposed to CC and/or HYP
using commercially available primers (Exiqon; ESM Fig. 2).

Ex vivo time course analyses revealed distinction between
early and late responses to CC +HYP, with release of exo-
miRNAs hsa-miR-29b-3p and hsa-miR-216a-5p within 6 h
of CC + HYP exposure (Fig. 3a,b, p < 0.05 to p < 0.001).
Other islet exo-miRNAswere not significantly expressed until
24–48 h (Fig. 3c–h, p < 0.05 to p < 0.001). Release of exo-
miRNAs from stressed islets was suppressed up to 24 h by
pre-treatment with GW4869, a neutral sphingomyelinase in-
hibitor that prevents ceramide-mediated maturation of
exosomes. Collectively, these data indicate that hsa-miR-
29b-3p and hsa-miR-216a-5p are selectively released in
exosomes before apoptosis and cell death. Thus, we classify
hsa-miR-29b-3p and hsa-miR-216a-5p as stress-induced exo-
miRNA (S-miR) and hsa-miR-375 and hsa-miR-148a-3p as
damage-induced exo-miRNA (D-miR) miRNAs.

Exo-miRNA validation in vivo using human islets transplanted
into nude mice To validate exo-miRNAs as biomarkers of
islet cell stress, we used mouse models of human islet
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transplantation. Diabetes was established in the mice 72 h after
STZ administration. Human islets (2500 IEQs) were
transplanted under the kidney capsule (Fig. 4a) or intraportally
(ESM Fig. 3), and blood samples were collected 24 h post-
xenotransplantation. Human islet grafts decreased blood glu-
cose levels 24 h after transplantation (Fig. 4b and ESMFig. 3a,
p < 0.001) but did not affect body weight (Fig. 4c and ESM
Fig. 3b). Plasma exosomes at 24 h demonstrated similar size
distributions and exosomal surface marker CD9 as observed in

ex vivo experiments (Fig. 4d). Both S-miR and D-miR were
detected in plasma exosomes in the xenotransplantation groups
but not in STZ diabetic mice (Fig. 4e–h, p < 0.001 and ESM
Fig. 3c–g, p < 0.05, p < 0.01). We normalised S-miRs and D-
miRs to a stable exo-miRNA control, hsa-miR-889-3p (high
baseMean >500, with no significant changes in expression
over time ex vivo [ESM Fig. 2j] or after xenotransplantation
[data not shown]), to provide basic quantifiable damage
miRNA index (DMI) and stress miRNA index (SMI) (Fig. 4i).
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Fig. 1 Proinflammatory cytokines and hypoxia induce ER stress and
apoptosis in human islets. Isolated human islets (1000 IEQs) were ex-
posed to proinflammatory cytokines (CC: IL-1β [100 U/ml] + IFN-γ
[1000 U/ml] + TNF-α [1000 U/ml]) and hypoxia (HYP: 1% O2, 5%
CO2 and 94% N2) for 6, 12 and 24 h for immunoblotting, and for 6, 12,
24 and 48 h for PI/FDA staining. (a) Representative blots for expression
of IRE-1α, XBP1, HIF-1α, CHOP and β-actin at the indicated time
points. (b–e) Densitometry analysis, with protein expression normalised
to β-actin. (f) Representative blots for expression of Casp-3, c-Casp-3,
and β-actin at the indicated time points. (g) Densitometry analysis, with

protein expression normalised to Casp-3. (h) Representative images
showing PI/FDA-stained human islets. Scale bar, 100 μm. (i)
Quantification of PI+/FDA+ cells per IEQ at the indicated time points;
approximately 20 IEQs were counted for analyses. Data are presented as
mean ± SEM (n = 3 samples). One-way ANOVA followed by Tukey’s
multiple comparison test was performed for statistical analyses.
***p < 0.001 compared with untreated control islets at 24 h; †p < 0.05,
††p < 0.01 and †††p < 0.001 compared with CC +HYP treatment at 6 h. C
denotes untreated control islets cultured routinely for 24 h
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The human islet xenografts were resected 24 h after trans-
plantation to assess expression of stress markers and beta cell-
enriched genes. Relative mRNA expression of proinflamma-
tory markers CXCL10, TNF, IL6, NOS2, FOS and HIF1Awas
significantly increased while INS1mRNA expression was sig-
nificantly reduced in the resected grafts compared with normal
human islets (p < 0.05 and p < 0.001, respectively; ESM Fig.
4). GCG and HMGB1 transcription was similar between
resected grafts and normal human islets (ESM Fig. 4).

Exo-miRNA profile in patients undergoing TPIAT We mea-
sured circulating levels of S-miR and D-miR during islet in-
fusion in TPIAT patients. Details of islet infusions are

provided in Table 2. Circulating levels of S-miR and D-miR
increased significantly over time, peaking at completion of
islet infusion (Fig. 5a, p < 0.05 to p < 0.001) and returned to
normal at 7 days after islet infusion. Circulating levels of other
exo-miRNAs (hsa-miR-200c-3p, -92a-3p, -125b-5p, -7f-5p
and -889-3p) did not change significantly over time (Fig.
5b). At 1 year post transplantation, DMI (r = −0.7961, p =
0.058) and SMI (r = −0.8834, p = 0.019) correlated negatively
with SUITO index (Fig. 5c,f). DMI (r = −0.3053, p = 0.556)
did not correlate with C-peptide (Fig. 5d), while SMI (r =
−0.6785, p = 0.138) correlated negatively with C-peptide al-
beit not significantly (Fig. 5g). DMI (r = 0.243, p = 0.629) did
not correlate with HbA1c (Fig. 5e), while SMI (r = 0.7709, p =

d
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Fig. 2 Exosome characterisation and exo-miRNA sequencing analyses.
(a–c) Representative TEM images of exosomes released from isolated
human islets (2500 IEQ) exposed to CC (IL-1β [100 U/ml] + IFN-γ
[1000 U/ml] + TNF-α [1000 U/ml]) or HYP (1% O2, 5% CO2 and 94%
N2) for 24 h. Scale bar, 100 nm. Arrows indicate exosomes. (d) Exosome
size distribution (representative data showing control islet exosome dis-
tribution), estimated by the dynamic light scattering (DLS) method; inset
shows exosomal CD9 and Hsp70 expression, assessed by western blot,
from islets exposed to CC or HYP as detailed above. (e) Heat map

representation of exo-miRNA sequencing data (differential expression
analysis based on the negative binomial model) from islets exposed to
CC, HYP or CC +HYP as detailed above. Colour codes for fold change
are indicated in the heat map. (f) Venn diagram showing the number of
differentially expressed exo-miRNAs released from human islets during
exposure to CC, HYP and CC+HYP (limited to p < 0.05 and fold change
>1.5 vs control). Data are presented as mean ± SEM (n = 3 samples). C
denotes untreated control islets cultured routinely for 24 h
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0.069) correlated positively with HbA1c albeit not significant-
ly (Fig. 5h).

Exo-miRNA target analyses using the MirTrap system (hsa-
miR-29b-3p; hsa-miR-216a-5p) KEGG analysis revealed
phosphoinositide 3-kinase (PI3K)–Akt, forkhead box protein
O1 (FOXO1) and mammalian target of rapamycin (mTOR)
signalling pathways, extracellular matrix–receptor interaction,
biotin metabolism and platelet activation (Table 3, Fig. 6a) as
targets of these exo-miRNAs. We validated exo-miRNAs
(hsa-miR-216a-5p and hsa-miR-29b-3p) experimentally using
the MirTrap system in dissociated human islet cells (Fig. 6b,
ESM Method 7). Among 84 genes tested (PI3K–Akt

signalling pathway RT2 profiler PCR array), 21 were sig-
nificantly enriched after immunoprecipitation in dissociat-
ed human islet cells co-transfected with hsa-miR-29b-3p
and hsa-miR-216a-5p mimics, and pMirTrap vector (Fig.
6c, Table 4, p < 0.05), confirmed by qPCR analyses (15
genes shown, Fig. 6d,e). Positive (Aequorea coerulescens
GFP [AcGFP1]) and negative (procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 3 [PLOD3]) controls for the
experimental control transfection (hsa-miR-132 mimic,
pMirTrap vector) validated the specificity of the MirTrap
system (Fig. 6d, fold enrichment of AcGFP1 = 25.71,
p < 0.001). Thus hsa-miR-29b-3p and hsa-miR-216a-5p in-
teract with these signalling pathways in islets.

Table 1 Expression of 29 exo-miRNAs from sequence data with p < 0.05a or high baseMean

No. Transcript baseMean Log2FC p value FDR Condition

Exo-miRNAs expressed under all stress conditions

1 hsa-miR-1238-5p 16.6 1.247 0.003 0.030 All

2 hsa-miR-29c-5p 43.3 1.101 0.001 0.014 All

3 hsa-miR-125b-5p 852.1 0.689 0.001 0.021 All

4 hsa-miR-181d-5p 830.3 −0.588 0.017 0.099 All

5 hsa-miR-106b-3p 625.8 −0.663 0.001 0.013 All

6 hsa-miR-432-5p 12841.6 −0.663 0.005 0.048 All

7 hsa-miR-4505 4.5 −0.87 0.034 NA All

8 hsa-miR-889-3p 10255.3 −0.953 0.0001 0.002 All

9 hsa-miR-654-5p 270.7 −0.985 <0.0001 0.002 All

10 hsa-miR-877-5p 620.6 −1.030 <0.0001 <0.001 All

11 hsa-miR-203a-3p 329.9 −1.791 <0.0001 <0.001 All

Top exo-miRNAs with significant fold change (Log2FC)

12 hsa-miR-1200 16.7 1.715 <0.0001 0.002 CC+HYP

13 hsa-miR-29b-3p 607.8 1.646 <0.0001 0.0003 CC+HYP

14 hsa-miR-185-5p 64.0 1.420 <0.001 0.008 CC+HYP

15 hsa-miR-1251-5p 33.1 1.417 <0.001 <0.01 CC+HYP

16 hsa-miR-590-5p 5.2 1.357 <0.001 NA CC+HYP

17 hsa-miR-3613-3p 14.2 1.279 0.003 0.035 CC+HYP

18 hsa-miR-665 597.8 1.262 <0.0001 0.0003 CC+HYP

19 hsa-miR-7-5p 592.4 1.223 <0.0001 <0.001 CC+HYP

20 hsa-miR-320d 1124.2 1.219 <0.0001 <0.001 CC+HYP

Islet-specific exo-miRNAs with high baseMean (>550)

21 hsa-miR-375 1083171 −0.610 0.01 0.082 CC+HYP

22 hsa-miR-216a-5p 554.169 0.352 0.075 0.255 CC+HYP

23 hsa-miR-200c-3p 820.160 0.403 0.095 0.288 CC+HYP

24 hsa-miR-148a-3p 397444.2 −1.154 <0.0001 <0.0001 CC+HYP

25 hsa-miR-92a-3p 17655.06 −1.148 <0.0001 <0.0001 CC+HYP

26 hsa-miR-25-3p 11817.34 −0.931 <0.0001 <0.001 CC+HYP

27 hsa-miR-409-3p 22547.35 −0.962 <0.0001 <0.001 CC+HYP

28 hsa-miR-410-3p 25901.78 −0.914 <0.0001 <0.001 CC+HYP

29 hsa-miR-129-5p 12220.80 −0.806 <0.001 <0.01 CC+HYP

a Except hsa-miR-216a-5p and hsa-miR-200c-3p

FC, fold change; FDR, false discovery rate
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Discussion

Using extensive ex vivo and in vivo mouse and human stud-
ies, we have validated two plasma exo-miRNAs, hsa-miR-
29b-3p and hsa-miR-216a-5p, specific for islet beta cell stress.
In the context of islet transplantation, insulin independence
depends on a number of factors including islet engraftment
and function. Inflammation and hypoxia account for about
50% of islet cell death within 48–72 h of transplantation
[15–20]. Furthermore, stress and damage during islet isolation

and in the peri-transplant stages drastically influence the out-
come of transplantation [12, 21–23]. Identification of specific
circulating biomarkers of the early stages of beta cell stress,
common to any islet microenvironments including prediabe-
tes and transplantation, can improve treatment strategies.

Circulating or urinary miRNAs in microvesicles or
exosomes are being evaluated as biomarkers of disease pro-
gression and diabetes complications [24–26]. Exosomal pro-
teins and nucleic acids are resistant to degradation, as they are
protected by a lipid bilayer. Their roles in cell communication,
immune regulation, cell adhesion, tissue regeneration and
elimination of harmful molecules are well established in mul-
tiple contexts [27–29]. Hence, exosome-based biomarkers are
reliable and can be used to predict disease progression, predict
treatment efficacy and aid in personalised medicine.

Upon exposure to CC + HYP, human islets released
exosomes (~110 nm in diameter), as reported earlier [30], with
TEM analyses confirming the expected round-shaped mor-
phology. Exosomes expressed CD9 and contained small
RNA species (18–23 nucleotides). CC + HYP induced ER
stress response within 6 h and apoptosis by 24 h [31–38].
The exo-miRNA sequencing analyses revealed that cytokines
and/or hypoxia induced significant changes in exo-miRNA
signature (ESM Fig. 1b). Our investigations included
>28,000 miRNAs represented in the miRBase database
(>80% sequence match). Diabetes environments, including
glucotoxic and glucolipotoxic environments, influence alter-
ations in islet miRNA transcription [39–42]. In rat islets, cy-
tokines increased expression of islet miRNAs, including miR-
375, miR-29b and miR-200c, after 6 h of exposure [43]. We
identified 11 miRNAs that were differentially released in
exosomes under all stress conditions. We selected the top nine
exo-miRNAs with significant induction (log2 fold change)
and nine with high baseMean (>550) islet-specific exo-
miRNAs [10, 12, 13, 44–47] from our global miRNA se-
quencing (miRNA-seq) data for additional investigations.

Ex vivo qPCR analyses indicated that expression of eight
exo-miRNAs was significantly increased after CC + HYP ex-
posure. hsa-miR-29b-3p and hsa-miR-216a-5p were released
in exosomes as early as 6 h, coinciding with activation of ER
stress response markers IRE-1α, XBP1, HIF-1α and CHOP.
Other miRNAs (hsa-miR-375, hsa-miR-148a-3p, hsa-miR-
200c-3p, hsa-miR-7-5p, hsa-miR-92a-3p and hsa-miR-125b-
5p) were released in exosomes at 24 h, coinciding with Casp-3
activation, cell damage and induction of apoptosis (Fig. 1);
GW4869 blocked their release, thus confirming the exosomal
origin of these miRNAs. Thus, there is a clear demarcation
between release of miRNAs in the early state of cellular stress
and the state of cell damage and apoptosis. We classified these
two categories of miRNAs as S-miR and D-miR, respectively.
These early S-miRs are valuable and promising biomarkers of
islet cell stress even before induction of cell damage and
death.
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Plasma levels of these S-miRs (miR-29b-3p and miR-216a-
5p) and D-miRs (miR-375 and miR-148a-3p) were increased
in STZ diabetic nude mice transplanted with isolated human
islets under the kidney capsule or intraportally. These human
exo-miRNAs were not detected in control STZ diabetic nude
mice. Other exo-miRNAs were not detectible in these trans-
plant models except for hsa-miR-200c-3p (fold change 2.95)
and hsa-miR-92a-3p (fold change 23.8) in a kidney capsule
transplant model, consistent with our previous clinical results

[12]. These results clearly suggest that elevated plasma S-miRs
and D-miRs correspond to islet stress and damage immediately
post transplantation due to inflammation and hypoxia. Islet
stress was evident from increased expression of NOS2,
HIF1A, FOS, CXCL10, IL6 and TNF in islet grafts at 24 h post
transplantation (ESM Fig. 4). We calculated stress and damage
indices (SMI and DMI) using a stable exo-miRNA, hsa-miR-
889, expression of which did not change after cytokine or hyp-
oxia treatment ex vivo (Figs. 4, 5). SMI and DMI were both
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Table 2 TPIAT patient
information Patient no. Transplanted

pellet volume (ml)
No. of bags Islet dose (IEQ) IEQ/kg

body weight
Incubation time
before infusion (h)

TPIAT 1 27 3 760334 7558 1

TPIAT 2 16 2 486580 5106 1

TPIAT 3 26 3 375607 6137 1

TPIAT 4 13 2 353000 4095 1

TPIAT 5 15 2 440584 5700 1

TPIAT 6 26 3 419540 5406 1
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increased considerably, with SMI slightly higher than DMI in
the kidney capsule transplant model. Islet beta cell stress and
dysfunction were also evident from reduced INS1 mRNA
levels in islet grafts at 24 h post transplantation. In a model of
human-into-mouse xenoislet transplantation, both islet graft
and plasma exosomes contained miR-375 among various other
miRNAs, which differed from our list of exo-miRNAs [30].
These differences could be attributed to the reference exo-
miRNA and controls used to analyse data. Nevertheless, both
studies highlight changes in exosome cargo that can be tapped
for identification of non-invasive biomarkers.

In TPIAT patients, time course analyses indicated that plas-
ma levels of hsa-miR-375, hsa-miR-216a-5p, hsa-miR-148a-
3p and hsa-miR-29b-3p peaked at completion of islet infusion
and normalised to pre-transplant levels after 7 days (Fig. 5).
Plasma levels of hsa-miR-200c-3p and hsa-miR-92a-3p were
elevated, although not significantly, compared with pre-
transplant levels. Our analyses suggested negative correlation

between SMI (of peak exo-miRNAs) and the islet SUITO in-
dex of islet graft function [48] (r2 = −0.8834; p = 0.020) and C-
peptide (r2 = −0.6785; p = 0.139) and a positive correlation
between SMI and HbA1c (%) (r2 = 0.7709; p = 0.069). DMI
correlated negatively with SUITO index (r2 = −0.7961;
p = 0.058) but not C-peptide or HbA1c. SUITO index is a valu-
able tool with which to predict post-transplant insulin indepen-
dence and islet engraftment [48]. We previously demonstrated
that hsa-miR-375 and hsa-miR-200c are reliable biomarkers of
islet cell damage and predictors of post-transplant graft func-
tion in TPIAT patients [12, 13]. S-miRs provide an opportunity
to monitor islet stress and intervene during the transplantation
procedure to preserve islet function/survival and enhance effi-
ciency to achieve long-term insulin independence.

We identified the targets of these exo-miRNAs in islets
using in silico KEGG analyses and the MirTrap system. hsa-
miR-29b-3p, hsa-miR-216a-5p, hsa-miR-375 and hsa-miR-
148a-3p targeted mRNAs mainly in PI3K–Akt signalling
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pathway. The significance of the PI3K–Akt signalling path-
way in regulation of beta cell function/survival is well
established [49, 50]. We identified 21 mRNAs in the PI3K–
Akt signalling pathway as targets of hsa-miR-29b-3p and hsa-
miR-216a-5p usingMirTrap–PCR array studies. In addition to
PI3K–Akt signalling, these miRNAs targeted myeloid differ-
entiation primary response gene 88 (MyD88), NF-κB1 and
BCL2-associated death promoter (BAD). MyD88 plays a
crucial role in NF-κB activation and eventually islet dys-
function after clinical islet transplantation [51] and in the
progression of type 1 diabetes [52]. Deregulated PI3K–
Akt–IRS1 signalling is a hallmark event in beta cell dys-
function in diabetes [53, 54]. PI3K–Akt signalling regu-
lates activity of BAD, a pro-apoptotic protein, during con-
ditions of islet stress [55, 56]. We hypothesise that stress
situations induce miRNAs that preserve beta cell function/
survival extracellularly in exosomes, in addition to induc-
ing stress response and apoptosis pathways. Exosomes
contain various molecules that communicate with other
organ systems, possibly to induce damage/repair response
to maintain homeostasis. Interestingly, beta cell-specific
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Fig. 6 Exo-miRNA target analyses using the MirTrap system (hsa-miR-
29b-3p; hsa-miR-216a-5p). (a) KEGG pathway prediction for hsa-miR-
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Table 3 KEGG analysis to predict the mRNA targets of hsa-miR-216a-
5p, hsa-miR-29b-3p, hsa-miR-375 and hsa-miR-148a-3p

KEGG pathway p value No. of genes

PI3K–Akt signalling pathway 5.03 × 10−5 63
Focal adhesion 1.36 × 10−5 47
FOXO signalling pathway 0.0005 30
Proteoglycans in cancer 0.02 30
Protein digestion and absorption 1.36 × 10−5 27
Amoebiasis 3.72 × 10−9 26
Extracellular matrix–receptor interaction 1.38 × 10−73 24
Platelet activation 0.015 24
Thyroid hormone signalling pathway 5.03 × 10−5 22
Choline metabolism in cancer 0.014 21
Small-cell lung cancer 0.01 20
Prostate cancer 0.04 18
Glioma 0.0004 15
Renal cell carcinoma 0.004 15
mTOR signalling pathway 0.02 15
Non-small-cell lung cancer 0.03 13
Lysine degradation 9.54 × 10−5 10
Prion diseases 8.91 × 10−21 5
Biotin metabolism 5.40 × 10−5 1
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exosomes containing miR-29b-3p exerted immunoregula-
tory effects through TNF-α, IL-6 and IL-10 cytokine se-
cretion from splenocytes isolated from diabetes-prone
NOD mice ex vivo [57]. Further investigations are war-
ranted to understand how stress conditions direct islet
miRNAs to exosomes instead of vital biological processes.

Our extensive investigations reported here provide proof of
concept, for the first time, that exo-miRNAs in circulation can
be utilised for their ability to predict islet beta cell stress even
before onset of beta cell failure in the context of prediabetes
and islet auto-transplantation. Our reproducible observations,
reported here and previously, clearly establish hsa-miR-375 as
a beta cell damage marker. While biomarkers of beta cell
damage are useful in predicting future insulin dependence,
biomarkers of beta cell stress early in the pathological events
leading to failure are necessary tools in halting progression of
dysfunction. A consistent increase in hsa-miR-29b-3p and
hsa-miR-216a-5p as early as 6 h after CC +HYP exposure
provides valuable information on the state of beta cell stress.
Hormones, hormone mimetics and pharmacological therapies
that target beta cell stress and function can be used effectively
during states of beta cell stress even before onset of clinical
symptoms. These investigations are valuable especially to our

clinic and others during the TPIAT procedure to optimise islet
preservation strategies and achieve successful engraftment.
Overall, we report two S-miRs, hsa-miR-29b-3p and hsa-
miR-216a-5p, with great potential as biomarkers of islet cell
stress.
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