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Abstract We propose a refinement of the Robertson–Schrödinger uncertainty princi-
ple (RSUP) using Wigner distributions. This new principle is stronger than the RSUP.
In particular, and unlike the RSUP, which can be saturated by many phase space func-
tions, the refined RSUP can be saturated by pure Gaussian Wigner functions only.
Moreover, the new principle is technically as simple as the standard RSUP. In addi-
tion, it makes a direct connection with modern harmonic analysis, since it involves the
Wigner transform and its symplectic Fourier transform, which is the radar ambiguity
function. As a by-product of the refined RSUP, we derive inequalities involving the
entropy and the covariance matrix of Wigner distributions. These inequalities refine
the Shanon and the Hirschman inequalities for the Wigner distribution of a mixed
quantum state ρ. We prove sharp estimates which critically depend on the purity of ρ

and which are saturated in the Gaussian case.
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1 Introduction

In quantum mechanics, the state of a system is represented by a positive trace class
operator with unit trace—called a density matrix—acting on a separable Hilbert space
H. We denote the set of density matrices—the set of states—by S(H). Given some
trace class operator ρ̂, it is in general very difficult to assess whether ρ̂ ∈ S(H). The
main difficulty resides in the verification of the positivity condition:

( f |ρ̂ f )H ≥ 0, (1)

for all f ∈ H. This is particularly difficult in infinite dimensional Hilbert spaces. In
this work we shall be concerned with the case H = L2(Rn).

A very useful representation of density matrices, which casts position and momen-
tum variables on equal footing and is akin to a classical probability density, is the
Wigner distribution [44]. It is obtained from ρ̂ by way of the Weyl transform [8,47]:

ρ̂ �→ Wρ(x, p) = 1

(2π h̄)n

∫

Rn
ρ
(

x + y

2
, x − y

2

)

e− i
h̄ p·ydy, (2)

where ρ(·, ·) ∈ L2(R2n) is the Hilbert-Schmidt kernel of ρ̂. Here h = 2π h̄ is Planck’s
constant and x, p denote the particle’s position and momentum respectively. We shall
write them collectively as z = (x, p) ∈ R

2n , a point in the particle’s phase space
R
n × (Rn)∗ � R

2n .
The Wigner distribution is not a true probability density as it may be negative

[22,27]. Rather, it defines a finite signed measure:

A �→ μρ(A) :=
∫

A
Wρ(x, p)dxdp, (3)

for Borel sets A ∈ B(R2n), and μρ(R2n) = 1.
This means that the covariance matrix Cov(Wρ) of Wρ might a priori not be

positive definite. However, it can be shown that it is [39]. In fact, it obeys an even
stronger constraint called the Robertson–Schrödinger uncertainty principle (RSUP)
which states that [8,37,38,40]

Cov(Wρ) + i h̄

2
J ≥ 0, (4)

where J is the standard symplectic matrix:

J =
(

0 I
−I 0

)

. (5)

It can be shown that condition (4) is a necessary but not sufficient condition for a phase
space function to be a Wigner distribution [10].

Nevertheless it has many interesting features. For a Gaussian measure G it is both
a necessary and sufficient condition for G to be a Wigner distribution [37]. It is
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invariant under linear symplectic transformations (unlike the more frequently used
Heisenberg uncertainty relation). It has a nice geometric interpretation in terms of
Poincaré invariants [39], and it is intimately related with symplectic topology and
Gromov’s non-squeezing theorem [11,24]. By a suitable linear symplectic transfor-
mation, the RSUP makes it a simple task to determine directions in phase space of
minimal uncertainty [39]. In particular, we say that the RSUP is saturated if we can
find n two-dimensional symplectic planes, where the uncertainty is minimal. More
specifically, the RSUP (4) is saturated, whenever all the Williamson invariants of
Cov(Wρ) are minimal [11,37]:

λσ,1(Cov(Wρ)) = λσ,2(Cov(Wρ)) = · · · = λσ,n(Cov(Wρ)) = h̄

2
. (6)

Having said that, there is nothing about inequality (4) which is particularly quantum
mechanical, with the exception of the presence of Planck’s constant. In fact, (4) is only
a requirement about a minimal scale related to h̄. This condition is not sufficient to
ensure that the state is quantum mechanical (not even if saturated). We shall give an
example of a function in phase spacewhich saturates theRSUP, butwhich ismanifestly
not a Wigner function. More emphatically, we will show that anymeasurable function
in phase space F with a positive definite covariance matrix Cov(F) > 0 satisfies (4)
after a suitable dilation F(z) �→ λ2n F(λz), while most of them remain non quantum.
This means that being a quantum state is not only a question of scale but also of shape.
This prompted us to look for an alternative uncertainty principle which goes beyond
the RSUP.

In order to state our results precisely, let us fix some notation. In the sequel Fσ (F)

denotes the symplectic Fourier transform of the function F . Roughly speaking, it can
be obtained from the ordinary Fourier transform F(F) by a symplectic rotation and a

dilation (Fσ F)(z) = 1
(2π h̄)n

(FF)
(

J z
2π h̄

)

.

For a given measurable phase-space function F , satisfying

∫

R2n
F(z)dz �= 0, (7)

we write
˜F(z) := F(z)

∫

R2n F(z)dz
. (8)

Morevover, we denote by

〈z〉F =
∫

R2n
z˜F(z)dz (9)

the expectation value of z regarded as a column vector, and by

Cov(F) =
∫

R2n
(z − 〈z〉F )(z − 〈z〉F )T ˜F(z)dz (10)
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the covariance matrix. Notice that there is some abuse of language in this probabilistic
terminology, as F is not required to be non-negative.

The main result of this paper is Theorem 15, where we prove the following uncer-
tainty principle, hereafter called refinedRobertson–Schrödinger uncertainty principle:

Cov(Wρ) + i h̄

2
J

≥ P [Wρ]

(

Cov(|˜Wρ|2) + 1

4
Cov(|Fσ

˜Wρ|2) + i h̄

2
J

)

≥ 0 (11)

for Wigner distributionsWρ belonging to some appropriate maximal functional space
and where

P [Wρ] := (2π h̄)n||Wρ||2L2(R2n)
(12)

is the so-called purity of the state ρ. As before, we have defined:

˜Wρ(z) := Wρ(z)

||Wρ||L2(R2n)

, Fσ
˜Wρ(ζ ) := FσWρ(ζ )

||Wρ||L2(R2n)

(13)

to make sure that |˜Wρ(z)|2 and |Fσ
˜Wρ(ζ )|2 are properly normalized probability

densities.
Moreover, we will also show that the first inequality in (11) becomes an equality if

an only if the state is pure.
So, in fact, the refined RSUP amounts to two inequalities. The first inequality is

Cov(|˜Wρ|2) + 1

4
Cov(|Fσ

˜Wρ|2) + i h̄

2
J ≥ 0. (14)

In other words, the matrix Cov(|˜Wρ|2)+ 1
4 Cov(|Fσ

˜Wρ|2) also obeys the RSUP. The
second inequality is

Cov(Wρ) + i h̄

2
J

≥ P [Wρ]

[

Cov(|˜Wρ|2) + 1

4
Cov(|Fσ

˜Wρ|2) + i h̄

2
J

]

. (15)

We notice that (14) and (15) immediately imply the RSUP (4).
Let us point out the main properties of the refined RSUP:

(1) It is parsimonious, in the sense that it is a computable test as the RSUP, but
not a complicated one as sets of necessary and sufficient conditions such as the
Kastler, Loupias, Miracle-Sole (KLM) conditions [29,33,34]. In fact, we only
have to compute the covariance matrices ofWρ, |˜Wρ|2 and |Fσ (˜Wρ)|2 and check
inequalities (11).

(2) It is invariant under linear symplectic and anti-symplectic transformations (see
Theorem 19).
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(3) It makes a direct connection with harmonic analysis, as it amounts to an inequality
relating Wρ and its Fourier transform Fσ (Wρ). Here we use the squares |˜Wρ|2
and |Fσ (˜Wρ)|2, and sowe are treatingWρ as awave function in ordinary quantum
mechanics on a 2n-dimensional configuration space.1

(4) It includes a pure state condition. Indeed, inequality (15) is an equality iff the state
is pure.

(5) It is stronger than the RSUP. Indeed, inequality (11) implies immediately the
Robertson–Schrödinder uncertainty principle. Example 21 shows that it is not
equivalent to it.

(6) It is a deeper quantummechanical requirement than the condition about a minimal
scale. For instance, in Example 10, we show that the saturation (6) of the RSUP
can be easily achieved by many functions which are not Wigner distributions. On
the other hand, we prove in Theorem 20 that the refined RSUP is saturated (i.e.
(11) and the saturation condition (6) are both satisfied) if and only if the state is a
pure Gaussian Wigner function.

As a by-product of the refined RSUP, we also obtain a refinement of the Shannon
and Hirschman inequalities [26,41] for Wigner distributions.

A famous theorem by Shannon [19,41] states that if a probability density

μ(x) ≥ 0,
∫

Rn
μ(x)dx = 1, (16)

has finite covariance matrix Cov(μ), then its Boltzmann entropy

E(μ) := −
∫

Rn
μ(x) log (μ(x)) dx (17)

is well defined and satisfies the inequality:

E(μ) ≤ 1

2
log

[

(2πe)n det (Cov(μ))
]

. (18)

Another theorem due to Beckner [2], Bialynicki-Birula and Mycielski [3] and
Hirschmann [26] relates the entropy of | f |2, for f ∈ L2(Rn) and || f ||2 = 1 with that
of |Fh̄ f |2, where (Fh̄ f ) is the h̄-scaled Fourier transform. If the entropies of | f |2 and
|Fh̄ f |2 are well defined then the Hirschman inequality reads:

log (π h̄e)n ≤ E
(

| f |2
)

+ E
(

|Fh̄ f |2
)

. (19)

This inequality is sometimes called an entropic uncertainty principle as it prevents a
simultaneous sharp localization of | f |2 and |Fh̄ f |2 and is saturated if and only if f
is a Gaussian with minimal Heisenberg uncertainty.

1 In this interpretation Cov(|Wρ|2) is the covariance matrix of the 2n configurational variables; and
Cov(|Fσ Wρ|2) is the covariance matrix of the 2n conjugate momenta.
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Of course we may combine (18) and (19) and obtain the naive double inequality:

log (π h̄e)n ≤ E
(

| f |2
)

+ E
(

|Fh̄ f |2
)

≤ log

[

(2πe)n
√

det
(

Cov(| f |2)) · det (Cov(|Fh̄ f |2)
)

]

. (20)

This can be stated in the following terms: if | f |2 and |Fh̄ f |2 have finite covariance
matrices, then they have well defined entropies and inequality (20) holds. Moreover,
we have equalities throughout if and only if f is aGaussian. The inequality between the
first and the last term is, upon exponentiation, the Heinig–Smith uncertainty principle
[25].

As a consequence of inequality (20) for the Wigner distribution and the refined
RSUP (11), we derive the following Hirschman–Shannon inequality (Theorem 23):

log
[

(2πe)2n det (Cov(Wρ))
]

≥ log

[

(πeP [Wρ])2n
√

det
(

Cov(|˜Wρ|2)) · det (Cov(|Fh̄˜Wρ|2))
]

≥ 2n log (P [Wρ]) + E
(

|˜Wρ|2
)

+ E
(

|Fh̄˜Wρ|2
)

≥ log (π h̄eP [Wρ])2n .

(21)

We obtain an inequality throughout (21) if and only ifWρ is theWigner distribution
of a pure Gaussian state.

For pure states Wρ = Wψ , the refined RSUP leads to the following Hirschman–
Lieb–Shannon relation which involves Wψ only and not its Fourier transform
(Corollary 24):

log
[

(2πe)n
√

det (Cov(Wψ))
]

≥ log

[

(2πe)n
√

det
(

Cov(|̃Wψ |2)
)

]

≥ E
(

|̃Wψ |2
)

≥ log

(

π h̄e

2

)2n

. (22)

Beforewe conclude the introduction, let us comment on the newparts of the inequal-
ities (21,22). In (21) the last inequality is the Hirschman inequality for the Wigner
function and the penultimate inequality is the Shannon inequality applied both to
|˜Wρ|2 and to |Fh̄˜Wρ|2. The new inequalities are:

det (Cov(Wρ)) ≥
(P [Wρ]

2

)2n √

det
(

Cov(|˜Wρ|2)) · det (Cov(|Fh̄˜Wρ|2)),
(23)
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and

log

[

(

2πe

P [Wρ]

)2n

det (Cov(Wρ))

]

≥ E
(

|˜Wρ|2
)

+ E
(

|Fh̄˜Wρ|2
)

. (24)

In (22) the last inequality is the entropic inequality of Lieb [30]. The penultimate
inequality is the Shannon inequality applied to |̃Wψ |2. The new inequalities are:

det (Cov(Wψ)) ≥ det
(

Cov(|̃Wψ |2)
)

, (25)

and
log

[

(2πe)n
√

det (Cov(Wψ))
]

≥ E
(

|̃Wψ |2
)

. (26)

Notation

The Plancherel–Fourier transform of a function f ∈ L1(Rn) ∩ L2(Rn) is defined by:

(F f )(ω) :=
∫

Rn
f (x)e−2iπω·xdx (27)

and the h̄-scaled Fourier transform is:

(Fh̄ f )(p) :=
(

1
2π h̄

)n/2
∫

Rn
f (x)e− i

h̄ x ·pdx . (28)

We use lower case letters f, g, . . . for functions defined on the configuration space
R
n and upper case letters from the middle of the alphabet F,G, . . . for functions on

the phase space R
2n . We shall use the physicists’ convention for the inner product

(anti-linear in the first argument and linear in the second)

( f |g) =
∫

Rn
f (x)g(x)dx . (29)

To avoid a proliferation of subscripts, we use the notation

((F |G)) =
∫

R2n
F(z)G(z)dz (30)

for the inner product on the phase space. Similarly we denote by || · || the norm on
L2(Rn) and by ||| · ||| that on L2(R2n). Sometimes, when more general L p norms are
needed, we will be more specific and write || · ||L p(Rn).

The Schwartz class of test functions is S(Rn) and its dual—the space of tempered
distributions—is denoted by S ′(Rn). The distributional bracket is written 〈·, ·〉.

Given a functional space L , we denote by FL the set of distributions f ∈ S ′(Rn)

for which F f ∈ L .
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2 A Review of Wigner Distributions

In this section, we recapitulate the main results about Wigner distributions, which we
will need in the sequel.

2.1 Symplectic Geometry

The standard symplectic form on R
2n = R

n
x × R

n
p is given by

σ(z, z′) = z · J T z′ = p · x ′ − x · p′, (31)

for z = (x, p) and z = (x ′, p′). A linear automorphism s : R
2n → R

2n is a symplectic
transformation if σ(s(z), s(z′)) = σ(z, z′) for all z, z′ ∈ R

2n . Let the symplectic
transformation be represented by the matrix S ∈ Gl(2n): s(z) = Sz. Then

ST J S = J. (32)

The set of real 2n×2n matrices which satisfy (32) form a group called the symplectic
group Sp(n). If a matrix A ∈ Gl(2n) is such that

AT J A = −J, (33)

then it is said to be anti-symplectic. Every anti-symplectic matrix A can be written as
[15]

A = T S, (34)

where S ∈ Sp(n), and T is usually interpreted as a “time-reversal” operator, since it
amounts to a reversal of the particle’s momentum:

T =
(

I 0
0 −I

)

. (35)

We shall denote the group of matrices which are either symplectic or anti-symplectic
by ASp(n).

Given a real symmetric positive definite matrix B its symplectic eigenvalues (also
called Williamson invariants) are given by the moduli of the eigenvalues of the matrix
BJ−1 [7,46]. Since they come in pairs ±iλ (λ > 0), we denote the n moduli in
increasing order by:

0 < λσ,1(B) ≤ λσ,2(B) ≤ · · · ≤ λσ,n(B). (36)

The set
Specσ (B) = (

λσ,1(B), λσ,2(B), . . . , λσ,n(B)
)

(37)

is called the symplectic spectrum of B. Williamson’s Theorem [46] states that the
matrix B can be diagonalized to a “normal” form byway of a similarity transformation
with a symplectic matrix. More specifically, there exists S ∈ Sp(n) such that
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SBST =
(

	 0
0 	

)

, (38)

where 	 = diag
(

λσ,1(B), λσ,2(B), . . . , λσ,n(B)
)

.

2.2 Weyl Operators

The symplectic Fourier transform of a function F ∈ L1(R2n) ∩ L2(R2n) is given by:

(Fσ F)(ζ ) = 1

(2π h̄)n

∫

R2n
F(z)e− i

h̄ σ(ζ,z)dz. (39)

It is related to the Fourier transform (27) and the h̄-scaled Fourier transform (28) by:

(Fσ F)(ζ ) = 1

(2π h̄)n
(FF)

(

Jζ

2π h̄

)

= (Fh̄ F) (Jζ ). (40)

The symplectic Fourier transform is an involution which extends by duality to an
involutive automorphism S ′(R2n) → S ′(R2n).

Given a symbol a ∈ S ′(R2n), the associated Weyl operator is given by the Bochner
integral [7,8]:

̂A :=
(

1

2π h̄

)n ∫

R2n
(Fσa)(z0)̂T (z0)dz0, (41)

where ̂T (z0) is the Heisenberg-Weyl operator

(̂T (z0) f )(x) = e
i
h̄ p0·

(

x− x0
2

)

f (x − x0), (42)

for z0 = (x0, p0) ∈ R
2n and f ∈ S(Rn). We remark that the operator ̂A is formally

self-adjoint if and only its symbol a is real.

TheWeyl correspondence, written a
Weyl←→ ̂A or ̂A

Weyl←→ a, between an element a ∈
S ′(R2n) and the Weyl operator it defines is bijective; in fact the Weyl transformation
is one-to-one from S ′(R2n) onto the space L (S(Rn),S ′(Rn)

)

of linear continuous
maps S(Rn) → S ′(Rn) (see e.g. Maillard [35], Unterberger [42,43] or Wong [47]).
This can be proven using Schwartz’s kernel theorem and the fact that theWeyl symbol
a of the operator ̂A is related to the distributional kernel KA of that operator by the
partial Fourier transform with respect to the y variable

a(x, p) =
∫

Rn
KA

(

x + y

2
, x − y

2

)

e− i
h̄ p·ydy, (43)

where KA ∈ S ′(Rn × R
n) and the Fourier transform is defined in the usual distribu-

tional sense. Conversely, the kernel KA is expressed in terms of the symbol a by the
inverse Fourier transform

KA(x, y) =
(

1

2π h̄

)n ∫

Rn
a

(

x + y

2
, p

)

e
i
h̄ p·(x−y)dp. (44)
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Weyl operators enjoy the following symplectic covariance property [7,8,18,22,47].
Let S ∈ Sp(n) and ̂S ∈ Mp(n) be one of the two metaplectic operators that project
onto S. Recall that metaplectic operators constitute a unitary representation of the
two-fold cover Sp2(n) of Sp(n). If ̂A : S(Rn) → S ′(Rn) is a Weyl operator with
symbol a ∈ S ′(R2n), then we have

̂S−1
̂ÂS

Weyl←→ a ◦ S. (45)

Since an anti-symplectic transformation is the composition T S (see (34)) it suffices to
consider the action of T . Quantummechanically, this is implemented by the anti-linear
operator

(̂T f )(x) = f (x). (46)

This also supports the interpretation of T as a time reversal. If f obeys the Schrödinger
equation, then f obeys the same equation with the time reversal t → −t .

Assuming that the product ̂ÂB exists (which is the case for instance if ̂B : S(Rn) →
S(Rn)) the Weyl symbol c of ̂C = ̂ÂB and its symplectic Fourier transform Fσ c are
given by the formulae:

c(z) =
(

1

4π h̄

)2n ∫

R2n

∫

R2n
a
(

z + u

2

)

b
(

z − v

2

)

e
i
2h̄ σ(u,v)dudv, (47)

and

(Fσ c)(z) =
(

1

2π h̄

)n ∫

R2n
(Fσa)(z − z′)(Fσb)(z

′)e
i
2h̄ σ(z,z′)dz′. (48)

The first formula is often written c = a 
h̄ b and a 
h̄ b is called the twisted product
or Moyal product (see e.g. [18,23,36,47]).

2.3 Quantum States and Wigner Functions

An important case consists of rank one operators of the form:

(

ρ̂ f,gh
)

(x) = (g|h) f (x), (49)

for fixed f, g ∈ L2(Rn) acting on h ∈ L2(Rn). They are Hilbert–Schmidt operators
with kernel K f,g(x, y) = ( f ⊗g)(x, y) = f (x)g(y). According to (43), the associated
Weyl symbol is:

ρ f,g(x, p) =
∫

Rn
f
(

x + y

2

)

g
(

x − y

2

)

e− i
h̄ p·ydy. (50)



220 J Fourier Anal Appl (2019) 25:210–241

This is just the cross-Wigner function up to a multiplicative constant:

W ( f, g)(x, p) =
(

1

2π h̄

)n

ρ f,g(x, p)

=
(

1

2π h̄

)n ∫

Rn
f
(

x + y

2

)

g
(

x − y

2

)

e− i
h̄ p·ydy. (51)

From (45), we conclude that

W (̂S f,̂Sg)(z) = W ( f, g)(S−1z). (52)

If g = f , we simply write W f meaning W ( f, f ):

W f (x, p) =
(

1

2π h̄

)n ∫

Rn
f
(

x + y

2

)

f
(

x − y

2

)

e− i
h̄ p·ydy. (53)

We say thatW f is theWigner function [44] associatedwith the pure state f ∈ L2(Rn).
In quantum mechanics, one usually has to deal with statistical mixtures of pure

states. This means that pure states represented by the rank one operators ρ̂ f = ρ̂ f, f

(see (49)) are replaced by convex combinations of the form:

ρ̂ =
∑

α

pαρ̂ fα , (54)

with pα ≥ 0 and
∑

α pα = 1. The convergence of the series in (54) is understood in
the sense of the trace norm. Operators of this form are called density matrices. They
are positive trace class operators with unit trace. The set of density matrices—the set
of states—is denoted by S(L2(Rn)). A density matrix ρ̂ is a Hilbert–Schmidt operator
with kernel:

ρ(x, y) =
∑

α

pα fα(x) fα(y). (55)

The associated Wigner function is

Wρ(x, p) =
∑

α

pαW fα(x, p) =
(

1

2π h̄

)n ∫

Rn
ρ
(

x + y

2
, x − y

2

)

e− i
h̄ p·ydy

=
(

1

2π h̄

)n
∑

α

pα

∫

Rn
fα
(

x + y

2

)

fα
(

x − y

2

)

e− i
h̄ p·ydy (56)

with uniform convergence.
We shall denote byW(R2n) the set of all Wigner functions associated with density

matrices, that is the range of theWeyl transform acting onS(L2(Rn)). This is basically
the set of quantum mechanical states in the Weyl–Wigner representation. One can tell
whether an element Wρ ∈ W(R2n) represents a pure or a mixed state by calculating
its purity:

P [Wρ] := (2π h̄)n|||Wρ|||2. (57)
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We have:
{P [Wρ] = 1, if W ρ is a pure state
P [Wρ] < 1, if W ρ is a mixed state

(58)

One aspect which makes the Wigner formalism very appealing is the fact that expec-
tation values are computed with a formula akin to classical statistical mechanics
[7,18,47]. Indeed, if ̂A is a self-adjoint Weyl operator with symbol a ∈ S(R2n),
then it can be shown that

(g|̂A f ) = ((a|W (g, f ))), (59)

for f, g ∈ S(Rn). In particular, we have:

〈̂A〉 f = ( f |̂A f ) =
∫

R2n
a(x, p)W f (x, p)dxdp. (60)

For a generic self-adjoint Weyl operator ̂A
Weyl←→ a which is also trace-class, the

following identity holds:

Tr(̂A) =
(

1

2π h̄

)n ∫

R2n
a(z)dz. (61)

If ̂A
Weyl←→ a and ̂B

Weyl←→ b are Weyl operators such that ̂ÂB is trace-class, then we
have[7,8]:

Tr(̂ÂB) =
(

1

2π h̄

)n ∫

R2n
a(z) 
h̄ b(z)dz =

(

1

2π h̄

)n ∫

R2n
a(z)b(z)dz. (62)

In particular, for density matrices (60) generalizes to

〈̂A〉ρ = Tr(̂Aρ̂) =
∫

R2n
a(z)Wρ(z)dz, (63)

provided ̂Aρ̂ is trace class.
In general, it is very difficult to determine whether a given phase space function F

is the Wigner function of some density matrix ρ̂ ∈ S(L2(Rn)). It can be shown that
[13,31]:

Theorem 1 Let F : R
2n → C be a measurable function. We have F ∈ W(R2n) if

and only if:

(i) F is a real function,
(ii) F ∈ L2(R2n),
(iii)

∫

R2n F(z)dz = 1,
(iv)

∫

R2n F(z)W f (z)dz ≥ 0, for all f ∈ L2(Rn).

The first two conditions mean that F is the Weyl symbol of a self-adjoint Hilbert–
Schmidt operator. The last condition means that this operator is positive. These
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conditions, together with (iii), imply that the operator is trace class and that the trace
is equal to one.

This set of conditions are somewhat tautological as they require the knowledge of
the set of pure state Wigner functions W f to check the positivity (iv).

There are an alternative set of necessary and sufficient conditions, the Kastler,
Loupias, Miracle-Sole (KLM) conditions [29,33,34], that do not share this disadvan-
tage. However, they are virtually impossible to check, as they amount to verifying
the positivity of an infinite hierarchy of matrices of growing dimension (see also
[14,37,38,40]). In practise, these conditions can be checked up to a given finite order,
in which case they provide a set of necessary but not sufficient conditions for a mea-
surable function F to belong toW(R2n). Other, more practical, necessary conditions
are the uncertainty principles.

2.4 Uncertainty Principles

One of the hallmarks of quantum mechanics is the uncertainty principle. For a survey
of mathematical aspects of the uncertainty principle see [19]. Good discussions on the
physical interpretation and implications of the uncertainty principle can be found in
[4,5]. Roughly speaking, an uncertainty principle poses an obstruction to a state being
sharply localized both in position and in momentum space. There are various ways
one can formulate this principle mathematically. For instance, one can show that (see
e.g. [10,28]).

Theorem 2 If Wρ ∈ W(R2n), then Wρ is uniformly continuous and it cannot be
compactly supported.

Other results for the support of joint position-momentum (or time-frequency) repre-
sentations can be found in [12] for the ambiguity function and in [45] for the short-time
Fourier transform. The continuous wavelet transform, which is a time-scale represen-
tation, was also shown to have non-compact support in [45]. Ghobber and Jaming
[20,21] derived uncertainty principles for arbitrary integral operators (Fourier, Dunkl,
Clifford transforms, etc) which have bounded kernels and satisfy a Plancherel theo-
rem. A sharp version of the Beurling uncertainty principle was proven by B. Demange
for the ambiguity function [12].

The most famous version of an uncertainty principle is Heisenberg’s uncertainty
principle:

Theorem 3 Let 〈̂Xi 〉 = Tr(̂Xi ρ̂), 〈̂Pi 〉 = Tr(̂Pi ρ̂),�x2i = Tr((̂Xi −〈̂Xi 〉̂I )2ρ̂) and
�p2i = Tr((̂Pi − 〈̂Pi 〉̂I )2ρ̂) denote the expectation values and the variances of the
particle’s position and momentum which we assume to be finite. Then:

�xi�pi ≥ h̄

2
, (64)

for i = 1, . . . , n.

This theorem does not take into account the correlations xi x j , pi p j or xi p j . A first
generalization would be the Heinig–Smith uncertainty principle [25]:
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Theorem 4 Let f ∈ L2(Rn), and ˜f as before, such that

di j =
∫

Rn
(xi − 〈xi 〉)(x j − 〈x j 〉)|˜f (x)|2dx (65)

and
˜di j =

∫

Rn
(ωi − 〈ωi 〉)(ω j − 〈ω j 〉)|(F ˜f )(ω)|2dω (66)

are finite for all i, j = 1, . . . , n. Here

〈xi 〉 =
∫

Rn
xi |˜f (x)|2dx,

〈ωi 〉 =
∫

Rn
ωi |(F ˜f )(ω)|2dω. (67)

Then the covariance matrices D = (di j )i j and ˜D = (˜di j )i j satisfy:

(det D)(det ˜D) ≥
(

1

4π

)2n

. (68)

Moreover, an equality holds if and only if f is a generalized Gaussian of the form:

f (x) = e−πx ·Ax+2πb·x+c, (69)

where A ∈ Gl(n, C) is symmetric with Re(A) > 0, and b ∈ C
n, c ∈ C.

Remark 5 The previous theorem also holds for density matrices. Moreover, as in The-
orem 3, we could have assumed immediately that f is normalized || f || = ||F f || = 1.
We have chosen this version here, because this is how we will need this result below.

Remark 6 It will be useful in the sequel to write the Heinig–Smith inequality for
functions F defined in the phase space R

2n and express it in terms of the symplectic
Fourier transform. Thus, in view of (40):

Cov(|F˜F |2) = 1

(2π h̄)2
J Cov(|Fσ

˜F |2)J T . (70)

Replacing D by Cov(|˜F |2), ˜D by Cov(|Fσ
˜F |2) and n by 2n in (68) yields:

det
(

Cov(|˜F |2)
)

det
(

Cov(|Fσ
˜F |2)

)

≥
(

h̄

2

)4n

. (71)

Moreover, the inequality (71) becomes an equality if and only if F is of the form:

F(z) = e−π z·Az+2πb·z+c, (72)

where A ∈ Gl(2n, C) is symmetric with Re(A) > 0, and b ∈ C
2n , c ∈ C.
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Other uncertainty principles involving quadratic forms were obtained by B.
Demange [12].

Theorems 3 and 4 still do not account for the position-momentum correlations.
A consequence of this is that they are not invariant under linear (anti-)symplectic
transformations. On the other hand, the Robertson–Schrödinger uncertainty principle
is symplectially invariant [7].

Theorem 7 (Robertson–Schrödinger uncertainty principle) Let Cov(Wρ) be the
covariance matrix of Wρ (or ρ̂) with entries:

Cov(Wρ) =
∫

R2n
(z − 〈z〉)(z − 〈z〉)T Wρ(z)dz, (73)

which we assume to be finite. Then we have:

Cov(Wρ) + i h̄

2
J ≥ 0. (74)

That is, the matrix Cov(Wρ) + i h̄
2 J is positive in C

2n.

By diagonalizing Cov(Wρ) with the help of Williamson’s Theorem and using the
symplectic invariance of (74), we conclude that the RSUP is equivalent to [7,37,39]

λσ,1 (Cov(Wρ)) ≥ h̄

2
, (75)

where λσ,1 (Cov(Wρ)) is the smallest symplectic eigenvalue of Cov(Wρ). The
extremal situation

λσ,1 (Cov(Wρ)) = λσ,2 (Cov(Wρ)) = · · · = λσ,n (Cov(Wρ)) = h̄

2
, (76)

corresponds to a minimal uncertainty density matrix. In W(R2n) this can only be
achieved by Gaussian pure states [7].

Theorem 8 LetCov(Wρ) satisfy theRSUP (74)withWρ ∈ W(R2n). Then it saturates
the uncertainty principle in the sense of (76) if and only if Wρ = W f is the Wigner
function of a Gaussian pure state f of the form (69).

Remark 9 The Wigner function of a Gaussian pure state (69) can be expressed as

W f (z) = 1

(π h̄)n
exp

(

−1

2
(z − z0) · (Cov(W f ))−1 (z − z0)

)

, (77)

where z0 ∈ R
2n and the covariance matrix Cov(W f ) is a real symmetric positive-

definite 2n × 2n matrix such that

2

h̄
Cov(W f ) ∈ Sp(n). (78)
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This is known by physicists as Littlejohn’s Theorem [32] but was first proven by
Bastiaans [1].

Theorem 8 is valid in W(R2n) but not in L2(R2n). In fact, the RSUP is only
a necessary condition for a real phase space function F to be a Wigner function.
However, it is not sufficient (not even if saturated). Here is a counter-example.

Example 10 Let F be the function on R
2 defined by

F(z) = 1

πR2χR(z), (79)

where χR(z) is the indicator function of the disc of radius R centered at the origin

χR(z) =
{

1 if |z| ≤ R
0 if |z| > R

. (80)

The function F is real and normalized. However, it cannot possibly be a Wigner
function, because it is discontinuous and because it has compact support. But, as we
now show, it can nevertheless satisfy theRobertson–Schrödinger uncertainty principle,
or even saturate it, provided we choose the radius R appropriately.

A simple calculation shows that the covariance matrix of F is

Cov(F) = R2

4
I, (81)

where I is the identity matrix. The Williamson invariant of Cov(F) is

λσ,1(Cov(F)) = R2

4
. (82)

So the Robertson–Schrödinger uncertainty principle is satisfied, if and only if

R ≥ √
2h̄, (83)

and saturated provided
R = √

2h̄. (84)

In higher dimension n > 1, we may consider the tensor products

F(z) = �n
j=1

1

πR2χR(z j ). (85)

Again, if (83) holds, then F satisfies the RSUP and it saturates it for (85).

Thus, as we argued in the introduction, the only imprint of quantum mechanics in
the RSUP is a scale requirement related to Planck’s constant. Indeed, we have themore
dramatic result that, provided the covariance matrix is finite and positive-definite, then
any phase space function satisfies the RSUP after a scale transformation.
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Lemma 11 Let F : R
2n → R be a normalized measurable function such that its

covariance matrix Cov(F) is finite and positive-definite. Then there exists 0 < μ ≤ 1
such that Fμ(z) = μ2n F(μz) satisfies the RSUP.

Proof Let λσ,1 (Cov(F)) denote the smallest Williamson invariant of Cov(F). If
λσ,1 (Cov(F)) ≥ h̄

2 , we choose μ = 1 and we are done. Alternatively, sup-
pose that λσ,1 (Cov(F)) < h̄

2 . Since Cov(Fμ) = 1
μ2 Cov(F), we conclude that

λσ,1
(

Cov(Fμ)
) = λσ,1(Cov(F))

μ2 . If we choose

0 < μ <

√

2λσ,1 (Cov(F))

h̄
< 1, (86)

then Fμ satisfies the RSUP. ��

2.5 Modulation Spaces

To conclude this section, we address the question of finiteness of the covariance matrix
elements of a given function. The proper setting in this respect is that of Feichtinger’s
modulation spaces [16,17].2 These are a class of functional spaces which, roughly
speaking, describe the integrability, decay and smoothness properties of a function
and its Fourier transform.

Let 〈z〉 = (1+|z|2)1/2;wewill call 〈·〉 the standardweight function. Themodulation
space Mq

s (Rn) consists of all distributions f ∈ S ′(Rn) such that W ( f, g) ∈ Lq
s (R

2n)

for all g ∈ S(Rn)\ {0}. Here Lq
s (R

2n) is the space of all functions F on R
2n such that

||F ||Lq
s

=
(∫

R2n

(〈z〉s |F(z)|)q dz
)1/q

< ∞. (87)

One shows that Mq
s (Rn) is a Banach space for the norms

|| f ||g,Mq
s

= ||W ( f, g)||Lq
s
; (88)

these norms are in fact all equivalent for different choices of window g, so that the
condition f ∈ Mq

s (Rn) holds if W ( f, g) ∈ Lq
s (R

2n) for one g ∈ S(Rn)\ {0}; even
more surprisingly, we have f ∈ Mq

s (Rn) if and only if W f = W ( f, f ) ∈ Lq
s (R

2n)

(but it is of course not immediately obvious from this characterization that Mq
s (Rn)

is a vector space!). The class of modulation spaces contain as particular cases several
well-known function spaces. For instance, the Shubin class

Qs(Rn) = L2
s (R

n) ∩ Hs(Rn), (89)

2 For a detailed review see [22]; we are using here their formulation in terms of the Wigner distribution as
in [8].
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corresponds to M2
s (Rn). In particular, it can be shown that:

M2
1 (Rn) �

{

f ∈ S ′(Rn) :
∫

Rn
(1 + |x |2)

(

| f (x)|2 + |(F f )(x)|2
)

dx < ∞
}

.

(90)
The case q = 1, s = 0 is also noteworthy. The corresponding modulation

space M1
0 (R

n) is called Feichtinger’s algebra and is usually denoted by S0(Rn). The
Feichtinger algebra is an algebra for both pointwise multiplication and convolution.
One proves that S0(Rn) is the smallest Banach space containing S(Rn) and which
is invariant under the action of metaplectic operators and translations. We have the
inclusion

S0(R
n) ⊂ C0(Rn) ∩ L1(Rn) ∩ FL1(Rn). (91)

The modulation spaces Mq
s (Rn) have similar properties:

Proposition 12 (i) Each space Mq
s (Rn) is invariant under the action of the

Heisenberg–Weyl operators ̂T (z) and there exists a constant C > 0 such that

||̂T (z) f ||g,Mq
s

≤ C〈z〉s || f ||g,Mq
s
; (92)

(ii) If ̂S ∈ Mp(n) and f ∈ Mq
s (Rn) then ̂S f ∈ Mq

s (Rn);
(iii) S(Rn) is dense in each of the spaces Mq

s (Rn) and we have

S(Rn) = ∩s≥0M
2
s (Rn). (93)

We remark that the Feichtinger algebra S0(Rn) = M1
0 (R

n) is the smallest algebra
containg the Schwartz functions and having properties (i) and (ii) above.

3 The Refined Robertson–Schrödinger Uncertainty Principle

To prove our main theorem, we need the following two preliminary results.

Proposition 13 Let ̂A
Weyl←→ a be a positive Weyl operator with symbol a ∈ S ′(R2n),

and let Wρ be the Wigner function associated with the density matrix ρ̂. If ̂Aρ̂ is
trace-class, then we have

1

(2π h̄)n

∫

R2n
a(z)Wρ(z)dz ≥

∫

R2n
a(z)(Wρ(z) 
h̄ Wρ(z))dz ≥ 0, (94)

where 
h̄ denotes theMoyal product.Moreover, the first inequality bccomes an equality
if and only if the state is pure.

Proof A density matrix is a trace class operator and hence compact. Thus, it admits
the following spectral decomposition [7]:

ρ̂ =
∑

α

λα
̂Pα, (95)
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where (λα)α are the eigenvalues of ρ̂, with

λα > 0,
∑

α

λα = 1. (96)

Here ̂Pα is the orthogonal projection onto the eigenspace associatedwith the eigenvalue
λα . Since

ρ̂2 =
∑

α

λ2α
̂Pα, (97)

we have by linearity, the positivity of ̂A, convergence in the trace norm and the fact
that 0 < λα ≤ 1:

0 ≤ Tr(̂Aρ̂2) =
∑

α

λ2αTr(̂ÂPα) ≤
∑

α

λαTr(̂ÂPα) = Tr(̂Aρ̂). (98)

Finally, an equality holds if and only if λα = 0 or λα = 1 for all α. This is possible
for a normalized state if and only if the state is pure. From (47,62), we then recover
(94). ��

The following technical result will also be useful.

Proposition 14 Let F ∈ M2
1 (R2n) and a(z) = η · (z − z0) for fixed η ∈ C

2n and
z0 ∈ R

2n. Then the following identity holds:

1

2

∫

R2n

(

|a 
h̄ F |2 + |F 
h̄ a|2
)

dz

=
∫

R2n

(

|a(z)|2|F(z)|2 + |η · z|2
4

|(Fσ F)(z)|2
)

dz. (99)

Proof We start by showing that, as a distribution, a 
h̄ F ∈ S ′(R2n) is given by:

(a 
h̄ F)(z) = a(z)F(z) + i h̄

2
η · J∇F(z), (100)

where

∇F =
(

∂F

∂x1
, . . . ,

∂F

∂xn
,

∂F

∂p1
, . . . ,

∂F

∂pn

)

(101)

is the distributional gradient of F .
Indeed, let φ ∈ S(R2n). We have by the distributional property (62):

〈a 
h̄ F, φ〉 = 〈F, φ 
h̄ a〉
=
∫

R2n
F(z)(φ 
h̄ a)(z)dz =

∫

R2n
F(z)

(

φ(z)a(z) − i h̄

2
η · J∇φ(z)

)

dz

= 〈Fa + i h̄

2
η · J∇F, φ〉. (102)
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Hence, (100) follows.
Since M2

1 (R2n) � H1(R2n) ∩ FH1(R2n) it is clear from (100), that a 
h̄ F ∈
L2(R2n). Moreover, given that

F 
h̄ a = a 
−h̄ F, (103)

the same can be said about F 
h̄ a. We conclude that the left-hand side of (99) is well
defined and finite.

From (100,103), we have

1

2

∫

R2n

(

|a 
h̄ F |2 + |F 
h̄ a|2
)

dz

= 1

2

∫

R2n

(

∣

∣

∣

∣

a(z)F(z) + i h̄

2
η · J∇F(z)

∣

∣

∣

∣

2

+
∣

∣

∣

∣

a(z)F(z) − i h̄

2
η · J∇F(z)

∣

∣

∣

∣

2
)

dz

=
∫

R2n

(

|a(z)|2|F(z)|2 + h̄2

4
|η · J∇F(z)|2

)

dz. (104)

Since F ∈ H1(R2n), we can express the last term as

∫

R2n
|η · J∇F(z)|2dz = 1

h̄2

∫

R2n
|η · z|2|(Fσ F)(z)|2dz (105)

and we recover (99). ��
We are now in a position to prove the refined RSUP. This uncertainty principle

synthesizes the Heinig–Smith inequality and the RSUP, but is stronger than both.

Theorem 15 Let Wρ ∈ W(R2n) be such that

Wρ ∈ A(R2n) :=
{

F ∈ M2
1 (R2n) : F is real and Cov(F) is finite

}

. (106)

Then the following matrix inequalities hold in C
2n:

Cov(Wρ) + i h̄

2
J ≥ P [Wρ]

(

Cov(|̃Wρ|2) + 1

4
Cov(|Fσ (̃Wρ)|2) + i h̄

2
J

)

≥ 0.

(107)
The first inequality becomes a matrix identity if and only if the state is pure.

We remark that if a real function F belongs to M2
1 (R2n)∩ M1

2 (R
2n), then automat-

ically F ∈ A(R2n).

Proof We start by remarking that if Wρ ∈ A(R2n), then all the covariance matrices
appearing in (107) are finite.

Define the operators
̂Y j = ̂Z j − 〈̂Z j 〉̂I , (108)
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for j = 1, . . . , 2n, and where

〈̂Z j 〉 = Tr(̂Z j ρ̂). (109)

Let also η = (η1, . . . , η2n) ∈ C
2n and define

̂A := (η · ̂Y )∗(η · ̂Y ) =
2n
∑

j,k=1

η jηk̂Y ĵYk, (110)

where ̂B∗ denotes the adjoint of the operator ̂B. Clearly, ̂A is a positive Weyl operator
with symbol:

a(z) =
2n
∑

j,k=1

η jηk y j 
h̄ yk =
2n
∑

j,k=1

η jηk

(

y j yk + i h̄

2
J jk

)

= |η · y|2 + i h̄

2
σ(η, η),

(111)
where y j = z j − 〈̂Z j 〉 is the symbol of ̂Y j .

Since Wρ ∈ A(R2n), we have that ̂Aρ̂ is trace class, or equivalently, that

∫

R2n
a(z)Wρ(z)dz (112)

exists and is finite. We conclude that (94) holds.
Next we evaluate the integrals in (94). We start with

∫

R2n
a(z)Wρ(z)dz =

∑2n

j,k=1
η jηk

∫

R2n
y j ykWρ(z)dz + i h̄

2
σ(η, η)

= η · Cov(Wρ)η + i h̄

2
σ(η, η) = η ·

(

Cov(Wρ) + i h̄

2
J

)

η.

(113)

Next, we have

(2π h̄)n
∫

R2n
a(z)(Wρ(z) 
h̄ Wρ(z))dz = Tr(̂Aρ̂2)

= Tr((η · ̂Y )∗(η · ̂Y )ρ̂2)

= 1

2
Tr

(

(

(η · ̂Y )∗(η · ̂Y ) + (η · ̂Y )(η · ̂Y )∗
)

ρ̂2
)

+ 1

2
Tr

(

[

(η · ̂Y )∗, (η · ̂Y )
]

ρ̂2
)

= 1

2
Tr

[(

(η · ̂Y )ρ̂
) (

ρ̂(η · ̂Y )∗
)] + 1

2
Tr

[(

(η · ̂Y )∗ρ̂
) (

ρ̂(η · ̂Y )
)]

+ i h̄

2
σ(η, η)Tr(ρ̂2)

= (2π h̄)n

2

∫

R2n

[

((η · y) 
h̄ Wρ) (Wρ 
h̄ (η · y))
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+ ((η · y) 
h̄ Wρ) (Wρ 
h̄ (η · y))] dz + i h̄

2
(2π h̄)nσ(η, η)|||Wρ|||2

= (2π h̄)n

2

∫

R2n

(

|(η · y) 
h̄ Wρ|2 + |Wρ 
h̄ (η · y)|2
)

dz

+ i h̄

2
(2π h̄)nσ(η, η)|||Wρ|||2, (114)

where we used the cyclicity of the trace and (62).
From Proposition 14, it follows that

(2π h̄)n
∫

R2n
a(z)(Wρ(z) 
h̄ Wρ(z))dz

= (2π h̄)n
∫

R2n

(

|a(z)|2|Wρ(z)|2 + |η · z|2
4

|(FσWρ)(z)|2
)

dz

+ i h̄

2
σ(η, η)P [Wρ] . (115)

Now let us consider the two terms in the integral in previous expression. We have
(recall that 〈̂Z〉 is the expectation value for Wρ and not |Wρ|2):

∫

R2n
|a(z)|2|Wρ(z)|2dz = η ·

(∫

R2n
(z − 〈̂Z〉)(z − 〈̂Z〉)T |Wρ(z)|2dz

)

η

≥ minζ∈R2n

{

η ·
(∫

R2n
(z − ζ )(z − ζ )T |Wρ(z)|2dz

)

η

}

= |||Wρ|||2η · Cov(|˜Wρ|2)η. (116)

Next, we remark that

∫

R2n
|η · z|2|(FσWρ)(z)|2dz = |||Wρ|||2η · Cov

(

|Fσ
˜Wρ|2

)

η, (117)

where we used the fact that
∫

R2n
z j |FσWρ(z)|2dz = 0, (118)

for j = 1, . . . , 2n, and that, by Placherel’s Theorem, |||FσWρ||| = |||Wρ|||. Alto-
gether, from (115)–(117), we obtain

(2π h̄)n
∫

R2n
a(z) (Wρ 
h̄ Wρ) (z)dz

≥ P [Wρ] η ·
(

Cov(|˜Wρ|2) + 1

4
Cov

(

|Fσ
˜Wρ|2

)

+ i h̄

2
J

)

η. (119)

The first inequality in (107) then follows from (94,113,119).
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To show the second inequality in (107), we observe that, from our previous calcu-
lations (115, 117):

|||Wρ|||2η ·
[

Cov(|˜Wρ|2) + 1

4
Cov(|Fσ

˜Wρ|2) + i h̄

2
J

]

η

= minζ∈R2nη ·
(∫

R2n
(z − ζ )(z − ζ )T |Wρ(z)|2dz

)

η

+|||Wρ|||2η ·
[

1

4
Cov(|Fσ

˜Wρ|2) + i h̄

2
J

]

η

= minζ∈R2nη ·
(∫

R2n
(z − ζ ) 
h̄ (z − ζ )T (Wρ(z) 
h̄ Wρ(z))dz

)

η

= minζ∈R2n

∫

R2n
bζ (z)(Wρ(z) 
h̄ Wρ(z))dz

= minζ∈R2n
1

(2π h̄)n
T r(̂Bζ ρ̂

2), (120)

where ̂Bζ is the Weyl operator

̂Bζ = (

(η · (̂Z − ζ )
)∗ (

(η · (̂Z − ζ )
)

, (121)

with symbol

bζ (z) = η · (z − ζ ) 
h̄ (z − ζ )T η = |η · (z − ζ )|2 + σ(η, η). (122)

This is manifestly a positive operator, and so from (120), it follows that

|||Wρ|||2η ·
[

Cov(|˜Wρ|2) + 1

4
Cov(|Fσ

˜Wρ|2) + i h̄

2
J

]

η ≥ 0. (123)

We leave to the reader the simple proof that the first inequality in (107) becomes
an equality if and only if the state is pure. ��
The following is a simple corollary of the previous theorem.

Corollary 16 Let Wρ ∈ W(R2n) ∩ A(R2n). Then the following inequalities hold:

Cov(Wρ) ≥ P [Wρ]

(

Cov(|̃Wρ|2) + 1

4
Cov(|Fσ W̃ρ|2)

)

,

Cov(Wρ) ≥ P [Wρ] Cov(|̃Wρ|2),
Cov(Wρ) ≥ P [Wρ]

4
Cov(|Fσ W̃ρ|2). (124)

Proof The first inequality is obtained from (107) by a restriction toR
2n . The remaining

two inequalities follow from the observation that A + B ≥ A if A and B are real
symmetric and positive matrices. ��
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Before we proceed, we make the following remarks.

Remark 17 The RSUP has an interesting geometric interpretation; as shown in [11]
the condition

� + i h̄

2
J ≥ 0

is equivalent to the condition c(�) ≥ π h̄ where � is the covariance ellipsoid and
c any symplectic capacity on the standard symplectic space (R2n, σ ). This property
relates the RSUP to deep results in symplectic topology (Gromov’s non-squeezing
theorem [24]). It would certainly interesting to extend this geometric interpretation to
the refinement of the RSUP and the inequalities (124) proposed in the present paper.

Remark 18 Let A ∈ M(n; C) be some complex matrix. Then A is positive if and
only if AT is positive. From this observation and the fact that J T = −J it follows
that a function F satisfies the refined RSUP (107) if and only if it satisfies the same
inequalities with h̄ replaced by −h̄.

Next we show that the refined RSUP is invariant under linear symplectic and anti-
symplectic transformations.

Theorem 19 Suppose that F ∈ A(R2n) satisfies the refined RSUP:

Cov(F) + i h̄

2
J ≥ P [F]

(

Cov(|˜F |2) + 1

4
Cov

(

|Fσ
˜F |2

)

+ i h̄

2
J

)

≥ 0. (125)

Then for every S ∈ ASp(n), the function F ◦ S also satisfies (125).

Proof A simple calculation shows that

(Fσ (F ◦ S)) (ζ ) = (Fσ F)(εSζ ), (126)

where ε = 1 if S is symplectic and ε = −1 if S is anti-symplectic. It is then a
straightforward task to check that

Cov(G ◦ S) = S−1 Cov(G)(S−1)T , (127)

for G = F, |˜F |2 and |Fσ
˜F |2. Using the fact that SJ ST = ε J , we conclude that F ◦ S

satisfies (125) with h̄ replaced by εh̄. In view of Remark 18 the result follows. ��
Theorem 20 Let F ∈ A(R2n) be such that (125) holds. Then F has minimal
Robertson–Schrödinger uncertainty,

λσ,1(Cov(F)) = · · · = λσ,n(Cov(F)) = h̄

2
, (128)



234 J Fourier Anal Appl (2019) 25:210–241

if and only if F is proportional to a Gaussian pure state Wigner function:

F(z) = 1

(π h̄)n
exp

(

−1

2
(z − z0) · (Cov(F))−1(z − z0)

)

(129)

with z0 ∈ R
2n and 2

h̄ Cov(F) ∈ Sp(n).

Proof Since (125) holds, we have in particular

Cov(F) + i h̄

2
J ≥ 0. (130)

Let (u j ) j be the n eigenvectors of Cov(F)J−1 associated with the eigenvalues
−iλσ, j (Cov(F)) = − i h̄

2 :

Cov(F)J−1u j = − i h̄

2
u j , j = 1, . . . , n. (131)

Then we have:

u j · J
(

Cov(F) + i h̄

2
J

)

J−1u j = 0, (132)

for j = 1, . . . , n.
From (125), we must also have:

u j · J
(

Cov(|˜F |2) + 1

4
Cov(|Fσ

˜F |2) + i h̄

2
J

)

J−1u j = 0, (133)

for j = 1, . . . , n.
By (125), the matrix

A = Cov(|˜F |2) + 1

4
Cov(|Fσ

˜F |2) (134)

satisfies the RSUP. And so, from (133), we conclude that its symplectic eigenvalues
are also all equal to h̄

2 and that (u j ) j are the associated eigenvectors:

AJ−1u j = − i h̄

2
u j , j = 1, . . . , n. (135)

It follows that

det(A) = �n
j=1

(

λσ, j (A)
)2 =

(

h̄

2

)2n

. (136)

Setting X = det(Cov(|˜F |2)), Y = det( 14 Cov(|Fσ
˜F |2)), we have from (136),

Minkowski’s Determinant Theorem, the Heinig–Smith inequality (71) and the
arithmetic-geometric mean inequality that
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(

h̄

2

)2n

= det

(

Cov(|˜F |2) + 1

4
Cov(|Fσ

˜F |2)
)

≥
(

X
1
2n + Y

1
2n

)2n ≥
(

2

√

X
1
2n Y

1
2n

)2n

=
√

(

det(Cov(|˜F |2))) (det(Cov(|Fσ
˜F |2))) ≥

(

h̄

2

)2n

. (137)

Thus all the inequalities become equalities. In particular the Heinig–Smith inequality
is saturated, and F must be of the form (72).

We have

Cov(F) = 1

2π
A−1, 〈z j 〉F = (A−1b) j , (138)

for j = 1, . . . , 2n. Since, by assumption, F is a real function, we conclude that
b ∈ R

2n , c ∈ R and A is real, symmetric and positive-definite. Altogether, we recover
(129). Finally, since F is a Gaussian distribution which saturates the RSUP, then by
Littlejohn’s Theorem we must have 2

h̄ Cov(F) ∈ Sp(n). ��
To complete our analysis we consider two examples. The first one shows that a

function may satisfy the RSUP but not the refined RSUP. In a certain sense Example
10 already does that. But that is not really a good example since Cov(|Fσ

˜F |2) is not
finite.

The second example shows that the refined RSUP is not a sufficient condition for
a phase space function to be a Wigner distribution.

Example 21 Consider the following real and normalized function defined on R
2:

F(z) = 48

π h̄

( |z|2
h̄

− 1

6

)

e− 4|z|2
h̄ . (139)

By straightforward calculations, we have:

Cov(F) = h̄

2
I, Cov(|˜F |2) = 11h̄

80
I, (140)

while
P [F] = 10. (141)

We conclude that

Cov(F) + i h̄

2
J ≥ 0, (142)

that is F satisfies the RSUP. On the other hand:

P [F] Cov(|˜F |2) > Cov(F), (143)

which violates the second inequality in (124).
To obtain a similar example in higher dimensions, we just have to take tensor

products of the function (139).
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Example 22 Next consider the function

F(z) = 1

2π h̄

( |z|
h̄

− 1

)

e− |z|2
2h̄ . (144)

A simple calculation shows that Fσ (F) = −F and that

Cov(F) = 3h̄ I, Cov(|˜F |2) = Cov(|Fσ
˜F |2) = 3h̄

2
I, P [F] = 1

2
. (145)

We conclude that F satisfies the refined RSUP (125).
However, this is not a Wigner function. To see this consider the ground state of the

simple harmonic oscillator:

F0(z) = 1

π h̄
e− |z|2

h̄ . (146)

We have:
∫

R2
F(z)F0(z)dz = − h̄

9
, (147)

which violates the positivity condition (iv) in Theorem 1.

4 The Hirschman–Shannon Inequality for Wigner Functions

In this section, we prove the entropic inequalities which appear as a by-product of the
refined RSUP.

Theorem 23 Let Wρ be a Wigner function with purity P [Wρ] and finite covariance
matrix Cov(Wρ). Then |̃Wρ|2 and |Fh̄ W̃ρ|2 have finite covariance matrices and
entropies and the following inequalities hold:

log
[

(2πe)2n det (Cov(Wρ))
]

≥ log

[

(πeP [Wρ])2n
√

det
(

Cov(|̃Wρ|2)
)

· det
(

Cov(|Fh̄ W̃ρ|2)
)

]

≥ 2n log (P [Wρ]) + E
(

|̃Wρ|2
)

+ E
(

|Fh̄ W̃ρ|2
)

≥ log (π h̄eP [Wρ])2n .

(148)

We have an equality throughout in (148) if and only if Wρ = Wψ is a pure Gaussian
of the form:

Wψ(z) = 1

(π h̄)n
e− 1

2 (z−z0)·(Cov(Wψ))−1(z−z0), (149)

where z0 ∈ R
2n and

2

h̄
Cov(Wψ) ∈ Sp(n) (150)

is a 2n × 2n real symplectic matrix.
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Proof From (20) with n → 2n and f = ˜Wρ, we obtain:

log (π h̄e)2n ≤ E
(

|˜Wρ|2
)

+ E
(

|Fh̄˜Wρ|2
)

≤ log

[

(2πe)2n
√

det
(

Cov(|˜Wρ|2)) · det (Cov(|Fh̄˜Wρ|2))
]

. (151)

The first inequality in (124) and Minkowski’s determinant theorem yield

det (Cov(Wρ))

≥ (P [Wρ])2n det

[

Cov
(

|˜Wρ|2
)

+ 1

4
J TCov

(

|Fh̄˜Wρ|2
)

J

]

≥ (P [Wρ])2n
[

1
2n
det

(

Cov
(

|˜Wρ|2
))

+ 1

4

1
2n
det

(

Cov
(

|Fh̄˜Wρ|2
))

]2n

. (152)

From the concavity of the logarithm and (151):

log (det (Cov(Wρ))) ≥ 2n log (2P [Wρ])

+2n log

[

1

2

1
2n
det

(

Cov
(

|˜Wρ|2
))

+ 1

8

1
2n
det

(

Cov
(

|Fh̄˜Wρ|2
))

]

≥ 2n log (P [Wρ]) + 1

2
log

(

Cov
(

|˜Wρ|2
))

+ 1

2
log

(

Cov
(

|Fh̄˜Wρ|2
))

≥ 2n log (P [Wρ]) + E
(

|˜Wρ|2
)

+ E
(

|Fh̄˜Wρ|2
)

− log(2πe)2n, (153)

and the result follows.
Finally, suppose we have an equality throughout (148). By Hirschman’s Theorem,

the last inequality becomes an equality if and only if Wρ is a generalized Gaussian.
But since, Wρ is a real normalized function, it must be of the form:

Wρ(z) = 1

(2π)n
√
det A

e− 1
2 (z−z0)·A−1(z−z0), (154)

with A a real, symmetric, positive-definite 2n × 2n matrix. By standard Gaussian
integral computations, we conclude that:

P [Wρ] =
(

h̄

2

)n 1√
det A

, Cov(Wρ) = A. (155)

Moreover,

˜Wρ(z) = 1

πn/2 4
√
det A

e− 1
2 (z−z0)·A−1(z−z0),

(Fh̄˜Wρ
)

(ζ ) =
4
√
det A

πn/2h̄n
e
− 1

2h̄2
ζ ·Aζ− i

h̄ ζ ·z0
. (156)
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From which we conclude that

Cov
(

|˜Wρ|2
)

= 1

2
A, Cov

(

|Fh̄˜Wρ|2
)

= 1

2h̄2
A−1. (157)

If we have an equality throughout (148), then we also have an equality in (152).
By Minkowski’s determinant theorem that can happen if and only if, there exists a
constant α ≥ 0, such that

Cov
(

|˜Wρ|2
)

= α J TCov
(

|Fh̄˜Wρ|2
)

J (158)

Plugging (157) into (158) yields:

A = α

h̄2
J T A−1 J ⇔ AJ A = α

h̄2
J. (159)

In other words: A is proportional to a symplectic matrix.
Equating the first and the last term in (148), we obtain:

det (Cov(Wρ)) =
(

h̄

2

)2n

P2n(Wρ). (160)

From (155) and (160), we conclude that:

det A =
(

h̄

2

)2n

, P [Wρ] = 1. (161)

which proves the result. ��
Another consequence of the refined RSUP is the following corollary for pure states.

Corollary 24 Suppose that the Wigner function Wψ has a finite covariance matrix.
Then |̃Wψ |2 has a finite covariance matrix and a finite entropy and we have:

log
[

(2πe)n
√

det (Cov(Wψ))
]

≥ log

[

(2πe)n
√

det
(

Cov(|̃Wψ |2)
)

]

≥ E
(

|̃Wψ |2
)

≥ log

(

π h̄e

2

)2n

. (162)

Proof The last inequality in (162) is a well known result by Lieb [30]. The penultimate
inequality is just Shannon’s inequality (18). In remains to prove the first inequality.
But again from the first inequality in (124), we conclude that

det (Cov(Wψ)) ≥ det
(

Cov(|̃Wψ |2)
)

, (163)

and the result follows. ��
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Remark 25 Notice that the previous results are mainly interesting if the stateWρ does
not depart appreciably from a pure state, that is if P [Wρ] ≈ 1. This is of course true
if we have exactly a pure state as in (162). If Wρ is highly mixed P [Wρ] ≈ 0, then
log (P [Wρ]) → −∞, and inequality (148) becomes trivially true.

Remark 26 Before we proceed let us make a brief comment on the choice of Fourier
transform in the various inequalities. In the refined RSUP we chose the symplectic
Fourier transform in order to have a simpler expression. Otherwise, we would have to
make the replacement

Cov
(

|Fσ (˜Wρ)|2
)

= J TCov
(

|Fh̄(˜Wρ)|2
)

J. (164)

Because of this identity, the determinants of the two covariance matrices coincide.
Likewise, we can easily show that E

(|Fσ (˜Wρ)|2) = E
(|Fh̄(˜Wρ)|2). Consequently,

(21) holds whether we use |Fσ (˜Wρ)|2 or |Fh̄(˜Wρ)|2. We picked |Fh̄(˜Wρ)|2 because
we can then compare it directly with the Hirschman inequality. But this is really just
a question of taste.

5 Outlook

TheWigner quasi-distribution plays a central role in both time-frequency analysis and
quantum mechanics (from which it originates). One should however be aware that it
is not the only possible choice. Any element of the so-called Cohen class [22] having
the correct marginals is a priory an equally good choice in entropic questions of the
type considered in this paper (even if the Wigner quasi-distribution is well-adapted
when symplectic symmetries are present). It would for instance be interesting to gen-
eralize our results to a particular element of the Cohen class, namely the Born–Jordan
distribution [9] which is closely related to the eponymous quantization procedure, and
which has certain advantages compared to those of the Wigner quasi-distribution (in
particular it damps certain unwanted interference effects [6]). We hope to come back
to this case in the near future.
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