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Abstract. In this paper we study a phase transition model for vehicular
traffic flows. Two phases are taken into account, according to whether
the traffic is light or heavy. We assume that the two phases have a non-
empty intersection, the so called metastable phase. The model is given
by the Lighthill–Whitham–Richards model in the free-flow phase and by
the Aw–Rascle–Zhang model in the congested phase. In particular, we
study the existence of solutions to Cauchy problems satisfying a local
point constraint on the density flux. We prove that if the constraint F
is higher than the minimal flux f−

c of the metastable phase, then con-
strained Cauchy problems with initial data of bounded total variation
admit globally defined solutions. We also provide sufficient conditions on
the initial data that guarantee the global existence of solutions also in
the case F < f−

c . These results are obtained by applying the wave-front
tracking technique.
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1. Introduction

In this paper we study one of the constrained phase transition models of hy-
perbolic conservation laws introduced in [11]. The application of such model
is, for instance, the modelling of vehicular traffic along a road with point-
like inhomogeneities characterized by limited capacity, such as speed bumps,
construction sites, tollbooths, etc.
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The model considers two different phases corresponding to the congested
phase Ωc and the free-flow phase Ωf . The model is given by a 2 × 2 system of
conservation laws in the congested phase, coupled with a scalar conservation
law in the free-flow phase. The coupling is achieved via phase transitions,
namely discontinuities between two states belonging to different phases and
satisfying the Rankine–Hugoniot conditions.

The first two-phase model has been proposed by Colombo in [8]. The
motivation stems from experimental data, according to which the density flux
represented in the fundamental diagram is one-dimensional for high velocities,
while it covers a two-dimensional domain for low velocities, see [8, Figure 1.1].
For this reason, it is reasonable to describe the dynamics in the congested
regime with a 2 × 2 system of conservation laws and those in the free regime
with a scalar conservation law.

Later, Goatin proposed in [15] a two-phase model obtained by coupling
the ARZ model by Aw, Rascle and Zhang [3,20] for the congested phase Ωc,
with the LWR model by Lighthill, Whitham and Richards [17,18] for the free-
flow phase Ωf . We recall that this model has been recently generalized in [4].

Both the models introduced in [8,15] assume that Ωc ∩ Ωf = ∅. The first
two-phase model that considers a metastable phase Ωc ∩ Ωf �= ∅ has been
introduced in [6]. We also recall that, differently from [4,15], for the models
in [6,8] the density flux function vanishes at a maximal density, whose inverse
corresponds to the average length of the vehicles. Here we consider the case
Ωc ∩ Ωf �= ∅. For this reason, in order to ensure the well-posedness of the
Cauchy problems, see [8, Remark 2], we also assume that Ωf is characterized
by a unique value of the velocity, V . At last, we consider an heterogeneous
traffic with vehicles having different lengths and allow the density flux function
to vanish at different densities.

These two-phase models have been recently generalized in [5,11] by con-
sidering Riemann problems, namely Cauchy problems for piecewise constant
initial data with a single jump, coupled with a constraint on the density flux,
so that at the interface x = 0 the density flux of the solution must be lower
than a given constant quantity F . This condition is referred to as unilateral
point constraint and can be thought of as a pointwise bottleneck at x = 0
that hinders the density flow, see [19] and the references therein. In vehicular
traffic, a point constraint accounts for inhomogeneities of the road and models,
for instance, the presence of a toll gate across which the flow of the vehicles
cannot exceed its capacity F .

In the case in which no constraint conditions are enforced, existence re-
sults for the Cauchy problems for the above mentioned two-phase transition
models have already been established, see [4,6,10,15]. In the present paper,
we focus on the constrained version proposed in [11] for the model introduced
in [4] and prove an existence result for constrained Cauchy problems. More
precisely, we use the Riemann solvers established in [4,11] in a wave-front
tracking scheme and prove that the obtained approximate solution un con-
verges (up to a subsequence) to a globally defined solution of the constrained
Cauchy problem with general BV-initial data, at least in the case F ≥ f−

c ,
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Figure 1. Notations

where the threshold value f−
c is the minimal density flux of the metastable

phase, see Fig. 1. At last, in the case F < f−
c we give sufficient conditions on

the initial data that ensure the convergence of un to a globally defined solution
of the constrained Cauchy problem.

The paper is organized as follows. In the next section we introduce the
notations used throughout the paper, the model, the definitions of solutions
to the unconstrained and constrained Cauchy problems, the main result in
Theorem 2.8 and at last the Riemann solvers for the unconstrained and con-
strained Riemann problems. In Sect. 3 we apply the model to reproduce the
traffic across a toll gate. Finally, in the last section we defer the technical
proofs.

2. Notations, definitions and main result

In this section we state the main assumptions on the parameters, collect useful
notations, see Fig. 1, give the definition of solutions, state the main result in
Theorem 2.8 and at last introduce the Riemann solvers.

2.1. Notations

Denote by ρ ≥ 0 and v ≥ 0 the density and the velocity of the vehicles,
respectively. Let u

.= (ρ, v) and f(u) .= v ρ be the density flux. If V > 0 is the
unique velocity in the free-flow phase Ωf and ρ+ is the maximal density in Ωf ,
then

Ωf
.=
{
u ∈ R

2
+ : ρ ≤ ρ+, v = V

}
,

where R+
.= [0,∞). If the velocity V is reached in the congested phase Ωc for

densities ranging in [ρ−, ρ+] ⊂ (0,∞), then

Ωc
.=
{
u ∈ R

2
+ : v ≤ V, w− ≤ v + p(ρ) ≤ w+

}
,

where w± .= p(ρ±) + V . Above p ∈ C2((0,∞);R) is an anticipation factor,
which takes into account drivers’ reactions to the state of traffic in front of
them. We assume that

p(0) = 0, p′(ρ) > 0, 2 p′(ρ) + p′′(ρ) ρ > 0 for every ρ > 0. (2.1)

Typical choice for p is p(ρ) .= ργ , with γ > 0, see [3].
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Let f±
c

.= V ρ± and R
.= p−1(w+) > 0 be the maximal density (in the

congested phase). Let

Ω .= Ωf ∪ Ωc, Ω−
f

.=
{
u ∈ Ωf : ρ ∈ [0, ρ−)

}
,

Ω−
c

.= Ωc \ Ω+
f , Ω+

f
.=
{
u ∈ Ωf : ρ ∈ [ρ−, ρ+]

}
.

Notice that Ωf ∩ Ωc = Ω+
f . We assume that

v < p′(ρ) ρ for every (ρ, v) ∈ Ωc. (2.2)

The (extended) Lagrangian marker w : Ω → [w− − 1, w+] is defined by

w(u) .=

⎧
⎨

⎩

v + p(ρ) if u ∈ Ωc,

w− − 1 +
ρ

ρ− if u ∈ Ω−
f .

Let W : Ω → [w−, w+] be defined by

W(u) .= max{w−, w(u)}.

The 2 × 2 system of conservation laws describing the traffic in the con-
gested phase has two characteristic families of Lax curves. In the (ρ, f)-plane
the Lax curves in Ωc of the first and second characteristic families passing
through ū = (ρ̄, v̄) ∈ Ωc are respectively described by the graphs of the maps

[
p−1

(
w(ū) − V

)
, p−1

(
w(ū)

)]
� ρ 
→ Lw(ū)(ρ) .= f

(
ρ, w(ū) − p(ρ)

)
,

[
p−1(w− − v̄), p−1(w+ − v̄)

]
� ρ 
→ v̄ ρ.

Remark 2.1. Conditions (2.1) and (2.2) ensure that for any w ∈ [w−, w+]
the map ρ 
→ Lw(ρ) = (w − p(ρ)) ρ is strictly concave and strictly decreasing
in [p−1(w − V ), p−1(w)]. Indeed, for any w ∈ [w−, w+] and ρ ∈ [p−1(w −
V ), p−1(w)], we have that (ρ,w − p(ρ)) ∈ Ωc and therefore

L′
w(ρ) = w − p(ρ) − p′(ρ) ρ < 0, L′′

w(ρ) = − 2 p(ρ) − p′′(ρ) ρ < 0.

If for instance p(ρ) .= Vref ln(ρ/ρmax) with Vref > 0 and ρmax > 0, then
p′(ρ) ρ = Vref and (2.2) is equivalent to require V < Vref , while (2.1) is trivial.
If for instance p(ρ) .= ργ with γ > 0, then Ωc = {u ∈ R

2
+ : v ≤ V, w− − v ≤

ργ ≤ w+ − v} and therefore

min
u∈Ωc

(
p′(ρ) ρ − v

)
= min

u∈Ωc

(
γ ργ − v

)
= γ w− − (γ + 1)V,

hence (2.2) is equivalent to require (γ + 1)V < γ w−, while (2.1) is trivial.
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We introduce the following functions, see Fig. 1:

ω : Ωc → Ω+
f , u = ω(ū) ⇐⇒

{
w(u) = w(ū),
v = V,

v± : Ω → Ωc, u± = v±(ū) ⇐⇒
{
w(u±) = w±,

v± = v̄,

u∗ : Ω2 → Ωc, u∗ = u∗(u�, ur) ⇐⇒
{
w(u∗) = W(u�),
v∗ = vr,

Λ:
{
(u�, ur) ∈ Ω2 : ρ� �= ρr

}
→ R, Λ(u�, ur)

.=
f(ur) − f(u�)

ρr − ρ�
.

Notice that:
• the point ω(ū) is the intersection of the Lax curve of the first characteris-

tic family passing through ū and Ω+
f , namely the Lax curve of the second

characteristic family passing through (0, V );
• for any w ∈ [w−, w+] the point (p−1(w), 0) is the intersection of the Lax

curve of the first characteristic family corresponding to w and the segment
{(ρ, v) ∈ Ωc : v = 0}, namely the Lax curve of the second characteristic
family passing through (p−1(w±), 0);

• the point v±(ū) is the intersection of the Lax curve of the second charac-
teristic family passing through ū and {u ∈ Ωc : w(u) = w±}, namely the
Lax curve of the first characteristic family passing through (p−1(w±), 0);

• for any u�, ur ∈ Ωc the point u∗(u�, ur) is the intersection between the
Lax curve of the first characteristic family passing through u� and the
Lax curve of the second characteristic family passing through ur;

• Λ(u�, ur) is the speed of a discontinuity (u�, ur), that in the (ρ, f)-
coordinates coincides with the slope of the segment connecting u� and
ur.

Observe that v±(ū) = u∗((p−1(w±), 0), ū) and ω(ū) = u∗(ū, (0, V )).
We denote by R and RF the Riemann solver and the constrained Rie-

mann solver introduced in [4,11], respectively, see Sect. 2.3 for more details.

2.2. The constrained Cauchy problem

We study the constrained Cauchy problem for the phase transition model

Free-flow
⎧
⎪⎨

⎪⎩

u ∈ Ωf ,

ρt + (ρ V )x = 0,

v = V,

Congested flow
⎧
⎪⎨

⎪⎩

u ∈ Ωc,

ρt + (ρ v)x = 0,
(
ρ w(u)

)
t
+

(
ρ w(u) v

)
x

= 0,

(2.3)

with initial datum
u(0, x) = uo(x) (2.4)

and local point constraint on the density flux at x = 0

f
(
u(t, 0±)

)
≤ F, (2.5)
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Figure 2. Geometrical meaning of wF , v±
F and ΞF in the case

F ∈ (0, f−
c ). The curve in the figure on the left is the graph

of ΞF and corresponds to the horizontal solid segment in the
figure on the right. In particular w∗ = ΞF (v∗). The points in
the figure on the left correspond to those in the figure on the
right

where F ∈ [0, f+
c ] is a given constant quantity. To this aim we apply the wave-

front tracking algorithm, which is based on the definition of the Riemann
solvers defined in the next sections.

Introduce, see Fig. 2, v±
F ∈ [0, V ] and wF ∈ [w− − 1, w+] defined by the

following conditions:

if F = f+
c : v+

F
.= V, v−

F
.= V, wF

.= w+,

if F ∈ [f−
c , f+

c ) : v+
F

.= V, v−
F + p(F/v−

F ) = w+, wF
.= p (F/V ) + V,

if F ∈ (0, f−
c ) :

v+
F + p(F/v+

F ) = w−, v−
F + p(F/v−

F ) = w+, wF
.= w− − 1 +

F

f−
c

,

if F = 0 : v+
F

.= 0, v−
F

.= 0, wF
.= w− − 1.

For any F ∈ (0, f+
c ), let ΞF : [v−

F , v+
F ] → [w−, w+] be given by ΞF (v) .=

v + p(F/v), see Fig. 2. Notice that ΞF is strictly decreasing because by (2.2)
(

F

v
, v

)
∈ Ωc ⇒ Ξ′

F (v) = 1 − p′
(

F

v

)
F

v2
< 0,

moreover it is strictly convex because by (2.1)

Ξ′′
F (v) =

[
2 p′

(
F

v

)
+ p′′

(
F

v

)
F

v

]
F

v3
> 0.

The notion of solution to Cauchy problem (2.3), (2.4) necessarily involves
both the notions of solution to the Cauchy problems for LWR and ARZ models,
that have to be combined by defining which phase transitions are admissible,
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see [4]. Since the characteristic field corresponding to the free phase is linearly
degenerate, a discontinuity between states in Ωf is entropic if and only if it
satisfies the corresponding Rankine–Hugoniot condition, namely its speed of
propagation is V . For this reason we consider only the entropy–entropy flux
pair

Ek(u) .=

⎧
⎨

⎩

0 if v ≥ k,
ρ

p−1
(
W(u) − k

) − 1 if v < k,

Qk(u) .=

⎧
⎨

⎩

0 if v ≥ k,
f(u)

p−1
(
W(u) − k

) − k if v < k,

for u ∈ Ω and k ∈ [0, V ], which is obtained by adapting the entropy–entropy
flux pair introduced in [1] for the ARZ model.

Definition 2.2. Let uo ∈ BV(R; Ω). We say that u ∈ L∞∞∞((0,∞);BV(R; Ω)) ∩
C0(R+;L111

loc(R; Ω)) is a solution to Cauchy problem (2.3), (2.4) if the following
holds:

(S.1) Condition (2.4) holds for a.e. x ∈ R, namely

u(0, x) = uo(x) for a.e. x ∈ R.

(S.2) For any φ ∈ C∞
c ((0,∞) × R;R) we have

∫ ∞

0

∫

R

(
ρφt + f(u)φx

)
(

1
W(u)

)
dxdt =

(
0
0

)
.

(S.3) For any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞) × R;R) such that φ ≥ 0 we have

∫ ∞

0

∫

R

(
Ek(u)φt + Qk(u)φx

)
dxdt ≥ 0.

We recall the existence result proved in [4, Theorem 2.8].

Theorem 2.3. Cauchy problem (2.3), (2.4) with initial datum uo ∈ L111∩BV(R;
Ω) admits a solution u in the sense of Definition 2.2; moreover there exist two
constants Co and Lo such that for any t, s ≥ 0

TV
(
u(t)

)
≤ TV(uo), ‖u(t)‖L∞∞∞(R;Ω) ≤ Co, ‖u(t) − u(s)‖L111(R;Ω) ≤ Lo |t − s|.

In the following definition we introduce the notion of solution to con-
strained Cauchy problem (2.3)–(2.5), which is obtained by adapting that in-
troduced in Definition 2.2 for Cauchy problem (2.3), (2.4).

Definition 2.4. Let uo ∈ BV(R; Ω). We say that u ∈ L∞∞∞ ((0,∞);BV(R; Ω)) ∩
C0

(
R+;L111

loc(R; Ω)
)

is a solution to constrained Cauchy problem (2.3)–(2.5)
if the following holds:

(CS.1) Condition (2.4) holds for a.e. x ∈ R, namely

u(0, x) = uo(x) for a.e. x ∈ R.
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(CS.2) For any φ ∈ C∞
c ((0,∞) × R;R) we have
∫ ∞

0

∫

R

(
ρφt + f(u)φx

)
dxdt = 0 (2.6)

and if φ(·, 0) ≡ 0 then
∫ ∞

0

∫

R

(
ρφt + f(u)φx

)
W(u) dxdt = 0. (2.7)

(CS.3) For any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞) × R;R) such that φ(·, 0) ≡ 0

and φ ≥ 0 we have
∫ ∞

0

∫

R

(
Ek(u)φt + Qk(u)φx

)
dxdt ≥ 0. (2.8)

(CS.4) Condition (2.5) holds for a.e. t > 0, namely

f
(
u(t, 0±)

)
≤ F for a.e. t > 0.

In the following proposition we state which discontinuities are admissible
for the solutions to (2.3)–(2.5).

Proposition 2.5. Let u be a solution of constrained Cauchy problem (2.3)–(2.5)
in the sense of Definition 2.4. Then u has the following properties:

• Any discontinuity δ(t) of x 
→ u(t, x) satisfies the first Rankine–Hugoniot
jump condition
[
ρ
(
t, δ(t)+

)
− ρ

(
t, δ(t)−

)]
δ̇(t) = f

(
u(t, δ(t)+)

)
− f

(
u(t, δ(t)−)

)
, (2.9)

and if δ(t) �= 0, then it satisfies also the second Rankine–Hugoniot jump
condition

[
ρ
(
t, δ(t)+

)
W
(
u
(
t, δ(t)+

))
− ρ

(
t, δ(t)−

)
W
(
u
(
t, δ(t)−

))]
δ̇(t)

= f
(
u
(
t, δ(t)+

))
W
(
u
(
t, δ(t)+

))
− f

(
u
(
t, δ(t)−

))
W
(
u
(
t, δ(t)−

))
. (2.10)

• Any discontinuity of u away from the constraint is classical, i.e. it satisfies
the Lax entropy inequalities.

• Non-classical discontinuities of u may occur only at the constraint loca-
tion x = 0, and in this case the (density) flux at x = 0 does not exceed
the maximal flux F allowed by the constraint.

Proof. These properties follow directly from (CS.2), (CS.3) and (CS.4). Let us
just underline that (2.9), (2.10) are equivalent to

[
v(t, 0+) − δ̇(t)

]
ρ(t, 0+) =

[
v(t, 0−) − δ̇(t)

]
ρ(t, 0−),

[
W
(
u(t, 0+)

)
− W

(
u(t, 0−)

)][
v(t, 0−) − δ̇(t)

]
ρ(t, 0−) = 0.

In particular phase transitions and shocks are admissible because for them
W(u(t, 0+)) = W(u(t, 0−)), while the contact discontinuities are admissible be-
cause for them δ̇(t) = v(t, 0±). �
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Figure 3. Geometrical meaning of û and ǔ defined in (2.11)
in the case F ∈ (f−

c , f+
c )

Remark 2.6. Differently from any solution to Cauchy problem (2.3), (2.4),
a solution u to constrained Cauchy problem (2.3)–(2.5) does not satisfy in
general the second Rankine–Hugoniot condition (2.10) along x = 0

ρ(t, 0−) W
(
u(t, 0−)

)
v(t, 0−) = ρ(t, 0+) W

(
u(t, 0+)

)
v(t, 0+) for a.e. t > 0.

Indeed the (extended) linearized momentum ρ W(u) is conserved across (clas-
sical) shocks and phase transitions, but in general it is not conserved across
non-classical shocks even if they are between states in Ωc. As a consequence,
a solution to (2.3)–(2.5) taking values in Ωc is not necessarily a weak solution
to the 2 × 2 system of conservation laws in (2.3) for the congested flow. For
this reason in (2.7) [and then also in (2.8)] we consider test functions φ such
that φ(·, 0) ≡ 0.

This is in the same spirit of the solutions considered in [5,11–14] for traffic
through locations with reduced capacity. However, with this choice for the test
functions in (2.7) and (2.8) we loose the possibility to better characterize the
(density) flux at x = 0 associated to non-classical shocks. In fact, differently
from what is proved in [9] for the LWR model and in [2] for the ARZ model, we
cannot ensure that the flux of the non-classical shocks of any solution is equal
to the maximal flux F allowed by the constraint. Nevertheless, in Sect. 4.4 we
can give sufficient conditions ensuring that the solutions constructed with our
wave-front tracking algorithm have this property, see Proposition 4.4.

Let [w− − 1, w+] � w 
→ û(w,F ) = (r̂(w,F ), v̂(w,F )) ∈ Ωc and [0, V ] �
v 
→ ǔ(v, F ) = (ř(v, F ), v̌(v, F )) ∈ Ω be defined in the (v, w)-coordinates by,
see Figs. 3 and 4,

(
v̂(w,F ), ŵ(w,F )

) .=

⎧
⎪⎨

⎪⎩

(
Ξ−1

F (w), w
)

if w > max{w−, wF },
(
v+

F , w−)
if wF < w ≤ w−,

(
V,wF

)
if w ≤ wF ,

(2.11a)

(
v̌(v, F ), w̌(v, F )

) .=

⎧
⎪⎨

⎪⎩

(
V,wF

)
if v > v+

F ,
(
v,ΞF (v)

)
if v ∈ [v−

F , v+
F ],

(
v−

F , w+
)

if v < v−
F ,

(2.11b)
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Figure 4. Geometrical meaning of û and ǔ defined in (2.11)
in the case F ∈ (0, f−

c )

where ŵ
.= w ◦ û and w̌

.= w ◦ ǔ. As a consequence

r̂(w,F ) = p−1 (ŵ(w,F ) − v̂(w,F )) ,

ř(v, F ) =

{
p−1

(
w̌(w,F ) − v̌(w,F )

)
if v ≤ v+

F ,

F/V if v > v+
F .

Remark 2.7. Notice that

f
(
û(w,F )

)
= f

(
ǔ(v, F )

)
= F.

Moreover, w 
→ û(w,F ) and v 
→ ǔ(v, F ) are continuous if and only if F ≥ f−
c ,

and in this case they are Lipschitz continuous. On the other hand, if F <
f−
c , then w 
→ û(w,F ) and v 
→ ǔ(v, F ) are only left-continuous. Moreover
ŵ(w,F ) ≥ w and v̌(v, F ) ≥ v. At last, w 
→ ŵ(w,F ) and v 
→ v̌(v, F ) are
non-decreasing, while w 
→ v̂(w,F ) and v 
→ w̌(v, F ) are non-increasing.

Denote by TV+ and TV− the positive and negative total variations,
respectively. For any u : R → Ω let

Υ̂(u) .= TV+

(
v̂
(
w(u), F

)
; (−∞, 0)

)
+ TV−

(
ŵ
(
w(u), F

)
; (−∞, 0)

)
, (2.12a)

Υ̌(u) .= TV+

(
v̌(v, F ); (0,∞)

)
+ TV−

(
w̌(v, F ); (0,∞)

)
. (2.12b)

For any u ∈ Ω and k ∈ [0, V ] let

Nk
F (u) .=

⎧
⎪⎨

⎪⎩

f(u)

[
k

F
− 1

p−1
(
W(u) − k

)

]

+

if F �= 0,

k if F = 0,

[w]+
.=

{
w if w > 0,

0 otherwise.

We are now in the position to state the main result of the paper.

Theorem 2.8. Let uo ∈ L111 ∩ BV(R; Ω) and F ∈ [0, f+
c ] satisfy one of the

following conditions:

(H.1) F ∈ [f−
c , f+

c ];
(H.2) F ∈ [0, f−

c ) and Υ̂(uo) + Υ̌(uo) is bounded.
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Then the approximate solutions un constructed in Sect. 4.1 converge to a solu-
tion u ∈ C0(R+;BV(R; Ω)) of constrained Cauchy problem (2.3)–(2.5) in the
sense of Definition 2.4. Moreover for all t, s ∈ R+ the following estimates hold

TV
(
u(t)

)
≤ Co

F , ‖u(t)−u(s)‖L111(R;Ω) ≤ Lo
F |t− s|, ‖u(t)‖L∞∞∞(R;Ω) ≤ R+V,

(2.13)
where Co

F and Lo
F are constants that depend on uo and F . Furthermore, non-

classical discontinuities of u can occur only at the constraint location x = 0,
and if for any k ∈ [0, V ] and φ ∈ C∞

c ((0,∞) × R;R) such that φ ≥ 0 we have

lim
n→∞

∫ T

0

Nk
F

(
un(t, 0−)

)
φ(t, 0) dt =

∫ T

0

Nk
F

(
u(t, 0−)

)
φ(t, 0) dt, (2.14)

then the (density) flow at x = 0 is the maximal flow F allowed by the con-
straint.

As in [1,4,10], the proof of the above theorem is based on the wave-front
tracking algorithm, see [7,16] and the references therein. The details of the
proof are deferred to Sect. 4. In particular condition (H.2) is relevant because
the Glimm functional we introduce in (4.2) to prove the global existence and
BV-bounds of wave-front tracking approximations involves Υ̂ and Υ̌.

Remark 2.9. If F ∈ [f−
c , f+

c ], then w 
→ û(w,F ) and v 
→ ǔ(v, F ) are Lipschitz
continuous and therefore Υ̂(uo)+Υ̂(uo) is obviously bounded if uo has bounded
total variation.

2.3. The constrained Riemann problem

For completeness, we conclude this section by giving the definitions of the
Riemann solvers R and RF introduced in [4] and [11], associated to Riemann
problem (2.3), (2.15) and to constrained Riemann problem (2.3), (2.5), (2.15),
respectively, and used in Sect. 4 to prove Theorem 2.8.

We recall that Riemann problems for (2.3) are Cauchy problems with
initial condition of the form

u(0, x) =

{
u� if x < 0,

ur if x > 0.
(2.15)

Definition 2.10. The Riemann solver R : Ω2 → L∞(R; Ω) associated to Rie-
mann problem (2.3), (2.15) is defined as follows.
(R.1) If u�, ur ∈ Ωf , then R[u�, ur] consists of a contact discontinuity (u�, ur)

with speed of propagation V .
(R.2) If u�, ur ∈ Ωc, then R[u�, ur] consists of a 1-wave (u�, u∗(u�, ur)) and of

a 2-contact discontinuity (u∗(u�, ur), ur).
(R.3) If u� ∈ Ω−

c and ur ∈ Ω−
f , then R[u�, ur] consists of a 1-rarefaction

(u�, ω(u�)) and a contact discontinuity (ω(u�), ur).
(R.4) If u� ∈ Ω−

f and ur ∈ Ω−
c , then R[u�, ur] consists of a phase transition

(u�, v−(ur)) and a 2-contact discontinuity (v−(ur), ur).

We stress that the only changes of phase in the Riemann data producing
phase transition waves are those described in (R.4), as the change of phase
described in (R.3) is the result of the juxtaposition of two classical waves.
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Figure 5. The selection criterion (2.11) for û�
.= û(w(u�), F )

and ǔr
.= ǔ(vr, F ) exploited in Definition 2.11 in the case

(u�, ur) ∈ D2 and F ∈ (0, f−
c ). In the first picture u1

� , u2
�

represent the left state in two different cases and û1
� , û

2
� are

the corresponding û�. Analogously in the second and third
pictures for u1

r, u2
r and ǔ1

r, ǔ
2
r

Since (t, x) 
→ R[u�, ur](x/t) does not in general satisfy constraint condi-
tion (2.5), we introduce

D1
.=
{
(u�, ur) ∈ Ω × Ω : f

(
R[u�, ur](t, 0±)

)
≤ F

}

=
{
(u�, ur) ∈ Ωf × Ωf : f(u�) ≤ F

}

∪
{
(u�, ur) ∈ Ωc × Ω : f

(
u∗(u�, ur)

)
≤ F

}

∪
{
(u�, ur) ∈ Ω−

f × Ω−
c : min

{
f(u�), f

(
v−(ur)

)}
≤ F

}
,

D2
.= Ω2 \ D1 and the constrained Riemann solver RF in the following

Definition 2.11. The constrained Riemann solver RF : Ω2 → L∞(R; Ω) associ-
ated to constrained Riemann problem (2.3), (2.5), (2.15) is defined as

RF [u�, ur](x) .=

⎧
⎪⎪⎨

⎪⎪⎩

R[u�, ur](x) if (u�, ur) ∈ D1,
{

R[u�, û�](x) if x < 0,

R[ǔr, ur](x) if x > 0,
if (u�, ur) ∈ D2,

where û�
.= û(w(u�), F ) ∈ Ωc and ǔr

.= ǔ(vr, F ) ∈ Ω are defined by (2.11).

In Fig. 5 we clarify the selection criterion (2.11) for û� and ǔr.
We point out that û� and ǔr satisfy the following general properties.

If (u�, ur) ∈ D2, then w(u�) > w(ǔr) and vr > v̂�.
If (u�, ur) ∈ D2 and u� ∈ Ω−

f , then w(û�) = w−.
If (u�, ur) ∈ D2 and ur ∈ Ωf , then v̌r = V .

It is easy to prove that (t, x) 
→ R[u�, ur](x/t) and (t, x) 
→ RF [u�, ur](x/t)
are solutions to Riemann problems (2.3), (2.15) and (2.3), (2.5), (2.15) in the
sense of Definitions 2.2 and 2.4, respectively.

We recall that both R and RF are L1
loc-continuous, see [11, Propositions 2

and 3].
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Figure 6. Notations used to describe the solution con-
structed in Sect. 3

3. Example

In this section we apply model (2.3)–(2.5) to simulate the traffic across, for
instance, a toll gate located at x = 0 and with capacity F . More specifically,
let w− and w+ be the Lagrangian markers corresponding to vehicles that
are initially at rest in [xA, xB) and [xB , 0), respectively. The resulting initial
condition is

uo(x) .=

⎧
⎪⎨

⎪⎩

u� if x ∈ [xA, xB),
ur if x ∈ [xB , 0),
u0 if x ∈ R \ [xA, 0),

where u0
.= (0, V ), u�

.= (p−1(w−), 0) and ur
.= (p−1(w+), 0), see Fig. 6.

The resulting solution can be constructed by solving the Riemann prob-
lems corresponding to the discontinuities of uo and by considering the inter-
actions of the waves between themselves or with the point constraint x = 0.
We describe below the solution and its construction in more details. Let

û�
.= û(w−, F ), ûr

.= û(w+, F ), ǔ
.= ǔ(V, F ), u∗

.= u∗(u�, ûr).

At x = 0 we apply RF and obtain a backward rarefaction R0(ur, ûr), a
stationary non-classical shock NS0(ûr, ǔ) and a forward contact discontinu-
ity CD0(ǔ, u0), which moves with speed V . At x = xB we apply R and obtain
a stationary contact discontinuity CDB(u�, ur). Let C and E be the starting
and final interaction points between CDB and R0. During such interaction we
have that CDB accelerates, while R0 crosses CDB and eventually changes its
values. After time t = tE we have that CDB moves with speed v̂r > 0 and
interacts with NS0 at G. At G we apply RF and obtain a backward rarefaction
RG(u∗, û�) and a stationary non-classical shock NSG(û�, ǔ).

At x = xA we apply R and obtain a stationary phase transition
PTA(u0, u�). Let D and F be the starting and final interaction points between
PTA and R0. During the time interval (tD, tF ) we have that PTA accelerates
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Figure 7. The solution constructed in Sect. 3. Above we let
f∗ = f(u∗)

and R0 starts to disappear. After time t = tF we have that PTA moves with
speed v̂r > 0. Let H and I be the starting and final interaction points between
PTA and RG. Then, during the time interval (tH , tI) we have that PTA accel-
erates and RG starts to disappear. After time t = tI we have that PTA moves
with speed v̂� > 0. Finally, PTA interacts with NSG at L and then moves with
speed V .

In Fig. 7 we represent in different coordinates the quantitative evolution
of the solution corresponding to p(ρ) .= ρ2 and to the data

xA = − 8, xB = − 5, w− = 1, w+ = 6/5, V = 3/5, F =
√

3/5.

Such solution is obtained by the explicit analysis of the wave-fronts interactions
with computer-assisted computation of the interaction times and front slopes.

We finally observe that, once the overall picture of the solution is known,
it is possible to express in a closed form the time at which the last vehicle
passes through x = 0, indeed tL = [(xB − xA) ρ� − xB ρr]/F ≈ 24.4716.

4. Proof of Theorem 2.8

In this section we prove Theorem 2.8. More precisely, in Sect. 4.1 we construct
a grid Gn, approximate Riemann solvers Rn, RF,n and an approximate solution
un = (ρn, vn) to constrained Cauchy problem (2.3)–(2.5). In Sect. 4.2 we prove
that the approximate solution un is well defined globally in time by introducing
a non-increasing Temple functional Tn, which strictly decreases any time the
number of the discontinuities of un increases. In Sect. 4.3 we prove that un

converges to u, which is a solution to (2.3)–(2.5) and satisfies the estimates
listed in (2.13). At last in Sect. 4.4 we consider the flux density of the non-
classical shocks.

We choose to study the total variation in the (v, w)-coordinates rather
than in the (ρ, v)-coordinates. This choice is in fact convenient to describe
the grid, the approximate Riemann solvers and ease the forthcoming analysis,
because the total variation of un in these coordinates does not increase after
any interaction away from x = 0. Furthermore, the entropy pairs in the (v, w)-
coordinates are well defined, but in the (ρ, v)-coordinates are multi-valued at
the vacuum.
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Figure 8. The grid Gn corresponding to F ∈ (0, f−
c ) and

n = 2. The curve in the figure on the left is the support of
ΞF , which corresponds to (a portion of) the horizontal line in
the figure on the right

For simplicity we assume below that n ∈ N is sufficiently large. Moreover
we simplify the notation by letting

w�
.= w(u�), û�

.= û(w�, F ), ǔ�
.= ǔ(v�, F )

and so on, where û and ǔ are defined in (2.11).

4.1. The approximate solution

In this section we apply the wave-front tracking algorithm to construct an ap-
proximate solution un in the space PC of piecewise constant functions taking
finitely many values. To do so we introduce a grid Gn in Ω and approximate
Riemann solvers Rn, RF,n : Gn × Gn → PC(R;Gn).

The grid. We introduce in Ω a grid Gn
.= Ω ∩ P, see Fig. 8, with P given in

the (v, w)-coordinates by
(
∪M ·2n

i=0

{
vi
})

×
(
∪N ·2n

i=0

{
wi

})
,

where M , N , vi and wi, are defined as follows:

• If F = 0, then we let M = 1, N = 2,

wi .=

{
w− − 1 + i 2−n if i ∈ {0, . . . , 2n} ,

w− + (i − 2n) 2−n (w+ − w−) if i ∈ {2n + 1, . . . , 2 · 2n} ,

and

vi .= i 2−n V if i ∈ {0, . . . , 2n} .
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• If F ∈ (0, f−
c ), then we let M = 3, N = 3,

wi .=

⎧
⎪⎨

⎪⎩

w− − 1 + i 2−n (wF − w− + 1) if i ∈ {0, . . . , 2n} ,

wF + (i − 2n) 2−n (w− − wF ) if i ∈ {2n + 1, . . . , 2 · 2n} ,

w− + (i − 2 · 2n) 2−n (w+ − w−) if i ∈ {2 · 2n + 1, . . . , 3 · 2n} ,

and

vi .=

⎧
⎪⎨

⎪⎩

i 2−n v−
F if i ∈ {0, . . . , 2n} ,

Ξ−1
F (w4·2n−i) if i ∈ {2n + 1, . . . , 2 · 2n} ,

v+
F + (i − 2 · 2n) 2−n (V − v+

F ) if i ∈ {2 · 2n + 1, . . . , 3 · 2n} .

• If F ∈ [f−
c , f+

c ], then we let M = 2, N = 3,

wi .=

⎧
⎪⎨

⎪⎩

w− − 1 + i 2−n if i ∈ {0, . . . , 2n} ,

w− + (i − 2n) 2−n (wF − w−) if i ∈ {2n + 1, . . . , 2 · 2n} ,

wF + (i − 2 · 2n) 2−n (w+ − wF ) if i ∈ {2 · 2n + 1, . . . , 3 · 2n} ,

and

vi .=

{
i 2−n v−

F if i ∈ {0, . . . , 2n} ,

Ξ−1
F (w4·2n−i) if i ∈ {2n + 1, . . . , 2 · 2n} .

Notice that if F ∈ {f−
c , f+

c }, then not necessarily wi �= wi+1.

The approximate Riemann solvers. An approximate solution un to (2.3)–(2.5)
is constructed in PC(R;Gn) by applying the approximate Riemann solvers
Rn, RF,n : Gn × Gn → PC(R;Gn), which are obtained by approximating the
rarefactions. More precisely, for any (u�, ur) ∈ Gn × Gn such that w� = wr and
v� = vh < vr = vh+k, we let

Rn[u�, ur](ξ)
.=

⎧
⎪⎨

⎪⎩

u� if ξ ≤ Λ(u�, u1),
uj if Λ(uj−1, uj) < ξ ≤ Λ(uj , uj+1), 1 ≤ j ≤ k − 1,

ur if ξ > Λ(uk−1, ur),

where u0
.= u�, uk

.= ur and uj ∈ Gn is such that vj
.= vh+j and wj = w�. The

Riemann solver RF,n is defined as follows:

1. If f (Rn[u�, ur](0±)) ≤ F , then RF,n[u�, ur]≡̇Rn[u�, ur].
2. If f (Rn[u�, ur](0±)) > F , then

RF,n[u�, ur](ξ)
.=

{
Rn[u�, û�](ξ) if ξ < 0,

Rn[ǔr, ur](ξ) if ξ ≥ 0.

The approximate solution. An approximate solution un ∈ PC(R+ ×R;Gn) to
(2.3)–(2.5) can be constructed as follows. As a first step we approximate the
initial datum uo with uo

n ∈ PC(R;Gn) such that
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‖vo
n‖L∞∞∞ ≤ ‖vo‖L∞∞∞ , ‖wo

n‖L∞∞∞ ≤ ‖wo‖L∞∞∞ ,

TV(vo
n) ≤ TV(vo), TV(wo

n) ≤ TV(wo),

lim
n→∞ ‖vo

n − vo‖L111
loc

= 0, lim
n→∞ ‖wo

n − wo‖L111
loc

= 0,

Υ̂(uo
n) ≤ C Υ̂(uo), Υ̌(uo

n) ≤ C Υ̌(uo),

(4.1)

for a constant C. The approximate solution un is then obtained by gluing
together the approximate solutions computed by applying RF,n at x = 0 at
time t = 0 and at any time a wave-front reaches x = 0, and by applying Rn

at any discontinuity of uo
n away from x = 0 or at any interaction between

wave-fronts away from x = 0. As usual, in order to extend the construction
globally in time we have to ensure that only finitely many interactions may
occur in finite time. In Sect. 4.2 we prove that un(t, ·) is well defined for all
t > 0 and belongs to PC(R+ × R;Gn). Finally, in Sect. 4.3 we prove that un

converges (up to a subsequence) in L111
loc to a limit u, which results to be a

constrained solution to (2.3)–(2.5) in the sense of Definition 2.4.

4.2. A priori estimates

In this section we prove the main a priori estimates on the sequence of ap-
proximate solutions (un)n. We prove in Proposition 4.1 that un takes values
in Gn and we estimate TV(un(t, ·)) uniformly in n and t. This together with
Proposition 4.2 guarantee that the number of interactions and the number of
the discontinuities of un are both bounded globally in time.

Observe that any Contact Discontinuity (CD) has non-negative speed (of
propagation), any Shock (S) or Rarefaction Shock (RS) has negative speed, all
the Non-classical Shocks (NSs) are stationary and the speed of all the possible
Phase Transitions (PTs) ranges in the interval (−f−

c /(p−1(w−) − ρ−), V ).
Below we say that (u�, ur) is a null wave if u� = ur. Notice that if (u�, ur)
is a PT then u� ∈ Ω−

f and ur ∈ Ω−
c , moreover if (u�, ur) is a PT with wr > w−

then ρ� = 0.
Let un be an approximate solution. Let �(t) be the number of waves-

discontinuities of un(t, ·) and introduce Tn : R+ → R+ defined as

Tn(t) .= TV
(
vn(t, ·)

)
+ TV

(
wn(t, ·)

)
+ 2Υ̂n(t) + 2Υ̌n(t), (4.2)

where Υ̂n(t) .= Υ̂(un(t, ·)) and Υ̌n(t
) .= Υ̌(un(t, ·)). Conventionally, we assume

that un is left continuous in time, i.e. un(t, ·) ≡ un(t−, ·). Then also Tn is left
continuous in time. By the monotonicity of w 
→ v̂(w), w 
→ ŵ(w), v 
→ v̌(v),
v 
→ w̌(v), see Remark 2.7, and the definitions of Υ̂ and Υ̌ given in (2.12), we
have that

Υ̂n(t) = TV+

(
v̂
(
wn(t, ·)

)
; (−∞, 0)

)
+ TV−

(
ŵ
(
wn(t, ·)

)
; (−∞, 0)

)

=
∑

x∈CDn

[
v̂
(
wn(t, x+)

)
− v̂

(
wn(t, x−)

)]
+

+
∑

x∈CDn

[
ŵ
(
wn(t, x−)

)
− ŵ

(
wn(t, x+)

)]
+
,



48 Page 18 of 42 M. Benyahia et al. NoDEA

Υ̌n(t) = TV+

(
v̌
(
vn(t, ·), F

)
; (0,∞)

)
+ TV−

(
w̌
(
vn(t, ·), F

)
; (0,∞)

)

=
∑

x∈RSn

[
v̌
(
vn(t, x+), F

)
− v̌

(
vn(t, x−), F

)]
+

+
∑

x∈RSn

[
w̌
(
vn(t, x−), F

)
− w̌

(
vn(t, x+), F

)]
+
,

where

CDn
.=
{

x ∈ R :
(
un(t, x−), un(t, x+)

)
is a CD in x < 0

such that wn(t, x−) > max{wn(t, x+), wF }

}
,

RSn
.=
{

x ∈ R :
(
un(t, x−), un(t, x+)

)
is a RS in x > 0 such

that vn(t, x+) > max{vn(t, x−), v−
F }

}
.

Let εn > 0 be the minimal (v, w)-distance between two points in the grid Gn,
namely

εn
.= min

u1, u2∈Gn

u1 �=u2

max
{

|v1 − v2|, |w(u1) − w(u2)|
}

.

The next proposition ensures that the number of discontinuities of un is
uniformly bounded in time. Moreover, it gives uniform bounds on the total
variation of the approximate solution, which allows us to use Helly’s Theorem.

Proposition 4.1. For any fixed n ∈ N sufficiently large and uo
n ∈ PC(R;Gn),

we have that:

a the map t 
→ Tn(t) is non-increasing and decreases by at least εn any time
the number of waves increases;

b un(t, ·) ∈ PC(R;Gn) for all t > 0.

Proof. By construction, for any t > 0 sufficiently small un(t, ·) belongs to
PC(R;Gn), more precisely it is piecewise constant with jumps along a finite
number of straight lines. If at time t > 0 an interaction occurs, namely two
waves meet or a wave reaches x = 0, then the involved waves may change speed
or strength, while new waves may be created. To prove that un(t, ·) belongs
to PC(R;Gn) we have to provide an a priori upper bound for the number of
waves, which follows from a.

Clearly, if at time t > 0 no interaction occurs then Tn(t) = Tn(t+). For
this reason we consider below all the possible interactions and distinguish the
following main cases:

• a single wave reaches x = 0 and no NS is involved;
• a single wave reaches x = 0 and a NS is involved;
• two waves interact away from x = 0;
• two waves interact at x = 0 and no NS is involved;
• two waves interact at x = 0 and a NS is involved.
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For completeness we estimate

ΔTVv
.= TV

(
vn(t+, ·)

)
− TV

(
vn(t, ·)

)
,

ΔTVw
.= TV

(
wn(t+, ·)

)
− TV

(
wn(t, ·)

)
,

ΔΥ̂n
.= Υ̂n

(
wn(t+, ·)

)
− Υ̂n

(
wn(t, ·)

)
,

ΔΥ̌n
.= Υ̌n

(
vn(t+, ·)

)
− Υ̌n

(
vn(t, ·)

)
,

and

Δ�
.= �(t+) − �(t−), ΔTn

.= Tn(t+) − Tn(t−).

For simplicity in the exposition, whenever a NS is involved we consider
separately the cases F ∈ [f−

c , f+
c ) and F ∈ [0, f−

c ). Notice that w− > wF if
and only if F < f−

c , or equivalently V �= v+
F . Notice also that if F = f+

c then
D2 = ∅, while if F = 0 then D1 = ∅. At last, notice that if F ∈ [f−

c , f+
c ) and

(u�, ur) ∈ D2, then ŵ� = w� and v̌r = vr.
We start with the interaction estimates.

• If a wave (u�, ur) reaches x = 0, un(t, 0−) = un(t, 0+) and (u�, ur) ∈ D1,
then the constraint has no influence on the wave and 0 = ΔTVv =
ΔTVw = Δ�. Since any CD has non-negative speed, we have that ΔΥ̂n ≤
0. Since any RS has negative speed, we have that ΔΥ̌n ≤ 0. As a conse-
quence ΔTn ≤ 0.

• Assume that a wave (u�, ur) reaches x = 0, un(t, 0−) = un(t, 0+) and
(u�, ur) ∈ D2.
If F ∈ [f−

c , f+
c ), then one of the following cases occurs:

CD+
F
+
F
+
F (u�, ur) is a CD. In this case v̂r ≥ v� = vr = v̌r > v̂�, w� = ŵ� >

w̌r ≥ ŵr ≥ wr and f(u�) > F ≥ f(ur). RF,n[u�, ur] has at most
three waves (u�, û�), (û�, ǔr) and (ǔr, ur) that are a S, a NS and a
possibly null CD, respectively. As a consequence

ΔTVv = 2(v� − v̂�) > 0,

ΔTVw = 0,

ΔΥ̂n = − [v̂r − v̂�]+ − [ŵ� − ŵr]+ < −(v̂r − v̂�) < 0,

ΔΥ̌n = 0,

therefore Δ� ∈ {1, 2} and ΔTn < −2(v̂r − v�) ≤ 0.
RS+

F
+
F
+
F (u�, ur) is a RS. In this case v� = v̌� < vr = v̌r, w̌r < w� = w̌� = wr,

f(u�) = F < f(ur) and u�, ur ∈ Ωc. RF,n[u�, ur] has two waves
(u�, ǔr) and (ǔr, ur) that are a NS and a CD, respectively. As a
consequence

ΔTVv = 0,

ΔTVw = 2(w� − w̌r) > 0,

ΔΥ̂n = 0,

ΔΥ̌n = − [v̌r − v̌�]+ − [w̌� − w̌r]+ = −(vr − v�) − (w� − w̌r) < 0,

therefore Δ� = 1 and ΔTn = −2(vr − v�) < 0.
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If F ∈ [0, f−
c ), then one of the following cases occurs:

CD−
F
−
F
−
F (u�, ur) is a CD. In this case v̂r ≥ v� = vr = v̌r > v̂�, ŵ� ≥ w� >

w̌r ≥ ŵr ≥ wr and f(u�) > F ≥ f(ur). RF,n[u�, ur] has at most three
waves (u�, û�), (û�, ǔr) and (ǔr, ur) that are a S or a PT, a NS and
a possibly null CD, respectively. As a consequence

ΔTVv = 2(v� − v̂�) > 0,

ΔTVw = 2(ŵ� − w�) ≥ 0,

ΔΥ̂n = − [v̂r − v̂�]+ − [ŵ� − ŵr]+ = − (v̂r − v̂�) − (ŵ� − ŵr) < 0,

ΔΥ̌n = 0,

therefore Δ� ∈ {1, 2} and ΔTn = −2(v̂r − v�) − 2(w� − ŵr) < 0.
RS−

F
−
F
−
F (u�, ur) is a RS. In this case v� < vr ≤ v̌r, wF ≤ w̌r < wr = w� = w̌�,

f(u�) = F < f(ur) and u�, ur ∈ Ωc. RF,n[u�, ur] has two waves
(u�, ǔr) and (ǔr, ur) that are a NS and a PT or a CD, respectively.
As a consequence

ΔTVv = 2(v̌r − vr) ≥ 0,

ΔTVw = 2(w� − w̌r) > 0,

ΔΥ̂n = 0,

ΔΥ̌n = − [v̌r − v̌�]+ − [w̌� − w̌r]+ = − (v̌r − v�) − (w� − w̌r) < 0,

therefore Δ� = 1 and ΔTn = −2(vr − v�) < 0. Notice that v̌r > vr

if and only if w� = wr = w− and vr > v� = v+
F .

Assume that two waves (u�, um) and (um, ur) interact at time t > 0. Let
u∗

.= u∗(u�, ur). Notice that u∗ = ur if and only if (u�, um) is a S or a RS,
while u∗ = u� if and only if (u�, um) is a CD.

• If the interaction occurs at x �= 0, then one of the following cases occurs:
CD-S (u�, um) is a CD and (um, ur) is a S. In this case v� = vm > vr = v∗,

wm = wr, w∗ belongs to the closed interval between w� and wr,
W(u�) = W(u∗), wm = wr, f(um) > f(ur) and um, ur ∈ Ωc. Rn[u�, ur]
has at most two waves (u�, u∗) and (u∗, ur) that are respectively
either a S and a CD, or a PT and a possibly null CD. As a conse-
quence 0 = ΔTVv = ΔTVw = ΔΥ̂n = ΔΥ̌n, therefore Δ� ≤ 0 and
ΔTn = 0.

CD-RS (u�, um) is a CD and (um, ur) is a RS. In this case v� = vm < vr =
v∗, w� = w∗, wm = wr, f(u�) < f(u∗), f(um) < f(ur) and u�, um, u∗,
ur ∈ Ωc. Rn[u�, ur] has two waves (u�, u∗) and (u∗, ur) that are a RS
and a CD, respectively. As a consequence 0 = ΔTVv = ΔTVw =
ΔΥ̂n = ΔΥ̌n, therefore Δ� = 0 and ΔTn = 0.

CD-PT (u�, um) is a CD and (um, ur) is a PT. In this case v� = vm = V >
vr = v∗, wm < w− ≤ wr, w∗ belongs to the closed interval between
w� and wr, u� ∈ Ωf , um ∈ Ω−

f and u∗, ur ∈ Ωc. Rn[u�, ur] has at
most two waves (u�, u∗) and (u∗, ur) that are either a PT or a S and
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a possibly null CD, respectively. As a consequence

ΔTVv = 0, ΔΥ̂n ≤ 0,

ΔTVw = |w� − wr| − (|w� − wm| + |wm − wr|) ≤ 0, ΔΥ̌n = 0,

therefore Δ� ≤ 0 and ΔTn ≤ 0.
S-S (u�, um) and (um, ur) are Ss. In this case v� > vm > vr, w� = wm =

wr ≥ w− and u�, um, ur ∈ Ωc. Rn[u�, ur] has one wave (u�, ur),
which is a S. As a consequence 0 = ΔTVv = ΔTVw = ΔΥ̂n = ΔΥ̌n,
therefore Δ� = − 1 and ΔTn = 0.

S-RS (u�, um) is a S and (um, ur) is a RS. In this case v� > vr > vm,
w� = wm = wr ≥ w− and u�, um, ur ∈ Ωc. Rn[u�, ur] has one wave
(u�, ur), which is a S. As a consequence

ΔTVv = − 2(vr − vm) < 0, ΔΥ̂n = 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = − 1 and ΔTn < 0.
RS-S (u�, um) is a RS and (um, ur) is a S. In this case vm > v� > vr,

w� = wm = wr ≥ w− and u�, um, ur ∈ Ωc. Rn[u�, ur] has one wave
(u�, ur), which is a S. As a consequence

ΔTVv = − 2(vm − v�) < 0, ΔΥ̂n = 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = − 1 and ΔTn < 0.
PT-S (u�, um) is a PT and (um, ur) is a S. In this case v� = V > vm > vr,

w� < w− ≤ wm = wr, u� ∈ Ω−
f and um, ur ∈ Ωc. Rn[u�, ur] has

one wave (u�, ur), which is a PT. As a consequence 0 = ΔTVv =
ΔTVw = ΔΥ̂n = ΔΥ̌n, therefore Δ� = − 1 and ΔTn = 0.

PT-RS (u�, um) is a PT and (um, ur) is a RS. In this case v� = V ≥ vr > vm,
w� < w− ≤ wm = wr, u� ∈ Ω−

f and um, ur ∈ Ωc. Rn[u�, ur] has one
wave (u�, ur), which is either a PT or a CD. As a consequence

ΔTVv = − 2(vr − vm) < 0, ΔΥ̂n = 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = − 1 and ΔTn < 0.
• If the interaction occurs at x = 0 and (u�, ur) ∈ D1, then one of the

following cases occurs:
CD-S000 (u�, um) is a CD and (um, ur) is a S. In this case v� = vm > vr =

v∗, wm = wr, w∗ belongs to the closed interval between w� and wr,
W(u�) = W(u∗), wm = wr, f(ur) < (um) ≤ F , min{f(u�), f(u∗)} ≤ F
and um, ur ∈ Ωc. RF,n[u�, ur] has at most two waves (u�, u∗) and
(u∗, ur) that are respectively either a S and a CD, or a PT and a
possibly null CD. As a consequence ΔΥ̂n ≤ 0 = ΔTVv = ΔTVw =
ΔΥ̌n, therefore Δ� ≤ 0 and ΔTn ≤ 0.

CD-RS000 (u�, um) is a CD and (um, ur) is a RS. In this case v� = vm < vr,
wm = wr, w∗ = w�, f(u�) < f(u∗), f(um) < f(ur), max{f(um),
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f(u∗)} ≤ F and u�, um, u∗, ur ∈ Ωc. RF,n[u�, ur] has two waves
(u�, u∗) and (u∗, ur) that are a RS and a CD, respectively. As a
consequence

ΔTVv = 0, ΔΥ̂n ≤ 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = 0 and ΔTn ≤ 0.
CD-NS000 (u�, um) is a CD and (um, ur) is a NS. In this case v−

F ≤ v� = vm <

vr ≤ v+
F , w− ≤ w� ≤ wr < wm, f(u�) < f(u∗) ≤ F = f(um) = f(ur)

and u�, um, u∗, ur ∈ Ωc. RF,n[u�, ur] has a fan of RSs ranging
from u� to u∗ and a possibly null CD (u∗, ur). As a consequence
ΔTVw = −2(wm − wr) < 0 = ΔTVv = ΔΥ̂n = ΔΥ̌n, therefore
Δ� ∈ [−1, 2n − 1] and ΔTn < 0.

CD-PT000 (u�, um) is a CD and (um, ur) is a PT. In this case v� = vm = V >
vr = v∗, wm < w− ≤ wr, w∗ belongs to the closed interval between w�

and wr, min{f(u�), f(u∗)} ≤ F , max{f(um), f(ur)} ≤ F , u� ∈ Ωf ,
um ∈ Ω−

f and u∗, ur ∈ Ωc. RF,n[u�, ur] has at most two waves
(u�, u∗) and (u∗, ur) that are either a PT or a S and a possibly null
CD, respectively. As a consequence

ΔTVv = 0, ΔΥ̂n ≤ 0,

ΔTVw = |w� − wr| − (|w� − wm| + |wm − wr|) ≤ 0, ΔΥ̌n = 0,

therefore Δ� ∈ {−1, 0} and ΔTn ≤ 0.
S-S000 (u�, um) and (um, ur) are Ss. In this case v� > vm > vr, w� = wm =

wr ≥ w−, f(ur) < f(u�) ≤ F and u�, um, ur ∈ Ωc. RF,n[u�, ur]
has one wave (u�, ur), which is a S. As a consequence 0 = ΔTVv =
ΔTVw = ΔΥ̂n = ΔΥ̌n, therefore Δ� = − 1 and ΔTn = 0.

S-RS000 (u�, um) is a S and (um, ur) is a RS. In this case v� > vr > vm,
w� = wm = wr ≥ w−, f(ur) < f(u�) ≤ F and u�, um, ur ∈ Ωc.
RF,n[u�, ur] has one wave (u�, ur), which is a S. As a consequence

ΔTVv = − 2(vr − vm) < 0, ΔΥ̂n = 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = − 1 and ΔTn < 0.
RS-S000 (u�, um) is a RS and (um, ur) is a S. In this case vm > v� > vr,

w� = wm = wr ≥ w−, f(ur) < f(u�) ≤ F and u�, um, ur ∈ Ωc.
RF,n[u�, ur] has one wave (u�, ur), which is a S. As a consequence

ΔTVv = − 2(vm − v�) < 0, ΔΥ̂n = 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = − 1 and ΔTn < 0.
NS-S000 (u�, um) is a NS and (um, ur) is a S. In this case vm > v� ≥ vr = v∗,

w∗ = w� > wm = wr ≥ w−, f(u�) = f(um) = F > f(ur) and u�, um,
ur ∈ Ωc. RF,n[u�, ur] has at most two waves (u�, u∗) and (u∗, ur)
that are a possibly null S and CD, respectively. As a consequence
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ΔTVv = − 2(vm − v�) < 0 = ΔTVw = ΔΥ̂n = ΔΥ̌n, therefore
Δ� ∈ {−1, 0} and ΔTn < 0.

NS-PT000 (u�, um) is a NS and (um, ur) is a PT. In this case vm = V > v� ≥
vr = v∗, w� = w∗ ≥ wr = w− > wm, f−

c > f(u�) = f(um) = F >
f(ur), f(u∗) ≤ F , u�, ur ∈ Ωc and um ∈ Ω−

f . RF,n[u�, ur] has at
most two waves (u�, u∗) and (u∗, ur) that are a possibly null S and a
possibly null CD (but not both null), respectively. As a consequence

ΔTVv = − 2(V − v�) < 0, ΔΥ̂n = 0,

ΔTVw = − 2(w− − wm) < 0, ΔΥ̌n = 0,

therefore Δ� ∈ {−1, 0} and ΔTn < 0.
PT-S000 (u�, um) is a PT and (um, ur) is a S. In this case v� = V > vm > vr,

w� < w− ≤ wm = wr, f(ur) < f(um) ≤ max{f(u�), f(um)} ≤ F ,
u� ∈ Ω−

f and um, ur ∈ Ω−
c . RF,n[u�, ur] has one wave (u�, ur), which

is a PT. As a consequence 0 = ΔTVv = ΔTVw = ΔΥ̂n = ΔΥ̌n,
therefore Δ� = − 1 and ΔTn = 0.

PT-RS000 (u�, um) is a PT and (um, ur) is a RS. In this case v� = V ≥ vr > vm,
w� < w− ≤ wm = wr, u� ∈ Ω−

f and um, ur ∈ Ωc. RF,n[u�, ur] has
one wave (u�, ur), which is either a PT or a CD. As a consequence

ΔTVv = − 2(vr − vm) < 0, ΔΥ̂n = 0,

ΔTVw = 0, ΔΥ̌n ≤ 0,

therefore Δ� = − 1 and ΔTn < 0.
PT-NS000 (u�, um) is a PT and (um, ur) is a NS. In this case v� = V ≥ vr > vm,

w� < w− ≤ wr < wm, f(u�) < f(um) = f(ur) = F , u� ∈ Ω−
f and um,

ur ∈ Ωc. RF,n[u�, ur] has one wave (u�, ur), which is either a CD or
a PT. As a consequence

ΔTVv = − 2(vr − vm) < 0, ΔΥ̂n = 0,

ΔTVw = − 2(wm − wr) < 0, ΔΥ̌n = 0,

therefore Δ� = − 1 and ΔTn < 0.
• Assume that two waves (u�, um) and (um, ur) interact at x = 0 and

(u�, ur) ∈ D2.
If F ∈ [f−

c , f+
c ), then one of the following cases occurs:

CD-S+
F
+
F
+
F (u�, um) is a CD and (um, ur) is a S. In this case v̂r ≥ v� = vm >

vr = v̌r > v̂�, w� = ŵ� > w̌r > wm = wr, w� > ŵr, f(u�) > f(u∗) >
F ≥ f(um) > f(ur) and u�, um, ur ∈ Ωc. RF,n[u�, ur] has three
waves (u�, û�), (û�, ǔr) and (ǔr, ur), which are a S, a NS and a CD,
respectively. As a consequence

ΔTVv = 2(vr − v̂�) > 0, ΔΥ̂n = − (v̂m − v̂�) − (w� − ŵm) < 0,

ΔTVw = 0, ΔΥ̌n = 0,

therefore Δ� = 1 and ΔTn = −2(v̂r − vr) − 2(w� − ŵr) < 0.
CD-RS+

F
+
F
+
F (u�, um) is a CD and (um, ur) is a RS. In this case v̂� ≤ v� = vm =

v̌m < vr = v̌r, v̂� < v̂m, w� = ŵ� > ŵm ≥ wm = wr, w̌r < w̌m,
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f(um) < f(ur) ≤ f(u�) < f(u∗), f(um) ≤ F < f(u∗) and u�, um,
ur ∈ Ωc. RF,n[u�, ur] has at most three waves (u�, û�), (û�, ǔr) and
(ǔr, ur), which are a possibly null S, a NS and a possibly null CD,
respectively. As a consequence

ΔTVv = 2(v� − v̂�) ≥ 0,

ΔTVw =
{

2(wr − w̌r) if f(um) = F
0 if f(um) < F

}
≥ 0,

ΔΥ̂n = − (v̂m − v̂�) − (ŵ� − ŵm) < −(v̂m − v̂�) < 0,

ΔΥ̌n = − (vr − vm) − (w̌m − w̌r) < −(w̌m − w̌r) < 0,

and therefore

Δ� ∈ {−1, 0, 1}, ΔTn < −2(v̂m − v�) +
{

0 if f(um) = F
−2(w̌m − w̌r) if f(um) < F

}
≤ 0.

CD-NS+
F
+
F
+
F (u�, um) is a CD and (um, ur) is a NS. In this case v� = vm < vr,

wr < min{w�, wm}, w� �= wm, f(um) = f(ur) = F �= f(u�) and u�,
um ur ∈ Ωc.
If f(u�) < F , then RF,n[u�, ur] has a fan of RSs from u� to û� and a
NS (û�, ur); as a consequence ΔTVw = − 2(wm−w�) < 0 = ΔTVv =
ΔΥ̂n = ΔΥ̌n, therefore Δ� ∈ [0, 2n−2] and ΔTn = − 2(wm−w�) < 0.
If f(u�) > F , then v̂� < v� = vm = v̂m, ŵ� = w� > wm = ŵm,
RF,n[u�, ur] has a two waves (u�, û�) and (û�, ur), that are a S and
a NS, respectively; as a consequence

ΔTVv = 2(v� − v̂�) > 0, ΔΥ̂n = − (v� − v̂�) − (w� − wm) < 0,

ΔTVw = 0, ΔΥ̌n = 0,

therefore Δ� = 0 and ΔTn = −2(w� − wm) < 0.
CD-PT+

F
+
F
+
F (u�, um) is a CD and (um, ur) is a PT. In this case wm < w− ≤

wF = ŵm < w�, v� = vm = v̂m = V > vr = v̌r > v̂�, wm < w− ≤
wr < w̌r < w� = ŵ�, f(u�) > f(u∗) > F ≥ max{f(um), f(ur)}, u� ∈
Ω+

f , um ∈ Ω−
f and ur ∈ Ωc. RF,n[u�, ur] has three waves (u�, û�),

(û�, ǔr) and (ǔr, ur) that are a S, a NS and a CD, respectively. As
a consequence

ΔTVv = 2(vr − v̂�) > 0, ΔΥ̂n = − (V − v̂�) − (w� − wF ) < 0,

ΔTVw = − 2(wr − wm) < 0, ΔΥ̌n = 0,

therefore Δ� = 1 and ΔTn < −2(V − vr) − 2(w� − wF ) < 0.
NS-S+

F
+
F
+
F (u�, um) is a NS and (um, ur) is a S. In this case vm > vr = v̌r > v�,

w� > w̌r > wm = wr ≥ wF ≥ w−, f(u∗) > F = f(u�) = f(um) >
f(ur) and u�, um, ur ∈ Ωc. RF,n[u�, ur] has two waves (u�, ǔr) and
(ǔr, ur) that are a NS and a CD, respectively. As a consequence
ΔTVv = −2(vm − vr) < 0 = ΔTVw = ΔΥ̂n = ΔΥ̌n, therefore
Δ� = 0 and ΔTn = − 2(vm − vr) < 0.

NS-RS+
F
+
F
+
F (u�, um) is a NS and (um, ur) is a RS. In this case v� < vm = v̌m <

vr = v̌r, w� > wm = w̌m = wr > w̌r, f(u∗) > f(ur) > F = f(u�) =
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f(um) and u�, um, ur ∈ Ωc. RF,n[u�, ur] has two waves (u�, ǔr) and
(ǔr, ur) that are a NS and a CD, respectively. As a consequence

ΔTVv = 0, ΔΥ̂n = 0,

ΔTVw = 2(wr − w̌r) > 0, ΔΥ̌n = − (vr − vm) − (wr − w̌r) < 0,

therefore Δ� = 0 and ΔTn = − 2(vr − vm) < 0.
If F ∈ [0, f−

c ), then one of the following cases occurs:
CD-S−

F
−
F
−
F (u�, um) is a CD and (um, ur) is a S. In this case v̂m ≥ v� = vm >

vr = v̌r > v̂�, w� = ŵ� > w̌r > wm = ŵm = wr ≥ w−, f(u�) >
f(u∗) > F ≥ f(um) > f(ur) and u�, um, ur ∈ Ωc. RF,n[u�, ur] has
three waves (u�, û�), (û�, ǔr) and (ǔr, ur), which are a S, a NS and
a CD, respectively. As a consequence

ΔTVv = 2(vr − v̂�) > 0, ΔΥ̂n = − (v̂m − v̂�) − (w� − wm) < 0,

ΔTVw = 0, ΔΥ̌n = 0,

therefore Δ� = 1 and ΔTn = −2(v̂m − vr) − 2(w� − wm) < 0.
CD-RS−

F
−
F
−
F (u�, um) is a CD and (um, ur) is a RS. In this case v̂� ≤ v� = vm ≤

v̂m, vm = v̌m < vr ≤ v̌r, w� = ŵ� ≥ w̌m ≥ wm = wr ≥ w−, w� > wm,
f(um) < f(ur) ≤ f(u�) < f(u∗), f(um) ≤ F < f(u∗) and u�, um,
ur ∈ Ωc. RF,n[u�, ur] has at most three waves (u�, û�), (û�, ǔr) and
(ǔr, ur), which are a possibly null S, a NS and a possibly null CD
or PT, respectively. As a consequence

ΔTVv = 2(v� − v̂�) + 2(v̌r − vr) ≥ 0,

ΔTVw =
{

2(wr − w̌r) if f(um) = F
0 if f(um) < F

}
≥ 0,

ΔΥ̂n = − (v̂m − v̂�) − (w� − wm) < 0,

ΔΥ̌n = − (v̌r − vm) −
{

(wr − w̌r) if f(um) = F
(w̌m − w̌r) if f(um) < F

}
< 0,

and therefore

Δ� ∈ {−1, 0, 1}, ΔTn = − 2(v̂m − v�) − 2(vr − vm) − 2(w� − wm)

−
{

0 if f(um) = F
2(w̌m − w̌r) if f(um) < F

}
< 0.

CD-NS−
F
−
F
−
F (u�, um) is a CD and (um, ur) is a NS. In this case v� = vm = v̂m <

vr, wr < min{w�, wm}, w� = ŵ�, wm = ŵm, f(um) = f(ur) = F �=
f(u�) and u�, um ∈ Ωc.
If f(u�) < F , then vr > v̂� > v� = vm, wr < w� < wm and
RF,n[u�, ur] has a fan of RSs from u� to û� and a NS (û�, ur); as
a consequence ΔTVw = −2(wm − w�) < 0 = ΔTVv = ΔΥ̂n = ΔΥ̌n,
therefore Δ� ∈ [0, 2n − 2] and ΔTn = −2(wm − w�) < 0.
If f(u�) > F , then vr > v� = vm = v̂m > v̂�, w� > wm > wr and
RF,n[u�, ur] has a two waves (u�, û�) and (û�, ur), that are a S and
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a NS, respectively; as a consequence

ΔTVv = 2(v� − v̂�) > 0, ΔΥ̂n = − (v� − v̂�) − (w� − wm) < 0,

ΔTVw = 0, ΔΥ̌n = 0,

therefore Δ� = 0 and ΔTn = −2(w� − wm) < 0.
CD-PT−

F
−
F
−
F (u�, um) is a CD and (um, ur) is a PT. In this case v� = vm = v̂m =

V > vr = v̌r > v̂�, w� = ŵ� > w̌r ≥ wr ≥ w− > wF = ŵm ≥ wm,
f(u�) > f(u∗) > F ≥ max{f(um), f(ur)}, u� ∈ Ω+

f , um ∈ Ω−
f and

ur ∈ Ωc. RF,n[u�, ur] has at most three waves (u�, û�), (û�, ǔr) and
(ǔr, ur) that are a S, a NS and a possibly null CD, respectively. As
a consequence

ΔTVv = 2(vr − v̂�) > 0, ΔΥ̂n = − (vm − v̂�) − (w� − wF ) < 0,

ΔTVw = − 2(wr − wm) < 0, ΔΥ̌n = 0,

therefore Δ� ∈ {0, 1} and ΔTn = −2(vm − vr)−2(wr −wm)−2(w� −
wF ) < 0.

NS-S−
F
−
F
−
F (u�, um) is a NS and (um, ur) is a S. In this case vm > vr = v̌r > v�,

w� > w̌r > wm = wr ≥ w−, f(u�) = f(um) = F > f(ur) and
u�, um, ur ∈ Ωc. RF,n[u�, ur] has two waves (u�, ǔr) and (ǔr, ur)
that are a NS and a CD, respectively. As a consequence ΔTVv =
− 2(vm − vr) < 0 = ΔTVw = ΔΥ̂n = ΔΥ̌n, therefore Δ� = 0 and
ΔTn = − 2(vm − vr) < 0.

NS-RS−
F
−
F
−
F (u�, um) is a NS and (um, ur) is a RS. In this case v� < vm = v̌m <

vr ≤ v̌r, w� > wm = w̌m = wr > w̌r, f(ur) > F = f(u�) = f(um) and
u�, um, ur ∈ Ωc. RF,n[u�, ur] has two waves (u�, ǔr) and (ǔr, ur) that
are a NS and either a PT or a CD, respectively. As a consequence

ΔTVv = 2(v̌r − vr) ≥ 0, ΔΥ̂n = 0,

ΔTVw = 2(wr − w̌r) > 0, ΔΥ̌n = − (v̌r − vm) − (wr − w̌r) < 0,

therefore Δ� = 0 and ΔTn = − 2(vr − vm) < 0. Notice that v̌r > vr

if and only if wm = wr = w− and v̌r = V > vr > vm = v+
F .

NS-PT−
F
−
F
−
F (u�, um) is a NS and (um, ur) is a PT. In this case vm = V > vr =

v̌r > v�, w� > w̌r > wr = w− > wm, f(u∗) > f(u�) = f(um) = F >
f(ur), u�, ur ∈ Ωc and um ∈ Ω−

f . RF,n[u�, ur] has two waves (u�, ǔr)
and (ǔr, ur) that are a NS and a CD, respectively. As a consequence

ΔTVv = − 2(V − vr) < 0, ΔΥ̂n = 0,

ΔTVw = − 2(w− − wm) < 0, ΔΥ̌n = 0,

therefore Δ� = 0 and ΔTn = − 2(V − vr) − 2(w− − wm) < 0.
This concludes the proof. �

In Table 1 we collect the most relevant possible interactions considered
in the proof of Proposition 4.1 and list the corresponding possible results in
terms of wave types, Δ� and ΔTn.
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Table 1. An overview of the interactions considered in the
proof of Proposition 4.1

Interaction Result Δ� ΔTn

CD+
F (S,NS,CD), (S,NS) ∈ {1, 2} < 0

RS+
F (NS,CD) = 1 < 0

CD−
F (S,NS,CD), (S,NS),

(PT,NS,CD), (PT,NS)
∈ {1, 2} < 0

RS−
F (NS,PT), (NS,CD) = 1 < 0

CD-S (S,CD), (PT,CD), PT ≤ 0 = 0
CD-RS (RS,CD) = 0 = 0
CD-PT (PT,CD), PT, (S,CD), S ≤ 0 ≤ 0
S-S S < 0 = 0
S-RS S < 0 < 0
RS-S S < 0 < 0
PT-S PT < 0 = 0
PT-RS PT, CD < 0 < 0
CD-S0 (S,CD), (PT,CD), PT ≤ 0 ≤ 0
CD-RS0 (RS,CD) = 0 ≤ 0
CD-NS0 (RSs,CD), RSs ∈ [−1, 2n − 1] < 0
CD-PT0 (PT,CD), PT, (S,CD), S ≤ 0 ≤ 0
S-S0 S < 0 = 0
S-RS0 S < 0 < 0
RS-S0 S < 0 < 0
NS-S0 (S,CD), CD ≤ 0 < 0
NS-PT0 (S,CD), S, CD ≤ 0 < 0
PT-S0 PT < 0 = 0
PT-RS0 PT, CD < 0 < 0
PT-NS0 CD, PT < 0 < 0
CD-S+

F (S,NS,CD) = 1 < 0
CD-RS+

F (S,NS,CD), (NS,CD),
(S,NS), NS

∈ {−1, 0, 1} < 0

CD-NS+
F (RSs,NS), (S,NS) ∈ [0, 2n − 2] < 0

CD-PT+
F (S,NS,CD) = 1 < 0

NS-S+
F (NS,CD) = 0 < 0

NS-RS+
F (NS,CD) = 0 < 0

CD-S−
F (S,NS,CD) = 1 < 0

CD-RS−
F (S,NS,CD), (S,NS,PT),

(NS,CD), (NS,PT), (S,NS),
NS

∈ {−1, 0, 1} < 0

CD-NS−
F (RSs,NS), (S,NS) ∈ [0, 2n − 2] < 0

CD-PT−
F (S,NS,CD), (S,NS) ∈ {0, 1} < 0

NS-S−
F (NS,CD) = 0 < 0

NS-RS−
F (NS,PT), (NS,CD) = 0 < 0

NS-PT−
F (NS,CD) = 0 < 0
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Beside the bound on the number of wave-fronts proved in Proposition 4.1,
we need to bound also the number of interactions. This is the aim of the next
proposition, which together with Proposition 4.1 ensure the global existence
of un. We underline that for any interaction Δ� ≤ 2n − 1, see Table 1.

Proposition 4.2. For any fixed n ∈ N sufficiently large and uo
n ∈ PC(R;Gn),

we have that the number of interactions in (0,∞) is bounded. In particular un

is globally defined.

Proof. From what we already show in the proof of Proposition 4.1, see Table 1,
we deduce that

t 
→ 2n Tn(t)
εn

+ �(t)

strictly decreases after any interaction, except the following cases.

A CD (u�, um) interacts with (um, ur) and one of the following
conditions is satisfied:

• (um, ur) is a S and w� = w− − 1;
• (um, ur) is a S and w− − 1 < w� ≤ w− = wr;
• (um, ur) is a RS;
• (um, ur) is a PT and w� > w−.

(4.3)

For this reason it remains to bound the number of only the above type of
interactions. We observe that the number of waves of un do not change after
interactions as in (4.3). This implies that the number of waves is uniformly
bounded. We also observe that any interaction as in (4.3) has exactly one
incoming CD and exactly one outgoing CD. Since no wave can reach any CD
from the left [and then possibly have with it an interaction as in (4.3)], we have
that as long as a CD remains a CD (possible further interactions involving it
have to be taken into account), it can interact only once with another wave
W (or with waves generated by further interactions involving W), moreover in
this case W is slower then such CD and is not another CD. Since furthermore
we already know that the number of waves is uniformly bounded, there can
be only finitely many interactions involving CDs. It is therefore now clear that
also the number of the interactions described in (4.3) is bounded. �

4.3. Convergence

We first observe that

|ρ� − ρr| ≤ L
(
|v� − vr| + |w� − wr|

)

where L
.= max{ρ−, ‖1/p′‖L∞∞∞([p−1(w−),p−1(w+)];R)} because

ρ�,r =

{
p−1(w�,r − v�,r) if w�,r ∈ [w−, w+],
(w�,r + 1 − w−) ρ− if w�,r ∈ [w− − 1, w−).

As a consequence TV(ρ) ≤ L (TV(v) + TV(w)), hence

TV(u) ≤ (1 + L)
(
TV(v) + TV(w)

)
.
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Moreover, by Proposition 4.1 and (4.1) we have that for any t > 0

TV
(
vn(t, ·)

)
+ TV

(
wn(t, ·)

)
≤ Tn(t) ≤ Tn(0)

≤ TV(vo) + TV(wo) + 2C
(
Υ̂(uo) + Υ̌(uo)

)
.

As a consequence TV(un) is bounded by

Co
F

.= (1 + L)
[
TV(vo) + TV(wo) + 2C

(
Υ̂(uo) + Υ̌(uo)

)]
. (4.4)

Since uo
n takes values in Ω, for any t > 0 we have that also un(t, ·) takes

values in Ω, hence

‖un(t, ·)‖L∞∞∞(R;Ω) ≤ R + V.

Moreover
‖un(t, ·) − un(s, ·)‖L111(R;Ω) ≤ Lo

F |t − s|, (4.5)

with Lo
F

.= Co
F max{V,R p′(R)}. Indeed, if no interaction occurs for times

between t and s, then

‖un(t, ·) − un(s, ·)‖L111(R;Ω)

≤
∑

i∈D(t)

∣
∣
∣(t − s) δ̇i

n(t)
(
ρn

(
t, δi

n(t)−
)

− ρn

(
t, δi

n(t)+
))∣∣

∣

+
∑

i∈D(t)

∣
∣
∣(t − s) δ̇i

n(t)
(
vn

(
t, δi

n(t)−
)

− vn

(
t, δi

n(t)+
))∣∣

∣

≤ Lo
F |t − s|,

where δi
n(t) ∈ R, i ∈ D(t) ⊂ N, are the positions of the discontinuities of

un(t, ·). The case when one or more interactions take place for times between
t and s is similar, because by the finite speed of propagation of the waves the
map t 
→ un(t, ·) is L111-continuous across interaction times.

Thus, by applying Helly’s Theorem, the approximate solutions (un)n con-
verge (up to a subsequence) in L111

loc(R+ × R; Ω) to a function

u ∈ L∞∞∞(R+;BV(R; Ω)) ∩ C0(R+;L111
loc(R; Ω))

and the limit satisfies the estimates in (2.13).

Proposition 4.3. Let uo ∈ L111 ∩ BV(R; Ω) and F ∈ [0, f+
c ] satisfy (H.1)

or (H.2). If u is a limit of the approximate solutions (un)n constructed in
Sect. 4.1, then u is a solution to constrained Cauchy problem (2.3)–(2.5) in
the sense of Definition 2.4.

Proof. We consider separately the conditions listed in Definition 2.4.
(CS.1) Initial condition (2.4) holds by (2.13), (4.5) and the L111

loc-convergence
of un to u.

(CS.2) We prove now (2.6), that is for any test function φ ∈ C∞
c ((0,∞)×R;R)

we have
∫ ∞

0

∫

R

(
ρφt + f(u)φx

)
dxdt = 0.
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Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . Since un is
uniformly bounded and f is uniformly continuous on bounded sets, it
is sufficient to prove that

∫ T

0

∫

R

(
ρn φt + f(un)φx

)
dxdt → 0. (4.6)

By the Green-Gauss formula the double integral above can be written
as

∫ T

0

∑

i∈D(t)

(
δ̇i
n(t)Δρi

n(t) − Δf i
n(t)

)
φ
(
t, δi

n(t)
)
dt,

where

Δρi
n(t) .= ρn

(
t, δi

n(t)+
)

− ρn

(
t, δi

n(t)−
)
,

Δf i
n(t) .= f

(
un

(
t, δi

n(t)+
))

− f
(
un

(
t, δi

n(t)−
))

.

By construction any discontinuity of the approximate solution un(t, ·)
satisfies the first Rankine-Hugoniot condition (2.9), therefore

δ̇i
n(t)Δρi

n(t) − Δf i
n(t) = 0, i ∈ D(t),

and (4.6) is trivial.
The proof of (2.7) is analogous because by construction any dis-

continuity of un(t, ·) away from x = 0 satisfies also the second Rankine–
Hugoniot condition (2.10).

(CS.3) We prove now (2.8), namely that for any k ∈ [0, V ] and test function
φ ∈ C∞

c ((0,∞) × R;R) such that φ(·, 0) ≡ 0 and φ ≥ 0 we have
∫ ∞

0

∫

R

(
Ek(u)φt + Qk(u)φx

)
dxdt ≥ 0,

where

Ek(u) .=

⎧
⎨

⎩

0 if v ≥ k,
ρ

p−1
(
W(u) − k

) − 1 if v < k,

Qk(u) .=

⎧
⎨

⎩

0 if v ≥ k,
f(u)

p−1
(
W(u) − k

) − k if v < k.

Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . By the a.e. con-
vergence of un to u and the uniform continuity of Ek and Qk, it is
sufficient to prove that

lim inf
n→∞

∫ T

0

∫

R

(
Ek(un)φt + Qk(un)φx

)
dxdt ≥ 0. (4.7)

By the Green-Gauss formula the double integral above can be written
as

∫ T

0

∑

i∈D(t)

(
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

)
φ
(
t, δi

n(t)
)
dt,
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where

ΔEk,i
n (t) .= Ek

(
un

(
t, δi

n(t)+
))

− Ek
(
un

(
t, δi

n(t)−
))

,

ΔQk,i
n (t) .= Qk

(
un

(
t, δi

n(t)+
))

− Qk
(
un

(
t, δi

n(t)−
))

.

To estimate the above integral we have to distinguish the following
cases.
• If the ith discontinuity is a PT, then we let x

.= δi
n(t) and observe

that

ρn(t, x−) < min
{
ρn(t, x+), p−1(w− − k)

}
,

vn(t, x−) = V > vn(t, x+),

δ̇i
n(t) = Λ

(
un(t, x−), un(t, x+)

)
,

W
(
un(t, x−)

)
= w− ≤ w

(
un(t, x+)

)
= W

(
un(t, x+)

)
,

hence

ΔEk,i
n (t) =

⎧
⎨

⎩

ρn(t, x+)
ρk

n,+

− 1 if vn(t, x+) < k ≤ V,

0 if k ≤ vn(t, x+),

−ΔQk,i
n (t) =

⎧
⎪⎨

⎪⎩

k −
f
(
un(t, x+)

)

ρk
n,+

if vn(t, x+) < k ≤ V,

0 if k ≤ vn(t, x+),

where ρk
n,+

.= p−1(w(un(t, x+)) − k). If vn(t, x+) < k ≤ V , then

δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

= Λ
(
un(t, x−), un(t, x+)

)
[

ρn(t, x+)
ρk

n,+

− 1

]

+ k −
f
(
un(t, x+)

)

ρk
n,+

=

[
ρn(t, x+)

ρk
n,+

− 1

]

︸ ︷︷ ︸
>0

[

Λ
(
un(t, x−), un(t, x+)

)
− Λ

(
(ρk

n,+, k), un(t, x+)
)
]

︸ ︷︷ ︸
>0

> 0.

• If the ith discontinuity is a CD, then we let x
.= δi

n(t) and ob-
serve that δ̇i

n(t) = vn(t, x−) = vn(t, x+) implies that δ̇i
n(t)ΔEk,i

n (t)−
ΔQk,i

n (t) = 0.
• If the ith discontinuity is a S, then we let x

.= δi
n(t) and observe

that

ρn(t, x−) < ρn(t, x+),

vn(t, x−) > vn(t, x+),

f
(
un(t, x−)

)
> f

(
un(t, x+)

)
,

δ̇i
n(t) = Λ

(
un(t, x−), un(t, x+)

)
< 0,

w±
.= w

(
un(t, x−)

)
= w

(
un(t, x+)

)
≥ w−,
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hence

ΔEk,i
n (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρn(t, x+) − ρn(t, x−)
p−1(w± − k)

if vn(t, x+) < vn(t, x−) < k,

ρn(t, x+)
p−1(w± − k)

− 1 if vn(t, x+) < k ≤ vn(t, x−),

0 if k ≤ vn(t, x+) < vn(t, x−),

−ΔQk,i
n (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f
(
un(t, x−)

)
− f

(
un(t, x+)

)

p−1(w± − k)
if vn(t, x+) < vn(t, x−) < k,

k −
f
(
un(t, x+)

)

p−1(w± − k)
if vn(t, x+) < k ≤ vn(t, x−),

0 if k ≤ vn(t, x+) < vn(t, x−).

If k > vn(t, x−) or k ≤ vn(t, x+), then obviously δ̇i
n(t)ΔEk,i

n (t) −
ΔQk,i

n (t) = 0. Furthermore, if vn(t, x+) < k ≤ vn(t, x−), then

δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

= Λ
(
un(t, x−), un(t, x+)

)
[

ρn(t, x+)
p−1(w± − k)

− 1
]

+ k −
f
(
un(t, x+)

)

p−1(w± − k)

=
[

ρn(t, x+)
p−1(w± − k)

− 1
]

︸ ︷︷ ︸
>0

×
[
Λ
(
un(t, x−), un(t, x+)

)
− Λ

((
p−1(w± − k), k

)
, un(t, x+)

)]

︸ ︷︷ ︸
>0

> 0.

• If the ith discontinuity is a RS, then we let x
.= δi

n(t) and observe
that

ρn(t, x−) > ρn(t, x+),

vn(t, x−) < vn(t, x+),

f
(
un(t, x−)

)
< f

(
un(t, x+)

)
,

δ̇i
n(t) = Λ

(
un(t, x−), un(t, x+)

)
< 0,

w±
.= w

(
un(t, x−)

)
= w

(
un(t, x+)

)
≥ w−,
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hence

ΔEk,i
n (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρn(t, x+) − ρn(t, x−)
p−1(w± − k)

if vn(t, x−) < vn(t, x+) < k,

ρn(t, x−)
p−1(w± − k)

− 1 if vn(t, x−) < k ≤ vn(t, x+),

0 if k ≤ vn(t, x−) < vn(t, x+),

−ΔQk,i
n (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f
(
un(t, x−)

)
− f

(
un(t, x+)

)

p−1(w± − k)
if vn(t, x−) < vn(t, x+) < k,

f
(
un(t, x−)

)

p−1(w± − k)
− k if vn(t, x−) < k ≤ vn(t, x+),

0 if k ≤ vn(t, x−) < vn(t, x+).

If k > vn(t, x+) or k ≤ vn(t, x−), then obviously δ̇i
n(t)ΔEk,i

n (t) −
ΔQk,i

n (t) = 0. Furthermore, if vn(t, x−) < k ≤ vn(t, x+), then

δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

= Λ
(
un(t, x−), un(t, x+)

)
[

ρn(t, x−)
p−1(w± − k)

− 1
]

+
f
(
un(t, x−)

)

p−1(w± − k)
− k

=
[

ρn(t, x−)
p−1(w± − k)

− 1
]

︸ ︷︷ ︸
>0

×
[
Λ
(
un(t, x−), un(t, x+)

)
+ Λ

(
un(t, x−),

(
p−1(w± − k), k

))
]

︸ ︷︷ ︸
<0

≥ − 2
ρ− p−1(w±) p′(p−1(w±)

) [
ρn(t, x−) − ρn(t, x+)

]

because ρn(t, x−) > p−1(w± − k) ≥ ρn(t, x+) ≥ ρ− and because by
the concavity of Lw±(ρ) = (w± − p(ρ)) ρ we have

0 > Λ
(
un(t, x−), un(t, x+)

)
> Λ

(
un(t, x−),

(
p−1(w± − k), k

))

> L′
w±

(
ρn(t, x−)

)
= w± − p

(
ρn(t, x−)

)
− ρn(t, x−) p′(ρn(t, x−)

)

≥ L′
w±

(
p−1(w±)

)
= − p−1(w±) p′(p−1(w±)

)
.
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The above case by case study shows that

lim inf
n→∞

∫ T

0

∫

R

[
Ek(un)φt + Qk(un)φx

]
dxdt

= lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt

≥ − 2
ρ− max

ρ∈[p−1(w−),R]

∣
∣ρ p′(ρ)

∣
∣

× lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[
ρn

(
t, δi

n(t)−
)

− ρn

(
t, δi

n(t)+
)]

φ
(
t, δi

n(t)
)
dt

≥ −2T

ρ− ‖φ‖L∞∞∞ Co
F max

ρ∈[ρ−,R]

∣
∣ρ p′(ρ)

∣
∣ .= −M,

where δi
n(t) ∈ R, i ∈ RSn(t) ⊂ N, are the positions of the RSs of un(t, ·)

and Co
F is defined in (4.4).

We claim that for any fixed h > 0, there exists a dense set Kh of
values of k in [0, V ] such that

lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt ≥ − 1

h
.

To prove it we fix a, b ∈ [0, V ] with a < b and show that there
exists k ∈ (a, b) such that the above estimate is satisfied. Let l

.=
�2(M h + 1)/(b − a)� and introduce the set

Kh
.=

2N + 1
l

∩ (a, b).

Let En > 0 be the maximal (v, w)-distance between two “consecutive”
points in the grid Gn having the same w-coordinate, namely, with a
slight abuse of notations, we let

En
.= max

(vi,w), (vi+1,w)∈Gn

vi �=vi+1

(vi+1 − vi).

Let nh ∈ N be sufficiently large so that Enh
< 2/l. Take n ≥ nh. We

claim that for any i ∈ RSn(t) we have

Kh ∩
(
vn

(
t, δi

n(t)−
)
, vn

(
t, δi

n(t)+
))

has at most one element. Indeed, if Kh has more than one element then
for any i ∈ RSn(t) we have

vn

(
t, δi

n(t)+
)

− vn

(
t, δi

n(t)−
)

≤ En <
2
l

= min
k1, k2∈Kh

k1 �=k2

|k1 − k2|.

As a consequence the sum
∑

k∈Kh

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
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has at most one nonzero element; moreover

−m
(
ρn

(
t, δi

n(t)−
)

− ρn

(
t, δi

n(t)+
))

≤
∑

k∈Kh

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
,

where

m
.=

2
ρ− max

ρ∈[ρ−,R]

∣
∣ρ p′(ρ)

∣
∣ =

M

T Co
F ‖φ‖L∞∞∞

.

Therefore we find
∑

i∈RSn(t)

∑

k∈Kh

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
≥ −mCo

F .

By exchanging the sums, multiplying by the test function and inte-
grating in time we get
∑

k∈Kh

∫ T

0

∑

i∈RSn(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt ≥ −M.

Moreover, by construction we have that Kh is a non-empty set with a
finite number of elements (it has at most hM elements), hence

hM max
k∈Kh

⎡

⎣
∫ T

0

∑

i∈RSn(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt

⎤

⎦ ≥ −M.

In conclusion we proved that there exists k ∈ Kh ⊆ (a, b) such
that the above estimate is satisfied for any n ≥ nh; therefore, since Kh

has a finite number of elements, we have

lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt ≥ − 1

h
.

Since a and b are arbitrary, the above estimate holds true for a dense
set of values of k in [0, V ].

Actually, the above estimate holds for any k in [0, V ] because the
term in brackets in the above formula is continuous with respect to k.
Finally, for the arbitrariness of h, we have that

lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt ≥ 0

and this concludes the proof of (4.7).
(CS.4) We prove now that (2.5) holds for a.e. t > 0, namely

f
(
u(t, 0±)

)
≤ F for a.e. t > 0.

By construction f(un(t, 0±)) ≤ F for any t > 0, namely the approx-
imate solutions satisfy (2.5). Since weak convergence preserves point-
wise inequalities, it is sufficient to prove that f(un(t, 0±)) weakly con-
verges to f(u(t, 0±)). If φ is a smooth test function of time with com-
pact support in (0,∞) and ϕ is a smooth test function of space with



48 Page 36 of 42 M. Benyahia et al. NoDEA

compact support and such that ϕ(0) = 1, then
∫ ∞

0

f
(
un(t, 0−)

)
φ(t) dt

=
∫ ∞

0

∫ 0

−∞

[
ρn(t, x) φ̇(t)ϕ(x) + f

(
un(t, x)

)
φ(t) ϕ̇(x)

]
dxdt.

The right-hand side passes to the limit, yielding the analogous expres-
sion with un replaced by u. By using again the Green-Gauss formula,
one finally finds that

lim
n→∞

∫ ∞

0

f
(
un(t, 0−)

)
φ(t) dt =

∫ ∞

0

f
(
u(t, 0−)

)
φ(t) dt.

As a consequence we have that f(un(t, 0−)) weakly converges to f(u(t,
0−)), hence f(u(t, 0−)) ≤ F for a.e. t > 0. At last, since we already
proved that u satisfies the first Rankine-Hugoniot condition, we have
f(u(t, 0−)) = f(u(t, 0+)), hence f(u(t, 0±)) ≤ F for a.e. t > 0. �

4.4. The density flow through x = 0x = 0x = 0
Let u be the solution of constrained Cauchy problem (2.3)–(2.5) constructed
in the previous section. By Propositions 2.5 and 4.3 we have that non-classical
shocks of u can occur only at the constraint location x = 0, and in this case
the (density) flow at x = 0 does not exceed the maximal flow F allowed by
the constraint.

In the case of a constrained Riemann problem (2.3), (2.5), (2.15), we
know that u coincides with (t, x) 
→ RF [u�, ur](x/t), moreover if (u�, ur) ∈ D2

then the flow of the non-classical shock of u coincides with F . In the next
proposition we show that also for a general constrained Cauchy problem the
flow of the non-classical shocks of u coincides with F if the traces at x = 0 of
the approximate solutions (un)n satisfy a technical condition.

Proposition 4.4. Let uo ∈ L111 ∩BV(R; Ω), F ∈ [0, f+
c ] satisfy (H.1) or (H.2)

and u be a limit of the approximate solutions (un)n constructed in Sect. 4.1.
Assume that the traces at x = 0 of (un)n and u satisfy (2.14), that is for any
k ∈ [0, V ] and φ ∈ C∞

c ((0,∞) × R;R) such that φ ≥ 0

lim
n→∞

∫ T

0

Nk
F

(
un(t, 0−)

)
φ(t, 0) dt =

∫ T

0

Nk
F

(
u(t, 0−)

)
φ(t, 0) dt,

with

Nk
F (u) .=

⎧
⎪⎨

⎪⎩

f(u)

[
k

F
− 1

p−1
(
W(u) − k

)

]

+

if F �= 0,

k if F = 0.

If at time t0 > 0 the limit u has a non-classical discontinuity, then
f(u(t0, 0±)) = F .
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Proof. We first prove that for any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞) × R;R) such

that φ ≥ 0 we have
∫ ∞

0

[∫

R

[
Ek(u)φt + Qk(u)φx

]
dx + Nk

F

(
u(t, 0−)

)
φ(t, 0)

]
dt ≥ 0. (4.8)

Notice that (4.8) differs from (2.8) not only for an extra term involving Nk
F (u(t,

0+)), but also because here we do not require that φ(·, 0) ≡ 0.
Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . By (2.14), the

a.e. convergence of un to u and the uniform continuity of Ek and Qk, it is
sufficient to prove that

lim inf
n→∞

∫ T

0

[∫

R

[
Ek(un)φt + Qk(un)φx

]
dx + Nk

F

(
un(t, 0−)

)
φ(t, 0)

]
dt ≥ 0.

(4.9)
As already observed in the proof of Proposition 4.3, by the Green-Gauss for-
mula the double integral above can be written as

∫ T

0

∑

i∈D(t)

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)
dt,

where

ΔEk,i
n (t) .= Ek

(
un

(
t, δi

n(t)+
))

− Ek
(
un

(
t, δi

n(t)−
))

,

ΔQk,i
n (t) .= Qk

(
un

(
t, δi

n(t)+
))

− Qk
(
un

(
t, δi

n(t)−
))

.

To estimate the above integral we can proceed as in the proof of Proposi-
tion 4.3, with the exception that here the ith discontinuity could also be a NS.
In this case, that is, if the ith discontinuity is a NS, then

δi
n(t) = 0, f

(
un(t, 0±)

)
= F, v−

F ≤ vn(t, 0−) < vn(t, 0+),

δ̇i
n(t) = 0, w

(
un(t, 0−)

)
= W

(
un(t, 0−)

)
≥ W

(
un(t, 0+)

)
,

hence

−ΔQk,i
n (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F

p−1
(
w
(
un(t, 0−)

)
− k

) − F

p−1
(
W
(
un(t, 0+)

)
− k

)

if vn(t, 0−) < vn(t, 0+) < k,
F

p−1
(
w
(
un(t, 0−)

)
− k

) − k if vn(t, 0−) < k ≤ vn(t, 0+),

0 if k ≤ vn(t, 0−) < vn(t, 0+),

Nk
F

(
un(t, 0−)

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎣k − F

p−1
(
W
(
un(t, 0−)

)
− k

)

⎤

⎦

+

if F �= 0,

k if F = 0.

Notice that if F = 0, then un(t, 0+) = (0, V ) and un(t, 0−) ∈ [p−1(w−), R] ×
{0}. We observe, see Figs. 9 and 10, that −ΔQk,i

n (t) < 0 and that −ΔQk,i
n (t) +
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Figure 9. Above F ∈ (f−
c , f+

c ), v±
0

.= vn(t, 0±) and v±
0,F

.=
F/p−1(W(un(t, 0±)) − k). With the first two pictures we show
that if v−

0 < k < v+
0 , then v−

0,F < k. In the last picture we
consider the case v−

0 < v+
0 < k and show that v−

0,F < v+
0,F < k

Figure 10. Above F ∈ (0, f−
c ), v±

0
.= vn(t, 0±) and v±

0,F
.=

F/p−1(W(un(t, 0±)) − k). With the first two pictures we show
that if v−

0 < k < v+
0 , then v−

0,F < k. In the last picture we
consider the case v−

0 < v+
0 < k and show that v−

0,F < v+
0,F < k

Nk
F (un(t, 0−)) ≥ 0 and therefore

[
δ̇i
n(t)ΔEk,i

n (t) − ΔQk,i
n (t)

]
φ
(
t, δi

n(t)
)

+ Nk
F

(
u(t, 0−)

)
φ(t, 0)

=
[
−ΔQk,i

n (t) + Nk
F

(
un(t, 0−)

)]
φ(t, 0) ≥ 0.

Thus, by proceeding as in the proof of Proposition 4.3 it is easy to see that
(4.9) holds true. Let us just underline that beside the NSs, the only possible
stationary discontinuities at x = 0 are PTs and CDs, however in both of these
cases we have f(un(t, 0−)) = 0 and therefore Nk

F (un(t, 0−)) = 0.
We can now prove that if u has a non-classical discontinuity then f(u(t, 0±)) =
F . This is of course obvious if F = 0, due to (CS.4) and the fact that f(u) ≥ 0.
We can therefore assume that F > 0 and that x 
→ u(t0, x) has a (stationary)
non-classical shock (u�, ur), with v� < vr and f(u�) = f(ur)

.= f ≤ F . We
want to prove that f = F . Consider the test function
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φ(t, x) .=

[∫ ∞

|x|−ε

ϕε(z) dz

][∫ t−t0+2ε

t−t0+ε

ϕε(z) dz

]

,

where ϕε is a smooth approximation of the Dirac mass centred at 0+, δD
0+

,
namely

ϕε ∈ C∞
c (R;R+), ε > 0, supp(δε) ⊆ [0, ε], ‖ϕε‖L111(R;R) = 1, ϕε → δD

0+
.

Observe that as ε goes to zero

φ(t0, x) ≡ 0 → 0,

φ(t, 0) =
∫ t−t0+2ε

t−t0+ε

ϕε(z) dz → δD
t0−(t),

φt(t, x) =

[∫ ∞

|x|−ε

ϕε(z) dz

][

ϕε(t − t0 + 2ε) − ϕε(t − t0 + ε)

]

→ 0,

χ
R±

(x)φx(t, x) → ∓ δD
0±(x) δD

t0−(t).

Then by (4.8) for all k belonging to the interval (v̂(w�, F ), v̌(vr, F )) we have

Qk(u�) − Qk(ur) + f

[
k

F
− 1

p−1
(
W(u�) − k

)

]

+

=

[
f

p−1
(
W(u�) − k

) − k

]

+ f

[
k

F
− 1

p−1
(
W(u�) − k

)

]

=
[

f

F
− 1

]
k ≥ 0.

Since f ≤ F , the above estimate implies that f = F and this concludes the
proof. �

We underline that the entropy condition (2.8) “becomes” (4.8) if we do
not require that the test function φ satisfy the condition φ(·, 0) ≡ 0. Even
if it is not necessary for the proof of Theorem 2.8, we conclude this section
by considering in (2.7) a test function φ which may not satisfy the condition
φ(·, 0) ≡ 0.

Proposition 4.5. Let uo ∈ L111 ∩BV(R; Ω), F ∈ [0, f+
c ] satisfy (H.1) or (H.2)

and u be a limit of the approximate solutions (un)n constructed in Sect. 4.1.
If the traces at x = 0 of (un)n and u satisfy for any φ ∈ C∞

c ((0,∞) × R;R)

lim
n→∞

∫ T

0

f
(
un(t, 0−)

)[
W
(
un(t, 0−)

)
− W

(
un(t, 0+)

)]

+
φ(t, 0) dt

=
∫ T

0

f
(
u(t, 0−)

) [
W
(
u(t, 0−)

)
− W

(
u(t, 0+)

)]

+
φ(t, 0) dt (4.10)

then u satisfies the following integral condition for any φ ∈ C∞
c ((0,∞)×R;R)

∫ ∞

0

∫

R

[
ρφt + f(u)φx

]
W(u) dxdt

−
∫ ∞

0

f
(
u(t, 0−)

) [
W
(
u(t, 0−)

)
− W

(
u(t, 0+)

)]

+
φ(t, 0) dt = 0.
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Proof. Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . By (4.10), since
un is uniformly bounded and f is uniformly continuous on bounded sets, it is
sufficient to prove that

∫ T

0

∫

R

[ρn φt + f(un) φx] W(un) dx dt

−
∫ T

0
f
(
un(t, 0−)

) [
W
(
un(t, 0−)

) − W
(
un(t, 0+)

)]
+ φ(t, 0) dt → 0. (4.11)

By the Green-Gauss formula the double integrals above can be written as
∫ T

0

∑

i∈D(t)

[
δ̇i
n(t)ΔY i

n(t) − ΔQi
n(t)

]
φ
(
t, δi

n(t)
)
dt,

where

ΔY i
n(t) .= ρn

(
t, δi

n(t)+
)
W
(
un

(
t, δi

n(t)+
))

− ρn

(
t, δi

n(t)−
)
W
(
un

(
t, δi

n(t)−
))

,

ΔQi
n(t) .= f

(
un

(
t, δi

n(t)+
))

W
(
un

(
t, δi

n(t)+
))

− f
(
un

(
t, δi

n(t)−
))

W
(
un

(
t, δi

n(t)−
))

.

If un(t, ·) does not have a non-classical shock at δi
n(t), then by the Rankine-

Hugoniot conditions

δ̇i
n(t)ΔY i

n(t) − ΔQi
n(t) = 0;

moreover, if δi
n(t) = 0 and un(t, ·) has a stationary discontinuity at x =

0, namely a phase transition or a contact discontinuity, then vn(t, 0+) =
vn(t, 0) = 0 and therefore sign(vn(t, 0+)) = 0.
On the other hand, if δi

n(t) = 0 and un(t, ·) has a stationary non-classical shock
at x = 0, then

δ̇i
n(t) = 0, f

(
un(t, 0±)

)
= F, W

(
un(t, 0−)

)
≥ W

(
un(t, 0+)

)
,

and therefore

δ̇i
n(t)ΔY i

n(t) − ΔQi
n(t) = −F

[
W
(
un(t, 0+)

)
− W

(
un(t, 0−)

)]

= f
(
un(t, 0−)

) [
W
(
un(t, 0−)

)
− W

(
un(t, 0+)

)]

+
.

As a consequence (4.11) is trivial. �
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16 route de Gray
25030 Besançon
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