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for the Moore–Nehari differential equation
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Abstract. We study the bifurcation problem of positive solutions for the
Moore-Nehari differential equation, u′′ + h(x, λ)up = 0, u > 0 in (−1, 1)
with u(−1) = u(1) = 0, where p > 1, h(x, λ) = 0 for |x| < λ and
h(x, λ) = 1 for λ ≤ |x| ≤ 1 and λ ∈ (0, 1) is a bifurcation parameter. We
shall show that the problem has a unique even positive solution U(x, λ)
for each λ ∈ (0, 1). We shall prove that there exists a unique λ∗ ∈ (0, 1)
such that a non-even positive solution bifurcates at λ∗ from the curve
(λ, U(x, λ)), where λ∗ is explicitly represented as a function of p.
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1. Introduction

In this paper, we study the bifurcation problem of positive solutions for the
Moore–Nehari differential equation

u′′ + h(x, λ)up = 0, u > 0 in (−1, 1), u(−1) = u(1) = 0, (1.1)

where p > 1, h(x, λ) = 0 for |x| < λ and h(x, λ) = 1 for λ ≤ |x| ≤ 1 and
λ ∈ (0, 1) is a bifurcation parameter.

We first state the regularity of solutions for (1.1). Since h(x, λ) is dis-
continuous at x = ±λ, no solution belongs to C2[−1, 1]. Since h(x, λ) is a
L∞(−1, 1) function of x, any solution belongs to W 2,∞(−1, 1). It is known
that W 2,∞(−1, 1) coincides with the set of functions u of class C1[−1, 1] such
that u′(x) is Lipschitz continuous (for example, see [2, Proposition 8.4]). Since
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h(x, λ) is smooth except for x = ±λ, a positive solution u is a C∞ function
on (−1, 1) except for x = ±λ.

We introduce a result due to Moore and Nehari [14].

Theorem 1.1. (Moore and Nehari [14]) For some λ ∈ (0, 1), (1.1) has at least
three positive solutions: an even solution u(x), a non-even solution v(x) and
its reflection v(−x).

The theorem above is similar to a result by Smets, Willem and Su [18],
who studied the Hénon equation

− Δu = |x|λup, u > 0 in B, u = 0, on ∂B, (1.2)

where B is a unit ball in R
N and 1 < p < ∞ when N = 1, 2 and 1 <

p < (N + 2)/(N − 2) when N ≥ 3. They proved that if λ > 0 is large
enough, no least energy solution of (1.2) is radial. Therefore (1.2) has both a
positive radial solution and a positive non-radial solution. Here, a least energy
solution is defined by the minimizer of the Rayleigh quotient R(u) on the
Nehari manifold N , which are defined by

R(u) :=
(∫

Ω

|∇u|2dx

) /(∫
Ω

|x|λ|u|p+1dx

)2/(p+1)

,

N := {u ∈ H1
0 (Ω)\{0} :

∫
Ω

(|∇u|2 − |x|λ|u|p+1)dx = 0}.

Kajikiya [6,7] proved that a non-even solution given in Theorem 1.1 can be
obtained as a least energy solution of R(u) in which |x|λ is replaced by h(x, λ).
Sim and Tanaka [17] studied (1.2) when N = 1, i.e.,

u′′ + |x|λup = 0, u > 0 in (−1, 1), u(−1) = u(1) = 0. (1.3)

They investigated the bifurcation problem, in which they took the exponent λ
as a bifurcation parameter. They proved that (1.3) has a unique even positive
solution for each λ > 0. Denote this solution by U(x, λ). Hence the set of
even positive solutions draws a curve (λ,U(x, λ)) in (0,∞) × C2[−1, 1]. They
proved that a non-even positive solution bifurcates from this curve at a certain
λ = λ∗.

On the other hand, Amadori and Gladiali [1] studied (1.2) with N ≥ 3.
They fix λ ∈ (0, 1] and take p as a bifurcation parameter. They proved that
there exists a bifurcation point p ∈ (1, pλ) with pλ := (N + 2 + 2λ)/(N − 2)
such that a positive non-radial solution bifurcates from a unique positive radial
solution and the bifurcation branch is unbounded in the Hölder space C1,γ

0 (B).
Gritsans and Sadyrbaev [5] investigated (1.1) when p = 3 and h(x, λ) = 0

for |x| < λ and h(x, λ) = 2 for λ ≤ |x| ≤ 1. They proved that for any λ ∈ (0, 1),
(1.1) has infinitely many sign-changing solutions.

In (1.1), the weight function h(x, λ) vanishes when |x| ≤ λ. A similar
function is studied by López-Gómez and Rabinowitz [10]. They studied the
bifurcation problem

du′′ + λu − a(x)f(u) = 0 in (0, L), u(0) = u(L) = 0,
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where a(x) ≥ 0, a ∈ C[0, L] and a(x) ≡ 0 on [α, β] ⊂ [0, L]. They proved in
[10] the existence of a positive solution and nodal solutions when λ is in a
certain range. See also [11–13].

The purpose of the present paper is to prove that (1.1) has a unique even
positive solution (denoted by U(x, λ)) and that a non-even positive solution
bifurcates from U(x, λ).

Proposition 1.2. For any λ ∈ (0, 1), (1.1) has a unique even positive solution
U(x, λ). Moreover, U(x, λ) is strictly increasing with respect to λ and it is
continuous in the following sense: for each fixed λ0 ∈ (0, 1), U(x, λ) converges
to U(x, λ0) in C1[−1, 1] as λ → λ0.

The curve (λ,U(x, λ)) in (0, 1) × C1[−1, 1] represents all even positive
solutions. We shall show that a non-even positive solution bifurcates from this
curve. To state the main result, we define a constant λ∗(p) by

λ∗(p) :=
4

4 + (p2 − 1)τ(p)2
, (1.4)

τ(p) :=
∫ 1

0

(1 − tp+1)−1/2dt =
1

p + 1
B(2/(p + 1), 1/2). (1.5)

Here B(p, q) :=
∫ 1

0
tp−1(1 − t)q−1dt is the beta function. Our main result is as

follows.

Theorem 1.3. There exists a connected closed unbounded set C ⊂ (0, 1) ×
C1[−1, 1] of positive solutions for (1.1) such that C emanates from the point
(λ∗, U(x, λ∗)) and (λ,U(x, λ)) is not a bifurcation point when λ 
= λ∗, where
λ∗ = λ∗(p) is defined by (1.4). The point (λ∗, U(x, λ∗)) is a unique even posi-
tive solution in C, and all points in C\{(λ∗, U(x, λ∗))} are non-even positive so-
lutions. Moreover, for every λ ∈ (λ∗, 1), there exists a u(x) such that (λ, u) ∈ C.
The C1[−1, 1] norm of u diverges to infinity as λ → 1 with (λ, u) ∈ C. The
bifurcation point λ∗(p) is a decreasing function of p, limp→1 λ∗(p) = 1 and
limp→∞ λ∗(p) = 0.

We sketch our idea of the proof for Theorem 1.3. Let U(x, λ) denote the
unique even positive solution of (1.1). We define the linearized operator,

L(λ) := − d2

dx2
− ph(x, λ)U(x, λ)p−1.

Consider the eigenvalue problem

L(λ)φ = −φ′′ − ph(x, λ)U(x, λ)p−1φ = μφ, φ(−1) = φ(1) = 0.

We denote the k-th eigenvalue of the problem above by μk(λ). We shall show
that

(i) μ1(λ) < 0 for all λ ∈ (0, 1),
(ii) for λ∗ = λ∗(p) given by (1.4), μ2(λ) > 0 in (0, λ∗), μ2(λ∗) = 0 and

μ2(λ) < 0 in (λ∗, 1),
(iii) μ3(λ) > 0 for all λ ∈ (0, 1).
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The above assertions ensure that the Morse index of U(x, λ) (the num-
ber of the negative eigenvalues of the linearized operator L(λ)) changes at
λ∗. Using this result and applying the bifurcation theorem due to Rabinowitz
[15] and Schmitt and Thompson [16], we shall prove that a non-even positive
solution bifurcates at λ = λ∗ from the curve (λ,U(x, λ)). To prove this as-
sertion, the present paper is organized into six sections. In Sect. 2, we prove
the existence and uniqueness of the even positive solution U(x, λ) and prove
that U(x, λ) is continuous with respect to λ. Moreover we show the assertion
(i) μ1(λ) < 0 for all λ ∈ (0, 1). Assertion (iii) will be proved in Sect. 3. Asser-
tion (ii) will be shown in Sect. 4. In Sect. 5, we give some a priori estimates of
positive solutions. In Sect. 6, we prove Theorem 1.3.

2. First eigenvalue

In this section, we prove the existence and uniqueness of the even positive
solution for (1.1) and show that the first eigenvalue μ1(λ) is positive for all λ.
We first note that the graph of a solution on [−λ, λ] for (1.1) must be a line
segment because u′′(x) = 0 for |x| < λ by the first equation of (1.1).

To prove Proposition 1.2, we consider the Emden–Fowler equation

u′′ + |u|p−1u = 0. (2.1)

The next lemma is well known (for example, see [4] or [8, Lemma 3.1]).

Lemma 2.1. Let u be a nontrivial solution of (2.1). Then u(x) is a periodic
solution having zeros. For any α > 0, α2/(p−1)u(αx) is also a solution of (2.1).

For a > 0, we consider the problem

u′′ + |u|p−1u = 0, u > 0 in (0, a), u(0) = 0, u′(a) = 0. (2.2)

To represent the solution of (2.2), we consider the ρ-Laplace Emden–Fowler
equation

(|u′|ρ−2u′)′ + |u|σ−2u = 0 in R,

with ρ, σ ∈ (1,∞). According to Drábek and Manásevich [4], Takeuchi [19–21],
the solution of the equation above is represented by using the the generalized
sine function sinρ,σ x, which is defined below. We put

g(x) :=
∫ x

0

(1 − tσ)−1/ρdt for 0 ≤ x ≤ 1.

Then g(x) has an inverse function g−1. We define sinρ,σ x := g−1(x) and put

πρ,σ := 2g(1) = 2
∫ 1

0

(1 − tσ)−1/ρdt. (2.3)

Note that sinρ,σ(πρ,σ/2) = 1. Since sinρ,σ x is increasing in [0, πρ,σ/2] onto
[0, 1], we extend it by

sinρ,σ x := sinρ,σ(πρ,σ − x) in (πρ,σ/2, πρ,σ].
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Furthermore we extend it to the whole of R as an odd 2πρ,σ-periodic function.
Then u(x) := sinρ,σ x satisfies

(|u′|ρ−2u′)′ +
σ(ρ − 1)

ρ
|u|σ−2u = 0.

Put ρ := 2, σ := p + 1 and define

Sp(x) := sin2,p+1 x, (2.4)

which satisfies
S′′

p +
p + 1

2
|Sp|p−1Sp = 0 in R. (2.5)

By (1.5) and (2.3), it holds that τ(p) = π2,p+1/2. This identity and the defini-
tion of Sp(x) imply that

Sp(0) = 0, S′
p(0) = 1, Sp(τ(p)) = 1, S′

p(τ(p)) = 0. (2.6)

Lemma 2.2. For each a > 0, (2.2) has a unique solution u(x, a), which is given
by

u(x, a) := a−2/(p−1)M(p)Sp(τ(p)a−1x), (2.7)
where

M(p) :=
(
[(p + 1)/2]τ(p)2

)1/(p−1)
. (2.8)

Moreover, if 0 < a < b, then u(x, b) < u(x, a) for 0 < x ≤ a and u(b, b) <
u(a, a).

Proof. Let v(x) be a unique solution of the initial value problem

v′′ + |v|p−1v = 0, v(0) = 0, v′(0) = 1.

By (2.4)–(2.6), v(x) is represented as

v(x) = qSp(q−1x), q := ((p + 1)/2)1/(p+1).

We define t0 := qτ(p), which is the first critical point of v(x), i.e., v′(t0) = 0
and v′(x) > 0 in [0, t0). Define v(x, α) := α2/(p−1)v(αx). By Lemma 2.1, we
know that functions v(x, α) for all α > 0 represent all the solutions satisfying
(2.2) except for the condition u′(a) = 0. Therefore u(x) = α2/(p−1)v(αx)
satisfies (2.2) if and only if v′(αa) = 0, i.e., α = t0/a. Hence (2.2) has a unique
solution u(x, a) := t

2/(p−1)
0 a−2/(p−1)v(t0a−1x), which is rewritten as (2.7).

Since Sp(x) is increasing in [0, τ(p)], it follows from (2.7) that if 0 < a < b, then
u(x, b) < u(x, a) for 0 < x ≤ a and u(b, b) < u(a, a). The proof is complete. �

Using Lemma 2.2, we prove Proposition 1.2.

Proof of Proposition 1.2. Let 0 < λ < 1. Consider the equation

u′′ + up = 0, u > 0 in (−1,−λ), u(−1) = 0, u′(−λ) = 0. (2.9)

Since (2.2) is autonomous, Lemma 2.2 ensures that (2.9) has a unique solution
U(x). Extend it to [−1, 1] by putting U(x) := U(−λ) for −λ ≤ x ≤ 0 and
U(x) := U(−x) for 0 ≤ x ≤ 1. Then U(x) is an even solution of (1.1). Con-
versely, let v(x) be any even solution of (1.1). Since v′′(x) ≡ 0 in (−λ, λ) and
v′(0) = 0, it holds that v′(−λ) = 0. Then v(x) satisfies (2.9). The uniqueness
of solutions for (2.9) shows that v(x) = U(x) in [−1,−λ] and hence these are
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identically equal on [−1, 1]. Thus (1.1) has a unique even solution U(x, λ). By
Lemma 2.2, U(x, λ) is strictly increasing with respect to λ.

We shall show the continuity of U(x, λ) with respect to λ. Let 0 < L1 <
L2 < 1. We have already proved the order relation

U(x,L1) ≤ U(x, λ) ≤ U(x,L2) for λ ∈ [L1, L2]. (2.10)

Therefore, h(x, λ)U(x, λ)p is bounded in L∞(−1, 1) for λ ∈ [L1, L2], and so is
U ′′(x, λ) by (1.1). Thus U(x, λ) is bounded in W 2,∞(−1, 1). Let λ0 ∈ (0, 1)
and let λn be any sequence converging to λ0. Put Un(x) := U(x, λn) and
hn(x) := h(x, λn). Then

U ′′
n + hn(x)Un(x)p = 0, Un > 0 in (−1, 1), Un(−1) = Un(1) = 0. (2.11)

Since Un is bounded in W 2,∞(−1, 1), it has a subsequence (again denoted by
Un) converging in C1[−1, 1] by the Sobolev embedding. Denote its limit by
U0(x). Integrating (2.11) over [0, x] and using the evenness of Un(x), we have

U ′
n(x) +

∫ x

0

hn(t)Un(t)pdt = 0.

As n → ∞, we obtain

U ′
0(x) +

∫ x

0

h(t, λ0)U0(t)pdt = 0,

which shows that

U ′′
0 + h(x, λ0)U0(x)p = 0, in (−1, 1), U0(−1) = U0(1) = 0.

By (2.10), we have U0(x) ≥ U(x,L1) > 0, where 0 < L1 < λ0. Therefore U0(x)
is an even positive solution of (1.1) with λ = λ0. The uniqueness of such a
solution ensures that U0(x) = U(x, λ0). The uniqueness of the limit implies
that Un(x) itself (without extracting a subsequence) converges to U(x, λ0).
The proof is complete. �

Let y(x) be a unique solution of (2.2) with a = 1. By (2.7), it is written
as

y(x) = M(p)Sp(τ(p)x), (2.12)
which satisfies

y′′ + |y|p−1y = 0, y > 0 in (0, 1), y(0) = 0, y′(1) = 0.

We define
z(x, λ) := (1 − λ)−2/(p−1)y((1 − λ)−1x). (2.13)

By the proof of Proposition 1.2, the unique even positive solution U(x, λ) of
(1.1) can be defined by

U(x, λ) := z(x + 1, λ) for − 1 ≤ x ≤ −λ, (2.14)
U(x, λ) := z(1 − λ, λ) for − λ ≤ x ≤ 0, (2.15)
U(x, λ) := U(−x, λ) for 0 ≤ x ≤ 1. (2.16)

Putting x = 1 in (2.12), we have

y(1) = M(p) = [((p + 1)/2)τ(p)2]1/(p−1). (2.17)



NoDEA Symmetry-breaking bifurcation Page 7 of 22 54

The expression above will be used later on.
Proposition 1.2 says that an even solution of (1.1) is unique for any

λ ∈ (0, 1), that is, a solution of (1.1) is unique in a class of even solutions.
However, the next lemma ensures that a solution of (1.1) is unique in the set
of all solutions when λ > 0 is small.

Lemma 2.3. ([8, Theorem 1.2]) For λ > 0 small enough, (1.1) has a unique
positive solution. Moreover, it is even.

We denote the unique even solution of (1.1) by U(x, λ). Since h(x, λ)
converges to 1 except for x = 0 as λ → +0, we define h(x, 0) ≡ 1 for x ∈ [−1, 1].
Therefore h(x, λ) is defined for all λ ∈ [0, 1). Consider the problem

U ′′ + Up = 0, U > 0 in (−1, 1), U(−1) = U(1) = 0. (2.18)

It is well known that the problem above has a unique solution and it becomes
even (for example, see [8] or [17]). Clearly, this solution U(x) is written as
U(x) = y(x+1), where y(x) is given by (2.12). Moreover, U(x) is concave and
hence U ′(x) > 0 in [−1, 0), U ′(0) = 0 and U ′(x) < 0 in (0, 1]. Denote a unique
solution of the problem above by U(x, 0). Hence we have

U ′(x, 0) > 0 in [−1, 0), U ′(0, 0) = 0, U ′(x, 0) < 0 in (0, 1]. (2.19)

Therefore U(x, λ) is defined for all λ ∈ [0, 1). Let ‖ · ‖q denote the Lq(−1, 1)
norm. Since ‖h(·, λ) − h(·, 0)‖q → 0 as λ → +0 for any q ∈ [1,∞), the same
method as in the proof of Proposition 1.2 ensures that U(x, λ) converges to
U(x, 0) in C1[−1, 1] as λ → +0. Therefore U(x, λ) is continuous in C1[−1, 1]
for λ ∈ [0, 1).

We define the linearized operator as

L(λ) := − d2

dx2
− ph(x, λ)U(x, λ)p−1.

Consider the eigenvalue problem

L(λ)φ = −φ′′ − ph(x, λ)U(x, λ)p−1φ = μφ, φ(−1) = φ(1) = 0. (2.20)

We denote the k-th eigenvalue of (2.20) by μk(λ). It is well known that each
eigenvalue is simple, i.e., each eigenspace is one dimensional, and each eigen-
function corresponding to μk(λ) has exactly k − 1 interior zeros in (−1, 1).

Let φk(x, λ) be an eigenfunction corresponding to μk(λ). We constrain it
by the conditions ‖φk‖∞ = 1 and φ′

k(1) < 0. Here, ‖·‖∞ denotes the L∞(−1, 1)
norm. Then φk(x, λ) is uniquely determined and satisfies

−φ′′
k − ph(x, λ)U(x, λ)p−1φk = μk(λ)φk in (−1, 1),

φk(−1) = φk(1) = 0, ‖φk‖∞ = 1, φ′
k(1) < 0.

(2.21)

Lemma 2.4. For each k, μk(λ) and φk(x, λ) are continuous for λ ∈ [0, 1) in the
spaces R and C1[−1, 1], respectively, that is, φk(x, λ) converges to φk(x, λ0) in
C1[−1, 1] as λ → λ0 ∈ [0, 1).
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Proof. Let 0 < Λ < 1. Then the potential −ph(x, λ)U(x, λ)p−1 is uniformly
bounded for λ ∈ [0,Λ]. The boundedness of the potential implies that of the
eigenvalue. Indeed, choose a constant M > 0 such that

−M ≤ −ph(x, λ)U(x, λ)p−1 ≤ 0 for x ∈ [−1, 1], λ ∈ [0,Λ].

The order relation of potentials also implies that of the eigenvalues (see [3]).
Hence the k-th eigenvalue μk(λ) is greater than or equal to that of the operator
−d2/dx2 − M and μk(λ) is less than or equal to that of −d2/dx2. Therefore
for each k, μk(λ) is bounded for λ ∈ [0,Λ]. We rewrite (2.21) as

− φ′′ = ph(x, λ)U(x, λ)p−1φ + μk(λ)φ, (2.22)

where we have written φ instead of φk. The right hand side is bounded in
L∞(−1, 1) and so is φ′′(x, λ) for λ ∈ [0,Λ]. Therefore φ(·, λ) is bounded in
W 2,∞(−1, 1). Let λ0 ∈ [0, 1) and let λn be any sequence converging to λ0. Put
φn(x) := φ(x, λn), Un(x) := U(x, λn), hn(x) := h(x, λn) and μn := μk(λn)
and substitute them in (2.22). Integrating (2.22), we have

−φ′
n(x) + φ′

n(−1) =
∫ x

−1

(
phn(t)Un(t)p−1 + μn

)
φn(t)dt.

Since φn is bounded in W 2,∞(−1, 1), it converges to a limit φ0 along a subse-
quence in C1[−1, 1]. Moreover μn also converges to a limit μ0 along a subse-
quence. As n → ∞, we have

−φ′
0(x) + φ′

0(−1) =
∫ x

−1

(
ph(t, λ0)U(t, λ0)p−1 + μ0

)
φ0(t)dt,

which is rewritten as

−φ′′
0 − ph(x, λ0)U(x, λ0)p−1φ0 = μ0φ0, φ0(−1) = φ0(1) = 0.

By ‖φn‖∞ = 1, we have ‖φ0‖∞ = 1. Therefore φ0(x) is an eigenfunction. Since
φn(x) is an eigenfunction corresponding to μk(λn), it has exactly k−1 interior
zeros in (−1, 1). Denote them by tn,i with 1 ≤ i ≤ k − 1 such that

−1 < tn,1 < tn,2 < · · · < tn,k−1 < 1.

Put tn,0 := −1 and tn,k := 1. We claim that tn,i − tn,i−1 ≥ c for 1 ≤ i ≤ k
with some c > 0 independent of n. Suppose to the contrary that there exists
a sequence {nj} ⊂ N such that tnj ,i − tnj ,i−1 converges to zero as j → ∞.
Along a subsequence, tnj ,i converges to a point t0. Let rj be a critical point of
φnj

(x) in (tnj ,i−1, tnj ,i), i.e., φ′
nj

(rj) = 0. Then rj → t0 as j → ∞. Therefore
φ0(t0) = φ′

0(t0) = 0 and hence φ0(x) ≡ 0. This contradicts ‖φ0‖∞ = 1. Hence
tn,i − tn,i−1 ≥ c with some c > 0. Since φn(x) converges to φ0(x) in C1[−1, 1],
φ0(x) has exactly k − 1 interior zeros in (−1, 1). Accordingly, it becomes an
eigenfunction corresponding to μk(λ0). Hence μ0 = μk(λ0). The uniqueness of
the limit guarantees that μk(λ) → μk(λ0) and φ(x, λ) → φ(x, λ0) as λ → λ0.
The proof is complete. �

Proposition 2.5. For all λ ∈ [0, 1), the first eigenvalue μ1(λ) is negative.
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Proof. We rewrite (1.1) with u = U(x, λ) as(
− d2

dx2
− h(x, λ)U(x, λ)p−1

)
U = 0, U(−1) = U(1) = 0.

This equation shows that the operator −d2/dx2 − h(x, λ)U(x, λ)p−1 has zero
as the first eigenvalue because U > 0. Compare the equation above with (2.20)
and note that −ph(x, λ)Up−1 ≤ −h(x, λ)Up−1 by p > 1 and the strict inequal-
ity holds for λ ≤ |x| < 1. From the order relation of potentials, we conclude
that the first eigenvalue μ1(λ) is negative. The proof is complete. �

3. Third eigenvalue

In this section, we investigate the third eigenvalue μ3(λ).

Proposition 3.1. The third eigenvalue μ3(λ) is positive for all λ ∈ [0, 1).

To prove the proposition above, we consider the eigenvalue problem in
the interval (0, 1),

− ψ′′ − ph(x, λ)U(x, λ)p−1ψ = νψ, ψ(0) = ψ(1) = 0. (3.1)

Denote the k-th eigenvalue of the problem above by νk(λ). Recall that μk(λ)
denotes the k-th eigenvalue in the interval (−1, 1). Then we have the next
lemma, which is a well-known result. However we give a proof for the sake of
completeness.

Lemma 3.2. μ2(λ) = ν1(λ).

Proof. Let ψ be the first eigenfunction of (3.1). Put ψ(x) := −ψ(−x) for
x ∈ [−1, 0]. Since h(x, λ) and U(x, λ) are even functions, ψ(x) becomes an
eigenfunction of (2.20). Since ψ(x) has exactly one zero in (−1, 1), it must
be the eigenfunction corresponding to the second eigenvalue μ2(λ). Therefore
μ2(λ) = ν1(λ). �

Recall that h(x, 0) ≡ 1, U(x, 0) is a unique solution of (2.18) and μk(0)
denotes the k-th eigenvalue of (2.20) with λ = 0.

Lemma 3.3. μ2(0) > 0.

Proof. Instead of μ2(0), we write μ2. Let φ(x) be an eigenfunction correspond-
ing to μ2. Then it has exactly one interior zero. It must be the origin by Lemma
3.2. Therefore it satisfies

φ′′ + (pU(x, 0)p−1 + μ2)φ = 0, φ(−1) = φ(0) = φ(1) = 0. (3.2)

Put V (x) := U ′(x, 0). Then V satisfies

V ′′ + pU(x, 0)p−1V = 0. (3.3)

We shall show that μ2 > 0. Suppose to the contrary that μ2 ≤ 0. Compare
Eqs. (3.2) and (3.3). The Sturm comparison theorem (see Lemma 4.2 later)
shows that either V (x) has a zero in (0, 1) or V (x) ≡ Cφ(x) on [0, 1] for
some constant C 
= 0. By (2.19), V (x) = U ′(x, 0) 
= 0 in (0, 1). Moreover,



54 Page 10 of 22 R. Kajikiya, I. Sim, and S. Tanaka NoDEA

V (1) = U ′(1, 0) < 0 = φ(1). A contradiction occurs. Therefore μ2 > 0. The
proof is complete. �

Since μk(λ) is continuous for λ ∈ [0, 1), Lemma 3.3 implies the next one.

Lemma 3.4. There exists a λ0 ∈ (0, 1) such that μ2(λ) > 0 for λ ∈ [0, λ0).

We consider the eigenvalue problem in the interval (0, 1),

−ψ′′ − ph(x, λ)U(x, λ)p−1ψ = ρψ in (0, 1), ψ′(0) = ψ(1) = 0.

Note that ψ′(0) = 0. Denote the k-th eigenvalue of the problem above by
ρk(λ). Recall that μk(λ) denotes the k-th eigenvalue in the interval (−1, 1)
under the Dirichlet boundary condition. Then we have the next lemma.

Lemma 3.5. μ3(λ) = ρ2(λ).

Proof. Let ψ be an eigenfunction corresponding to ρ2(λ). Then it has a unique
interior zero x0 ∈ (0, 1). Since ψ′(0) = 0 and h(x, λ) and U(x, λ) are even, we
can define ψ(x) := ψ(−x) for x ∈ [−1, 0]. Then ψ(x) is defined on [−1, 1] and
satisfies

−ψ′′ − ph(x, λ)U(x, λ)p−1ψ = ρ2(λ)ψ, ψ(−1) = ψ(1) = 0.

Therefore it becomes an eigenfunction having exactly two interior zeros, ±x0,
in (−1, 1). Hence it is an eigenfunction corresponding to μ3(λ). Consequently,
μ3(λ) = ρ2(λ). �

Proof of Proposition 3.1. By Lemma 3.4, μ3(λ) > μ2(λ) > 0 in [0, λ0). We
claim that μ3(λ) 
= 0 for all λ. If this claim would be proved, then the propo-
sition follows. Suppose to the contrary that μ3(λ) = 0 at some λ. By Lemma
3.5, ρ2(λ) = 0. Let ψ(x) be an eigenfunction corresponding to ρ2(λ) = 0, i.e.,

ψ′′ + ph(x, λ)U(x)p−1ψ = 0 in (0, 1), ψ′(0) = ψ(1) = 0,

where U(x) := U(x, λ). Denote the unique interior zero of ψ(x) by x0 ∈ (0, 1).
We can assume that ψ(0) > 0 after replacing ψ by −ψ if necessary. Then
ψ(x) > 0 in (0, x0) and ψ(x) < 0 in (x0, 1) and hence ψ′(1) > 0. Since
h(x, λ) = 0 in (0, λ), ψ′(x) = 0 in this interval. Accordingly, we have

ψ′(x) = 0 on [0, λ], ψ′(1) > 0. (3.4)

We employ the comparison function v(x), which was developed in [17],

v(x) := xU ′(x) +
2

p − 1
U(x) for x ∈ [λ, 1],

where U(x) := U(x, λ). Note that v(x) is Lipschitz continuous on [λ, 1] and is
a C∞ function in (λ, 1). Since U(x) belongs to C3(λ, 1] by p > 1, v(x) belongs
to C2(λ, 1]. Moreover, v(x) satisfies

v′′ + pU(x)p−1v = 0 in (λ, 1).

We define the Wronskian w(x) by

w(x) := v′(x)ψ(x) − v(x)ψ′(x).
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Since v(x) and ψ(x) satisfy the same linear differential equation in (λ, 1), w(x)
is constant. Indeed, we have

w′(x) = v′′(x)ψ(x) − v(x)ψ′′(x) = −pUp−1vψ + pUp−1vψ = 0.

Thus w(x) is constant in (λ, 1]. Recall that U ′(x) = 0 on [0, λ] and U ′(x) < 0
on (λ, 1]. Since ψ(1) = 0, we use (3.4) to find

w(1) = −v(1)ψ′(1) = −U ′(1)ψ′(1) > 0. (3.5)

We compute v′(x) as

v′(x) = xU ′′(x) +
p + 1
p − 1

U ′(x) = −xU(x)p +
p + 1
p − 1

U ′(x) in (λ, 1].

Since U ′(λ) = 0, it holds that limx→λ+0 v′(x) = −λU(λ)p. Since ψ(λ) > 0 and
ψ′(λ) = 0 by (3.4), we have

lim
x→λ+0

w(x) = −λU(λ)pψ(λ) < 0. (3.6)

Inequalities (3.5) and (3.6) contradict the fact that w(x) is constant. Therefore
ρ2(λ) = μ3(λ) must not be zero. The proof is complete. �

4. Second eigenvalue

We shall show that the second eigenvalue μ2(λ) changes its sign exactly once
as λ varies in [0, 1).

Proposition 4.1. Let λ∗ = λ∗(p) be given by (1.4). Then μ2(λ) > 0 in [0, λ∗),
μ2(λ∗) = 0 and μ2(λ) < 0 in (λ∗, 1).

To prove Proposition 4.1, we need the Sturm comparison theorem in the
space W 2,1(a, b). Let us consider

u′′ + q(x)u = 0, v′′ + Q(x)v = 0 in (a, b), (4.1)

with a finite interval (a, b). The Sturm comparison theorem usually requires
the assumption that u, v ∈ C2(a, b). However it is enough to assume that
they belong to W 2,1(a, b). Indeed, the standard proof of the theorem is still
valid even if q,Q ∈ L1(a, b) and u, v ∈ W 2,1(a, b). A function u(x) belongs
to W 2,1(a, b) if and only if u ∈ C1[a, b] and u′(x) is absolutely continuous on
[a, b].

Lemma 4.2. Let q,Q ∈ L1(a, b) and q(x) ≤ Q(x) a.e. in (a, b). Let u, v ∈
W 2,1(a, b), u, v 
≡ 0 in (a, b) and assume that they satisfy (4.1). If u(a) =
u(b) = 0, then either (i) or (ii) below holds:

(i) v(x) has a zero in (a, b),
(ii) u(x) ≡ cv(x) with some c 
= 0.
If the second alternative holds, then q = Q a.e. in (a, b). Therefore, if Q(x) −
q(x) ≥ 0 a.e. in (a, b) and Q(x) − q(x) > 0 in a subset with positive measure
in (a, b) and if u(a) = u(b) = 0, then only assertion (i) holds.
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To study the second eigenvalue μ2(λ), we investigate the equation

φ′′ + ph(x, λ)U(x, λ)p−1φ = 0 in (−1, 1), φ(−1) = 0, φ′(−1) 
= 0. (4.2)

We shall construct a solution of the equation above. To this end, for the even
positive solution U(x) = U(x, λ) of (1.1), we define

v(x) := xU ′(x) +
2

p − 1
U(x), w(x) := U ′(x).

Note that

v, w ∈ W 1,∞(−1, 1) ∩ C2([−1, 1]\{±λ}),

which satisfy

v′′ + phUp−1v = 0, w′′ + phUp−1w = 0 in (−1, 1)\{±λ}. (4.3)

We put

φ1(x) := v(x) + w(x) on [−1,−λ], (4.4)

φ2(x) := −(1 − λ)U(−λ)p(x + λ) +
2

p − 1
U(−λ) on [−λ, λ], (4.5)

φ3(x) := αv(x) + βw(x) on [λ, 1], (4.6)

where α and β are constants to be determined later. We here note that the
graph of φ2(x) is a line segment. Define

φ(x) :=

⎧⎨
⎩

φ1(x) on [−1,−λ],
φ2(x) on [−λ, λ],
φ3(x) on [λ, 1].

(4.7)

It follows from an easy computation that

φ′
1(x) = −(1 + x)Up +

p + 1
p − 1

U ′(x) on [−1,−λ], (4.8)

φ′
2(x) = −(1 − λ)U(−λ)p on [−λ, λ], (4.9)

φ′
3(x) = α

(
−xUp +

p + 1
p − 1

U ′(x)
)

− βUp on [λ, 1]. (4.10)

Then it is easy to verify that φ(x) is a C1 function at x = −λ. Indeed, by
(4.4), (4.5), (4.8), (4.9) and by using U ′(−λ) = 0, we have

φ1(−λ) = φ2(−λ), φ′
1(−λ) = φ′

2(−λ).

We here determine α and β such that φ(x) is a C1 function at x = λ. To this
end, we impose the conditions

φ2(λ) = φ3(λ), φ′
2(λ) = φ′

3(λ).

Recall that U ′(λ) = U ′(−λ) = 0 and U(λ) = U(−λ). We put η := U(λ) =
U(−λ). Using (4.5), (4.6), (4.9) and (4.10), we rewrite the equations above as

−2λ(1 − λ)ηp +
2

p − 1
η =

2
p − 1

ηα,

−(1 − λ)ηp = −ληpα − βηp.
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Solving the equations, we have

α = 1 − λ(1 − λ)(p − 1)ηp−1, (4.11)
β = 1 − 2λ + λ2(1 − λ)(p − 1)ηp−1. (4.12)

After defining α and β as above, φ(x) belongs to C1[−1, 1] and moreover φ′(x)
is Lipschitz continuous. Therefore φ(x) belongs to W 2,∞(−1, 1). Since v(x)
and w(x) satisfy (4.3), φ(x) fulfills (4.2). Then we obtain the lemma below.

Lemma 4.3. Define α and β by (4.11) and (4.12), respectively, and φ(x) by
(4.7). Then φ belongs to W 2,∞(−1, 1) and satisfies (4.2).

The value α + β will play an important role to determine the sign of the
second eigenvalue μ2(λ). By (4.11) and (4.12), it is computed as

α + β = 2(1 − λ) − λ(1 − λ)2(p − 1)ηp−1. (4.13)

We use (2.13) and (2.14) to obtain

η = U(−λ, λ) = z(1 − λ, λ) = (1 − λ)−2/(p−1)y(1).

Substituting this relation in (4.13) and using (2.17), we obtain

α + β = 2(1 − λ) − λ(p − 1)y(1)p−1 = 2 − 2−1[4 + (p2 − 1)τ(p)2]λ.

By (1.4), we have
α + β = 2(λ∗(p) − λ)/λ∗(p). (4.14)

We investigate the number of zeros of φ(x) given by (4.7).

Lemma 4.4. Let φ(x) be given by (4.7). Then φ(x) > 0 in (−1,−λ] and φ(x)
has either one zero or two zeros in (−λ, 1].

Proof. It is clear that for x ∈ (−1,−λ],

φ(x) = φ1(x) = v(x) + w(x) = (1 + x)U ′(x) +
2

p − 1
U(x) > 0.

We choose an eigenfunction ψ(x) corresponding to μ1(λ), which satisfies

ψ′′ + (phUp−1 + μ1(λ))ψ = 0, ψ(−1) = ψ(1) = 0.

Recall that μ1(λ) < 0 by Proposition 2.5. Compare the equation above with
(4.2) and use Lemma 4.2. Then φ has a zero in (−1, 1).

We shall show that φ has at most two zeros in (−1, 1]. Let ψ(x) be an
eigenfunction corresponding to μ3(λ), which has exactly two interior zeros in
(−1, 1) and satisfies

ψ′′ + (phUp−1 + μ3(λ))ψ = 0, ψ(−1) = ψ(1) = 0.

Recall that μ3(λ) > 0 for all λ ∈ (0, 1) by Proposition 3.1. Suppose to the
contrary that φ has at least three zeros in (−1, 1], say −1 < x1 < x2 < x3 ≤ 1.
Then

φ(−1) = φ(x1) = φ(x2) = φ(x3) = 0.

By Lemma 4.2 with μ3(λ) > 0, ψ(x) has at least three zeros in (−1, x3). A
contradiction occurs. Therefore φ(x) has at most two zeros. �
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By the definition of φ and (4.14), we have

φ(1) = φ3(1) = (α + β)U ′(1) = 2U ′(1)(λ∗(p) − λ)/λ∗(p).

Since U ′(1) < 0, φ(1) and λ∗(p) − λ have the opposite signs. By Lemma 4.4,
φ(x) > 0 in (−1,−λ] and the number of zeros of φ(x) in (−1, 1] is either one
or two. Hence φ(1) > 0 (equivalently, λ > λ∗(p)) holds if and only if φ(x) has
exactly two zeros in (−1, 1). The condition φ(1) < 0 (i.e., λ < λ∗(p)) holds if
and only if φ(x) has exactly one zero in (−1, 1). Thus we have the next lemma.

Lemma 4.5. Let φ(x) be given by (4.7). If λ < λ∗(p), then φ(x) has exactly one
zero in (−1, 1) and φ(1) 
= 0. If λ = λ∗(p), then φ(x) has exactly one zero in
(−1, 1) and φ(1) = 0. If λ > λ∗(p), then φ(x) has exactly two zeros in (−1, 1)
and φ(1) 
= 0.

Using the lemma above with Lemma 4.2, we show Proposition 4.1.

Proof of Proposition 4.1. Let ψ(x) be an eigenfunction corresponding to μ2(λ),
i.e.,

ψ′′ + (ph(x, λ)U(x, λ)p−1 + μ2(λ))ψ = 0, ψ(−1) = ψ(1) = 0. (4.15)

By the proof of Lemma 3.2, ψ(x) has a unique interior zero in (−1, 1) and it
is the origin. Hence

ψ(−1) = ψ(0) = ψ(1) = 0.

We now show that if λ < λ∗(p), then μ2(λ) > 0. Suppose to the contrary that
μ2(λ) ≤ 0 at some λ ∈ [0, λ∗(p)). Compare (4.15) with (4.2). By Lemma 4.2,
either φ has at least two zeros in (−1, 1) or φ(x) ≡ cψ(x) with some c 
= 0.
The former assertion contradicts Lemma 4.5 because λ < λ∗(p). The latter
means that φ(1) = 0, which contradicts Lemma 4.5. Therefore μ2(λ) > 0
when λ < λ∗(p). In the same discussion, we can prove that if λ > λ∗(p),
then μ2(λ) < 0. By the continuity of μ2(λ), μ2(λ∗) must be zero. The proof is
complete. �

5. Estimates of positive solutions

In this section, we give some a priori estimates for positive solutions of (1.1).
When h(x, λ) is a general weight function, an a priori estimate for the L∞

norm was obtained in [22, Theorem 4.1] by using the integral of h(x, λ). In the
present paper, since h(x, λ) = 1 for λ ≤ |x| ≤ 1, we use this definition to get
an optimal estimate as below.

Theorem 5.1. There exist constants c, C > 0 independent of λ such that any
positive solution u(x) of (1.1) satisfies

‖u′‖∞ = (2/(p + 1))1/2‖u‖(p+1)/2
∞ , (5.1)

c(1 − λ)−2/(p−1) ≤ ‖u‖∞ ≤ C(1 − λ)−2/(p−1), (5.2)

c(1 − λ)−(p+1)/(p−1) ≤ ‖u′‖∞ ≤ C(1 − λ)−(p+1)/(p−1), (5.3)
c ≤ ‖u‖∞ ≤ ‖u‖C1 , (5.4)
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where ‖u‖C1 denotes the C1[−1, 1] norm of u.

Let u be any positive solution of (1.1) and let x0 be a maximum point
of u(x). If u is even, then it attains its maximum at all points on [−λ, λ]. In
this case, we choose x0 = λ. If u is not even, then it has a unique maximum
point x0, which lies in (−1,−λ) or in (λ, 1). We assume that x0 ∈ (λ, 1) after
replacing u(x) by u(−x) if necessary. Note that this replacement leaves the
norms ‖u‖∞ and ‖u′‖∞ invariant. Therefore we assume that x0 ∈ [λ, 1) even
if u is even or not.

Lemma 5.2. Let u(x) be any positive solution of (1.1) and let x0 ∈ [λ, 1) be a
maximum point of u(x). Define τ(p) by (1.5). Then

u(x0) = [((p + 1)/2)τ(p)2]1/(p−1)(1 − x0)−2/(p−1).

Proof. Since h(x, λ) = 1 in [λ, 1], we have

u′′ + up = 0 in [λ, 1], u′(x0) = 0, u(1) = 0. (5.5)

By (2.7), the solution u(x) of the equation above is written as

u(x) = (1 − x0)−2/(p−1)M(p)Sp

(
τ(p)(1 − x0)−1(1 − x)

)
in [x0, 1]. (5.6)

Therefore, u(x0) = (1 − x0)−2/(p−1)M(p). This identity with (2.8) proves the
lemma. �
Proof of Theorem 5.1. Combining (5.1) with (5.2), we have (5.3). Inequality
(5.4) follows readily from (5.2). Therefore it is enough to show (5.1) and (5.2).
Let u(x) be any positive solution of (1.1) with a maximum point x0 ∈ [λ, 1).
Since u is concave, the maximum of |u′(x)| is achieved at x = 1 or x = −1.
We shall show that it is attained at x = 1 when x0 ∈ [λ, 1). If u is even,
then |u′(1)| = |u′(−1)|. Hence our claim is valid. Let u be non-even. Then
x0 ∈ (λ, 1). Since x0 > λ, it holds that u′(x) = u′(λ) = u′(−λ) > 0 in [−λ, λ]
and u(−λ) < u(λ). We here define the energy E(x) by

E(x) :=
1
2
u′(x)2 +

1
p + 1

u(x)p+1.

Multiplying both sides of (1.1) by u′(x), we find that E(x) is constant in
[−1,−λ] and in [λ, 1]. Since u(−λ) < u(λ) and u′(−λ) = u′(λ), we have
E(−λ) < E(λ). Therefore E(−1) = E(−λ) < E(λ) = E(1). This shows that
|u′(−1)| < |u′(1)| and hence ‖u′‖∞ = |u′(1)|. Differentiating (5.6) at x = 1
and using (2.8) and Lemma 5.2, we have

u′(1) = −(1 − x0)−(p+1)/(p−1)M(p)τ(p) = −
(

2
p + 1

)1/2

u(x0)(p+1)/2.

This proves (5.1).
We shall show (5.2). If u is even, we take x0 = λ in Lemma 5.2. Then

‖u‖∞ = [((p + 1)/2)τ(p)]2/(p−1)(1 − λ)−2/(p−1).

Thus (5.2) holds. Let u be non-even. Then x0 ∈ (λ, 1). We claim that x0 <
(1 + λ)/2. Suppose to the contrary that x0 ≥ (1 + λ)/2. Since u(x) satisfies
(5.5), u(x) is symmetric with respect to the line x = x0, i.e., u(x0 − x) =
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u(x0 + x) when λ ≤ x0 − x < x0 + x ≤ 1. Substituting x = 1 − x0, we have
u(2x0 − 1) = u(1) = 0. This is impossible. Accordingly, x0 < (1 + λ)/2. Hence
(1 − λ)/2 < 1 − x0 < 1 − λ. Combining this inequality with Lemma 5.2, we
have (5.2). The proof is complete. �

From Theorem 5.1, we derive the next result.

Lemma 5.3. Let u be a positive solution of (1.1). If v is a nonnegative solution
of (1.1) satisfying ‖u − v‖C1 < c, then v is a positive solution. Here, c > 0 is
given by (5.4).

Proof. Let u be a positive solution of (1.1). Let v be a nonnegative solution
of (1.1) satisfying ‖u − v‖C1 < c. Then ‖v‖C1 > 0 by (5.4). Hence v 
≡ 0 in
(−1, 1). By the strong maximum principle, v(x) > 0 in (−1, 1). �

6. Proof of the main result

Since h(x, λ) is not differentiable with respect to λ, the standard bifurcation
method based on the Lyapunov–Schmidt reduction does not seem to work well.
Instead of such a method, we will make use of the following result to prove
Theorem 1.3. See [16, p.58, Theorem 12], [15] or [9].

Proposition 6.1. Let E be a real Banach space and T : R × E → E completely
continuous such that T (l, 0) = 0 for all l ∈ R. Suppose that there exist constants
a, b ∈ R with a < b such that (a, 0) and (b, 0) are not bifurcation points for the
equation

v − T (l, v) = 0. (6.1)
Furthermore, assume that

deg(I − T (a, · ), Br(0), 0) 
= deg(I − T (b, · ), Br(0), 0),

where I is the identity operator, Br(0) = {v ∈ E : ‖v‖E < r} is an isolat-
ing neighborhood of the trivial solution for both constants a and b and deg(·)
denotes the Leray–Schauder degree. Define

S := {(l, v) : (l, v) is a solution of (6.1) with v 
= 0} ∪ ([a, b] × {0})

and let C be the maximal connected subset of S containing [a, b] × {0}. Then
either

(i) C is unbounded in R × E, or
(ii) C ∩ [(R\[a, b]) × {0}] 
= ∅.

Let Λ ∈ C(R) be a strictly increasing function such that

lim
l→−∞

Λ(l) = 0, lim
l→∞

Λ(l) = 1.

(For example, Λ(l) = 1/(1 + e−l).) Then 0 < Λ(l) < 1 for l ∈ R.
We define T : R × C1[−1, 1] → C1[−1, 1] by

T (l, v) =
∫ 1

−1

G(x, y)h(y,Λ(l))|U(y,Λ(l)) + v(y)|pdy − U(x,Λ(l)), (6.2)
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where G(x, y) is a Green’s function of the operator F [v] = −v′′ with v(−1) =
v(1) = 0:

G(x, y) =
1
2

{
(1 + x)(1 − y), −1 ≤ x ≤ y ≤ 1,

(1 − x)(1 + y), −1 ≤ y ≤ x ≤ 1.

By the standard argument, we can prove that T is completely continuous. We
note that T (l, 0) = 0 for l ∈ R and hence (6.1) has a solution v = 0. If v is a
solution of (6.1), then u(x) := U(x,Λ(l)) + v(x) is a nonnegative solution of
(1.1) with λ = Λ(l). Indeed,

u(x) = U(x,Λ(l)) + v(x)

=
∫ 1

−1

G(x, y)h(y,Λ(l))|U(y,Λ(l)) + v(y)|pdy

=
∫ 1

−1

G(x, y)h(y,Λ(l))|u(y)|pdy ≥ 0,

or equivalently,

u(x) =
∫ 1

−1

G(x, y)h(y,Λ(l))|u(y)|pdy ≥ 0.

Hence u(x) is nonnegative and satisfies

−u′′(x) = h(x,Λ(l))|u(x)|p = h(x,Λ(l))u(x)p, u(−1) = u(1) = 0.

Thus it is a nonnegative solution of (1.1) with λ = Λ(l). Moreover, if u(x) 
≡ 0,
then the strong maximum principle (or the uniqueness of solutions for the
initial value problem (u(x0), u′(x0)) = (0, 0)) ensures that u(x) is a positive
solution. Hence the next lemma follows.

Lemma 6.2. Define T (l, v) by (6.2). If v(x) satisfies (6.1), then u(x) := U(x,Λ
(l)) + v(x) is a nonnegative solution of (1.1) with λ = Λ(l). Moreover, if
u(x) 
≡ 0, then it becomes a positive solution of (1.1).

Let m(λ) be the Morse index of U(x, λ), that is, the number of negative
eigenvalues of (2.20). Recall that λ∗ defined by (1.4) is a unique zero of μ2(λ).
By Propositions 2.5, 3.1 and 4.1, if 0 < λ < λ∗, then m(λ) = 1 and U(x, λ) is
nondegenerate, and if λ∗ < λ < 1, then m(λ) = 2 and U(x, λ) is nondegenerate.
Here, U(x, λ) is said to be nondegenerate if μ = 0 is not an eigenvalue of (2.20).

In the same way as in [17, Lemma 7.2], we have the following result.

Lemma 6.3. If U(x,Λ(l)) is nondegenerate, then (l, 0) is not a bifurcation point
for (6.1).

To get the bifurcation branch, we use Proposition 6.1 with the Whyburn
lemma (see [23, p.12, (9.4)]).

Lemma 6.4. (Whyburn [23]) Let (X, d) be a metric space and Mn be a sequence
of subsets of X. Suppose that each Mn is nonempty, compact, connected, and
satisfies

M1 ⊃ M2 ⊃ M3 ⊃ · · · .

Then M := ∩∞
n=1Mn is nonempty, compact, and connected.
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We take l∗ ∈ R such that Λ(l∗) = λ∗. Lemma 6.3 implies that if l 
= l∗,
then (l, 0) is not a bifurcation point for (6.1).

Let a, b ∈ R satisfy a < l∗ < b. Then 0 < Λ(a) < λ∗ < Λ(b) < 1,
m(Λ(a)) = 1, m(Λ(b)) = 2 and deg(I − T (c, · ), Br(0), 0) with c = a, b is well-
defined for some sufficiently small r > 0. By the same argument as in [17,
Section 7], we conclude that

deg(I − T (a, · ), Br(0), 0) = (−1)m(Λ(a)) = (−1)1 = −1,

and

deg(I − T (b, · ), Br(0), 0) = (−1)m(Λ(b)) = (−1)2 = 1.

We use Proposition 6.1 with E = C1[−1, 1]. For each n ∈ N, there exists a
maximal connected subset Cn ⊂ R×C1[−1, 1] of S containing [a, b]×{0} with
a := l∗ − 1/n and b := l∗ + 1/n. Here, we recall that (l, 0) is not a bifurcation
point if l 
= l∗. Therefore, the second of the alternatives in Proposition 6.1 can
be eliminated, that is, Cn is unbounded. We define

B(R) := {u ∈ C1[−1, 1] : ‖u‖C1 ≤ R}.

For each R > 0 and n ∈ N, we denote by Cn(R) the maximal connected subset
of Cn ∩ ([l∗ − R, l∗ + R] × B(R)) containing the point (l∗, 0) ∈ Cn. This set
is compact because each point in Cn(R) is a nonnegative solution satisfying
‖u‖C1 ≤ R. This estimate implies an a priori estimate in W 2.∞(−1, 1), i.e.,
for each (l, u) ∈ Cn(R), it holds that ‖u‖W 2,∞ ≤ CR with some CR > 0
(see the proof of Lemma 6.5 later). Here CR is a constant independent of n.
This estimate with the Sobolev embedding shows the compactness of Cn(R).
Then Cn(R) is nonempty compact connected and satisfies Cn(R) ⊃ Cn+1(R)
for n ≥ 1. We define C(R) := ∩∞

n=1Cn(R). By Lemma 6.4, this is nonempty
compact and connected. We define

C∗ :=
⋃

R>0

C(R). (6.3)

Since (l∗, 0) ∈ C(R) ∩ C(R′) for any R,R′ > 0, C∗ is connected.

Lemma 6.5. C∗ is unbounded.

Proof. Let R > 0 be any number. Since Cn is unbounded, Cn(R) intersects
the boundary of [l∗ − R, l∗ + R] × B(R). Choose an intersection point (ln, vn).
Then either

|ln − l∗| = R and ‖vn‖C1 ≤ R, (6.4)

or
|ln − l∗| ≤ R and ‖vn‖C1 = R. (6.5)

Put un(x) := U(x,Λ(ln)) + vn(x). This is a nonnegative solution of (1.1) by
Lemma 6.2. By (6.4) or (6.5) and Λ(l∗ − R) ≤ Λ(ln) ≤ Λ(l∗ + R), un(x)
is bounded in C1[−1, 1], i.e., ‖un‖C1 ≤ CR with a certain constant CR > 0
independent of n. By (1.1), we have

‖u′′
n‖∞ = ‖h(x, λ)up

n‖∞ ≤ Cp
R.
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Thus un is bounded in W 2,∞(−1, 1). By the Sobolev embedding, we can ex-
tract a subsequence {unj

} of {un} which converges in C1[−1, 1]. Then vnj

converges to a limit v∞ in C1[−1, 1] and lnj
also converges to a limit l∞

along a subsequence. Since (lnj
, vnj

) ∈ Cnj
(R), Cnj

(R) ⊃ Cnj+1(R) and each
Cnj

(R) is compact, the definition of C(R) shows that (l∞, v∞) ∈ C(R). Hence
(l∞, v∞) ∈ C(R) ⊂ C∗. By (6.4) or (6.5), we have |l∞−l∗| = R or ‖v∞‖C1 = R.
Since R > 0 is arbitrary, C∗ is unbounded. �

Remark 6.6. We can define C∗ another way. We fix a, b ∈ R such that a <
l∗ < b. Let C0 be the maximal connected subset of S containing [a, b]×{0}. We
remove the set ([a, b]\{l∗}) × {0} from C0 and define C∗ by

C∗ := C0\L, L := ([a, b]\{l∗}) × {0}.

The definition above is the same as in (6.3). We can prove directly that C∗
defined above is connected. However this proof is longer than that for (6.3).

We conclude this paper by proving Theorem 1.3.

Proof of Theorem 1.3. It follows from the definition of C∗ that

C∗ ∩ (R × {0}) = {(l∗, 0)}. (6.6)

Define

C := {(λ,U( · , λ) + v) : (Λ−1(λ), v) ∈ C∗},

where Λ−1 is the inverse function of Λ. Then C is a closed connected subset
of (0, 1) × E. Observe that (l∗, 0) ∈ C∗ by (6.6). This point corresponds to
(λ∗, U(x, λ∗)), and hence (λ∗, U(x, λ∗)) ∈ C, which is an even positive solution.
Therefore C contains a positive solution. Recall that each element of C is a
nonnegative solution by Lemma 6.2. Let D be a set of points (λ, u) ∈ C which
are positive solutions of (1.1). Then it is nonempty and relatively open in C by
Lemma 5.3. It is also relatively closed in C by (5.4) with the strong maximum
principle. Since C is connected, D coincides with C. Thus all elements of C are
positive solutions of (1.1). By Proposition 1.2 with (6.6), any point (λ, u) ∈ C
except for (λ∗, U(·, λ∗)) must be non-even.

Next we will prove that, for l > l∗, there exists a v such that (l, v) ∈ C∗.
Assume to the contrary that there exists an L1 > l∗ such that any (l, v) ∈ C∗
satisfies l ≤ L1. On the other hand, by Lemma 2.3, there exists an L0 ∈ R such
that (1.1) has no positive non-even solution with λ = Λ(l) if l < L0. Therefore,
C∗ ⊂ [L0, L1] × C1[−1, 1]. By Theorem 5.1, there exists a constant M > 0
such that if u is a positive solution of (1.1) with λ = Λ(l) and l ∈ [L1, L2],
then ‖u‖C1 ≤ M . We observe that if (l, v) ∈ C∗, then U(x,Λ(l)) + v(x) and
U(x,Λ(l)) are positive solutions of (1.1), and therefore

‖v‖C1 = ‖U( · ,Λ(l)) + v − U( · ,Λ(l))‖C1

≤ ‖U( · ,Λ(l)) + v‖C1 + ‖U( · ,Λ(l))‖C1

≤ 2M,

which means that C∗ is bounded. This contradicts Lemma 6.5. Hence, for every
l > l∗, there exists a v such that (l, v) ∈ C∗. This result shows that for every
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λ ∈ (λ∗, 1), there exists a u such that (λ, u) ∈ C. By Theorem 5.1, ‖u‖C1

diverges to infinity as λ → 1 with (λ, u) ∈ C. Therefore C is unbounded.
We shall show that λ′

∗(p) < 0. We put f(p) := (p2 − 1)τ(p)2. It is enough
to show that f ′(p) > 0. We compute

f ′(p) = 2pτ(p)2 + 2(p2 − 1)τ(p)τ ′(p) = 2τ(p)[pτ(p) + (p2 − 1)τ ′(p)].

Differentiating (1.5), we have

τ ′(p) =
1
2

∫ 1

0

(1 − tp+1)−3/2tp+1 log t dt.

This integral is finite because log t � t−1 near t = 1. Using the identity above,
we have

pτ(p) + (p2 − 1)τ ′(p)

= p

∫ 1

0

(1 − tp+1)−1/2dt +
p2 − 1

2

∫ 1

0

(1 − tp+1)−3/2tp+1 log t dt

=
1
2

∫ 1

0

(1 − tp+1)−3/2
{
2p(1 − tp+1) + (p2 − 1)tp+1 log t

}
dt.

For fixed p ∈ (1,∞), we define

g(t) := 2p(1 − tp+1) + (p2 − 1)tp+1 log t.

If we would prove that g(t) > 0 for t ∈ (0, 1), then it follows that f ′(p) > 0.
Differentiating g(t), we have

g′(t) = −(p + 1)2tp + (p2 − 1)(p + 1)tp log t < 0 for t ∈ (0, 1).

Hence g(t) is decreasing. Since g(1) = 0, g(t) is positive. Consequently, f ′(p) >
0 and λ′

∗(p) < 0. Observe that

lim
p→1

τ(p) =
π

2
, lim

p→∞ τ(p) = 1.

This proves that limp→1 λ∗(p) = 1 and limp→∞ λ∗(p) = 0. The proof is com-
plete. �
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[4] Drábek, P., Manásevich, R.: On the closed solution to some nonhomogeneous
eigenvalue problems with p-Laplacian. Differ. Integral Equ. 12, 773–788 (1999)

[5] Gritsans, A., Sadyrbaev, F.: Extension of the example by Moore–Nehari. Tatra
Mt. Math. Publ. 63, 115–127 (2015)

[6] Kajikiya, R.: Non-even least energy solutions of the Emden–Fowler equation.
Proc. Am. Math. Soc. 140, 1353–1362 (2012)

[7] Kajikiya, R.: Non-radial least energy solutions of the generalized Hénon equa-
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