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Abstract
Aims/hypothesis Pioglitazone (PIO) is a peroxisome
proliferator-activated receptor (PPAR)γ agonist insulin-
sensitiser with anti-inflammatory and anti-atherosclerotic
effects. Our objective was to evaluate the effect of low-
dose PIO (15 mg/day) on glucose metabolism and inflam-
matory state in obese individuals with type 2 diabetes.

Methods A randomised, double-blind, placebo-controlled,
mechanistic trial was conducted on 29 patients with type 2
diabetes treated with metformin and/or sulfonylurea. They
were randomised to receive PIO or placebo (PLC) for
6 months, in a 1:1 ratio. Participants were allocated to inter-
ventions by central office. All study participants, investigators
and personnel performing measurements were blinded to
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group assignment. At baseline and after 6 months patients
underwent: (1) OGTT; (2) muscle biopsy to evaluate ex-
pression of TNF-α, tissue inhibitor of metalloproteases 3
(TIMP-3) levels, TNF-α converting enzyme (TACE) ex-
pression and enzymatic activity; (3) euglycaemic–
hyperinsulinaemic clamp; (4) measurement of plasma high-
sensitivity C-reactive protein (hsCRP), plasminogen activator
inhibitor type-1 (PAI-1), TNF-α, IL-6, monocyte chemotactic
protein-1 (MCP-1), adiponectin and fractalkine (FRK). The
interventions were PIO 15 mg/day vs placebo and the main
outcomes measured were absolute changes in whole-body
insulin sensitivity, insulin secretion and inflammatory state.
Results Fifteen participants were randomized to receive PIO
and 14 participants were randomized to receive PLC. Eleven
participants completed the study in the PIO group and nine
participants completed the study in the PLC group and were
analysed. Fasting plasma glucose and HbA1c decreased
modestly (p<0.05) after PIO and did not change after PLC.
M/I (insulin-stimulated whole-body glucose disposal), adi-
pose tissue insulin resistance (IR) index, insulin secretion/IR
(disposition) index and insulinogenic index improved signif-
icantly after PIO, but not after PLC. Circulating MCP-1,
IL-6, FRK, hsCRP and PAI-1 levels decreased in PIO- as
compared with PLC-treated patients, while TNF-α did not
change. TNF-α protein expression and TACE enzymatic
activity in muscle were significantly reduced by PIO but
not PLC. Adiponectin levels increased significantly after
PIO as compared with PLC treatment. Given that the mean
TACE enzymatic activity level at baseline in the PIO group
was 0.29±0.07 (fluorescence units [FU]), and at end of study
decreased to 0.05 vs 0.14 in the PLC group, the power to
reject the null hypothesis that the population means of the
PIO and PLC groups are equal after 6 months is greater than
0.80. Given that M/I was 2.41±0.35 μmol kg−1 min−1

(pmol/l)−1 at baseline and increased by 0.55 in the PIO and
0.17 in the PLC groups, the power to reject the null hypoth-
esis that the population means of the PIO and PLC groups are
equal after 6 months is greater than 0.85. The type I error
probability associated with this test of this null hypothesis is
0.05. No serious adverse events occurred in either group.
Conclusions/interpretation Low-dose PIO (15 mg/day) im-
proves glycaemic control, beta cell function and inflamma-
tory state in obese patients with type 2 diabetes.
Trial registration Clinical.Trial.gov NCT01223196
Funding This study was funded by TAKEDA.
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enzyme) . TIMP-3 (Tissue inhibitor of metalloproteases 3)

Abbreviations
CHF Congestive heart failure

DEXA Dual-energy x-ray absorptiometry
FRK Fractalkine
FPG Fasting plasma glucose
FU Fluorescence units
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
HOMA-IR HOMA of insulin resistance
hsCRP High-sensitivity C-reactive protein
IR Insulin resistance
ISR Insulin secretory rate
M/I Glucose infusion rate (M)/steady-state plasma

insulin concentration (I)
MCP-1 Monocyte chemo-attractant protein-1
MMP-9 Matrix metalloproteinase-9
PAI-1 Plasminogen activator inhibitor type-1
PG Plasma glucose
PIO Pioglitazone
PLC Placebo
PPARγ Peroxisome proliferator-activated receptor γ
RU Relative units
TACE TNF-α converting enzyme
TIMP-3 Tissue inhibitor of metalloproteases 3
TZD Thiazolidinedione

Introduction

Insulin resistance (IR) is a characteristic feature of the path-
ogenesis of type 2 diabetes mellitus and is present long
before its diagnosis [1, 2]. IR and type 2 diabetes mellitus
are associated with a higher cardiovascular disease risk fac-
tor profile and accelerated atherogenesis [3]. The mechanis-
tic link between IR, diabetes and cardiovascular disease is
not fully elucidated, although obesity (particularly visceral
obesity) is associated with increased cardiovascular morbid-
ity and mortality [4, 5]. Adipose tissue is an important
endocrine organ, secreting a variety of hormones and cyto-
kines. Circulating adipokines, including TNF-α and IL-6,
may in part be responsible for the metabolic, haemodynamic
and haemostatic abnormalities associated with IR in the
context of obesity [6–8]. Fractalkine (FRK) is a novel
membrane-bound chemokine expressed in macrophages, en-
dothelial cells and adipose tissue, as well as in smooth
muscle cells, monocytes, natural killer cells and T cells.
FRK plays a role in cell migration, adhesion and prolifera-
tion and thus it has been postulated to contribute to athero-
genesis [9]. In type 2 diabetes, thiazolidinediones (TZDs)
improve insulin sensitivity in muscle and liver and prevent
diabetes in patients with impaired glucose tolerance [10, 11].
TZDs have potent anti-inflammatory, anti-atherosclerotic
and cardioprotective effects and improve circulating levels
of inflammatory biomarkers such as C-reactive protein,
adiponectin, monocyte chemo-attractant protein-1 (MCP-
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1), matrix metalloproteinase-9 (MMP-9), a marker of plaque
instability and plasminogen activator inhibitor type-1
(PAI-1) [12–15]. Pioglitazone (PIO) is usually employed to
treat individuals with type 2 diabetes at doses ranging from
30 to 45 mg/day, which are associated with a dose-dependent
increase in body weight, mainly due to an increase in adipose
tissue [16, 17]. Fluid retention may also occur in up to
5–10% of diabetic patients treated with PIO, possibly accel-
erating the onset of congestive heart failure (CHF) [18, 19].
The risk of CHF and the increase in body weight remain
major drawbacks for the use of PIO in clinical practice
[18–20]. Since these side effects are dose dependent, we
hypothesised that a lower dose (15 mg/day) of PIO would
still produce glyco-metabolic, as well as anti-inflammatory,
beneficial effects, with minimal weight gain and fluid reten-
tion in type 2 diabetes mellitus.

Methods

Trial design

Sixty obese individuals with type 2 diabetes (age 18–70 years,
BMI 30–40 kg/m2, HbA1c<10% [86 mmol/mol]) treated with
diet alone or diet plus metformin and/or sulfonylurea were
screened. Patients who had been previously treated with insu-
lin or TZDs were excluded. Only diabetic patients who were
free of other major organ disease, whose body weight was
stable for at least 3 months and who did not participate in
strenuous exercise were enrolled. Thirty-one individuals did
not fulfil the enrolment (inclusion/exclusion) criteria and 29
individuals were randomised, 15 to receive treatment with
PIO and 14 to receive placebo (PLC). In the PLC group, three
patients were lost to follow-up because they left the area and
two patients withdrew consent because they were unwilling
to repeat the muscle biopsy; nine patients in the PLC group
completed the study. In the PIO group, three patients were
lost to follow-up because they left the area and one patient
withdrew consent because he/she was unwilling to repeat
the muscle biopsy; 11 patients in the PIO group completed
the study (Fig. 1). Twenty obese patients with type 2 dia-
betes treated with sulfonylureas and/or metformin complet-
ed the 6 months double-blind, placebo-controlled,
randomised trial evaluating the effects of the addition of
low-dose PIO (15 mg/day) or PLC on gluco-metabolic con-
trol, insulin sensitivity, insulin secretion and sub-
inflammatory state. Before the initiation of therapy, all partic-
ipants received dietary counselling and were asked to con-
sume a standard ADA, weight-maintaining diet throughout
the study. At baseline, eligible patients underwent:(1) OGTT;
(2) vastus lateralis muscle biopsy; (3) euglycaemic–
hyperinsulinaemic clamp; (4) dual-energy x-ray absorptiome-
try (DEXA scan); (5) measurement of plasma adipocytokines

and inflammatory markers. Patients were evaluated in follow-
up visits at 1, 3 and 5months and on each of these visits, blood
pressure, pulse rate and weight were determined. The presence
of oedema was also determined. At 1–3 and 5 months a blood
sample was obtained for measurement of adipocytokines and
inflammatory markers. At 6 months, all baseline measure-
ments were repeated.

Ethics

The study protocol was approved by the Institutional Review
Board of the University of Texas Health Science Center and
of the South Texas Veterans Healthcare System, Audie
Murphy Hospital at San Antonio. The study protocol was
conducted in accordance with the guidelines of the
Declaration of Helsinki. Written and oral informed consent
was obtained from all participants enrolled in this study. The
study was registered at Clinical-Trials.gov (registration no.
NCT01223196).

Study procedures

All tests were carried out at The Bartter Clinical Research
Unit of the South Texas Veterans Healthcare System, in the
morning after a 10–12 h overnight fast.

Assessed for eligibility 
(n=60)

Excluded (n=31):
• Did not meet inclusion 

criteria (n=31)
• Refused to participate

(n=0)
• Other reasons (n=0)

• Analysed (n=9)
• Excluded from analysis  

(n=0)

• Lost to follow-up (left 
town/withdrew consent) 
(n=5)     

• Discontinued intervention  
(n=0)

Placebo
• Allocated to intervention

(n=14)
• Received allocated 

intervention (n=14)
• Did not receive allocated 

intervention (n=0)

• Lost to follow-up (left 
town/withdrew consent) 
(n=4)     

• Discontinued intervention
(n=0)

Pioglitazone
• Allocated to intervention

(n=15)
• Received allocated 

intervention (n=15)
• Did not receive allocated 

intervention (n=0)

• Analysed (n=11)
• Excluded from analysis  

(n=0)

Allocation

Analysis

Follow-up

Enrolment

Randomised
(n=29)

Fig. 1 Flow diagram of study participants
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OGTT

1. A catheter was placed in an antecubital vein and blood
samples were collected at −30, −15, 0, 30, 60, 90 and
120 min for determination of plasma glucose (PG),
NEFA, C-peptide and insulin concentrations. Insulin se-
cretory rate (ISR) was calculated by plasma C-peptide, as
previously described [21].

2. Insulin secretion/IR index (also called disposition index)
was calculated as: [ΔISR 0–120 (AUC)/ΔG 0–120
(AUC)]×[glucose infusion rate (M)/steady-state plasma
insulin concentration (I)]. M/I is derived from the
euglycaemic–hyperinsulinaemic clamp. Under steady-
state conditions of euglycaemia,M divided by I provides
a direct measure of whole-body insulin sensitivity
(M/I value; μmol kg−1 min−1 (pmol/l)−1).

3. The first phase of insulin secretion (acute insulin response
or insulinogenic index) was calculated in the initial
30 min of the OGTT (ΔI 0–30/ΔG 0–30). ΔI (0–30) and
ΔG (0–30) are the differences between baseline and 30 min
during theOGTT in insulin (I) and glucose (G), respectively.

4. Adipose tissue IR index was calculated as fasting insulin
concentration×fasting NEFA concentration.

Skeletal muscle biopsies and western blot Thirty minutes
before the beginning of the OGTT, a vastus lateralis muscle
biopsy was performed, as previously described [22]. All mus-
cle biopsy samples were immediately frozen and stored in
liquid nitrogen until processed. Western blot experiments were
performed as described previously [23]. Protein samples
(30 μg) were separated using 7.5–10–12.5% SDS gel electro-
phoresis (Bio-Rad, Hercules, CA, USA) and electrotransferred
to nitrocellulose membranes (Amersham Pharmacia Biotech,
Piscataway, NJ, USA). The membranes were probed with
antibodies (1:500; Abcam, Cambridge, MA, USA) against
TNF-α, TNF-α converting enzyme (TACE) and tissue inhib-
itor of metalloproteases 3 (TIMP-3). Equal protein loading was
confirmed by reblotting the membranes with polyclonal anti-
body to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (1:1,000; Cell Signaling Technology, Danvers,
MA, USA). Images were analysed and quantified with
Quantity One (Bio-Rad). The SensoLyte 520 TACE Activity
Assay Kit (AnaSpec EGT Group, Fremont, CA, USA) was
used to determine TACE enzymatic activity. Skeletal muscle
lysates (50 μg) were probed with a QXL 520/5-FAM FRET
substrate containing the cleavage site of TACE. Active TACE
cleaves FRET substrate in two separate fragments resulting in
an increase of 5-FAM fluorescence, whichwas monitored at an
excitation/emission wavelength of 490/520 nm [23, 24].

Euglycaemic–hyperinsulinaemic clamp After an overnight
fast, catheters were inserted into an antecubital vein for

insulin and glucose infusion and the second catheter was
inserted retrogradely into a vein on the dorsum of the hand,
which was placed into a thermoregulated heated box (55°C).
Following collection of three baseline samples, participants
received a 4 h euglycaemic insulin clamp (80 mU m−2 min)
[25]. The PG concentration was allowed to drop to 5.6mmol/l,
at which it was maintained. Under steady-state conditions of
euglycaemia, the glucose infusion rate (M) divided by the
steady-state plasma insulin concentration (I) provides a
direct measure of whole-body insulin sensitivity (M/I value;
μmol kg−1 min−1 (pmol/l)−1).

DEXADEXAwas performed to determine fat and lean body
mass and bonemineral density (Hologic,Waltham,MA,USA).

Biochemical analyses

Concentrations of plasma cytokines (TNF-α, IL-6, MCP-1
and FRK) were measured using the human specific
Milliplex map kit according to the manufacturer’s instructions
(Millipore, St Charles, MO, USA). Total adiponectin, high-
sensitivity C-reactive protein (hsCRP) and PAI-1 were mea-
sured by ELISA (R&D Systems, Minneapolis, MN, USA).
PG levels were measured using the glucose oxidase method
(GM9; Analox Instruments, London, UK). Plasma insulin and
C-peptide were measured by radioimmunoassay. Plasma
NEFA were measured using a colorimetric method (WAKO,
Richmond, VA, USA).

Statistical analysis

The AUC of glucose, insulin, C-peptide and adipocytokines
during the OGTTand clamp were calculated by the trapezoid
rule. Values were measured as mean ± SEM or as median
(interquartile range) for variables with a skewed distribution;
categorical data were expressed as percentages. Variables
that were not normally distributed were log-transformed
before analysis. A p value of <0.05 (two-tailed analysis)
was considered to be statistically significant. The Mann–
Whitney test was used to test differences in anthropometric
and metabolic differences between groups. Treatment-
induced changes were examined by Wilcoxon’s signed rank
test. Multivariate analysis was performed to evaluate the
relation between TACE activity changes and metabolic vari-
ables. Data were analysed using SPSS 20 (Statistical
Package for Social Sciences, Chicago, IL, USA).

Results

Clinical characteristics of the study population

At baseline, participants in the PLC and PIO groups were
well matched for clinical, anthropometric and metabolic
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variables, with no statistically significant differences be-
tween the two groups (Table 1).

Changes in body weight and body composition

In the PIO group, there was a small but significant increase in
body weight and BMI after 6 months of treatment (from
93.7±4.9 to 95.5±4.9 kg, p=0.02, and from 33.6±1.9 to
34.2±1.9 kg/m2, p=0.01, respectively). In the PLC group,
weight and BMI did not change significantly. Waist circum-
ference decreased significantly in the PLC group and in-
creased slightly (p=NS) in the PIO group. The percentage
body fat was also increased with PIO treatment (from
36.4±2.6 to 38.5±2.6%, p=0.003) and did not change sig-
nificantly in the PLC group. In both groups there were no
significant changes in bone density, systolic and diastolic
blood pressure or HDL-cholesterol. Plasma triacylglycerol
levels, total cholesterol and LDL-cholesterol declined signif-
icantly in the PIO group. Total cholesterol and LDL-
cholesterol decreased significantly also in the PLC group
(Table 1).

Glucose metabolism, insulin secretion and beta cell function

Fasting plasma glucose (FPG) and 2 h PG in the OGTT, as
well as HbA1c, decreased significantly after 6 months of
treatment in the PIO group (p<0.05) and did not change
significantly in the PLC group (Table 1). The M/I value
during the euglycaemic–hyperglycaemic insulin clamp im-
proved significantly in the PIO group (from 2.41±0.35 to
2.96±0.45 μmol kg−1 min−1 (pmol/l)−1, p=0.04) and did not
change significantly in the PLC group (from 2.66±0.32 to
2.83±0.45 μmol kg−1 min−1 (pmol/l)−1 p=0.46) (Fig. 2a).
TheΔ change inM/I was significantly higher in the PIO than
in the PLC group (+23% vs +6.3%, p=0.005) (Fig. 2b). Beta
cell function, evaluated by the disposition index, improved
in PIO-treated participants (increased from 9.8±0.3 to
12.7±0.3, p=0.04) and did not change in the PLC group
(from 6.5±0.2 to 6.2±0.2, p=0.35) (Fig. 2c). The Δ change
in disposition index was significantly higher in the PIO than
in the PLC group (+29.8% vs −4.6%, p=0.002) (Fig. 2d).
The insulinogenic index did not change in the PLC group
(0.13±0.06 vs 0.14±0.07, p=0.42) and improved in the PIO
group (0.3±0.01 vs 0.4±0.02, p=0.04) (Fig. 2e). The Δ

Table 1 Clinical anthropometric and metabolic characteristics of study participants before and after 6 months of treatment

Characteristic PLC group (n=9) p valuea PIO group (n=11) p valueb

Before After Before After

Age (years) 57±2.2 56±2.8 0.876c

Sex (no. men/no. women) 7/2 7/4 0.88c

Diabetes medication (no.) 0.85c

Metformin only 6 6

Metformin+sulfonylurea 2 3

Diet alone 1 2

Weight (kg) 93.5±7.3 92.4±6.9 0.27 93.7±4.9 95.5±4.9 0.02

BMI (kg/m2) 33.4±1.9 33.0±1.8 0.27 33.6±1.9 34.2±1.9 0.01

Waist circumference (cm) 95.8±7.8 92.9±7.0 0.04 94.0±4.6 95.4±4.9 0.07

Fat content (%) 33.6±1.7 34.2±2.0 0.43 36.4±2.6 38.5±2.6 0.003

Bone density (g/cm2) 1.17±0.05 1.17±0.05 0.94 1.09±0.02 1.08±0.02 0.057

Systolic BP (mmHg) 134±4 131±5 0.56 129±4 127±5 0.72

Diastolic BP (mmHg) 74±2 73±2 0.47 71±3 70±3 0.78

FPG (mmol/l) 8.3±0.7 7.8±0.7 0.24 7.8±0.6 6.5±0.5 0.01

2 h PG (mmol/l) 15.8±0.8 16.3±0.5 0.50 14.7±0.9 13.5±0.83 0.03

HbA1c (%) 8.0±0.5 7.7±0.5 0.48 7.0±0.2 6.5±0.2 0.01

HbA1c (mmol/mol) 64±5 61±6 0.48 53±2 48±2 0.01

Total cholesterol (mmol/l) 4.2±0.2 3.6±0.3 0.02 4.4±0.3 3.8±0.2 0.04

LDL-cholesterol (mmol/l) 2.3±0.3 1.8±0.2 0.04 2.4±0.3 2±0.1 0.03

HDL-cholesterol (mmol/l) 0.9±0.05 0.9±0.05 0.62 1.1±0.1 1.1±0.07 0.73

Triacylglycerol (mmol/l) 2.3±0.6 2±0.5 0.07 2.1±0.2 1.5±0.2 0.004

ap value for PLC group after vs before treatment
bp value for PIO group after vs before treatment
cPLC group before vs PIO group before treatment
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change in insulinogenic index was significantly higher in the
PIO than in the PLC group (+33% vs +8%, p=0.006)
(Fig. 2f). The adipose tissue IR index was significantly
reduced after PIO treatment (from 5.4±0.9 to 2.9±0.8,
p=0.043) and was slightly increased in the PLC group (from
3.1±0.8 to 4.2±0.9, p=0.12) (Fig. 2g). The Δ change was
reduced in the PIO group, while it was increased in the PLC
group (−46% vs +34%, p=0.015, respectively) (Fig. 2h).
After 24 weeks the PG concentration during the OGTT did
not change in the PLC group and decreased in the PIO group,
although not significantly (electronic supplementary materi-
al [ESM] Fig. 1a, b). ISR during the OGTTwas similar in the
PLC and PIO groups as well as plasma C-peptide and insulin
concentrations (data not shown). After 6 months ISR de-
creased slightly in the PIO group (mean AUC: 6,726±827

vs 6,129±868 pmol/min×m2, p=NS) and modestly in-
creased, although not significantly, in the PLC group (mean
AUC: 5,091±551 vs 5,298±1,132 pmol/min×m2, p=NS)
(ESM. Fig. 1c, d). The plasma C-peptide and insulin con-
centrations decreased slightly (p=NS) in the PIO group and
did not change in the PLC group (data not shown).

Plasma NEFA concentration

NEFA during the OGTT declined slightly in the PIO group
and increased slightly in the PLC group after 6 months of
treatment, although not significantly (ESM Fig. 1e, f).
During the insulin clamp, plasma NEFA concentration did
not change in the PLC group after 6 months and decreased
slightly in the PIO group, although this reduction was not
statistically significant (data not shown).

Inflammatory status assessment

TNF-α expression in skeletal muscle TACE is the enzyme
that produces TNF-α and IL-6 from their precursor proteins,
and it is physiologically inhibited by TIMP-3. At baseline,
TNF-α protein levels in skeletal muscle were similar in the
PIO and PLC group (PIO=0.26±0.05 relative units [RU] vs
PLC=0.18±0.06 RU, p=NS) (Fig. 3a, b). Following PIO
treatment for 6 months, muscle TNF-α decreased by ∼30%,
from 0.26±0.05 RU to 0.18±0.05 RU (p=0.02). In the PLC
group, TNF-α levels decreased slightly but not significantly
at the end of treatment (0.18±0.06 RU vs 0.14±0.04 RU,
p=NS) (Fig. 3b). After correction for age, sex, duration of
type 2 diabetes and BMI change, the decrease in TNF-α was
s ign i f i can t ly h igher in the PIO vs PLC group
(PIO=0.078±0.029 RU vs PLC=0.035± 0.026 RU,
p=0.02) (Fig. 3c). We also observed a negative correlation
between TNF-α expression at baseline and improvement in
HbA1c levels after 6 months (r=−0.5, p=0.029 after correc-
tion for age and sex) (data not shown). At baseline, TACE
and TIMP-3 protein levels were similar in the PLC and PIO
groups, and did not change significantly in either group after
treatment (Fig. 3a, d, e). To further investigate the mecha-
nisms underlying the changes in skeletal muscle TNF-α
protein, we evaluated the TACE enzymatic activity in muscle
extracts by an in vitro fluorometric assay, as previously
described [23, 24]. At baseline, TACE enzymatic activity
levels in skeletal muscle were not significantly different
between the PLC and PIO group (0.22±0.1 fluorescence
units [FU] vs 0.29±0.07 FU, p=0.34) (Fig. 3f). After
6 months of treatment with PIO, TACE activity levels were
decreased by >80% as compared with baseline (0.29±0.07
FU vs 0.05±0.01 FU, p=0.005) whereas in the PLC group,
TACE activity levels were reduced by ∼36% in comparison
with baseline (0.22±0.1 FU vs 0.14±0.07 FU, p=0.065)
(Fig. 3f). The reduction in TACE activity in the PIO group
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was significantly higher than in the PLC group (0.24±0.06
FU vs 0.08±0.03 FU, p=0.047) (Fig. 2g). TACE activity
changes observed at the end of treatment in comparison with
baseline were significantly correlated with changes in HbA1c

(r=0.59, p=0.019) and FPG (r=0.70, p=0.004) in the whole
study population after correction for age, sex and BMI
(Table 2). In PIO-treated patients the changes in TACE
activity correlated with HbA1c (r=0.87, p=0.01) and FPG
(r=0.88, p=0.01). In the PLC group, TACE activity corre-
lated with HbA1c (r=0.87, p=0.051). To further evaluate the
independent association of the changes in HbA1c and FPG
with changes in TACE activity in the whole study popula-
tion, we performed a multivariate regression analysis in a
model including age, sex and BMI. We found that TACE
activity was significantly correlated with HbA1c (β=0.65,
r=0.6, p=0.02) and FPG (β=0.77, r=0.7, p=0.004).

Circulating cytokines and inflammation marker levels Baseline
plasma TNF-α, MCP-1, IL-6 and FRK concentrations were
significantly increased in the PLC group and they declined
progressively at 5 and 6 months, generally reaching the
levels observed in the PIO group, at the end of the study
(Fig. 4a–d). In the PIO group, plasma IL-6, FRK and MCP-1
remained quite constant during the 6 months’ treatment
period. Overall IL-6, FRK, MCP-1 and, to a lesser extent,
TNF-α levels were lower in the PIO group than in the PLC
group. Furthermore, the levels of cytokines were also
reduced in bo th OGTT and the eug lycaemic–
hyperinsulinaemic clamp after 6 months of treatment with

PIO, but not after PLC (data not shown). To further evaluate
the anti-inflammatory/anti-atherogenic effects of PIO, we
measured total adiponectin, hsCRP and PAI-1. Interestingly,
after 6 months of treatment, adiponectin levels were
increased in the PIO group (from 40.9±3.5 to 70.8±9.6 ng/ml,
p=0.006) but not in the PLC group (34.5±4.6 vs 41.1±
5.8 ng/ml, p=0.59) (Fig. 5a). The Δ change in adiponectin
levels was significantly higher in the PIO group than in the
PLC group (+78% vs +14%, p=0.03) (Fig. 5b). hsCRP con-
centrations were also significantly decreased in the PIO group
after 6 months of treatment (from 6.3±1.3 to 4.1±0.8ìg/ml,
p=0.03) as compared with the PLC group (5.7±2.2 vs
4.8±1.0ìg/ml, p=0.48) (Fig. 5c). The Δ change in hsCRP
was significantly reduced in the PIO group but not in the
PLC group (−33% vs −17%, p=0.02, respectively) (Fig. 5d).
PAI-1 levels were strongly reduced after PIO treatment (from
3.7±0.8 to 1.4±0.4 ng/ml, p<0.001) and did not change in the
PLC group (8.7±2.6 vs 8.3±2.5 ng/ml, p=0.41) (Fig. 5e). The
Δ change in PAI-1 level was significantly reduced in the PIO
group as compared with the PLC group (−60% vs −5%,
p<0.001, respectively) (Fig. 5f).

Discussion

The present study demonstrates that low-dose PIO
(15 mg/day) ameliorates glyco-metabolic control, beta cell
function and inflammatory state in type 2 diabetes.
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This was a 6 month, randomised double-blind, placebo-
controlled, single-centre study, which included euglycaemic–
hyperinsulinaemic clamp, OGTT, serial cytokine measure-
ments and skeletal muscle biopsies with evaluation of
TNF-α protein, TACE enzymatic activity and levels of
key insulin-signalling proteins. The data on the effect of
TZD treatment on insulin secretion in patients with type
2 diabetes mellitus are controversial, with some studies
showing an improvement in beta cell function and others
failing to observe any significant change [26, 27]. In the
present study, low-dose PIO caused a significant reduc-
tion in HbA1c (0.5%), which was associated with an
improvement in whole-body insulin sensitivity (M/I val-
ue) and improvement in beta cell function, as demon-
strated by increases in the insulin secretion/IR (disposition)
and insulinogenic indexes. Moreover, adipose tissue sensi-
tivity was also improved by PIO treatment. In contrast,
whole-body insulin sensitivity, adipose tissue sensitivity
and beta cell function did not improve in PLC-treated
patients.

Higher doses of PIO (30–45 mg/day) or rosiglitazone
(8 mg/day) typically are characterised by a substantial
weight gain (4–5 kg) over 1–3 years of treatment, due to
increased fat mass and fluid retention [11, 12, 14–19]. In type
2 diabetes mellitus, obesity causes worsening of IR and
deterioration of glycaemic control despite aggressive

Table 2 Correlation between changes in TACE activity and changes in metabolic variables

Variable Whole study population PIO group PLC group

r p value r p value r p value

Δ HbA1c 0.59 0.019 0.87 0.01 0.87 0.051

Δ FPG 0.7 0.004 0.88 0.01 0.35 0.56

Δ Fasting insulin 0.08 0.77 −0.17 0.7 0.52 0.36

Δ M/I value −0.28 0.30 −0.43 0.33 -0.25 0.88

Δ Disposition index 0.14 0.63 0.28 0.53 0.19 0.75

Δ Insulinogenic index −0.17 0.53 −0.43 0.34 0.74 0.15

The correlations are adjusted for age, sex and BMI

r, Person’s correlation coefficient
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therapy. In the present study, no patient treated with low-dose
PIO developed oedema and weight gain was relatively mod-
est (≅2 kg) over 6 months of treatment. It is possible that the
lower increase in body weight that we observed could be
related to the shorter duration of treatment, in combination
with the lower PIO dose. Moreover, the weight gain was
significantly and directly correlated with decreases in HbA1c

(r=−0.46, p<0.05), FPG (r=−0.30, p<0.05) and mean PG
concentration during OGTT (r=−0.45, p<0.05) in the PIO
group as previously described [11, 16, 28].

To our knowledge, only two previous studies employing
low-dose PIO have evaluated its effect on inflammation in
patients with type 2 diabetes. Aso et al reported a decrease in
HbA1c associated with increase of HOMA of insulin
resistance (HOMA-IR) in a low-dose PIO (7.5 mg/day) stud-
y, with a concurrent increase in high-molecular-weight
adiponectin after 12 weeks of treatment [29]. In the present
study, we also confirmed that adiponectin levels increased
significantly only in the PIO group.

Kato et al showed that significant decreases in HbA1c and
HOMA-IR after 12 weeks of low-dose PIO (15 mg/day)
were associated with a significant reduction in hsCRP [30].
In this study we confirmed a strong reduction in hsCRP
levels in the PIO group as compared with the PLC group.
Similarly, we demonstrated a significant reduction in PAI-1
levels in the PIO group during the 6 months of treatment,
while there was no change in the PLC group, consistent with
the possibility that PIO may also have anti-atherogenic
effects.

PIO, acting on peroxisome proliferator-activated receptorγ
(PPARγ) in adipose tissue and liver, modulates a numbers of
metabolic and inflammatory processes that are potentially
involved in cardiovascular risk, including endothelial dys-
function, release of adhesion molecules and mediators of cell
survival and coagulation/fibrinolysis [31]. In the present study
we demonstrated a PIO treatment resulted in a ≅30% decrease
in TNF-α protein levels in muscle. Interestingly, we observed
a negative correlation between TNF-α protein expression in
muscle at baseline and improvement of HbA1c levels over
6 months. We have previously shown a dysregulation of the
TIMP3–TACE dyad, which regulates, among other things,
TNF-α release from the skeletal muscle into the circulation
in individuals affected by obesity and type 2 diabetes [23]. In
this study, we demonstrated for the first time that low-dose
PIO reduced TNF-α expression and also TACE enzymatic
activity in human skeletal muscle, and that these effects were
associated with an improvement in HbA1c and FPG,
emphasising the role of inflammation in the pathogenesis of
IR in type 2 diabetes [32–35]. TNF-α has been shown to
promote monocyte adhesion to the endothelium, inhibit endo-
thelial nitric oxide synthase and directly impair insulin signal-
ling by causing serine phosphorylation of insulin receptor and
insulin receptor substrate-1 [6]. The present study also

demonstrated that low-dose PIO therapy decreased plasma
IL-6 levels compared with placebo over the 6 month treatment
period, although there was no statistical difference between
PIO and PLC in the last month. IL-6 is a pro-inflammatory
cytokine that correlates with IR in humans and is associated
with atherosclerotic coronary artery disease, possibly through
its effect on plaque development and destabilisation [7, 36,
37]. We also demonstrated a reduction in plasma MCP-1
levels compared with PLC over the 6 month period. MCP-1
is involved in chemokine-directed trans-endothelial migration
of monocytes, and possibly in plaque rupture and
thrombogenesis. PIO, compared with PLC, also reduced the
plasma levels of FRK. The soluble form of FRK is released
from its membrane form by extracellular cleavage through
ADAM metallopeptidase domain ADAM10 and TACE, and
then acts as a chemo-attractant for leucocytes and for smooth
muscle cells expressing the receptor (i.e. CX3CR1) [38].
Hyperglycaemia, as seen in type 2 diabetes, promotes FRK
expression by smooth muscle and endothelial cells in vitro,
leading to enhanced monocyte adhesion, which can promote
atherogenesis [39]. It has been previously shown that abroga-
tion of FRK signalling by FRK receptor deletion in mice
results in reduced accumulation of tissue-specific macro-
phages such as foam cells at the level of atherogenic lesions
and microglial cells at sites of retinal degeneration [40]. In
vitro, rosiglitazone has been shown to suppress the membrane
translocation of FRK receptors in macrophages and prevent
the nuclear export of FRK in endothelial cells [41]. It is
noteworthy that Yokoyama et al demonstrated that low-dose
PIO (15 mg/day) reduced the incidence of in-stent restenosis
without adversely affecting left ventricular remodelling after
acute myocardial infarction in patients with type 2 diabetes or
impaired glucose tolerance [42]. Interestingly, PIO treatment
has been shown to be somewhat effective in the late phase of
atherosclerosis and the clinical significance of the reduction in
TACE activity, as well as plasma levels of IL-6 and FRK, in
the prevention/retardation of atherogenesis with low-dose PIO
(15 mg/day) remains to be determined [14, 28].

The present study has some limitations, such as the rela-
tively short duration (6 months) of treatment and the limited
number of participants studied, which might have reduced
the ability to observe a more pronounced effect of PIO on
inflammatory markers. On the other hand, it is important to
emphasise that this study included the application of a
euglycaemic–hyperinsulinaemic clamp to directly assess in-
sulin sensitivity combined with skeletal muscle biopsies for
the evaluation of in vivo inflammatory pathways such as the
TIM–TACE dyad, which is involved in the generation of
TNF-α and IL-6. It must be noted that these studies were
performed in a very limited number of patients.

In this study we could not assess changes in the expres-
sion of insulin-signalling proteins or changes in their func-
tion because we did not perform skeletal muscle biopsies
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after insulin stimulation. Therefore, we could not evaluate
the effect of low-dose PIO on the insulin-signalling mecha-
nism in skeletal muscle. Whole-body glucose uptake was
significantly improved after PIO treatment concomitant with
the reduction of inflammatory signalling pathways, which
are known to inhibit insulin’s action [6–8, 33]. Therefore it
can only be hypothesised that insulin signalling was im-
proved at the level of skeletal muscle by PIO; future studies
will be necessary to directly assess these phenomena.

In conclusion, low-dose PIO improved glycaemic control,
insulin sensitivity and beta cell function, with a very modest
concomitant weight gain. Moreover, we demonstrated that
low-dose PIO significantly reduced TNF-α protein and
TACE enzymatic activity in skeletal muscle and circulating
inflammatory cytokines in humans. Altogether, these find-
ings suggest that low-dose PIO treatment, by improving
glycaemic control while decreasing inflammation, could
have a favourable impact on cardiovascular risk in patients
with type 2 diabetes, who are particularly vulnerable to
cardiovascular disease.
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