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Abstract
In reality, the range of sensor response is limited in many sensor systems due to
the saturation characteristics of the sensor. That is, the value exceeding the sensor
response range is not observed. Using traditional adaptive algorithms to identify the
system of this type may lead to the performance degradation. To address this problem,
the censored regression algorithms have been proposed. However, when the mixed
sub-Gaussian and super-Gaussian/impulsive noises occur, these algorithms may fail
towork. To overcome these drawbacks, a family of robustM-shaped (FRMS) functions
for censored regression (CR-FRMS) is proposed in this paper. When the system to be
identified exhibits a certain degree of sparsity, the CR-FRMS algorithm cannot fully
utilize the characteristics of the sparse system. Therefore, in this paper, proportionate
FRMS (PFRMS) algorithm based on l0-norm constraint for censored regression (l0-
CRPFRMS) is also proposed accordingly. The simulations using Gaussian white noise
as the input signal and the non-Gaussian mixed noise as the background noise show
that the proposed algorithm performs better than other algorithms.

Keywords A family of robust M-shaped (FRMS) functions · l0-Norm constraint ·
Proportionate algorithm · Censored regression · Adaptive filtering

B Haiquan Zhao
hqzhao@home.swjtu.edu.cn

Feng Zhao
xiianzhang@163.com

Wenyuan Wang
wenyuanwang@my.swjtu.edu.cn

1 Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of
Education, Chengdu, China

2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-019-01176-0&domain=pdf


Circuits, Systems, and Signal Processing (2020) 39:324–343 325

1 Introduction

Linear regression models are widely used for signal processing, communication, and
many other yields, assuming that the observed data is fully available. To solve this
model problem, the researchers have proposed a large number of adaptive algorithms,
such as least mean square (LMS) algorithm [13], normalized LMS (NLMS) algorithm,
affine projection algorithm (APA) [14, 30, 33, 42] and so on.

Unfortunately, the requirement for linear regression may not be usually met in
many practical applications. In general, output data whose value exceeds the limit of
the recording device cannot be observed [3, 15, 29]. In other words, the output data
whose values lie in a certain range are available. This situation occurs in economics
[4], statistics [11, 27], engineering applications [28, 26], and medical research [7,
31]. In some systems, due to sensors’ saturation characteristics [1, 9, 43], it is not
possible to collect complete data very efficiently. For example, in microphone array
signal processing [2, 16], when the amplitude of speech signal exceeds a certain
amplitude threshold of the microphones, it is cut off and the signal wave shape may
be distorted to be flat because the signal’s positive and negative peaks exceeding the
threshold are lost, or censored. Actually, the censored regression can be seen as a
nonlinear regression model which includes a saturated nonlinearity model and linear
system [23, 38]. Since the output data of the censored regression may lose significant
information, using the traditional algorithms to identify this type of model may result
in biased and wrong estimates [22]. Recently, in an attempt to deal with the censored
regression problem, numerous algorithms have been proposed, such as maximum
likelihood (ML) methods [8], two-step estimator [15], least absolute deviation [29]
To solve online censored regression problems, Liu et al. [24] proposed the adaptive
Heckman two-step algorithm (TSA) which significantly outperforms the conventional
adaptive algorithms while the output data is censored.

As is well known, most of the adaptive algorithms are based on Gaussian noise
environment. However, real-world signals often exhibit non-Gaussian properties.
For example, in the beamforming, sub-Gaussian (light-tailed) signals are frequently
encountered [17]. In some active noise control (ANC) applications, mechanical fric-
tion, vibration noise, and speech signal are super-Gaussian/impulsive (heavy-tailed)
signals [39]. In the blind source separation (BSS), adaptive receivers with multiple
antennas, and image denoising, the signal may be the mixed sub-Gaussian and super-
Gaussian/impulsive signal [18–20, 32, 35, 40, 46].

In an attempt to improve the robustness of the algorithm in mixed non-Gaussian
background noise environments, a family of robust M-shaped (FRMS) functions was
applied to the adaptive algorithms [45].

Furthermore, when the system exhibits a certain degree of sparsity, the appeal
algorithm cannot utilize the characteristics of the system. To deal with this issue,
proportional algorithms [10] and multiple norm forms of zero-attraction algorithms,
such as l0-norm, l1-norm, and l p-norm [5, 12, 25, 34, 37, 39, 46], are applied to this
type of system. In fact, the ideal sparse measure is the l0-norm that counts the number
of nonzero components. Therefore, the l0-norm constraint is adopted in this paper.

In this paper, contributions are made as follows:
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(i) For the first time, a family of robustM-shaped algorithm formixed non-Gaussian
background noises under the censored regression model is proposed. The algo-
rithm not only can effectively compensate the output signal, but also can deal
with the effects of sub-Gaussian and super-Gaussian/impulsive noises.

(ii) For the characteristics of sparse system, the l0-norm proportional FRMS algo-
rithm under the censored regression model (l0-CRPFRMS) is also proposed for
the first time.

(iii) Simulation examples to demonstrate the performance of the proposed algorithm
in non-Gaussian background noise environments.

2 Description and Preliminaries

2.1 Problem Formulation

Consider the following linear regression model

d̂n � uTnwo + ηn + ξn (1)

wherewo is the unknown column vector of size, ηn denotes the background noise with
zero mean and variance σ 2

i . In this paper, sub-Gaussian and super-Gaussian noises

are involved, and ξn represents the impulsive noise with zero mean. When the data d̂n
and u are completely observed, using some traditional methods, the unknown vector
wo can be identified easily. However, the data d̂n may be not completely observed in
some practical application. The censored output dn can be formulated by

dn � (uTnwo + ηn)+ � (d̂n)+ (2)

where (d̂n)+ � max{0, d̂n}.

Remark 1 In this paper, although the left-censored to 0 is only applied to the algorithm,
the right-censored and both-sides-censored cases can also be applied in the algorithm,
and the processing method is similar. In particular, if the output d̂n is left-censored or
right-censored to a constant c, the censored output dn can be expressed as

dn � max{c, d̂n} � (d̂n − c)+ + c (3)

and

dn � min{c, d̂n} � c − (c − d̂n)+ (4)

respectively.
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2.2 Review of FRMS Algorithm

In [23], the authors divide the existing error nonlinear adaptive algorithms based
on LMS into three categories, V-shaped, Λ-shaped, and M-shaped algorithms. After
comparing the advantages and disadvantages of each algorithm, the FRMS function
was proposed, where its weighted function is

f (en) � |en|p
ς + |en|p+1 , p > 0 (5)

where ς > 0 is the parameter. For instance, when ς → 0, it will be a Λ-shaped
algorithm. (Λ-shaped algorithm is applicable to the super-Gaussian noise than that
for sub-Gaussian noise environment.) When ς → ∞, it is a V-shaped algorithm.
(V-shaped algorithm is more suitable for sub-Gaussian noise.) In the proposed robust
M-shaped function, its denominator is with an order higher than the numerator. Using
the gradient descent, this algorithm essentially solves the stochastic cost function

J (en) �
∫ en

0

x |x |p
ς + |x |p+1 dx (6)

which is positive semi-definite for ς > 0; p>0. Thus, the proposed robust M-shaped
algorithm will not suffer from the local minimum problem.

3 Proposed New Algorithm

3.1 Proposed CR-FRMS Algorithm

Since the observations in this paper are assumed to be censored, the FRMS algorithm
would obtain a biased estimate which is called sample selection bias [34, 44]. In
other words, when d̂n < 0, the data d̂n is missing, which leads to the bias and the
inequality E[dn|uTnwo] �� uTnwo. To compensate the bias, firstly, it is necessary to
correct the sample selection bias using FRMS in censored observations, which is
inspired by the Heckman two-stage approach [15]. Due to the left-censored property
of dn , only positive values of dn can be correctly obtained. Recalling (1) and noting
that the background noise ηn and impulsive noise ξn are both zero-mean signals, the
expectation of dn under the condition dn > 0 can be expressed by

E[dn|uTnwo, dn > 0]

� E[d̂n|uTnwo, d̂n > 0]

� uTn wo + E[ηn + ξn|ηn + ξn > −uTnwo]. (7)

Since the impulsive noise occurs with a very low probability, the following approx-
imation is reasonable,

E[ηn + ξn|ηn + ξn > −uTnwo] ≈ E[ηn|ηn > −uTnwo] (8)
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Table 1 Probability density function and distribution function of three different noises

Noise type Probability density function Cumulative distribution function

Gaussian
ϕ(x) � 1

σ
√
2π

e
− (x−μ)2

2σ2 Φ(x) � ∫ x
−∞ 1

σ
√
2π

e
− (y−μ)2

2σ2 dy

Uniform ϕ(x) �
{ 1

b−a , a < x < b
0, else Φ(x) �

⎧⎨
⎩
0, x < a
x−a
b−a , a ≤ x ≤ b
1, x > b

Laplace ϕ(x) � 1
2λ e

− |x−μ|
λ Φ(x) � ∫ x

−∞ 1
2λ e

− |y−μ|
λ dy

Before calculating the last term of (5), the following lemma is introduced.

Lemma The condition expectation E[x |x > −c] satisfies

E[x |x > −c] � ϕ(c)

�(c)
� Ω(c). (9)

Proof See “Appendix” for detail.

Using the lemma, we have

E[ηn|ηn > −uTnwo] � σnΩ(uTnα) (10)

with ϕ(·) and Φ(·) given in Table 1. In addition, the vector α is given by

α � wo

σi
(11)

Then, using (9) and the probability theory yields

E[dn|uTnwo] � Pr (dn > 0)E[dn|uTnwo, dn > 0]

� Φ(uTnα)uTnwo + σiϕ(uTnα) (12)

where the second equation comes from the fact that the probability of dn > 0 is equal
to Φ(uTnα), i.e., Pr (dn > 0) � Φ(uTnα). According to (12), the censored regression
model (2) can be expressed as:

dn � Φ(uTnα)uTnwo + σiϕ(uTnα) + vn (13)

where vn is the random variable with zero mean, i.e.,

E[vn|uTnwo] � 0. (14)

Since the algorithm based on MSE criterion cannot estimate wo correctly, the cost
function based on FRMS is adopted

ζFRMS � E

( |εn(w, σn,α)|p
ς + |εn(w, σn,α)|p+1

)
(15)
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where

εn(w, σn,α) � dn−Φ(uTnα)uTnw + σiϕ(uTnα). (16)

Obviously, to estimate wo, the estimation for α and σn, should also be available. In
the sequel, an indicator variable an is introduce to estimate α,

an �
{
1, if dn > 0
0, otherwise

(17)

The probabilities of an is expressed as

Pr (an � 1) � Φ(uTnα) (18)

Pr (an � 0) � Φ(−uTnα). (19)

Then, the following optimization problem is considered to estimate α [22],

α̂ � argmax
ᾱ

� Γ (ᾱ) � argmax
ᾱ

E[Γn(ᾱ)] (20)

where

Γ (ᾱ) � E[Γn(ᾱ)] (21)

and

Γn(ᾱ) � log(Pr (dn|un,α)) (22)

with

Pr (dn|un,α) � Φ(uTnα)anΦ(−uTnα)1−an . (23)

In the sequel, using the steepest ascent principle yields [22]

α̂n � α̂n−1 + μ
∂Γn(α)

∂α
|α̂n−1

� α̂n−1 + μ[anΩ(uTn α̂n−1)un − (1 − an)Ω(−uTn α̂n−1)un]. (24)

Then, the estimation for σn is considered. Using the decent method and the cost
function f (εn(w, σn,α)) with respected to σn,i−1, we have

σ̂i,n � σ̂i,n−1 − μ

2

∂ f (εn(w, σn,α))

∂σi,
|σ̂i,n−1

� σ̂i,n−1 + μϕ(uTn α̂n) f (εn(w, σi,n−1, α̂n))εn(w, σn,i−1, α̂n) (25)
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where

f (εn(w, σi,n−1, α̂n−1)) � |dn − Φ(uTnα)uTnw + σiϕ(uTnα)|p
ς + |dn − Φ(uTnα)uTnw + σiϕ(uTnα)|p+1 . (26)

Similarly, theweight update formula can be obtained by the gradient descentmethod

wn � wn−1 − μ
∂ζFRMS(w)

∂w
|wn−1

� wn−1 + μ�n(uTn α̂n)uTn f (εn(w, σi,n, α̂n))εn(w, σi,n, α̂n) (27)

where

ζNFRMS(w) � f (εn(w, σi,n−1, α̂n−1)). (28)

3.2 Proposed l0-CRPFRMS algorithm

In many practical applications, such as digital TV transmission channels and echo
paths, the systems that need to be identified are sparse. However, the algorithm in
Sect. 3.1 does not make full use of the characteristics of the sparse system. Therefore,
this section proposes a l0-norm proportional FRMS algorithm based on the censored
regression model (l0-CRPFRMS).

Sparse system is defined whose impulse response contains many near-zero coeffi-
cients and few large ones. In [36], the author first proposed a proportional idea, the
(PNLMS) algorithm. Its iteration formula is as follows:

ŷ(k) �
N−1∑
n�0

ĥn(k)x(k − n) (29)

e(k) � y(k) − ŷ(k) (30)

l∞(k) � max{|ĥ0(k)|, . . . , |ĥN−1(k)|} (31)

l ′∞(k) � max{δ, l∞(k)} (32)

gn(k) � max{ρl ′∞(k), |ĥn(k)|} (33)

ḡ(k) � 1

N

N−1∑
n�0

gn(k) (34)

σ̂ 2
x (k) � 1

N

N−1∑
n�0

x2(k − n) (35)

ĥn(k + 1) � ĥn(k) +
μ

N

gn(k)

ḡ(k)

e(k)x(k − n)

σ̂ 2
x (k)

. (36)
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where x(·) is input signal, ŷ(·) is output signal and y(·) is expected signal, and ĥn(·)
is tap weight. The parameters ρ and δ affect small-signal regularization. In (32), ρ

prevents ĥn(k + 1) from stalling when it is much smaller than the largest coefficient
and δ regularizes the updating when all coefficients are zero at initialization. It can
be seen from (31–34, 36) that when the tap weight is closer to zero, the gn(k)/ḡ(k)
item will become smaller and smaller. On the contrary, when the tap weight is far
from zero, more energy will be gained in iteration. In this way, the aim of proportional
algorithm is achieved, that is, the convergence speed of the algorithm is accelerated
without changing the steady-state mean square deviation (MSD).

In order to further accelerate the convergence speed of the algorithm better, this
section adds another method for sparse systems, i.e.,l0-norm constraint [12, 34], on the
premise of adding proportional algorithm. As the name implies, it is to add a γ ||w||0
to the original cost function. In this section, the cost function is changed into

ϑ(n) �
∫ en

0

x |x |p
ς + |x |p+1 dx + γ ||wn||0. (37)

where γ > 0 is a factor to balance the new penalty and the estimation error. In
[12], in order to reduce the computational complexity, the author firstly approximates
||wn||0 to ∑L−1

i (1 − e−β|wn (i)|), then uses gradient descent method to derive the cost
function, and then uses the Taylor formula to perform a first-order expansion on the
zero attracting term in the iterative formula, and finally obtains the weight update
formula with lower computational complexity,

wn � wn−1 + gradient correction + zero attraction (38)

where zero attraction means κ fβ (wn) · κ � μγ is a positive constant and fβ (·) is
defined as

fβ (x) �

⎧⎪⎨
⎪⎩

β2x + β, − 1
β

≤ x ≤ 0

β2x − β, 0 ≤ x ≤ 1
β

0, elsewhere

. (39)

The parameter β is set to 5 in this paper. From (39), it can be seen that when the
coefficients are in the range of (−1/β, 1/β), they will be constantly attracted to zero,
and when the coefficients are not in the range, there will be no additional attraction,
which will improve the convergence speed of those coefficients close to zero, and the
overall convergence speed will be accelerated.

As in Sect. 3.1, primarily, it is necessary to process the output signal to get Eq. (13).
Then, the error can be expressed as Eq. (16). Next, it is also needed to process α and
then use the steepest descent method to get Eq. (24). Again, the next step is to estimate
the parameter σn . That is, the cost function based on l0-CRPFRMS is derived and
obtained.

σ̂i,n � σ̂i,n−1 − μ

2

∂ϑl0-CRPFRMS(w, σi,n−1,α)

∂σi,
|σ̂i,n−1
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� σ̂i,n−1 + μϕ(uTn α̂n) f (εn(w, σi,n−1, α̂n))εn(w, σn,i−1, α̂n). (40)

Similarly, the weight update formula can be obtained as follows

wn � wn−1 + μGn−1�n(uTn α̂n)u
T
n f (εn(w, σi,n, α̂n))εn(w, σi,n, α̂n)

− κ fβ (wn−1) (41)

where

wn � (wn(0), . . . , wn(L − 1)) (42)

Gn−1 � diag{gn−1(0), . . . , gn−1(L − 1)}. (43)

The diagonal elements of Gn−1 are calculated as follows:

gn−1(l) � θn−1(l)∑L−1
l�0 θn−1(i)

, 0 ≤ l ≤ L − 1 (44)

θn−1(l) � max{ρmax[|wn−1(0)|, . . . , |wn−1(L − 1)|], |wn−1(l)|} (45)

where ρ � 5/L .

3.3 The Convergence Analysis of l0-CRPFRMS Algorithm

The steady-state performance of l0-CRPFRMS algorithm is analyzed in the following
part. To make the analysis tractable, the following assumptions are given, which are
commonly used in the analysis of adaptive filtering algorithm [3, 13].

Assumption 1 The noise ηn is independent of the input signal. The impulsive noise
ξn doesn’t occur.

Assumption 2 The weight error vector ŵn � wo − wn is independent of the input
signal.

Obviously, (24) can be rewritten

α̂n � α̂n−1 + μΓ ′
n(α̂n−1). (46)

Then, the Taylor expansion of Γ ′
n(α̂n−1) at the point α̂n−1 � is given by,
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Γ ′
n(α̂n−1) � Γ ′

n(α̂) + Γ ′′
n (α̂n−1)(α̂n−1 − α̂)

� Γ ′
n(α̂) − Zn(α̂n−1 − α̂) (47)

where Zn � Γ ′′
n (α̂n−1). Letting α̃n−1 � α − α̂n−1, subtracting both sides of (46) by

α and using (47) yields

α̃n � α̃n−1 − μΓ ′
n(α̂n−1) � (IM + μZn)α̃n−1 − μΓ ′

n(α). (48)

Using the Assumptions A1–A2 and taking expectation both sides of (4) leads to

E[α̃n] � (IM + μE[Zn])E[α̃n−1] − μE[Γ ′
n(α)]. (49)

According to [24], E[Zn] is the hessian matrix ofΓn(α̂n−1) and is negative definite.
In the sequel, taking the expectation Γn(α) with only vn results in

Ev[an] � Pr (an � 1) � Φ(uTn ᾱ). (50)

Using (50) and Assumptions A1–A2 yields (see [24] for detail)

E[Γ ′
n(α)] � 0. (51)

Substituting (52) into (50) yields

E[α̃n] � (IM + μE[Zn])E[α̃n−1]. (52)

To guarantee the stability in the mean sense, the matrix should be stable. Note
that the negative-definite has negative eigenvalues, and hence, the step size should be
selected according to

0 < μ < − 2

λmin(E[Zn])
. (53)

Under this condition, we have

E[α̃∞] � α. (54)

In the other words, Eq. (24) is an unbiased estimate of α if the proposed algorithm
is stable. Then, (40) and (41) can be rewritten, respectively,

σ̂i,n � σ̂i,n−1 − μ

2

∂ϑl0-CRPFRMS(w, σi,n−1, α̂n)

∂σi,
|σ̂i,n−1

� σ̂i,n−1 + μϕ(uTn α̂n) f (εn(w, σi,n−1, α̂n))εn(w, σn,i−1, α̂n) (55)

wn � wn−1 + μGn−1Φn(uTn α̂n)u
T
n f (εn(w, σi,n, α̂n))εn(w, σi,n, α̂n)

− κ fβ (wn−1)
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≈ wn−1 + μGn−1Φn(uTn α̂n)un f (εn(w, σi,n−1, α̂n))εn(w, σi,n−1, α̂n)

− κ fβ (wn−1). (56)

Combining (55) and (56) gives

θ̂n �
[
wn

σ̂i,n

]
�

[
wn−1
σ̂i,n−1

]
+ μ f (εn(w, σi,n−1, α̂n))εn(w, σn,i−1, α̂n)Ḡn−1 ĥn

−
[

0
κ fβ (wn−1)

]
(57)

where

Ḡn−1 �
[
Gn−1 0
0 1

]
(58)

ĥn �
[

Φn(uTn α̂n)un
ϕ(uTn α̂n)

]
. (59)

Then, the desired signal dn can be written as

dn � hTn θopt + vn (60)

where

θopt �
[
wo

σi

]
(61)

hn �
[

Φn(uTn α̂)un
ϕ(uTn α̂)

]
. (62)

Using (60), (16) implies

εn(w, σi,n−1, α̂n−1) ≈ εn(w, σi,n−1,α) � dn − hTn θ̂n−1 � hTn θ̃n−1 + vn (63)

where

θ̃n � θopt − θ̂n . (64)

Inserting (64) into (57) yields

θ̃n � (I − μ f (εn(w, σi,n−1, α̂))Hn)θ̃n−1

− μ f (εn(w, σi,n−1, α̂)vn Ḡn−1hn +
[

0
κ fβ (wn−1)

]
(65)

where

Hn � Ḡn−1hnhTn . (66)
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Then, taking the expectation of both sides of (65)

E[θ̃n] � (I − μE[ f (εn(w, σi,n−1, α̂))Hn])E[θ̃n−1]

− μ f (εn(w, σi,n−1, α̂)E[vn]E[Ḡn−1]E[hn] +
[

0
E[κ fβ (wn−1)]

]

� (I − μ�n)E[θ̃n−1] +

[
0

E[κ fβ (wn−1)]

]

≈ (I − μ�n)E[θ̃n−1] (67)

where

�n � E[ f (εn(w, σi,n−1, α̂))Hn]. (68)

In order to ensure the convergence of the algorithm, this should make −1 < (I −
μ�n) < 1. Therefore, the range of μ is

0 < μ <
2

λmax(�n)
. (69)

Combining (53) and (69), we can obtain

0 < μ < min

(
− 2

λmin(E[Zn])
,

2

λmax(�n)

)
. (70)

4 Simulation

4.1 Verify the Superiority of CR-FRMS

Firstly, the simulations in context of the system identification are carried out to illustrate
the advantage of the proposed algorithm. The length of the unknown system generated
randomly is 8 taps. It is assumed that the length of the unknown system is same as that of
adaptivefilter. Figure 1a, b depicts the performance of theCR-FRMS,FRMS[24], TSA
[11], and LMS [13] algorithms under two background noise distributions, respectively,
where p � 2 and κ � 8 × 10−6. The step sizes of four different algorithms are set
to 0.03 in two different mixed noise environments. Figure 1a shows the simulation
results in a mixture of sub-Gaussian and super-Gaussian noises, and Fig. 1b shows the
simulation results in amixture of sub-Gaussian noise and impulsive noise [uniform and
Laplace distribution are independent and identically distributed (i.i.d.) over time with
zeromean]. Bernoulli–Gaussian (BG) process [41] is used frequently for modeling the
impulsive noise ξn , formulated as ξn � τnυn , where τn is a Bernoulli process with the
probability of p{τn � 1} � 0.01 and υn is i.i.d. zero-mean Gaussian sequence with
variance σ � 10000. For a fair comparison of proposed algorithms, parameters are
set so that the algorithms have a comparable initial convergence speed. As observed in
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Fig. 1 MSD curves for the proposed algorithm a the mixed uniform and Laplace distributed noises, where
ς � 0.5. b The mixed uniform distributed and impulsive noises, where ς � 0.005

Fig. 1a, b, the proposed CR-FRMS algorithm is superior to other existing algorithms.
In addition, the calculation formula of MSD is defined as

MSD � 10 log10‖wo − wn‖2 (71)

The second experiment is to test the convergence performance of CR-FRMS with
different step sizes. Figure 2a, b illustrates theMSD learning curves with different step
sizes of input signals for Gaussian white noise. As expected, when the fixed step size
is applied in the CR-FRMS algorithm, there is a trade-off between the steady-state
MSD and the rate of convergence. That is, a small step size corresponds to the lower
steady-state error, although it slows down the convergence speed. In contrast, a large
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Fig. 2 Comparison of different step sizes; a the mixed noise environment of sub-Gaussian and super-
Gaussian. b The mixed noise environment of sub-Gaussian and impulsive noise

step size which is located in the stable range provides the higher the convergence
speed, while it achieves large steady-state error.

The third experiment is to test the convergence performance of CR-FRMS with
different parameters p. Suppose that the unknown system has 8 coefficients. The
driven signal is white Gaussian with unit variance. The filter length is 8. The step size
of these algorithms is fixed to 3 × 10−2, while p is set to different values. After a
hundred times run, it can be seen from Fig. 3a that in the case of uniform distribution
and Laplace distribution variances of 1 and 9, respectively, the larger the p, the smaller
the MSD, but the effect is not significant. However, as can be seen from Fig. 3b, in
the case of mixed background noise with impulsive noise and sub-Gaussian noise
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Fig. 3 Background noise is different p a the mixed noise environment of sub-Gaussian and super-Gaussian.
b The mixed noise environment of sub-Gaussian and impulsive noise

(uniform distribution) with a signal-to-noise ratio (SNR) of 30, p � 2 obtains a better
MSD when taking 1 or 3 with respect to p.

4.2 Verify the Superiority of l0-CRPFRMS

The proposed l0-CRPFRMS is compared with the algorithms CR-FRMS, PNLMS
[9] and l0-LMS [5] in two different background noise environments. The first one
is a mixed noise with a uniform distribution with variance σu � 2.5 × 10−5 and a
Laplace distribution with variance σL � 0.01. The second is still mixed noise with
a sub-Gaussian noise (uniform distribution) with signal-to-noise ratio of 30 dB and
the impulsive noise. Besides, in two different mixed background noise environments,
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p � 2. Suppose that the unknown system has 64 coefficients, in which two of them
are nonzero ones (their locations and values are randomly selected). The input signal
is white Gaussian with unit variance. The filter length is 64. After fifty independent
operations, their MSD curves are shown in Fig. 4a, b. It is evidently recognized that
l0-CRPFRMS algorithm converges faster than its ancestor.

Comparing different algorithms is also needed to do experimental research on
different values of parameter κ . Theoretically, when κ is larger, the update weight
will be closer to zero faster, that is, the convergence speed of the algorithm will be
accelerated. However, the MSD of the algorithm will be increased. In this paper, the
range of values of κ is relatively small. Therefore, as can be seen from Fig. 5a, b, the
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Fig. 5 Comparison of different κ in a the mixed sub-Gaussian and super-Gaussian noises, b mixed sub-
Gaussian and impulsive noises

convergence speed of the algorithm is almost the same when κ is different, but MSD
has obvious difference, that is, the smaller the κ , the smaller the MSD.

5 Conclusion

In this paper, two algorithms based on censored regression, namely CR-FRMS and
l0-CRPFRMS, are proposed under two different mixed background noises. CR-FRMS
show superiority to LMS, TSA and FRMS in terms of MSD. Meanwhile, in the
case where the unknown system is a sparse system, l0-CRPFRMS exhibits a faster
convergence speed than CR-FRMS without changing the MSD. Since the two algo-
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rithms show different advantages, CR-FRMS has lower computational complexity
and l0-CRPFRMS converges fast. Therefore, in real life, we must combine the actual
requirements and choose a reasonable algorithm.
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Appendix

For a random x with standard distribution, i.e., the cumulative distribution function sat-
isfies the condition in Table 1, the conditional density function of conditional random
variable denoted by is given by

p(x |x > c) � dPr (V < x |x > c)

dx

� d

dv

Pr (V < x and x > c)

Pr (x > c)

� d

dx

∫ x
b ϕ(u)du

Pr (x > c)
� ϕ(x)

1 − Φ(c)

where ϕ(·) and Φ(·) is expressed in Table 1. Using the probability theory, the condi-
tional expectation E[x |x > c] can be computed by

E[x |x > c] �
∫ ∞

c
x f (x |x > c)dv

�
∫ ∞

c

xϕ(x)

1 − Φ(x)
dx � − 1

1 − Φ(c)
F(x)|∞c

� ϕ(c)

1 − Φ(c)
� ϕ(c)

Φ(−c)
� Ψ (−c)
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