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Abstract
Aims/hypothesis Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for
insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division
cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and
miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas.
Methods To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditionalmiR-17-92/miR-106b-
25 knockout mouse model.We employedmetabolic assays in vivo and ex vivo, together with advancedmicroscopy of pancreatic
sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-
106b-25, by which they might regulate beta cell proliferation and function.
Results We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-
106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-
25 in glucose homeostasis and in controlling insulin secretion.We identify protein kinase A as a new relevant molecular pathway
downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis.
Conclusions/interpretation The study contributes to the understanding of proto-oncogenemiRNAs in the normal, untransformed
endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs.
Data availability Sequencing data that support the findings of this study have been deposited in GEO with the accession code
GSE126516.
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Abbreviations
BrdU Bromodeoxyuridine
FDR False discovery rate
FRET Fluorescence resonance energy transfer
GO Gene ontology
GSIS Glucose-stimulated insulin secretion

KO Knockout
MARK2 Microtubule affinity regulating kinase 2
MEF Mouse embryonic fibroblast
miRNA MicroRNA
PHH3 Phosphorylated histone H3
PKA Protein kinase A
PRKAR1α Protein kinase cAMP-dependent type I

regulatory subunit α
qRT-PCR Quantitative real-time RT-PCR
smFISH Single molecule fluorescence in

situ hybridisation

Introduction

MicroRNAs (miRNAs) are small, non-coding RNAs that pro-
vide a broad post-transcriptional silencing mechanism [1],
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including in metabolism and diabetes [2–4]. miRNAs are es-
sential for normal beta cell function and inactivation of miRNA
biogenesis in beta cells results in a diabetic phenotype [5, 6].

Beta cell mass is a function of cell number and size, corre-
lates with body demand [7] and is controlled by beta cell
replication [8–10]. Cell division is a tightly regulated process,
with four main stages, and three checkpoints (i.e. G1/S, G2/M
and mitotic checkpoint) that guarantee the accomplishment of
necessary molecular activities before progression to the next
stage [11]. Aberrant cell cycle progression might result in cell
cycle failure, premature cell cycle exit and cell death. In beta
cells, impaired proliferation may result in low insulin levels
and hyperglycaemia/diabetes; therefore better understanding
of the molecular mechanisms controlling beta cell prolifera-
tion is valuable.

The miR-17-92 family contains 15 miRNAs that regulate
cell proliferation and apoptosis [12–14]. These miRNAs are
transcribed from three polycistronic clusters (miR-17-92 on
mouse chromosome 13, miR-106a-363 on chromosome X
and miR-106b-25 on chromosome 5). The clusters share four
main ‘seed’ subtypes and hence joint downstream mRNA tar-
gets [15]. Genetic deletion of miR-17-92 results in smaller
mouse embryos with severely hypoplastic lungs.
Furthermore, deletion of bothmiR-17-92 and the homologous
miR-106b-25 cluster is lethal for embryos [13].

Expression of miR-17-92 family members is regulated dur-
ing the cell cycle, at least in cultured cells, with the highest

levels measured at the G2/M transition [16]. This may allow
inhibition of target proteins involved in the transition between
the G1/S phases. Indeed, miR-17-92 family members are in-
terwoven into a regulatory network, wherein expression of
these miRNAs is induced by c-Myc and E2F and the
miRNAs repress the expression of E2F family members
through conserved binding sites at the 3′UTR of E2F1/2/3
[17–19].

The Regazzi laboratory demonstrated roles for the miR-17-
92 family in metabolic adaptation of beta cells in newborn rats
to changes in nutrient supply [20] and in regulating islet cir-
cadian gene expression [21]. We hypothesised that miR-17-
92/miR-106b-25 family members regulate adult beta cell di-
vision, given the interaction of this miRNA family with c-
Myc, a known driver of beta cell proliferation [22].

Methods

Mouse strains Female andmale c57bl/6 micewere housed and
handled at the Weizmann Institute of Science and in accor-
dance with protocols approved by the Institutional Animal
Care and Use Committee of the Weizmann Institute of
Science. All mice we used were bred in-house. To generate
Pdx1-Cre;miR-17-92LoxP/LoxP;miR-106-25−/− (miR-17-92/
miR-106b-25-KO) mice, we previously crossed Pdx1-Cre
transgenic mice [23] (a gift from D. Melton [Howard
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Hughes Medical Institute, Harvard University, Boston, MA,
USA]) with miR-17-92LoxP/LoxP and further with miR-106b-
25−/− mice [13] (both were gifts from T. Jacks [Howard
Hughes Medical Institute, Massachusetts Institute of
Technology, Boston, MA, USA] and A. Ventura [Memorial
Sloan Kettering Cancer Center, New York, NY, USA]).

ROSA-miR-17-92conditional overexpressing mice (were a
gift from K. Rajewsky [Max Delbrück Center for Molecular
Medicine, Berlin, Germany]) [24] and were crossed with
Pdx1-Cre to achieve Pdx1-Cre;ROSA-miR-17-92conditional

mice. CcnB1-GFP transgenic mice were generated by Y.
Dor (The Hebrew University of Jerusalem, Israel) [25, 26].

Isolation of islets of Langerhans, flow cytometry and cell
sorting Islets were isolated using collagenase P (Roche,
Switzerland) injected into the pancreatic duct, followed by
Histopaque gradient (1119, 1083 and 1077; Sigma-Aldrich,
Israel) as described in [27]. For miRNA profiling along the
beta cell cycle, flow cytometry, islet dissociation and cell
sorting were performed as described in [25].

Pancreas physiology assays Blood glucose was determined
using an Ascensia elite glucometer (Ascensia, Switzerland).
Insulin levels in the pancreas and serum were determined
using an ultrasensitive insulin ELISA kit (90,080; Crystal
Chem, Elk Grove Village, IL, USA). GTTs and glucose-
stimulated insulin secretion (GSIS) tests were performed by
injecting glucose (2 mg/g) intraperitoneally after mice were
fasted overnight (~18 h) at different time points (age 4 weeks
to 12 months). ITTwas performed by injecting insulin (0.8 U/
g) intraperitoneally after 4- to 6-week-old mice were fasted for
5 h. Blood for GTT and ITTwas repeatedly sampled from the
tail vein. Retro-orbital blood was sampled before the injection
and 15 min post-injection for the in vivo GSIS test. Insulin
secreted to the medium in the ex vivo GSIS was measured
after 1 h of incubation with either 2.5 or 25 mmol/l glucose by
fluorescence resonance energy transfer (FRET) (62IN2PEG;
Cisbio, France). Protein kinase A (PKA) activity was quanti-
fied using a PKA Kinase Activity Assay Kit (ab139435;
Abcam, UK). Islets for all in vitro assays were purified from
4- to 6-week-old mice.

Static and dynamic stimulation of insulin secretion Insulin
secretion studies were performed in KRB containing
114.4 mmol/l NaCl, 5 mmol/l KCl, 24 mmol/l NaHCO3,
1 mmol/l MgCl2, 2.2 mmol/l CaCl2, 10 mmol/l HEPES and
0.5% wt/vol. BSA, adjusted to pH 7.35. In static incubation
experiments, 10–20 islets from 4- to 6-week-old mice were
pre-incubated in basal KRB containing 2.5 mmol/l glucose for
1 h. Islets were consecutively incubated at 2.5 and 25 mmol/l
glucose for 1 h each. Medium was collected at the end of each
incubation period. Insulin assays were performed in
Eppendorf tubes at 37°C and 5% CO2.

A perifusion system (Biorep, Miami Lakes, FL, USA)
equipped with a peristaltic pump was used for dynamic as-
sessment of insulin secretion. Forty size-matched islets were
placed in columns and perifused at a flow rate of 100 μl/min
with KRB (basal glucose concentration 2.8 mmol/l) at 37°C.
After equilibration, high glucose (16.7 mmol/l) KRB was
used. Insulin secreted to the medium was collected in 96-
well plates, quantified by FRET (Cisbio) or ELISA (Crystal
Chem) and normalised to total islet insulin content.

Pancreatic histology and immunohistochemistry Pancreases
from 4- to 6-week-old mice were dissected and fixed in 4%
vol./vol. paraformaldehyde for 24 h at 4°C and then processed
into paraffin blocks. Sections (5 μm thick) were de-paraffinised,
rehydrated and antigen retrieval was performed using a PickCell
pressure cooker (PickCell, the Netherlands). The following pri-
mary antibodies were used: guinea pig anti-insulin (1:200,
A05641; Dako, Denmark); rabbit anti-activated caspase-3
(1:50, c-96,615; Cell Signaling, Danvers, MA, USA); rabbit
anti-Ki67 (1:200, SP6; CellMarque, Rocklin, CA,USA), mouse
anti-bromodeoxyuridine (BrdU) (1:200, RPN202; GE
Healthcare, Chicago, IL, USA) and phosphorylated histone H3
(PHH3) (1:200, c-9701; Cell Signaling). For TUNEL staining
we used the ApopTag red in situ apoptosis detection kit (s7165;
Merck, Germany). For DNA counter-stain, we used Hoechst
33342 (1 μg/ml, H3570; Thermo Fisher, Waltham, MA,
USA). Secondary antibodies conjugated to CY2, CY3 or CY5
were all from Jackson Immunoresearch Laboratories Baltimore,
MD, USA (1:200). All the antibodies were previously validated,
and all immunostaining included a negative control (no primary
antibody); a positive control was also used for the apoptosis
staining. All primary and secondary antibodies were diluted in
CAS-block (008120 Thermo Fisher). Fluorescence images were
captured using a Zeiss LSM710/780/800 Laser Scanning/
confocal microscope system equipped with a Zeiss camera with
×40 / ×63 magnification (Thornwood, NY, USA).

Histomorphometry Digital images of consecutive paraffin-
embedded pancreas sections (50 μm apart, spanning the entire
pancreas, approximately 40 sections/pancreas) were obtained
at a low magnification (×20) and stitched using NIS-Elements
software (Nikon, Japan) and 3DHistech (Hungary)
Pannoramic Viewer. The fraction of insulin-positive surface
was determined by insulin immunoreactivity and the whole
pancreas area was determined by haematoxylin counter-stain.
Beta cell mass was calculated as the product of pancreas
weight and the fraction of tissue covered by beta cells.

RNA quantification Extraction of total RNAwas carried out by
the miRNeasy Mini Kit (Qiagen, Germany). mRNA cDNA
was synthesised using an oligo d(T) primer (C1101; Promega,
Madison, WI, USA) and SuperScript II reverse transcriptase
(18064-014; Invitrogen, Carlsbad, CA, USA). Synthesis of
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miRNA cDNAwas created using Taqman MicroRNA qPCR
Assays (Applied Biosystems, Foster City, CA, USA). mRNA
quantitative real-time RT-PCR (qRT-PCR) analysis was per-
formed on a LightCycler 480 System (Roche) using Kapa
SYBR Green qPCR kit (Finnzymes, Finland). miRNA qRT-
PCR was performed on ABI Step one (Thermo Fisher).
miRNA and mRNA levels were normalised to the expression
of small RNAs (sno234 and U6) or mRNA (Gapdh andHprt),
respectively.

Mouse embryonic fibroblast isolation and adenovirus infec-
tion miR-17-92/miR-106b-knockout (KO) or control mouse
embryonic fibroblasts (MEFs) were harvested as in [28], plated
at 50–60% confluency and grown in monolayer cultures in
DMEM supplemented with 20% vol./vol. FBS (Biological
Industries, Israel), 1% vol./vol. penicillin–streptomycin, 1%
vol./vol. L-glutamine, 1% vol./vol. sodium pyruvate and 1%
vol./vol. MEM-non-essential amino acid (Biological Industries).
Cells were infected the next day with Ad5CMVeGFP (eGFP-
adenovirus) or Ad5CMVCRE-eGFP (CRE-adenovirus), 300 vi-
ral particles/cell (Gene Transfer Vector Core, University of Iowa).
Medium was added after 24 h, replaced after 48 h and cells were
harvested 5 days post-infection.

RNA sequencing cDNAs were sequenced on Illumina 2500
(Ilumina, San Diego, CA USA) sequencing machine with
50 bp single read protocol. Reads for each sample were
mapped independently using TopHat2 version (https://ccb.
jhu.edu/software/tophat/index.shtml) (v2.0.10) [29] against
the mouse genome build mm9. Approximately, 85–90%
mapping rate was observed. Only uniquely mapped reads
were used to determine the number of reads falling into each
gene with the HTSeq-count script (https://htseq.readthedocs.
io/en/release_0.11.1/count.html) (0.6.1p1) [30]. Differentially
expressed genes were calculated with the DESeq2 package
(v1.4.5) [31]. Genes that were expressed on at least one
sample were considered. Differentially expressed genes were
determined by p value <0.05 and an absolute fold change
>1.5. Benjamini–Hochberg correction was used to adjust p
value with false discovery rate (FDR) <0.05. Hierarchical
clustering using Pearson dissimilarity and complete linkage
was performed in order to explore a pattern of gene expres-
sion. Clustering analysis was performed with Matlab software
(https://www.mathworks.com/products/matlab.html) (8.0.0.
783). Gene ontology (GO) term enrichment analysis was per-
formed using DAVID (https://david.ncifcrf.gov/) [32, 33].

Sequencing data that support the findings of this study have
been deposited in GEO with the accession codes GSE126516
[34].

Mass spectrometry The samples were subjected to in-solution
tryptic digestion followed by a desalting step. The resulting
pep t ides were ana lysed us ing nanof low l iqu id

chromatography (nanoAcquity, Milford, MA, USA) coupled
to high-resolution, high-mass-accuracy MS (Q Exactive Plus,
Thermo Fisher). Samples were separately analysed in random
order. Data were normalised to the sample total ion current
and searched against the mouse protein database, to which a
list of common laboratory contaminants was added (Mascot
algorithm). Quantitative analysis was performed using
Genedata Expressionist (UK). Only proteins identified by
more than two peptides and more than nine amino acids/
peptides were considered. p values were corrected for multiple
hypothesis using Benjamini–Hochberg procedure with FDR
<0.05. The MS proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE [35] partner
repository with the dataset identifier PXD012610.

Xist single molecule fluorescence in situ hybridisation and
image analysis Single molecule in situ hybridisation
(smFISH) was as in [36]. TransQuant (https://ars.els-cdn.
com/content/image/1-s2.0-S1046202315301559-mmc1.zip;
accessed 13 Dec 2018) was used for Xist smFISH signal
segmentation and analysis [37]. Ilastik (https://www.ilastik.
org/) (1.3.1) was used for cell cycle image segmentation [38].

Statistical analysis Data are expressed as means (SEM) and a
two-sided Student’s t test was used for statistical comparisons.

Results

miR-17-92 expression in developing and adult mouse endo-
crine pancreas miR-17 and miR-20a are expressed only from
themiR-17-92 cluster, miR-363 frommiR-106a-363 and miR-
25 from miR-106b-25 cluster (Fig. 1a), enabling the discrim-
ination of expressed clusters by qRT-PCR. miR-106a-363 ex-
pression was undetected, consistent with its reported limited
expression pattern [13], whereas miR-17-92 and miR106b-25
clusters were expressed in mouse embryonic pancreas (Fig.
1b).

Expression of miR-17, miR-20a and miR-25 signifi-
cantly increased at embryonic day 15 (E15.5) relative
to their expression earlier in pancreas development
(Fig. 1c), consistent with their reported role in cell
proliferation and tissue growth. To evaluate the expres-
sion levels of the miR-17-92 clusters in adult replicating
beta cells, we obtained sorted beta cells from CcnB1-
GFP transgenic mice, which express eGFP in replicating
beta cells [25, 26]. mRNA levels of Ki67 (also known as
Mki67) and the gene encoding DNA topoisomerase II α
(Top2a) were upregulated in the sorted cells, confirming
that this population is indeed in the cell division cycle
(Fig. 1d). The expression of miR-17-92 and miR-106b-25
clusters was upregulated in proliferating cells, while the
expression of other miRNAs (miR-375, miR-127) was
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unchanged (Fig. 1e). Therefore, miR-17-92/miR-106b-25
are induced in dividing beta cells.

miR-17-92/miR-106b-25 involvement in endocrine function
To study miR-17-92/miR-106b-25 family function in the
mouse pancreas, we crossed mice carrying the miR-17-92
conditional allele with Pdx1-Cre transgenic mice and further
mated the pedigree to mice carrying the miR-106b-25 whole-
body KO allele [13] (Fig. 2a). The Pdx1-Cre; miR-17-92LoxP/
LoxP;miR-106-25−/− cross resulted in significant downregula-
tion of miR-17, miR-25 and miR-20a in islets, relative to
control mice (harbouring miR-17-92LoxP/LoxP;miR-106-25+/−

alleles; Fig. 2b).
We performed GTTs on four intermediate genotypes (ESM

Fig. 1a), revealing an additive role for miR-17-92 and miR-
106b-25 clusters in glucose homeostasis. Complete nullifica-
tion resulted in the most severe impairment in glucose toler-
ance. We therefore investigated mutant mice lacking miR-17-
92 and miR-106b-25 (Pdx1-Cre;miR-17-92LoxP/LoxP;miR-
106-25−/−, referred to as miR-17-92/miR-106b-25-KO) vs lit-
termate controls (miR-17-92LoxP/LoxP;miR-106-25+/−).
Impaired glucose tolerance was evident at 3 months of age
and progressively deteriorated at 6 and 12 months (Fig. 2c,d
and ESM Fig. 1b), comparable with the results of Chen et al
[39]. An ITT demonstrated normal response to insulin in mu-
tant and control mice (ESM Fig. 1c), indicating that whole-
body miR-106b-25-KO does not cause insulin resistance in
peripheral tissues under these experimental conditions.

Morphometric analysis (Fig. 2e) revealed reduced beta cell
mass in miR-17-92/miR-106b-25-KO vs control mouse
pancreases (Fig. 2f). Moreover, there was a 50% decrease in
total pancreatic insulin content in miR-17-92/miR-106b-25-
KO vs control mice (Fig. 2g).

Immediately after i.p. injection of glucose, serum insulin
levels were significantly diminished in miR-17-92/miR-106b-
25-KO vs control mice (Fig. 2h). To distinguish between an
intrinsic insulin secretion defect and a secondary effect due to
reduced beta cell mass, we performed ex vivo GSIS tests on
islets isolated from miR-17-92/miR-106b-25-KO mice or lit-
termate control mice. Insulin secretion from isolated miR-17-
92/miR-106b-25-KOmouse islets was diminished, even when
normalised to insulin content (Fig. 2i). We therefore conclude
that, in addition to controlling beta cell mass, miR-17-92/miR-
106b-25 are required autonomously in beta cells for normal
GSIS.

To characterise insulin secretion further, we isolated islets
and performed GSIS in a perifusion apparatus. Perifused islets
from miR-17-92/miR-106b-25-KO mice secreted insulin in a
manner comparable with control islets in low glucose, but
failed to display enhanced insulin secretion in response to high
glucose, (Fig. 3a,b). The temporal secretion pattern involved
both early (first) and delayed (second) phases, with a notable
>50% reduction in insulin secretion in the miR-17-92/miR-
106b-25-KO vs control mouse islets (Fig. 3a). However,
forced-depolarisation of miR-17-92/miR-106-25-KO mouse
beta cells with the non-nutrient secretagogue KCl produced
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and is normalised to the expression of the non-coding RNA U6. It is
noteworthy that miR-363 is undetected. n=3. (c) miR-17, miR-20a and
miR-25 expression at multiple time points in the pancreas during embry-
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a response comparable with that of control islets (Fig. 3a,b).
These results demonstrate that miR-17-92/miR-106b-25 im-
pact islet insulin secretion via a mechanism acting upstream of
the plasma membrane depolarisation. Finally, we tested insu-
lin secretion in the presence of cytochalasin B, a cell-
permeable c-mycotoxin, which inhibits actin polymerisation
and thus increases GSIS [40]. Cytochalasin B normalised in-
sulin secretion in miR-17-92/miR-106b-25-KO mouse islets
(Fig. 3c,d), suggesting that the capacity to synthesise insulin
and assemble it into secretory granules is maintained in miR-
17-92/miR-106b-25-KO mouse beta cells, while the regulated
secretion pathway is impaired at a position upstream of
potassium-dependent cell membrane depolarisation.

miR-17-92/miR-106b-25 KO do not affect beta cell apoptosis
Reduced beta cell mass could result from either a defect in
proliferation or from beta cell apoptosis, consistent with the
impact of miR-17-92/miR-106b-25 on proliferation and

apoptosis in other tissues [22]. miR-17-92/miR-106b-25 fam-
ily members are suppressors of the proapoptotic genes BIM
(also known as BCL2L11) and PTEN [41], suggesting that an
increase in apoptosis may occur, when miR-17-92/miR-106b-
25 genes are deleted. Apoptosis was neither detected with
activated caspase 3 nor with TUNEL staining of pancreas
sections from mice aged 4 weeks or 12 months (ESM Fig.
2), in accordance with similar data from [39]. Therefore, it is
likely that miR-17-92/miR-106b-25 family members regulate
beta cell mass via proliferation rather than beta cell apoptosis.

miR-17-92/miR-106b-25 regulate beta cell proliferation To
test directly the contribution made by miR-17-92/miR-106b-
25 to the proliferation of beta cells, we examined the expres-
sion levels of cell-cycle-related genes in mutant mice. Both
nuclear markers of proliferation Ki-67 and DNA topoisomer-
ase II α (encoded by Top2a), serve as sensitive proliferation
markers in the endocrine pancreas [42, 43]. Ki67 and Top2a
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106b-25-KO vs control mice. (e) Representative micrograph of insulin
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35 sections/pancreas) andmultiplied by the pancreas mass in 4-month-old
mice. n=5 mice. (g) ELISA measurement of insulin after ethanol extrac-
tion from whole pancreases of 4-month-old mice. n=5 mice. (h) Plasma
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of glucose (2 mg/kg) revealed reduced insulin secretion in 4- to 6-week-
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mice. Data are presented as mean ± SEM. Except for (h) and (i), grey
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mRNA levels were downregulated in miR-17-92/miR-106b-
25-KO vs control mouse islets (Fig. 4a) and the percentage of
Ki-67-positive beta cells was also reduced (Fig. 4b).
Therefore, miR-17-92/miR-106b-25 activity is important for
beta cell proliferation.

Next, we hypothesised that miR-17-92 family members af-
fect the ability of beta cells to enter or to successfully complete

the cell division cycle. We quantified the percentage of beta
cells engaged in DNA synthesis by BrdU labelling and deter-
mined the percentage of BrdU-positive beta cells out of total
insulin-positive cells ([44], diagram in Fig. 4c). BrdU incorpo-
ration at 2 h post-injection represents the fraction of beta cells
engaged in the S phase (DNA synthesis) at the time of the study
(Fig. 4d). Unexpectedly, we observed a similar proportion of
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BrdU-positive beta cells in control and miR-17-92/miR-106b-
25-KO mouse pancreases, suggesting that miR-17-92 family
members are not essential for beta cell DNA synthesis.

To discover whether miR-17-92/miR-106b-25-KO mouse
beta cells fail to accomplish the cell division cycle, we extend-
ed the study to 36 h after BrdU incorporation (i.e. longer than
the full beta cell cycle [45]). After accomplishment of cytoki-
nesis, the fraction of BrdU-positive wild-type beta cells dou-
bled (from ~2% at 2 h to ~4% at 36 h, Fig. 4d,e), consistent
with the expected doubling of the cell population. However,
the fraction of BrdU-positive beta cells in miR-17-92/miR-
106b-25-KO mouse islets remained unchanged (~2% at 2 h
and 36 h), suggesting a severe defect in the cell division cycle.
The defect was observed in islets of all sizes (ESM Fig. 3).
Therefore, miR-17-92 is required for beta cells to effectively
proceed through the cell cycle, at a point that is later than
DNA synthesis, in contrast to miR-17-92 family activity de-
scribed in other contexts. [13].

miR-17-92/miR-106b-25-KO mouse beta cells are delayed in
the mitotic checkpoint Because it appears that G1/S transition
is not the main target of miR-17-92/miR-106b-25 in beta cells,
we tested whether later checkpoints, G2/M and M, are regu-
lated. We performed dual labelling of PHH3, a marker of M
phase [45], along with BrdU. The transition through cell cycle
checkpoints is disclosed by calculating the fraction of the total
PHH3-positive beta cells that are positive for both BrdU and
PHH3 (Fig. 5a). The BrdU+PHH3+ / PHH3+ ratio post-BrdU
pulse revealed that the fraction of cells undergoing mitosis

(M) and engaged in DNA synthesis (S) at the 3 h time window
of the experimental chase was comparable inmiR-17-92/miR-
106b-25-KO and control beta cells. This suggests that miR-
17-92/miR-106b-25 do not contribute to beta cell G2/M
checkpoint dynamics (Fig. 5b).
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Fig. 6 Integrated transcriptome and proteome analyses. (a) Biological
pathway over-representation analysis of the genes with significantly
altered expression in the miR-17-92/miR-106b-25-KO islets, depicting
pathways involved in regulation of secretion, cell cycle and kinase
activity. The red line indicates a p value of 0.05. (b) The expression of
miR-17-92/miR-106b-25 family members in MEFs is reduced upon
transduction with the CRE-adenovirus compared with control GFP-
adenovirus. n=4. (c) Expression of cell cycle markers is downregulated
in MEFs upon loss of miR-17-92/miR-106b-25. n=3. (d) The percentage
ofMEFs engaged in the cell cycle is reduced inMEFs infected withCRE-
compared with control GFP-adenovirus. n=4. (e) Volcano plot of the
proteins downstream of miR-17-92/miR-106b-25 KO. (f) MA-plot for
differential analysis of the mass spectrometry samples. (g) PANTHER
analysis of the proteins that were significantly different in the miR-17-
92/miR 106b-25-KO MEFs compared with control MEFs reveals
enrichment in biological pathways related to cytoskeleton organisation,
regulation of mitosis and cell cycle phase transitions. The red line
indicates a p value of 0.05. (h) 664 mRNA species were upregulated
(Up) in miR-17-92/miR-106b-25-KO mouse islets, relative to control.
1258 proteins were upregulated in miR-17-92/miR-106b-25-KO MEFs
(determined by MS). Of these, only four genes were upregulated with a
corresponding effect at the protein level and are also predicted miR-17-
92/miR-106b-25 targets from TargetScan. n=6 MEFs for each condition,
corrected p value <0.05. Data are presented as individual values and as
mean ± SEM. *p<0.05, **p<0.01 and ***p<0.001 (two-sided Student’s t
test)
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We next addressed the hypothesis that miR-17-92/miR-
106b-25 regulate the M phase checkpoint by a longer (18 h)
chase period after BrdU labelling, as in [45]. At this point,
normal beta cells, which were initially at the S phase, have
already accomplished cytokinesis and accordingly downregu-
lated PHH3. Unexpectedly, we observed an increase in the
percentage of double-stained miR-17-92/miR-106b-25-KO vs
control mouse beta cells (Fig. 5c). We interpret this as evi-
dence in support of miR-17-92/miR-106b-25 activity at the
mitotic checkpoint. To test the hypothesis that miR-17-92/
miR-106b-25-KO mouse beta cells fail the mitotic checkpoint
and accumulate in a tetraploid state, we quantified X-inactive
specific transcript, a long non-coding RNA that coats one
X-chromosome in female cells. The smFISH study of Xist
signal, used to detect duplicated X-chromosomes in tetraploid
cells, did not reveal an increase in the abundance of tetraploid
cells in miR-17-92/miR-106b-25-KO vs control mouse beta
cells (ESM Fig. 4a). Therefore, we could not support the hy-
pothesis that miR-17-92/miR-106b-25-KO cells undergo
polyploidisation.

Transcriptome and proteome analysis of miR-17-92/miR-
106b-25-KO cells To discover relevant miR-17-92/miR-
106b-25 targets, we profiled islet mRNA by next generation
sequencing (NGS), differential mRNA expression and gene
ontology analysis [46]. This depicted terms related to hor-
mone (insulin) secretion and to cell cycle regulation among
the over-represented biological pathways (Fig. 6a).

Bulk analysis in primary beta cells is limiting because only
a small fraction of the beta cells are engaged with the cell
division cycle. Therefore, we studied miR-17-92/miR-106b-
25 activity in MEFs (miR-17-92LoxP/LoxP;miR-106-25−/−

MEFs) derived from the same mouse allele and transduced
with either GFP-adenovirus (control) or CRE-adenovirus.
Comparing miRNA activity in endocrine pancreas and fibro-
blasts is biased towards detection of proteins that are
expressed in both cell types and thus overlooks cell-type-
specific expression. However,Ki67 and Top2awere downreg-
ulated in miRNA-deficient MEFs, reminiscent of miR-17-92/
miR-106b-25-KO beta cells (Fig. 6b,c). Furthermore, the per-
centage of Ki-67-positive cells in MEFs depleted of miRNA
was reduced relative to control MEFs (Fig. 6d).

MS analysis was performed on miR-17-92LoxP/LoxP;miR-
106-25−/− MEF lysate, without or with CRE-Adenovirus.
miR-17-92LoxP/LoxP;miR-106-25+/+ MEFs withGFP-adenovi-
rus served as a control. Comparable results were gained when
miR-17-92LoxP/LoxP;miR-106-25−/−MEFs withGFP-adenovi-
rus were used as controls. MS in six experimental repeats
depicted 16,005 unique peptides, corresponding to 2715 dif-
ferent proteins. The expression level of 64% of the proteins
was significantly changed by knocking out miR-17-92/miR-
106b-25. The majority of significantly changed proteins were
upregulated (84.6%, Fig. 6e,f). Intriguingly, mitosis and cell

cycle regulation were among the significantly enriched GO
terms along with cytoskeleton organisation and actin filament
polymerisation regulation (Fig. 6g). Out of the 1258 upregu-
lated proteins, 146 were predicted targets of at least one
miRNA from the miR-17-92/miR-106b-25 family (Fig. 6h).
Fifty-six gene products were significantly upregulated at both
the mRNA (in islets) and protein (in fibroblasts) levels. Four
out of these 56 were predicted direct targets of at least one
member of the miR-17-92/miR-106b-25 family, making a
short list of highly relevant targets across tissues. These targets
include Mark2 encoding microtubule affinity regulating ki-
nase 2 (MARK2), Jpt1/Hn1 encoding Jupiter microtubule as-
sociated homolog 1, Sqstm1 encoding sequestosome 1 and
Prkar1a encoding protein kinase cAMP-dependent type I reg-
ulatory subunit α (PRKAR1α).

BothMARK2 and PRKAR1α are part of the protein kinase
A (PKA) pathway, the cellular sensor of cAMP, which regu-
lates cell division cycle and insulin secretion. [47–49].
Prkar1a levels were validated by qRT-PCR (Fig. 7a).
Prkar1a and Mark2 upregulation suggests a potential role
for the PKA pathway downstream of miR-17-92. We there-
fore studied the hypothesis that PKA activity is reduced in the
islets isolated from miR-17-92/miR-106b-25-KO mice. PKA
activity was downregulated in miR-17-92/miR-106b-25-KO
vs control littermate mouse islets. Furthermore, islets
harbouring the miR-17-92 overexpression transgene Pdx-
Cre;ROSA-miR-17-92conditional displayed elevated PKA ac-
tivity (Fig. 7b and ESMFig. 4b). Taken together, PKA activity
is sensitive bidirectionally to miR-17-92/miR-106b-25 levels
in beta cells. Control of PKA by miR-17-92/miR-106b-25 is a
new convergence point for seemingly disparate processes of
proliferation and insulin secretion.

Discussion

Using mouse genetics we discovered that miR-17-92/miR-
106b-25 alleles regulate islet function via control of beta cell
mass and insulin secretion. The miR-17-92/miR-106b-25
family is important for normal endocrine function and, accord-
ingly, loss of the miRNAs results in endocrine failure.

miR-17-92/miR-106b-25-KO mice exhibited normal insu-
lin tolerance and miR-106b-25 deficiency in insulin-
responsive tissues (muscle, liver and adipose) did not modify
target organ insulin sensitivity, in vivo. Therefore, endocrine
pancreas failure manifesting as a reduction in GSIS is a plau-
sible cause of glucose intolerance.

Our study suggests a more pronounced role for miR-17-92
in GSIS than was previously reported [39], in part, since nul-
lification of both miR-17-92 and miR-106b-25 clusters in our
model reduces the overall miRNA levels from these clusters,
relative to the reduction achieved by KO of just themiR-17-92
cluster. Additional GSIS study in a perifusion apparatus

1662 Diabetologia (2019) 62:1653–1666



revealed that miR-17-92/miR-106b-25 are involved in insulin
secretion at a stage preceding membrane depolarisation.
Accordingly, non-nutrient secretagogue KCl normalised insu-
lin exocytosis, suggesting that voltage-dependent calcium
channels and successive events, such as granule docking and
fusion, are insensitive to miR-17-92/miR-106b-25. Likewise,
a study with cytochalasin B revealed that insulin synthesis,
granule assembly, docking and fusion are unaffected by
miR-17-92/miR-106b-25. Taken together, these analyses de-
lineate miR-17-92/miR-106b-25 activity at steps earlier than
membrane depolarisation.

Several studies proposed that miR-17-92/miR-106b-25 up-
regulation is important for S phase entry in transformed cell
lines and tissues [16, 50], whereas our work uncovers a new
role for miR-17-92/miR-106b-25 in regulation of the M
checkpoint. The involvement in the M checkpoint might have
been overlooked until now or alternatively could reflect

different miR-17-92/miR-106b-25 functions in genetically
stable tissues. Interestingly, miR-17-92 expression is highest
during G2/M and lowest in S phase even in transformed cells
[16].

The final consequences of miR-17-92/miR-106b-25 defi-
ciency in adult replicating beta cells are unclear, since we
observed neither increased apoptosis nor accumulation of
polyploid beta cells in young or old miR-17-92/miR-106b-
25-KO mouse islets. Thus, the most likely explanation is that
dividing adult miR-17-92/miR-106b-25-KO mouse beta cells
undergo non-apoptotic cell death and rapid tissue clearance at
a rate higher than our assay sensitivity.

c-Myc (also known as Myc) overexpression in beta cells
induces cell cycle and reduces insulin expression and apopto-
sis [22]. miR-17-92/miR-106b-25 might act as c-Myc effec-
tors in mediating at least some of its functions, as occurs in
some cancers. In addition, c-Myc resides in a positive
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feedback loop with PKA [51, 52]. Therefore, miR-17-92/
miR-106b-25 family, c-Myc and PKA activities may be
interwoven.

High cAMP levels induce insulin secretion via PKA- and
Epac2 (also known asRapgef4)-dependent recruitment of insulin
granules and/or granule fusion to the plasma membrane [53, 54].
PRKAR1α inhibits insulin secretion, whereas cAMP
antagonises PRKAR1α and releases PKA from PRKAR1α sub-
unit. This way, cAMP facilitates PKA-dependent induction of
Snapin–Snap25–Epac2 pathway activity, resulting in increased
insulin exocytosis [55, 56]. In silencing Prkar1a, miR-17-92/
miR-106b-25 induce PKA activity and insulin exocytosis.
Furthermore, PKA regulatesmicrotubule stability and potentially
the M checkpoint by phosphorylatingMark2 on S409 [57–59].

Therefore, PKA is a convergence point that contributes both
to insulin exocytosis and to mitotic checkpoint, connecting two
seemingly disparate properties, namely beta cell division and
insulin secretion, downstream of miR-17-92/miR-106b-25
family (Fig. 7c). However, our current study does not provide
direct experimental evidence that connects microtubule stability
to PKA activity in miR-17-92/miR-106b-25-KO mice.

More broadly, miR-17-92/miR-106b-25 activity may be a
new regulatory element, contributing to activity of incretin-
stimulated pathways via PKA and to some of the therapeutic
actions of glucagon-like peptide-1 (GLP-1) on insulin exocy-
tosis and beta cell proliferation.

We suggest that in adult mice miR-17-92/miR-106b-25 ex-
pression is upregulated significantly but transiently in dividing
beta cells, contributing to beta cell proliferation via a mecha-
nism similar to that reported in early postnatal maturation [20].
Mature beta cells express only low miR-17-92/miR-106b-25
levels, which primarily affect insulin secretion (Fig. 7d).

Overall, our study deciphers the involvement of miR-17-
92/miR-106b-25 family in adult beta cell replication and in-
sulin secretion, suggesting an important role for proto-
oncogene miRNAs in regulating glucose homeostasis in the
normal, untransformed endocrine pancreas. In mice, miR-17-
92/miR-106b-25 appear to regulate many facets of the adult
beta cell life, connecting mitosis and insulin secretion by a
single post-transcriptional pathway, encouraging similar stud-
ies in human beta cells.
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