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Abstract
We study Daubechies’ time–frequency localization operator, which is characterized
by a window and weight function. We consider a Gaussian window and a spherically
symmetric weight as this choice yields explicit formulas for the eigenvalues, with the
Hermite functions as the associated eigenfunctions. Inspired by the fractal uncertainty
principle in the separate time–frequency representation, we define the n-iterate mid-
third spherically symmetric Cantor set in the joint representation. For the n-iterate
Cantor set, precise asymptotic estimates for the operator norm are then derived up to
a multiplicative constant.

Keywords Fractal Uncertainty Principle · Daubechies’ localization operator · Cantor
set

Mathematics Subject Classification 47A30 · 47A75

1 Introduction

The problem of localizing signals in time and frequency is an old and important one
in signal analysis. In applications, we often wish to analyze signals on different time–
frequency domains, and we would therefore attempt to concentrate signals on said
domains. Different approaches for how to construct such time–frequency localization
operators have been suggested, either based on a separate or joint time–frequency
representation of the signal (see [4,13]). The localization operators, regardless of
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which we choose to work with, will however be limited by the fundamental barrier of
time–frequency analysis, namely the uncertainty principles, which state that a signal
cannot be highly localized simultaneously in both time and frequency. With regard
to the localization operator, the limits posed by the uncertainty principles translate
into the associated operator norm, as it measures the optimal efficiency of any given
localization operator.

Many versions of the uncertainty principles exist (see [10]), and more recent ver-
sions start to take into account the geometry of the time–frequency domains. In
particular, in [6], Dyatlov describes the development and applications of a fractal
uncertainty principle (FUP) for the separate time–frequency representation, first intro-
duced and developed in [3,7,8]. The relevant localization operator is the standard
composition of projections πT Q�, where πT and Q� project onto the sets T in time
and � in frequency, respectively. In the context of the FUP, the sets T and � take the
form of fractal sets. Here fractal sets are defined in terms of the general notion of δ-
regularity (see [6, Definition 2.2.]), as families of sets T (h),�(h) ⊆ [0, 1], dependent
on a continuous parameter 0 < h ≤ 1. The FUP is then formulated for this general
class of sets when h → 0.

An illustrative example featured in [6] is the mid-third Cantor set, where both
the time and frequency domain can be regarded as h-neighbourhoods of the Cantor
set, say C(h). Notice that the FUP is originally framed such that the parameter h is
also encoded in the Fourier transform Fh (not unlike the normalization with Planck’s
constant in quantum mechanics) such that Fh f (ω) = 1√

h
f̂ (ωh−1), where f̂ denotes

the Fourier transform of f . If we instead formulate the FUP in terms of the regular
Fourier transform, we now consider the family C(h)/

√
h. Further, if we translate

the continuous h into discrete iterations n, we obtain a sequence based on the n-
iterate Cantor set, defined in increasing intervals depending on n. More precisely, if
T = � = Cn denotes the n-iterate defined in the interval [0, M], then the interval
length satisfies

3n ∼ M2, (1.1)

which means |Cn| ∼
(
2/

√
3
)n → ∞ as n → ∞. However, by Theorem 2.13 in [6],

there exist constants α, β > 0 such that

‖πCn QCn ‖op ≤ αe−βn ∀ n ≥ 0. (1.2)

We should expect some analogous result to the FUP when extending to the joint
time–frequency representation (see Itinerary page 1 in [11]). Inspired by the Cantor
set example in separate time and frequency, we derive a similar localization result
for the Cantor set in the joint representation. In particular, we consider Daubechies’
localization operator, first introduced in [4], based on theShort-Time Fourier tranform,
with a spherically symmetric weight function and a Gaussian window. The reason for
these restrictions is that, as was shown in the aforementioned paper, we obtain explicit
expressions for the eigenvalues of the localization operator, with theHermite functions
as the associated eigenfunctions.
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The remainder of the paper is organized as follows: In Sect. 2 we provide a more
detailed introduction to the Daubechies operator (Sects. 2.1, 2.2), in addition to some
necessary results in the spherically symmetric context (Sect. 2.3). We also make clear
what wemean by a spherically symmetric Cantor set (Sect. 2.4). New results are found
in Sects. 3 and 4, which contains several estimates for Daubechies’ operator localizing
on different spherically symmetric sets.

In particular, Sect. 3 contains two introductory examples of localization on spher-
ically symmetric subsets, namely localization on a ring and a set of infinite measure.
In Sect. 4, we finally consider the n-iterate spherically symmetric Cantor set. Here we
derive precise asymptotic estimates (up to a multiplicative constant) for the operator
norm (Theorem 4.2). A particular case of this two-parameter result, in terms of the
radius R and iterate n, can be formulated as an estimate solely in terms of the parameter
n or R. In the spherically symmetric context, we consider the condition

3n ∼
(
π R2

)2
, (1.3)

similar to condition (1.1). Hence, under the above condition, let Pn denote the
Daubechies operator localizing on the n-iterate spherically symmetric Cantor set
defined in the disk of radius R > 0. Then for some positive constants c1 ≤ c2
the operator norm satisfies

c1

(
2

3

) n
2 ≤ ‖Pn‖op ≤ c2

(
2

3

) n
2

. (1.4)

This result is analogous to knowing the exponential β > 0 in (1.2) precisely.

2 Preliminaries

2.1 Fourier and Short-Time Fourier Transform

For a function f : R → C the Fourier transform evaluated at point ω ∈ R is given by

f̂ (ω) =
∫

R

f (t)e−2π iωtdt .

If we interpret f as an amplitude signal depending on time, then its Fourier transform
f̂ corresponds to a frequency representation of the signal. The pair ( f , f̂ ) does not,
however, offer a joint description with respect to both frequency and time. For this
purpose, we consider the Short-Time Fourier transform (STFT) (seeChapter 3 in [11]).

The STFT is often referred to as the “windowed Fourier transform” as this transform
relies on an additional fixed, non-zero function, φ : R → C, known as a window
function. At point (ω, t) ∈ R×R the STFT of f with respect to the window φ is then
defined as
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Vφ f (ω, t) =
∫

R

f (x)φ(x − t)e−2π iωxdx .

The transformed signal now depends on both time t and frequency ω, and we refer to
the (ω, t)-domain R

2 as the phase space or the time–frequency plane.
We will restrict our attention to signals and windows in L2(R), which, by Cauchy–

Schwarz’ inequality, implies that Vφ f (ω, t) is well-defined for all points (ω, t) ∈ R
2.

Such restrictions also produce the following orthogonality relation

〈Vφ1 f1, Vφ2 f2〉L2(R2) = 〈 f1, f2〉〈φ1, φ2〉 ∀ f1, f2, φ1, φ2 ∈ L2(R). (2.1)

Equipped with the standard L2-norms, we deduce that the STFT is a bounded linear
map, with target space L2(R2). If the window φ is normalized, i.e. ‖φ‖2 = 1, then
the STFT becomes, in fact, an isometry onto some subspace of L2(R2).

Further, by identity (2.1), the original signal f can be recovered from its phase
space representation. Take any γ ∈ L2(R) such that 〈γ, φ〉 �= 0, then the orthogonal
projection of f onto any g ∈ L2(R) is given by

〈 f , g〉 = 1

〈γ, φ〉
∫∫

R2
Vφ f (ω, t)Vγ g(ω, t)dωdt .

A canonical choice for γ is to set it equal to φ. Assuming φ is normalized, these
projections then read

〈 f , g〉 =
∫∫

R2
Vφ f (ω, t)Vφg(ω, t)dωdt . (2.2)

Since any signal f ∈ L2(R) is entirely determined by such inner products, the right-
hand side of formula (2.2) provides a complete recovery from the STFT.

2.2 Daubechies’ Localization Operator

One approach for how to construct operators that localize a signal f in both time and
frequency was suggested by Daubechies in [4]. These operators can be summarized as
modifying the STFT of f by multiplication of a weight function, say F(ω, t), before
recovering a time-dependent signal. The weight function aims at enhancing certain
features of the phase space while diminishing others. Based on formula (2.2), we
consider the sesquilinear functionalPF,φ on the product L2(R) × L2(R), defined by

PF,φ( f , g) =
∫∫

R2
F(ω, t)Vφ f (ω, t)Vφg(ω, t)dωdt .

Assuming PF,φ is a bounded functional, Riesz’ representation theorem ensures the
existence of a bounded, linear operator PF,φ : L2(R) → L2(R) such that

PF,φ( f , g) = 〈PF,φ f , g〉.
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The operator PF,φ is our sought after time-frequency localization operator, which we
will refer to as Daubechies’ localization operator. From the above definition, PF,φ is
characterized by the choice of weight F and window function φ.

In particular, any real-valued, integrable weight F will produce self-adjoint, com-
pact operators PF,φ whose eigenfunctions form a complete basis for the space
L2(R). Furthermore, the eigenvalues {λk}k satisfies

∑
k |λk | ≤ ‖F‖1, in addition

to |λk | ≤ ‖F‖∞ for all k.

2.3 Spherically SymmetricWeight

For an arbitrary weight F and window φ it remains a challenge to determine the
eigenvalues of Daubechies’ localization operator PF,φ . However, in [4], Daubechies
narrows in her focus to operators with a normalized Gaussian window

φ(x) = 21/4e−πx2 , (2.3)

and a spherically symmetric weight

F(ω, t) = F (r2), (2.4)

where r2 = ω2 + t2. For such operators, the Hermite functions1

Hk(t) = 21/4√
k!

(
− 1

2
√

π

)k

eπ t2 dk

dtk
(e−2π t2), k = 0, 1, 2, . . . (2.5)

are shown to constitute the eigenfunctions. Further, explicit expressions for the asso-
ciated eigenvalues {λk}k are derived.

Theorem 2.1 (Daubechies) Let PF,φ denote the localization operator with weight
F(ω, t) = F (r2) and window φ equal to the normalized Gaussian in (2.3). Then the
eigenvalues of PF,φ are given by

λk =
∫ ∞

0
F

( r

π

) rk

k! e−rdr , for k = 0, 1, 2, . . . ,

such that

PF,φ Hk = λk Hk,

where Hk denotes the k-th Hermite function.

1 Due to the choice of normalization for the Fourier transform, both the Gaussian and the Hermite functions
are normalized differently than in [4]. The normalization is chosen in accordance with Folland [9]. If hk

denotes the k-th Hermite function in [4], this relates to Hk in (2.5) by Hk (x) = 21/4√
2k k! hk (

√
2πx).
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Observe that the normalized Gaussian in (2.3) coincides with H0 in (2.5). It was
shown recently in [2] that (for each j) the Hermite functions are also eigenfunctions
of any localization operator with window Hj and a spherically symmetric weight.
Nevertheless, we will always assume the window φ to be the normalized Gaussian.

We will consider the case when F projects onto a spherically symmetric subset
E ⊆ R

2. This means F equals the characteristic function of some subset E ⊆ R+,
i.e., F (r) = χE (r), such that E = {(ω, t) ∈ R

2 | ω2 + t2 ∈ E}. As a matter of
convenience, we will denote the associated Daubechies operator simply by PE . By
Theorem 2.1, the eigenvalue corresponding to the k-th Hermite function is then given
by

λk =
∫

π ·E
rk

k! e−rdr , for k = 0, 1, 2, . . . , (2.6)

where π · E := {x ∈ R+ | xπ−1 ∈ E}. Since the above integrands will appear
frequently, we define, for simplicity, the functions

fk(r) := rk

k! e−r , r ≥ 0, for k = 0, 1, 2, . . .

In Sect. 4 we require two basic properties of the integrands { fk}k (see Appendix A
for additional details), namely

fk(k − r) ≤ fk(k + r) ∀ r ∈ [0, k] for k = 1, 2, 3, . . . (2.7)

and

∫

E
fk(r)dr ≤

∫ |E |

0
f0(r)dr = 1 − e−|E | for k = 0, 1, 2, . . . , (2.8)

where E is some measurable subset of R+.

2.4 Cantor Set

The mid-third Cantor set based in the interval [0, R] is constructed as follows: Start
with the interval C0(R) = [0, R]. Each n-iterate Cn(R) is the union of 2n disjoint,
closed intervals {I j,n} j . To obtain the next iterate Cn+1(R) remove the open middle-
third interval in every interval I j,n . Such iterations yield a nested sequenceC0 ⊇ C1 ⊇
C2 ⊇ . . . The mid-third Cantor set C(R) on the interval [0, R] is then defined as the
intersection of all the n-iterates, i.e.,

C(R) =
∞⋂

n=0

Cn(R).
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For each n-iterate, we define a corresponding map GR,n : R → [0, 1] by

GR,n(x) = 1

|Cn(R)| ·
{
0, x ≤ 0,

|Cn(R) ∩ [0, x]|, x > 0 for n = 0, 1, 2, . . . ,
(2.9)

which we refer to as the n-iterate Cantor function. These functions will come into
play in the latter part of Sect. 4, where we will utilize the fact that {GR,n}n are all
subadditive, i.e.,

GR,n(a + b) ≤ GR,n(a) + GR,n(b) ∀ a, b ∈ R, (2.10)

which was shown by induction by Josef Doboš in [5].
In the spherically symmetric context, we consider the following Cantor set con-

struction: For the disk of radius R > 0 centered at the orgin, we identify the n-iterate
with the subset

Cn(R) = {(ω, t) ∈ R
2 | ω2 + t2 ∈ Cn(R2)} ⊆ R

2. (2.11)

This means we consider weights of the form

F (r) = χCn(R2)(r), for R > 0 and n = 0, 1, 2, . . .

Based on formula (2.6), the eigenvalues of PCn(R) can then be expressed as

λk(Cn(R)) =
∫

π ·Cn(R2)

fk(r)dr =
∫

Cn(π R2)

fk(r)dr . (2.12)

3 Examples of Localization on Spherically Symmetric Sets

In this section we present estimates for the operator norm of Daubechies’ operator
localizing on two different spherically symmetric sets. For this purpose, it would
be sufficient to determine the largest eigenvalue of the operator and estimate said
eigenvalue. Nonetheless, even with identity (2.6), it may prove difficult to determine
which eigenvalue is the largest. Under such circumstances, we will instead attempt to
derive a common upper bound for the eigenvalues.

3.1 Localization on a Ring: Asymptotic Estimate

The first example shows that any eigenvalue λk of Daubechies’ localization operator
can, in principle, be the largest eigenvalue. Consider localization on a ring of inner
radius R > 0 in phase space of measure 1, that is, consider the subset

E(R) := {(ω, t) ∈ R
2 | π(ω2 + t2) ∈ [π R2, π R2 + 1]} (3.1)
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with the associated localization operator PE(R). By (2.6), the eigenvalues of PE(R)

become

λk(R) := λk(E(R)) =
∫ π R2+1

π R2
fk(r)dr for k = 0, 1, 2, . . .

Now, assume that π R2 ∈ [m, m + 1] for some m ∈ N ∪ {0}. Since the difference
fk(r) − fk+1(r) is negative precisely when r > k + 1, we obtain the ordering

λ0(R) ≤ λ1(R) ≤ λ2(R) ≤ · · · ≤ λm(R)

and

λm+1(R) ≥ λm+2(R) ≥ λm+3(R) ≥ · · ·

Under these conditions, either λm(R) or λm+1(R) must be the largest eigenvalue.
In particular, if π R2 = m, then λm(R) becomes the largest eigenvalue. In the next
proposition we provide an estimate of the operator norm of PE(R).

Proposition 3.1 Let E(R) ⊆ R
2 be as in (3.1). For any fixed π R2 ≥ 2, there exists a

positive, finite constant C such that the operator norm of PE(R) satisfies the bounds

1

π
√
2

R−1 − C R−3 ≤ ‖PE(R)‖op ≤ 1

π
√
2

R−1 + C R−3.

Proof Let n := �π R2�, where �·� denotes the floor function, rounding down to the
nearest integer. Apply a max–min-approximation of the integrands fk(r) for r ∈
[n, n + 2] ⊇ [π R2, π R2 + 1]. In particular, fn(n) serves as an upper bound and, by
inequality (2.7), fn+1(n) serves as a lower bound for the operator norm. That is,

nn+1

(n + 1)!e−n ≤ ‖PE(R)‖op ≤ nn

n! e−n .

Once we combine this with Stirling’s approximation formula for the factorial

√
2π · nn+1/2e−n ≤ n! ≤ e

1
12n

√
2π · nn+1/2e−n for n = 1, 2, 3, . . . ,

we obtain

1√
2π

n−1/2
(
1 + 1

n

)−1

e− 1
12n ≤ ‖PE(R)‖op ≤ 1√

2π
n−1/2.

Expressing the above inequality in terms of R, we use that π R2 − 1 ≤ n ≤ π R2

and factor out 1/
√

π R2. The error terms ±C R−3, follows by Taylor expansion of the
remaining factors about 1/(π R2) = 0. ��
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Remark A careful reading of the Taylor series expansion reveals that for π R2 ≥ 2,
the inequalities in Proposition 3.1 hold for constant C = π−2.

3.2 Localization on Set of Infinite Measure

Next, we consider a non-trivial example of localization on a spherically symmetric
set of infinite measure (see [12] for a similar example in the separate time-frequency
representation). Define the subset

E(s) :=
{
(ω, t) ∈ R

2
∣∣∣ π(ω2 + t2) ∈

∞⋃
n=0

[n, n + s]
}
, (3.2)

which we can identify as an infinite number of equidistant intervals in R+. Although
the above set has infinite measure, we maintain good control over the operator norm
of PE(s) and can produce precise estimates in terms of the parameter s.

Theorem 3.1 Let E(s) ⊆ R
2 be as in (3.2) with s ∈ [0, 1]. Then the operator norm of

PE(s) satisfies the bounds

C(1 − e−s) ≤ ‖PE(s)‖op ≤ min{Cs, 1} ∀ s ∈ [0, 1] with C = e

e − 1
. (3.3)

Further, there exists s0 > 0 such that

‖PE(s)‖op = C(1 − e−s) ∀ 0 < s < s0. (3.4)

Proof By formula (2.6), the eigenvalues read

λk(s) := λk(E(s)) =
∫

⋃
n [n,n+s]

fk(r)dr =
∞∑

n=0

∫ n+s

n
fk(r)dr for k = 0, 1, 2, . . .

For each integral over [n, n + s], consider the maximum of fk(r) for r ∈ [n, n + 1]
such that

λ0(s) ≤ s
∞∑

n=0

f0(n) = s
∞∑

n=0

e−n = s

1 − e−1 = Cs (3.5)

and

λk(s) ≤ s

(
fk(k) +

∞∑
n=0

fk(n)

)
for k = 1, 2, 3, . . . (3.6)
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We now claim that the following inequality holds

fk(k) +
∞∑

n=0

fk(n) <

∞∑
n=0

f0(n) for k = 1, 2, 3, . . . (3.7)

For k = 1, inequality (3.7) is verified by computing the series explicitly. While for
k > 1, compare the series with the integral over R+, that is

∑
n �=k

fk(n) ≤
∫ ∞

0
fk(r)dr = 1.

Thus,

fk(k) +
∞∑

n=0

fk(n) ≤ 1 + 2 fk(k) ≤ 1 + 2 f2(2) = 1 + 4e−2 for k = 2, 3, 4, . . .

Since 1 + 4e−2 < C , claim (3.7) follows. Combining results (3.5)–(3.7) yields the
upper bound in (3.3). In the lower bound case of (3.3), it is sufficient to observe

λ0(s) =
∞∑

n=0

∫ n+s

n
e−rdr = (1 − e−s)

∞∑
n=0

e−n = (1 − e−s)C .

For the equality case (3.4), note that inequality (3.7) ensures that there exists a constant
0 < C0 < C such that λk(s) ≤ C0s for any k, s > 0. Since (1 − e−s)s−1 → 1 from
below as s → 0, it follows that some s0 > 0 with property (3.4) exists. ��
Remark In [1] Theorem 3, a more general localization result is presented for signals
f ∈ M p(R) with p ≥ 1. The result is similar as it provides an upper bound when
localizing on sparse sets in phase space. Applied to signals f ∈ M2 = L2 and the
subset E(s), Theorem 3 yields a somewhat coarser upper bound, namely ‖PE(s)‖op ≤
C ′√s for some constant C ′ > 0.

4 Localization on Spherically Symmetric Cantor Set

In this section we consider localization on the n-iterate spherically symmetric Cantor
set, i.e., the set Cn(R) in (2.11). Hence, we consider the localization operator PCn(R)

and attempt to estimate its operator norm. Results are formulated in Sect. 4.1, with
the proof strategy and formal proofs in the subsequent Sects. 4.2–4.4.

4.1 Results: Bounds for the Operator Norm

Below two theorems regarding the operator norm of PCn(R) are presented. The first
theorem shows to what extent the operator norm is bounded by the first eigenvalue
λ0(Cn(R)).
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Theorem 4.1 The operator norm of PCn(R) is bounded from above by

‖PCn(R)‖op ≤ 2λ0(Cn(R)) for n = 0, 1, 2, . . .

The second theorem is a precise asymptotic estimate of the operator norm of PCn(R)

(up to amultiplicative constant) based on the same asymptotic estimate for λ0(Cn(R)).

Theorem 4.2 There exist positive, finite constants c1 ≤ c2 such that for each n =
0, 1, 2, . . .

c1 ≤
(
2π R2 + 1

) ln 2
ln 3

2n
(
1 − e−π R2/3n ) · ‖PCn(R)‖op ≤ c2 ∀ π R2 ∈ [0, 3n/2].

Proofs of Theorem 4.1 and 4.2 can be found in Sects. 4.3 and 4.4 , respectively. At the
end of Sect. 4.4, we also retrieve numerical estimates for the constants in Theorem
4.2.

If we now enforce condition (1.3), and note that 2n ∼ (π R2)2
ln 2
ln 3 , we obtain the

following corollary:

Corollary 4.1 Suppose that the radius R depends on the iterate n such that π R2 ∼ 3
n
2 .

Then there exists positive, finite constants c1 ≤ c2 such that

c1
(
π R2) ln 2

ln 3−1 ≤ ‖PCn(R(n))‖op ≤ c2(π R2) ln 2
ln 3−1

.

Note that the above corollary is the same as result (1.4), except that we have expressed
the inequality in terms of the radius R rather than the iterate n. On this form we have
been able to express bounds for the operator norm in terms of quantity δ = ln 2

ln 3 , which
is the fractal dimension of the mid-third Cantor set. It would therefore be interesting to
investigate whether the same or a similar statement holds when localizing on different
Cantor sets, with a different fractal dimension 0 < δ < 1.

4.2 Main Strategy: Relative Areas

Both theorems are obtained from the integral formula (2.12) for the eigenvalues
{λk(Cn(R))}k . However, as the number of intervals in the n-iterate Cantor set grows as
2n , it soon becomes rather impractical to evaluate these integrals directly. Instead we
consider the local effect on the integrals when increasing from one iterate to the next.
In particular, this means we initially consider the integral of fk over a single interval,
say [s, s + 3L] for s ≥ 0 and L > 0. Then we attempt to determine the relative area
left under the curve fk once the mid-third of the interval is removed, i.e., we wish to
understand the function

Ak(s, 3L) :=
[∫ s+L

s
fk(r)dr +

∫ s+3L

s+2L
fk(r)dr

]
·
[∫ s+3L

s
fk(r)dr

]−1

. (4.1)
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Computing the above integrals, Ak(s, 3L) can alternatively be expressed

Ak(s, 3L) =
[

k∑
n=0

1

n!
(
sn − e−L(s + L)n + e−2L(s + 2L)n − e−3L(s + 3L)n)

]

·
[

k∑
n=0

1

n!
(
sn − e−3L(s + 3L)n)]−1

. (4.2)

Observe that Ak(s, 3L) is independent of the starting point s precisely when k = 0.
In particular,

A0(3L) := A0(s, 3L) =
(
1 + e−2L

)(
1 − e−L

)

1 − e−3L
. (4.3)

For this reason, calculations with regard to λ0(Cn(R)) are significantly simpler than
for the remaining eigenvalues. In particular, we have the recursive relation

λ0(Cn+1(R)) = A0(π R2/3n)λ0(Cn(R)) for n = 0, 1, 2, . . . ,

which in return means

λ0(Cn+1(R)) = λ0(C0(R))

n∏
j=0

A0(π R2/3 j )

=
(
1 − e−π R2

) n∏
j=0

A0(π R2/3 j ). (4.4)

Ideally, if all the relative areasAk(s, L)were bounded byA0(L) regardless of starting
point s > 0 and interval length L > 0, we would conclude that λ0(Cn(R)) is always
the largest eigenvalue. As it turns out, this is not the case, e.g.,

lim
L→0

Ak(0, L) > lim
L→0

A0(L) for k = 2, 3, 4, . . .

Nonetheless, in Sect. 4.3, we are able to determine a common bound for the eigen-
values in terms of λ0(Cn(R)). Here, Lemma 4.4 is worth highlighting as it relies on
the subadditivity of the Cantor function. Next, in Sect. 4.4, we compute the asymptotic
estimates for λ0(Cn(R)).

4.3 Proof of Theorem 4.1

We begin by comparing Ak(s, 3L) to A0(3L) when s ≥ k.

Lemma 4.3 Let {Ak}k be given by (4.1). Then

Ak(s, 3L) ≤ A0(3L) ∀ s ≥ k, L > 0 and k = 0, 1, 2, . . .
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Proof Consider the derivative of Ak(s, L) with respect to s, which yields

∂Ak

∂s
(s, 3L) = Nk(s, L)

[∫ s+3L

s
fk(r)dr

]−2

,

where

Nk(s, L) =
(

fk(s + L) − fk(s + 2L)
) ∫ s+3L

s
fk(r)dr

−
(

fk(s) − fk(s + 3L)
) ∫ s+2L

s+L
fk(r)dr .

By identity (4.2), it is clear that lims→∞ Ak(s, 3L) = A0(3L) for all L > 0. Thus,
it suffices to show that Nk(s, L) ≥ 0 for all s ≥ k and L > 0 for k = 1, 2, 3, . . .
Introduce the function

k(r , s, L) :=
[

fk(r + s) fk(s + L) − fk(r + s + L) fk(s)
]

+
[

fk(r + s + L) fk(s + L) − fk(r + s) fk(s + 2L)
]
. (4.5)

Then we may express Nk(s, L) as a single integral over [0, L] such that

Nk(s, L) =
∫ L

0

(
k(r , s, L) − k(r , s + L, L)

)
dr .

Hence, the function Nk(s, L) is positive for all s ≥ k if the derivative of(r , s, L)with
respect to s is negative. Consider each of the square bracket terms [. . . ] in definition
(4.5) separately, that is

�k(r , s, L, y) := fk(r + s + y) fk(s + L) − fk(r + s + L − y) fk(s + 2y) for y ∈ {0, L},

so that k(r , s, L) = �k(r , s, L, 0) + �k(r , s, L, L).
In order to easily evaluate the derivative of �k , notice first that the arguments of

fk(·) in each term of �k sum to a fixed value, namely

(i) 2a := 2s + r + L + y.

Further, introduce the corrections to each argument

(ii) ε1 := 2−1(L − r − y) and ε2 := 2−1(L + r − 3y)

such that �k becomes

�k(. . . ) = fk(a − ε1) fk(a + ε1) − fk(a − ε2) fk(a + ε2)

= e−2a

(k!)2
[(

a2 − ε21

)k −
(

a2 − ε22

)k
]

.
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Since a = a(s) is the only quantity in the above expression that depends s, we obtain

∂�k

∂s
(. . . ) = 2e−2a

(k!)2
[(

a2 − ε21
)k−1 (

ka + ε21 − a2) − (
a2 − ε22

)k−1 (
ka + ε22 − a2)] .

(4.6)

By (i)–(ii) and since r ≤ L , we always have the ordering

|ε1(y)| ≤ |ε2(y)| ≤ a(s, y) ∀ s ≥ k and y ∈ {0, L},

which means (4.6) is negative whenever the factor (−a2 + ε21 + ka) is negative.
The latest claim is easily verified as |ε1| ≤ a − k, and therefore ε21 − (a − k)2 =
(ka − ε21 − a2) + k(a − k) ≤ 0. Hence, for any y ∈ {0, L}, 0 ≤ r ≤ L and s ≥ k, we
conclude that

∂�k

∂s
(. . . ) ≤ 0 �⇒ ∂k

∂s
(. . . ) ≤ 0 �⇒ Nk(s, L) ≥ 0.

��
By the latest lemma, any shifted n-iterate Cantor set Cn(π R2) + s with s ≥ k

satisfies

∫

Cn+1(π R2)+s
fk(r)dr ≤ A0(π R2/3n)

∫

Cn(π R2)+s
fk(r)dr for n = 0, 1, 2, . . . ,

which combined with (2.8) and then identity (4.4), yields

∫

Cn+1(π R2)+s
fk(r)dr ≤

∫

C0(π R2)+s
fk(r)dr

n∏
j=0

A0(π R2/3 j )

≤ λ0(C0(R))

n∏
j=0

A0(π R2/3 j ) = λ0(Cn+1(R)). (4.7)

Next, we relate the integrals of fk over the shifted n-iterates to the non-shifted n-
iterates.

Lemma 4.4 Let L > 0. Then for every fixed k, n = 0, 1, 2, . . . , we have

(A)
∫

Cn(L)∩[k,∞[ fk(r)dr ≤ ∫
Cn(L)+k fk(r)dr and

(B)
∫

Cn(L)∩[0,k] fk(r)dr ≤ ∫
Cn(L)+k fk(r)dr .

Proof For case (A), since fk(r) is monotonically decreasing for r > k, it suffices to
verify

|Cn(L) ∩ [k, r ]| ≤ |(Cn(L) + k) ∩ [k, r ]| ∀ r ≥ k.
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In terms of the Cantor function GL,n in (2.9), the above claim reads

GL,n(r) − GL,n(k) ≤ GL,n(r − k) ∀ r ≥ k,

which is the same subadditivity property as in (2.10).
For case (B), consider the reflection of elements Cn(L) ∩ [0, k] about the point k,

that is, consider the subset

Rn,k := {r ≥ k | 2k − r ∈ Cn(L) ∩ [0, k]}, (4.8)

By (2.7), we have that

∫

Cn(L)∩[0,k]
fk(r)dr ≤

∫

Rn,k

fk(r)dr .

Similarly to (A), in order to prove (B), it suffices to show that

|Rn,k ∩ [k, r ]| ≤ |(Cn(L) + k) ∩ [k, r ]| = L · GL,n(r − k) ∀ r ≥ k. (4.9)

By definition (4.8), the set Rn,k satisfies

|Rn,k ∩ [k, r ]| = |Cn(L) ∩ [2k − r , k]| = L
(GL,n(k) − GL,n(2k − r)

)
.

We now apply the subadditivity of GL,n to GL,n(k) = GL,n((r − k) + (2k − r)), from
which claim (4.9) follows. ��

Now, combine inequality (4.7) with Lemma 4.4, to conclude

λk(Cn(R)) ≤ 2λ0(Cn(R)) ∀ k, n ≥ 0,

which is a restatement of Theorem 4.1.

4.4 Proof of Theorem 4.2

We formulate a precise asymptotic estimate for the first eigenvalue.

Proposition 4.1 There exist positive, finite constants a1 ≤ a2 such that for each n =
0, 1, 2, . . .

a1 ≤
(
2π R2 + 1

) ln 2
ln 3

2n
(
1 − e−π R2/3n ) · λ0(Cn(R)) ≤ a2 ∀ π R2 ∈ [0, 3n/2].
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Proof Combine the two identities (4.3), (4.4) to obtain

λ0(Cn(R)) =
(
1 − e−π R2/3n

) n∏
j=1

(
1 + e−2π R2/3 j

)
for n = 0, 1, 2, . . .

By the above identity, it is sufficient to show that

a1 ≤
(
2π R2 + 1

) ln 2
ln 3

n∏
j=1

1

2

(
1 + e−2π R2/3 j

)
≤ a2 ∀ π R2 ∈ [0, 3n/2].

Exchange the product for a sum, and the above inequality is equivalent to

ln a1 ≤
n∑

j=1

ln
(
1 + e−x/3 j

)
−

(
n − ln(x + 1)

ln 3

)
ln 2 ≤ ln a2 ∀ x ∈ [0, 3n].

The above inequality can now be proven by means of the following two claims

(i) there exists a finite, positive constant β such that

0 ≤
∞∑
j=1

[
ln

(
1 + y1/3

j
)

− y1/3
j
ln 2

]
≤ β for y ∈ [0, 1], and

(ii) there exist finite constants γ1 ≤ γ2 such that

γ1 ≤
n∑

j=1

e−x/3 j −
(

n − ln(x + 1)

ln 3

)
≤ γ2 for x ∈ [0, 3n].

For claim (i), consider the non-negative function g(y) := ln(1 + y) − y ln 2 for
y ∈ [0, 1]. Since |g′(y)| ≤ g′(0) = 1 − ln 2 for all y ∈ [0, 1], g(y) can be bounded
from above by the linear spline

h(y) := g′(0) ·
{

y, y ∈ [0, 1/2]
(1 − y), y ∈ [1/2, 1].

Thus, the sum in claim (i) is bounded by
∑∞

j=1 h(y1/3
j
) for y ∈ [0, 1]. Since g(0) =

h(0) = 0, we may always assume that y > 0. Further, observe that for any 0 < y ≤ 1,
we have that y1/3

j ↗ 1 as j → ∞. In particular, for any fixed 0 < y ≤ 1, there exists
a smallest j0 ∈ N such that y1/3

j ≥ 1/2 for all j ≥ j0. Based on our choice j0, we
split the sum

∞∑
j=1

h
(

y1/3
j
)

=
j0−1∑
j=1

h
(

y1/3
j
)

+
∞∑

j= j0

h
(

y1/3
j
)

= g′(0)

⎡
⎣

j0−1∑
j=0

y1/3
j +

∞∑
j= j0

(
1 − y1/3

j
)
⎤
⎦ ,
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and consider each sum separately. While the first sum is possibly empty, in the non-
empty case, introduce the variable z1 := y1/3

j0−1 ∈ [0, 1/2] such that

j0−1∑
j=1

y1/3
j =

j0−2∑
j=0

z3
j

1 ≤
∞∑
j=0

z3
j

1 ≤
∞∑
j=0

2−3 j =: S1. (4.10)

Similarly for the second sum, introduce the variable z2 := y1/3
j0 ∈ [1/2, 1] such that

∞∑
j= j0

(
1 − y1/3

j
)

=
∞∑
j=0

(
1 − z1/3

j

2

)
≤

∞∑
j=0

(
1 − 2−1/3 j

)
=: S2. (4.11)

By direct comparison with the geometric series, that is, 2−3 j ≤ 2− j and 1−2−1/3 j ≤
3− j ln(2), both series S1 and S2 are convergent. Hence, claim (i) follows with β =
g′(0)(S1 + S2).

Claim (ii) is proven by similar means as (i), where we split the sum
∑n

j=1 e−x/3 j
. In

particular, for a fixed x ∈ [0, 3n], we split the sum at the point j1 := max{� ln(x)
ln(3) �, 0}

such that
∑n

j=1 = ∑ j1
j=1 +∑n

j= j1+1. If the first sum is non-empty, set z3 :=
e−x/3 j1 ∈ [0, e−1] such that

j1∑
j=1

e−x/3 j =
j1∑

j=1

z3
j

3 ≤
∞∑
j=1

z3
j

3 ≤
∞∑
j=1

e−3 j =: S3, (4.12)

which is a convergent series. For the second sum, we utilize for y ≥ 0 the inequalities
1 − y ≤ e−y ≤ 1 to obtain lower and upper estimates. By comparison with the
geometric series and since x/3 j1+1 ≤ 1, we conclude that

−3

2
≤

n∑
j= j1+1

e−x/3 j − (n − j1) ≤ 0. (4.13)

Finally, by combining estimates (4.12)–(4.13) with the bounds ln(x+1)
ln(3) − 1 ≤ j1 ≤

ln(x+1)
ln(3) , claim (ii) follows with constants γ1 = −3/2 and γ2 = 1 + S3. ��

Now, by applying the estimates of Proposition 4.1 with constants a1 ≤ a2 to
Theorem 4.1, we obtain Theorem 4.2 with constants c1 = a1 ≤ c2 = 2a2.

Remark (Numerical estimates) From the proof of Proposition 4.1, we are also able to
retrieve some numerical estimates for the constants a1 ≤ a2. It should, however, be
noted that the method chosen in the proof is not meant to produce optimal constants.
Nevertheless, with S1,S2,S3 defined as in (4.10)–(4.12), we obtain the estimates
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ln a1 = −3

2
ln 2 ≈ −1.0397 and

ln a2 = (1 − ln 2)(S1 + S2) + (1 + S3) ln 2 ≈ 1.1713.
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Appendix A. Omitted Proofs in Sect. 2.3

We shall prove the following two properties for the integrands { fk(r) := rk

k! e−r }∞k=0:

fk(k − r) ≤ fk(k + r) ∀ r ∈ [0, k] for k = 1, 2, 3, . . . (A.1)

and

∫

E
fk(r)dr ≤

∫ |E |

0
f0(r)dr = 1 − e−|E | for k = 0, 1, 2, . . . , (A.2)

where E is some measurable subset of R+.

Proof (Property (A.1)) It is sufficient to show that the fraction δk(r) := fk (k−r)
fk (k+r)

≤ 1
for all r ∈ [0, k]. By differentiation, δ′

k(r) ≤ 0 for all r ∈ [0, k] and since δk(0) = 1,
we are done. ��
Proof (Property (A.2)) Since every fk is normalized, i.e., ‖ fk‖1 = 1, and fk(r) is
monotonically increasing for 0 < r < k and decreasing for r > k, we may assume E
to be an interval of finite measure. Define the function

gk(L, s) :=
∫ L

0
f0(r)dr −

∫ s+L

s
fk(r)dr ,

and note that it suffices to show that gk(L, s) ≥ 0 for all L, s ≥ 0 and every k.
Differentiating gk with respect to L ,

∂gk

∂L
(s, L) = f0(L) − fk(s + L) = e−L

(
1 − e−s

k! (s + L)k
)
,

http://creativecommons.org/licenses/by/4.0/
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reveals a critical point at L = L0 := k
√

esk!−s. By the second derivative test, it follows
that L = L0 represents a maximum for gk(L, s) with s > 0 fixed. Since the other
possible extrema occur when L = 0 or L → ∞, which both can easily be verified to
yield a non-negative gk(L, s), we conclude that gk(L, s) is always non-negative. ��
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