p-Laplacian problems involving critical Hardy-Sobolev exponents

Kanishka Perera© and Wenming Zou

Abstract

We prove existence, multiplicity, and bifurcation results for p Laplacian problems involving critical Hardy-Sobolev exponents. Our results are mainly for the case $\lambda \geq \lambda_{1}$ and extend results in the literature for $0<\lambda<\lambda_{1}$. In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index. Mathematics Subject Classification. Primary 35J92, 35B33; Secondary 35 J 20.

Keywords. p-Laplacian problems, Critical Hardy-Sobolev exponents, Existence, Multiplicity, Bifurcation, Critical point theory, Cohomological index, Pseudo-index.

1. Introduction

Consider the critical p-Laplacian problem

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u+\frac{|u|^{p^{*}(s)-2}}{|x|^{s}} u \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{N} containing the origin, $1<p<N, \lambda>0$ is a parameter, $0<s<p$, and $p^{*}(s)=(N-s) p /(N-p)$ is the critical HardySobolev exponent. Ghoussoub and Yuan [6] showed, among other things, that this problem has a positive solution when $N \geq p^{2}$ and $0<\lambda<\lambda_{1}$, where $\lambda_{1}>0$ is the first eigenvalue of the eigenvalue problem

$$
\begin{cases}-\Delta_{p} u=\lambda|u|^{p-2} u & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

In the present paper we mainly consider the case $\lambda \geq \lambda_{1}$. Our existence results are the following.

Theorem 1.1. If $N \geq p^{2}$ and $0<\lambda<\lambda_{1}$, then problem (1.1) has a positive ground state solution.

Theorem 1.2. If $N \geq p^{2}$ and $\lambda>\lambda_{1}$ is not an eigenvalue of problem (1.2), then problem (1.1) has a nontrivial solution.

Theorem 1.3. If

$$
\begin{equation*}
\left(N-p^{2}\right)(N-s)>(p-s) p \tag{1.3}
\end{equation*}
$$

and $\lambda \geq \lambda_{1}$, then problem (1.1) has a nontrivial solution.
Remark 1.4. We note that (1.3) implies $N>p^{2}$.
Remark 1.5. In the nonsingular case $s=0$, related results can be found in Degiovanni and Lancelotti [4] for the p-Laplacian and in Mosconi et al. [7] for the fractional p-Laplacian.

Weak solutions of problem (1.1) coincide with critical points of the C^{1} functional

$$
I_{\lambda}(u)=\int_{\Omega}\left[\frac{1}{p}\left(|\nabla u|^{p}-\lambda|u|^{p}\right)-\frac{1}{p^{*}(s)} \frac{|u|^{p^{*}(s)}}{|x|^{s}}\right] d x, \quad u \in W_{0}^{1, p}(\Omega)
$$

Recall that I_{λ} satisfies the Palais-Smale compactness condition at the level $c \in \mathbb{R}$, or the $(\mathrm{PS})_{c}$ condition for short, if every sequence $\left(u_{j}\right) \subset W_{0}^{1, p}(\Omega)$ such that $I_{\lambda}\left(u_{j}\right) \rightarrow c$ and $I_{\lambda}^{\prime}\left(u_{j}\right) \rightarrow 0$ has a convergent subsequence. Let

$$
\begin{equation*}
\mu_{s}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\left(\int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \tag{1.4}
\end{equation*}
$$

be the best constant in the Hardy-Sobolev inequality, which is independent of Ω (see [6, Theorem 3.1.(1)]). It was shown in [6, Theorem 4.1.(2)] that I_{λ} satisfies the (PS) ${ }_{c}$ condition for all

$$
c<\frac{p-s}{(N-s) p} \mu_{s}^{(N-s) /(p-s)}
$$

for any $\lambda>0$. We will prove Theorems $1.1-1.3$ by constructing suitable minimax levels below this threshold for compactness. When $0<\lambda<\lambda_{1}$, we will show that the infimum of I_{λ} on the Nehari manifold is below this level. When $\lambda \geq \lambda_{1}, I_{\lambda}$ no longer has the mountain pass geometry and a linking type argument is needed. However, the classical linking theorem cannot be used here since the nonlinear operator $-\Delta_{p}$ does not have linear eigenspaces. We will use a nonstandard linking construction based on sublevel sets as in Perera and Szulkin [11] (see also Perera et al. [9, Proposition 3.23]). Moreover, the standard sequence of eigenvalues of $-\Delta_{p}$ based on the genus does not give enough information about the structure of the sublevel sets to carry out this construction. Therefore, we will use a different sequence of eigenvalues introduced in Perera [8] that is based on a cohomological index.

For $1<p<\infty$, eigenvalues of problem (1.2) coincide with critical values of the functional

$$
\Psi(u)=\frac{1}{\int_{\Omega}|u|^{p} d x}, \quad u \in \mathcal{M}=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega}|\nabla u|^{p} d x=1\right\}
$$

Let \mathcal{F} denote the class of symmetric subsets of \mathcal{M}, let $i(M)$ denote the $\mathbb{Z}_{2^{-}}$ cohomological index of $M \in \mathcal{F}$ (see Sect. 2.1), and set

$$
\lambda_{k}:=\inf _{M \in \mathcal{F}, i(M) \geq k} \sup _{u \in M} \Psi(u), \quad k \in \mathbb{N} .
$$

Then $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty$ is a sequence of eigenvalues of (1.2) and

$$
\begin{equation*}
\lambda_{k}<\lambda_{k+1} \Longrightarrow i\left(\Psi^{\lambda_{k}}\right)=i\left(\mathcal{M} \backslash \Psi_{\lambda_{k+1}}\right)=k \tag{1.5}
\end{equation*}
$$

where $\Psi^{a}=\{u \in \mathcal{M}: \Psi(u) \leq a\}$ and $\Psi_{a}=\{u \in \mathcal{M}: \Psi(u) \geq a\}$ for $a \in \mathbb{R}$ (see Perera et al. [9, Propositions 3.52 and 3.53$]$). We also prove the following bifurcation and multiplicity results for problem (1.1) that do not require $N \geq$ p^{2}. Set

$$
V_{s}(\Omega)=\int_{\Omega}|x|^{(N-p) s /(p-s)} d x
$$

and note that

$$
\begin{equation*}
\int_{\Omega}|u|^{p} d x \leq V_{s}(\Omega)^{(p-s) /(N-s)}\left(\int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)} \forall u \in W_{0}^{1, p}(\Omega) \tag{1.6}
\end{equation*}
$$

by the Hölder inequality.
Theorem 1.6. If

$$
\lambda_{1}-\frac{\mu_{s}}{V_{s}(\Omega)^{(p-s) /(N-s)}}<\lambda<\lambda_{1}
$$

then problem (1.1) has a pair of nontrivial solutions $\pm u^{\lambda}$ such that

$$
\int_{\Omega}\left|\nabla u^{\lambda}\right|^{p} d x \leq \lambda_{1}\left(\lambda_{1}-\lambda\right)^{(N-p) /(p-s)} V_{s}(\Omega)
$$

Theorem 1.7. If $\lambda_{k} \leq \lambda<\lambda_{k+1}=\cdots=\lambda_{k+m}<\lambda_{k+m+1}$ for some $k, m \in \mathbb{N}$ and

$$
\begin{equation*}
\lambda>\lambda_{k+1}-\frac{\mu_{s}}{V_{s}(\Omega)^{(p-s) /(N-s)}} \tag{1.7}
\end{equation*}
$$

then problem (1.1) has m distinct pairs of nontrivial solutions $\pm u_{j}^{\lambda}, j=$ $1, \ldots, m$ such that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{j}^{\lambda}\right|^{p} d x \leq \lambda_{k+1}\left(\lambda_{k+1}-\lambda\right)^{(N-p) /(p-s)} V_{s}(\Omega) \tag{1.8}
\end{equation*}
$$

In particular, we have the following existence result that is new when $N<p^{2}$.
Corollary 1.8. If

$$
\lambda_{k}-\frac{\mu_{s}}{V_{s}(\Omega)^{(p-s) /(N-s)}}<\lambda<\lambda_{k}
$$

for some $k \in \mathbb{N}$, then problem (1.1) has a nontrivial solution.

Remark 1.9. We note that $\lambda_{1} \geq \mu_{s} / V_{s}(\Omega)^{(p-s) /(N-s)}$. Indeed, let $\varphi_{1}>0$ be an eigenfunction associated with λ_{1}. Then

$$
\lambda_{1}=\frac{\int_{\Omega}\left|\nabla \varphi_{1}\right|^{p} d x}{\int_{\Omega} \varphi_{1}^{p} d x} \geq \frac{\mu_{s}\left(\int_{\Omega} \frac{\varphi_{1}^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}}{\int_{\Omega} \varphi_{1}^{p} d x} \geq \frac{\mu_{s}}{V_{s}(\Omega)^{(p-s) /(N-s)}}
$$

by (1.4) and (1.6).
Remark 1.10. Since $V_{0}(\Omega)$ is the volume of Ω, in the nonsingular case $s=0$, Theorems 1.6 \& 1.7 and Corollary 1.8 reduce to Perera et al. [10, Theorem 1.1 and Corollary 1.2], respectively.

2. Preliminaries

2.1. Cohomological index

The \mathbb{Z}_{2}-cohomological index of Fadell and Rabinowitz [5] is defined as follows. Let W be a Banach space and let \mathcal{A} denote the class of symmetric subsets of $W \backslash\{0\}$. For $A \in \mathcal{A}$, let $\bar{A}=A / \mathbb{Z}_{2}$ be the quotient space of A with each u and $-u$ identified, let $f: \bar{A} \rightarrow \mathbb{R P}^{\infty}$ be the classifying map of \bar{A}, and let $f^{*}: H^{*}\left(\mathbb{R} P^{\infty}\right) \rightarrow H^{*}(\bar{A})$ be the induced homomorphism of the AlexanderSpanier cohomology rings. The cohomological index of A is defined by

$$
i(A)= \begin{cases}0 & \text { if } A=\emptyset \\ \sup \left\{m \geq 1: f^{*}\left(\omega^{m-1}\right) \neq 0\right\} & \text { if } A \neq \emptyset\end{cases}
$$

where $\omega \in H^{1}\left(\mathbb{R} P^{\infty}\right)$ is the generator of the polynomial $\operatorname{ring} H^{*}\left(\mathbb{R} \mathrm{P}^{\infty}\right)=$ $\mathbb{Z}_{2}[\omega]$.

Example 2.1. The classifying map of the unit sphere S^{m-1} in $\mathbb{R}^{m}, m \geq 1$ is the inclusion $\mathbb{R} \mathrm{P}^{m-1} \subset \mathbb{R} \mathrm{P}^{\infty}$, which induces isomorphisms on the cohomology groups H^{q} for $q \leq m-1$, so $i\left(S^{m-1}\right)=m$.

The following proposition summarizes the basic properties of this index.
Proposition 2.2. (Fadell-Rabinowitz [5]) The index $i: \mathcal{A} \rightarrow \mathbb{N} \cup\{0, \infty\}$ has the following properties:
(i_{1}) Definiteness: $i(A)=0$ if and only if $A=\emptyset$.
$\left(i_{2}\right)$ Monotonicity: If there is an odd continuous map from A to B (in particular, if $A \subset B)$, then $i(A) \leq i(B)$. Thus, equality holds when the map is an odd homeomorphism.
$\left(i_{3}\right)$ Dimension: $i(A) \leq \operatorname{dim} W$.
(i_{4}) Continuity: If A is closed, then there is a closed neighborhood $N \in \mathcal{A}$ of A such that $i(N)=i(A)$. When A is compact, N may be chosen to be a δ-neighborhood $N_{\delta}(A)=\{u \in W: \operatorname{dist}(u, A) \leq \delta\}$.
(i_{5}) Subadditivity: If A and B are closed, then $i(A \cup B) \leq i(A)+i(B)$.
(i_{6}) Stability: If $S A$ is the suspension of $A \neq \emptyset$, obtained as the quotient space of $A \times[-1,1]$ with $A \times\{1\}$ and $A \times\{-1\}$ collapsed to different points, then $i(S A)=i(A)+1$.
$\left(i_{7}\right)$ Piercing property: If A, A_{0} and A_{1} are closed, and $\varphi: A \times[0,1] \rightarrow A_{0} \cup A_{1}$ is a continuous map such that $\varphi(-u, t)=-\varphi(u, t)$ for all $(u, t) \in A \times$ $[0,1], \varphi(A \times[0,1])$ is closed, $\varphi(A \times\{0\}) \subset A_{0}$ and $\varphi(A \times\{1\}) \subset A_{1}$, then $i\left(\varphi(A \times[0,1]) \cap A_{0} \cap A_{1}\right) \geq i(A)$.
(i_{8}) Neighborhood of zero: If U is a bounded closed symmetric neighborhood of the origin, then $i(\partial U)=\operatorname{dim} W$.

2.2. Abstract critical point theorems

We will prove Theorems 1.2 and 1.3 using the following abstract critical point theorem proved in Yang and Perera [13], which generalizes the well-known linking theorem of Rabinowitz [12].

Theorem 2.3. Let I be a C^{1}-functional defined on a Banach space W, and let A_{0} and B_{0} be disjoint nonempty closed symmetric subsets of the unit sphere $S=\{u \in W:\|u\|=1\}$ such that

$$
i\left(A_{0}\right)=i\left(S \backslash B_{0}\right)<\infty
$$

Assume that there exist $R>r>0$ and $v \in S \backslash A_{0}$ such that

$$
\sup I(A) \leq \inf I(B), \quad \sup I(X)<\infty
$$

where

$$
\begin{aligned}
& A=\left\{t u: u \in A_{0}, 0 \leq t \leq R\right\} \cup\left\{R \pi((1-t) u+t v): u \in A_{0}, 0 \leq t \leq 1\right\} \\
& B=\left\{r u: u \in B_{0}\right\} \\
& X=\{t u: u \in A,\|u\|=R, 0 \leq t \leq 1\}
\end{aligned}
$$

and $\pi: W \backslash\{0\} \rightarrow S, u \mapsto u /\|u\|$ is the radial projection onto S. Let $\Gamma=$ $\left\{\gamma \in C(X, W): \gamma(X)\right.$ is closed and $\left.\left.\gamma\right|_{A}=i d_{A}\right\}$, and set

$$
c:=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma(X)} I(u) .
$$

Then

$$
\begin{equation*}
\inf I(B) \leq c \leq \sup I(X) \tag{2.1}
\end{equation*}
$$

in particular, c is finite. If, in addition, I satisfies the $(\mathrm{PS})_{c}$ condition, then c is a critical value of I.

Remark 2.4. The linking construction used in the proof of Theorem 2.3 in [13] has also been used in Perera and Szulkin [11] to obtain nontrivial solutions of p-Laplacian problems with nonlinearities that cross an eigenvalue. A similar construction based on the notion of cohomological linking was given in Degiovanni and Lancelotti [3]. See also Perera et al. [9, Proposition 3.23].

Now let I be an even C^{1}-functional defined on a Banach space W, and let \mathcal{A}^{*} denote the class of symmetric subsets of W. Let $r>0$, let $S_{r}=$ $\{u \in W:\|u\|=r\}$, let $0<b \leq+\infty$, and let Γ denote the group of odd
homeomorphisms of W that are the identity outside $I^{-1}(0, b)$. The pseudoindex of $M \in \mathcal{A}^{*}$ related to i, S_{r}, and Γ is defined by

$$
i^{*}(M)=\min _{\gamma \in \Gamma} i\left(\gamma(M) \cap S_{r}\right)
$$

(see Benci [2]). We will prove Theorems 1.6 and 1.7 using the following critical point theorem proved in Yang and Perera [13], which generalizes Bartolo et al. [1, Theorem 2.4].

Theorem 2.5. Let A_{0} and B_{0} be symmetric subsets of S such that A_{0} is compact, B_{0} is closed, and

$$
i\left(A_{0}\right) \geq k+m, \quad i\left(S \backslash B_{0}\right) \leq k
$$

for some integers $k \geq 0$ and $m \geq 1$. Assume that there exists $R>r$ such that

$$
\sup I(A) \leq 0<\inf I(B), \quad \sup I(X)<b
$$

where $A=\left\{R u: u \in A_{0}\right\}, B=\left\{r u: u \in B_{0}\right\}$, and $X=\{t u: u \in A, 0 \leq t \leq 1\}$. For $j=k+1, \ldots, k+m$, let

$$
\mathcal{A}_{j}^{*}=\left\{M \in \mathcal{A}^{*}: M \text { is compact and } i^{*}(M) \geq j\right\},
$$

and set

$$
c_{j}^{*}:=\inf _{M \in \mathcal{A}_{j}^{*}} \max _{u \in M} I(u) .
$$

Then

$$
\inf I(B) \leq c_{k+1}^{*} \leq \cdots \leq c_{k+m}^{*} \leq \sup I(X)
$$

in particular, $0<c_{j}^{*}<b$. If, in addition, I satisfies the $(\mathrm{PS})_{c}$ condition for all $c \in(0, b)$, then each c_{j}^{*} is a critical value of I and there are m distinct pairs of associated critical points.

Remark 2.6. Constructions similar to the one used in the proof of Theorem 2.5 in [13] have also been used in Fadell and Rabinowitz [5] to prove bifurcation results for Hamiltonian systems and in Perera and Szulkin [11] to prove multiplicity results for p-Laplacian problems. See also Perera et al. [9, Proposition 3.44].

2.3. Some estimates

It was shown in [6, Theorem 3.1.(2)] that the infimum in (1.4) is attained by the family of functions

$$
u_{\varepsilon}(x)=\frac{C_{N, p, s} \varepsilon^{(N-p) /(p-s) p}}{\left[\varepsilon+|x|^{(p-s) /(p-1)}\right]^{(N-p) /(p-s)}}, \quad \varepsilon>0
$$

when $\Omega=\mathbb{R}^{N}$, where $C_{N, p, s}>0$ is chosen so that

$$
\int_{\mathbb{R}^{N}}\left|\nabla u_{\varepsilon}\right|^{p} d x=\int_{\mathbb{R}^{N}} \frac{u_{\varepsilon}^{p^{*}(s)}}{|x|^{s}} d x=\mu_{s}^{(N-s) /(p-s)} .
$$

Take a smooth function $\eta:[0, \infty) \rightarrow[0,1]$ such that $\eta(s)=1$ for $s \leq 1 / 4$ and $\eta(s)=0$ for $s \geq 1 / 2$, and set

$$
u_{\varepsilon, \delta}(x)=\eta\left(\frac{|x|}{\delta}\right) u_{\varepsilon}(x), \quad v_{\varepsilon, \delta}(x)=\frac{u_{\varepsilon, \delta}(x)}{\left(\int_{\mathbb{R}^{N}} \frac{u_{\varepsilon, \delta}^{p^{*}(s)}}{|x|^{s}} d x\right)^{1 / p^{*}(s)}}, \quad \varepsilon, \delta>0
$$

so that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{v_{\varepsilon, \delta}^{p^{*}(s)}}{|x|^{s}} d x=1 . \tag{2.2}
\end{equation*}
$$

The following estimates were obtained in [6, Lemma 11.1.(1),(3),(4)]:

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left|\nabla v_{\varepsilon, \delta}\right|^{p} d x \leq \mu_{s}+C \varepsilon^{(N-p) /(p-s)}, \tag{2.3}\\
& \int_{\mathbb{R}^{N}} v_{\varepsilon, \delta}^{p} d x \geq \begin{cases}\frac{1}{C} \varepsilon^{(p-1) p /(p-s)} & \text { if } N>p^{2} \\
\frac{1}{C} \varepsilon^{(p-1) p /(p-s)}|\log \varepsilon| & \text { if } N=p^{2}\end{cases} \tag{2.4}
\end{align*}
$$

where $C=C(N, p, s, \delta)>0$ is a constant. While these estimates are sufficient for the proof of Theorem 1.2, we will need the following finer estimates in order to prove Theorem 1.3.

Lemma 2.7. There exists a constant $C=C(N, p, s)>0$ such that

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left|\nabla v_{\varepsilon, \delta}\right|^{p} d x \leq \mu_{s}+C \Theta_{\varepsilon, \delta}^{(N-p) /(p-s)}, \tag{2.5}\\
& \int_{\mathbb{R}^{N}} v_{\varepsilon, \delta}^{p} d x \geq \begin{cases}\frac{1}{C} \varepsilon^{(p-1) p /(p-s)} & \text { if } N>p^{2} \\
\frac{1}{C} \varepsilon^{(p-1) p /(p-s)}\left|\log \Theta_{\varepsilon, \delta}\right| & \text { if } N=p^{2},\end{cases} \tag{2.6}
\end{align*}
$$

where $\Theta_{\varepsilon, \delta}=\varepsilon \delta^{-(p-s) /(p-1)}$.
Proof. We have

$$
u_{\varepsilon, \delta}(\delta x)=\delta^{-(N-p) / p} u_{\Theta_{\varepsilon, \delta}, 1}(x)
$$

and

$$
\int_{\mathbb{R}^{N}} \frac{u_{\varepsilon, \delta}^{p^{*}(s)}}{|x|^{s}} d x=\int_{\mathbb{R}^{N}} \frac{u_{\Theta \varepsilon, \delta, 1}^{p^{*}(s)}}{|x|^{s}} d x .
$$

So

$$
v_{\varepsilon, \delta}(\delta x)=\delta^{-(N-p) / p} v_{\Theta_{\varepsilon, \delta}, 1}(x)
$$

and hence

$$
\nabla v_{\varepsilon, \delta}(\delta x)=\delta^{-N / p} \nabla v_{\Theta_{\varepsilon, \delta}, 1}(x) .
$$

Then

$$
\int_{\mathbb{R}^{N}}\left|\nabla v_{\varepsilon, \delta}(x)\right|^{p} d x=\delta^{N} \int_{\mathbb{R}^{N}}\left|\nabla v_{\varepsilon, \delta}(\delta x)\right|^{p} d x=\int_{\mathbb{R}^{N}}\left|\nabla v_{\Theta_{\varepsilon, \delta}, 1}(x)\right|^{p} d x
$$

and

$$
\int_{\mathbb{R}^{N}} v_{\varepsilon, \delta}^{p}(x) d x=\delta^{N} \int_{\mathbb{R}^{N}} v_{\varepsilon, \delta}^{p}(\delta x) d x=\delta^{p} \int_{\mathbb{R}^{N}} v_{\Theta_{\varepsilon, \delta, 1}}^{p}(x) d x
$$

so (2.5) and (2.6) follow from (2.3) and (2.4), respectively.
Let i, \mathcal{M}, Ψ, and λ_{k} be as in the introduction, and suppose that $\lambda_{k}<$ λ_{k+1}. Then the sublevel set $\Psi^{\lambda_{k}}$ has a compact symmetric subset E of index k that is bounded in $L^{\infty}(\Omega) \cap C_{\mathrm{loc}}^{1, \alpha}(\Omega)$ (see Degiovanni and Lancelotti [4, Theorem 2.3]). Let $\delta_{0}=\operatorname{dist}(0, \partial \Omega)$, take a smooth function $\theta:[0, \infty) \rightarrow[0,1]$ such that $\theta(s)=0$ for $s \leq 3 / 4$ and $\theta(s)=1$ for $s \geq 1$, and set

$$
v_{\delta}(x)=\theta\left(\frac{|x|}{\delta}\right) v(x), \quad v \in E, 0<\delta \leq \frac{\delta_{0}}{2}
$$

Since $E \subset \Psi^{\lambda_{k}}$ is bounded in $C^{1}\left(B_{\delta_{0} / 2}(0)\right)$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v_{\delta}\right|^{p} d x \leq \int_{\Omega \backslash B_{\delta}(0)}|\nabla v|^{p} d x+C \int_{B_{\delta}(0)}\left(|\nabla v|^{p}+\frac{|v|^{p}}{\delta^{p}}\right) d x \leq 1+C \delta^{N-p} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|v_{\delta}\right|^{p} d x \geq \int_{\Omega \backslash B_{\delta}(0)}|v|^{p} d x=\int_{\Omega}|v|^{p} d x-\int_{B_{\delta}(0)}|v|^{p} d x \geq \frac{1}{\lambda_{k}}-C \delta^{N} \tag{2.8}
\end{equation*}
$$

where $C=C(N, p, s, \Omega, k)>0$ is a constant. By (1.6) and (2.8),

$$
\begin{equation*}
\int_{\Omega} \frac{\left|v_{\delta}\right|^{p^{*}(s)}}{|x|^{s}} d x \geq \frac{1}{C} \tag{2.9}
\end{equation*}
$$

if $\delta>0$ is sufficiently small.
Now let $\pi: W_{0}^{1, p}(\Omega) \backslash\{0\} \rightarrow \mathcal{M}, u \mapsto u /\|u\|$ be the radial projection onto \mathcal{M}, and set

$$
w=\pi\left(v_{\delta}\right), \quad v \in E .
$$

If $\delta>0$ is sufficiently small,

$$
\begin{equation*}
\Psi(w)=\frac{\int_{\Omega}\left|\nabla v_{\delta}\right|^{p} d x}{\int_{\Omega}\left|v_{\delta}\right|^{p} d x} \leq \lambda_{k}+C \delta^{N-p}<\lambda_{k+1} \tag{2.10}
\end{equation*}
$$

by (2.7) and (2.8), and

$$
\begin{equation*}
\int_{\Omega} \frac{|w|^{p^{*}(s)}}{|x|^{s}} d x=\frac{\int_{\Omega} \frac{\left|v_{\delta}\right|^{p^{*}(s)}}{|x|^{s}} d x}{\left(\int_{\Omega}\left|\nabla v_{\delta}\right|^{p} d x\right)^{p^{*}(s) / p}} \geq \frac{1}{C} \tag{2.11}
\end{equation*}
$$

by (2.7) and (2.9). Since $\operatorname{supp} w=\operatorname{supp} v_{\delta} \subset \Omega \backslash B_{3 \delta / 4}(0)$ and $\operatorname{supp} \pi\left(v_{\varepsilon, \delta}\right)=$ $\operatorname{supp} v_{\varepsilon, \delta} \subset \overline{B_{\delta / 2}(0)}$,

$$
\begin{equation*}
\operatorname{supp} w \cap \operatorname{supp} \pi\left(v_{\varepsilon, \delta}\right)=\emptyset \tag{2.12}
\end{equation*}
$$

Set

$$
E_{\delta}=\{w: v \in E\}
$$

Lemma 2.8. For all sufficiently small $\delta>0$,
(i) $E_{\delta} \cap \Psi_{\lambda_{k+1}}=\emptyset$,
(ii) $i\left(E_{\delta}\right)=k$,
(iii) $\pi\left(v_{\varepsilon, \delta}\right) \notin E_{\delta}$.

Proof. (i) follows from (2.10). By (i), $E_{\delta} \subset \mathcal{M} \backslash \Psi_{\lambda_{k+1}}$ and hence

$$
i\left(E_{\delta}\right) \leq i\left(\mathcal{M} \backslash \Psi_{\lambda_{k+1}}\right)=k
$$

by the monotonicity of the index and (1.5). On the other hand, since $E \rightarrow$ $E_{\delta}, v \mapsto \pi\left(v_{\delta}\right)$ is an odd continuous map,

$$
i\left(E_{\delta}\right) \geq i(E)=k
$$

(ii) follows. (iii) is immediate from (2.12).

3. Proofs

3.1. Proof of Theorem 1.1

All nontrivial critical points of I_{λ} lie on the Nehari manifold

$$
\mathcal{N}=\left\{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}: I_{\lambda}^{\prime}(u) u=0\right\}
$$

We will show that I_{λ} attains the ground state energy

$$
c:=\inf _{u \in \mathcal{N}} I_{\lambda}(u)
$$

at a positive critical point.
Since $0<\lambda<\lambda_{1}, \mathcal{N}$ is closed, bounded away from the origin, and for $u \in W_{0}^{1, p}(\Omega) \backslash\{0\}$ and $t>0, t u \in \mathcal{N}$ if and only if $t=t_{u}$, where

$$
t_{u}=\left[\frac{\int_{\Omega}\left(|\nabla u|^{p}-\lambda|u|^{p}\right) d x}{\int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x}\right]^{(N-p) /(p-s) p}
$$

Moreover,

$$
I_{\lambda}\left(t_{u} u\right)=\sup _{t>0} I_{\lambda}(t u)=\frac{p-s}{(N-s) p} \psi_{\lambda}(u)^{(N-s) /(p-s)},
$$

where

$$
\psi_{\lambda}(u)=\frac{\int_{\Omega}\left(|\nabla u|^{p}-\lambda|u|^{p}\right) d x}{\left(\int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}}
$$

By (2.2)-(2.4),

$$
\psi_{\lambda}\left(v_{\varepsilon, \delta}\right) \leq \begin{cases}\mu_{s}-\frac{\varepsilon^{(p-1) p /(p-s)}}{C C}+C \varepsilon^{(N-p) /(p-s)} & \text { if } N>p^{2} \\ \mu_{s}-\frac{\varepsilon^{(p-1) p /(p-s)}}{C}|\log \varepsilon|+C \varepsilon^{(p-1) p /(p-s)} & \text { if } N=p^{2}\end{cases}
$$

and in both cases the last expression is strictly less than μ_{s} if $\varepsilon>0$ is sufficiently small, so

$$
c \leq I_{\lambda}\left(t_{v_{\varepsilon, \delta}} v_{\varepsilon, \delta}\right)<\frac{p-s}{(N-s) p} \mu_{s}^{(N-s) /(p-s)}
$$

Then I_{λ} satisfies the $(\mathrm{PS})_{c}$ condition by $\left[6\right.$, Theorem 4.1.(2)], and hence $\left.I_{\lambda}\right|_{\mathcal{N}}$ has a minimizer u_{0} by a standard argument. Then $\left|u_{0}\right|$ is also a minimizer, which is positive by the strong maximum principle.

3.2. Proof of Theorem 1.2

We will show that problem (1.1) has a nontrivial solution as long as $\lambda>\lambda_{1}$ is not an eigenvalue from the sequence $\left(\lambda_{k}\right)$. Then we have $\lambda_{k}<\lambda<\lambda_{k+1}$ for some $k \in \mathbb{N}$. Fix $\delta>0$ so small that the first inequality in (2.10) implies

$$
\begin{equation*}
\Psi(w) \leq \lambda \quad \forall w \in E_{\delta} \tag{3.1}
\end{equation*}
$$

and the conclusions of Lemma 2.8 hold. Then let $A_{0}=E_{\delta}$ and $B_{0}=\Psi_{\lambda_{k+1}}$, and note that A_{0} and B_{0} are disjoint nonempty closed symmetric subsets of \mathcal{M} such that

$$
\begin{equation*}
i\left(A_{0}\right)=i\left(\mathcal{M} \backslash B_{0}\right)=k \tag{3.2}
\end{equation*}
$$

by Lemma 2.8 (i), (ii) and (1.5). Now let $R>r>0$, let $v_{0}=\pi\left(v_{\varepsilon, \delta}\right)$, which is in $\mathcal{M} \backslash A_{0}$ by Lemma 2.8 (iii), and let A, B and X be as in Theorem 2.3.

For $u \in B_{0}$,

$$
I_{\lambda}(r u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) r^{p}-\frac{r^{p^{*}(s)}}{p^{*}(s) \mu_{s}^{p^{*}(s) / p}}
$$

Since $\lambda<\lambda_{k+1}$, and $s<p$ implies $p^{*}(s)>p$, it follows that $\inf I_{\lambda}(B)>0$ if r is sufficiently small.

Next we show that $I_{\lambda} \leq 0$ on A if R is sufficiently large. For $w \in A_{0}$ and $t \geq 0$,

$$
I_{\lambda}(t w) \leq \frac{t^{p}}{p}\left(1-\frac{\lambda}{\Psi(w)}\right) \leq 0
$$

by (3.1). Now let $w \in A_{0}$ and $0 \leq t \leq 1$, and set $u=\pi\left((1-t) w+t v_{0}\right)$. Clearly, $\left\|(1-t) w+t v_{0}\right\| \leq 1$, and since the supports of w and v_{0} are disjoint by (2.12),

$$
\int_{\Omega} \frac{\left.\left|(1-t) w+t v_{0}\right|\right|^{p^{*}(s)}}{|x|^{s}} d x=(1-t)^{p^{*}(s)} \int_{\Omega} \frac{|w|^{p^{*}(s)}}{|x|^{s}} d x+t^{p^{*}(s)} \int_{\Omega} \frac{v_{0}^{p^{*}(s)}}{|x|^{s}} d x .
$$

In view of (2.11), and since

$$
\int_{\Omega} \frac{v_{0}^{p^{*}(s)}}{|x|^{s}} d x=\frac{\int_{\Omega} \frac{v_{\varepsilon, \delta}^{p^{*}(s)}}{|x|^{s}} d x}{\left(\int_{\Omega}\left|\nabla v_{\varepsilon, \delta}\right|^{p} d x\right)^{p^{*}(s) / p}} \geq \frac{1}{C}
$$

by (2.2) and (2.3) if $\varepsilon>0$ is sufficiently small, it follows that

$$
\int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x=\frac{\int_{\Omega} \frac{\left|(1-t) w+t v_{0}\right|^{p^{*}(s)}}{|x|^{s}} d x}{\left\|(1-t) w+t v_{0}\right\|^{\|^{*}(s)}} \geq \frac{1}{C} .
$$

Then

$$
I_{\lambda}(R u) \leq \frac{R^{p}}{p}-\frac{R^{p^{*}(s)}}{p^{*}(s)} \int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x \leq 0
$$

if R is sufficiently large.
Now we show that

$$
\begin{equation*}
\sup I_{\lambda}(X)<\frac{p-s}{(N-s) p} \mu_{s}^{(N-s) /(p-s)} \tag{3.3}
\end{equation*}
$$

if $\varepsilon>0$ is sufficiently small. Noting that

$$
X=\left\{\rho \pi\left((1-t) w+t v_{0}\right): w \in E_{\delta}, 0 \leq t \leq 1,0 \leq \rho \leq R\right\}
$$

let $w \in E_{\delta}$ and $0 \leq t \leq 1$, and set $u=\pi\left((1-t) w+t v_{0}\right)$. Then

$$
\begin{align*}
\sup _{0 \leq \rho \leq R} I_{\lambda}(\rho u) & \leq \sup _{\rho \geq 0}\left[\frac{\rho^{p}}{p}\left(1-\lambda \int_{\Omega}|u|^{p} d x\right)-\frac{\rho^{p^{*}(s)}}{p^{*}(s)} \int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x\right] \\
& =\frac{p-s}{(N-s) p} \psi_{\lambda}(u)^{(N-s) /(p-s)} \tag{3.4}
\end{align*}
$$

where

$$
\begin{align*}
\psi_{\lambda}(u) & =\frac{\left(1-\lambda \int_{\Omega}|u|^{p} d x\right)^{+}}{\left(\int_{\Omega} \frac{|u|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \\
& =\frac{\left(\int_{\Omega}\left[\left|(1-t) \nabla w+t \nabla v_{0}\right|^{p}-\lambda\left|(1-t) w+t v_{0}\right|^{p}\right] d x\right)^{+}}{\left(\int_{\Omega} \frac{\left|(1-t) w+t v_{0}\right|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \\
& \leq \frac{(1-t)^{p}\left(1-\lambda \int_{\Omega}|w|^{p} d x\right)^{+}+t^{p}\left(1-\lambda \int_{\Omega} v_{0}^{p} d x\right)^{+}}{\left((1-t)^{p^{*}(s)} \int_{\Omega} \frac{|w|^{p^{*}(s)}}{|x|^{s}} d x+t^{p^{*}(s)} \int_{\Omega} \frac{v_{0}^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \tag{3.5}
\end{align*}
$$

since the supports of w and v_{0} are disjoint. Since

$$
1-\lambda \int_{\Omega}|w|^{p} d x=1-\frac{\lambda}{\Psi(w)} \leq 0
$$

by (3.1),

$$
\begin{aligned}
\psi_{\lambda}(u) & \leq \psi_{\lambda}\left(v_{0}\right) \\
& =\frac{\left(\int_{\Omega}\left[\left|\nabla v_{\varepsilon, \delta}\right|^{p}-\lambda v_{\varepsilon, \delta}^{p}\right] d x\right)^{+}}{\left(\int_{\Omega} \frac{v_{\varepsilon, \delta}^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \\
& \leq \begin{cases}\mu_{s}-\frac{\varepsilon^{(p-1) p /(p-s)}}{C}+C \varepsilon^{(N-p) /(p-s)} & \text { if } N>p^{2} \\
\mu_{s}-\frac{\varepsilon^{(p-1) p /(p-s)}}{C}|\log \varepsilon|+C \varepsilon^{(p-1) p /(p-s)} & \text { if } N=p^{2}\end{cases}
\end{aligned}
$$

by (2.2)-(2.4). In both cases the last expression is strictly less than μ_{s} if $\varepsilon>0$ is sufficiently small, so (3.3) follows from (3.4).

The inequalities (2.1) now imply that

$$
0<c<\frac{p-s}{(N-s) p} \mu_{s}^{(N-s) /(p-s)}
$$

Then I_{λ} satisfies the $(\mathrm{PS})_{c}$ condition by [6, Theorem 4.1.(2)], and hence c is a positive critical value of I_{λ} by Theorem 2.3.

3.3. Proof of Theorem 1.3

The case where $\lambda>\lambda_{1}$ is an eigenvalue, but not from the sequence $\left(\lambda_{k}\right)$, was covered in the proof of Theorem 1.2, so we may assume that $\lambda=\lambda_{k}<\lambda_{k+1}$ for some $k \in \mathbb{N}$. Take $\delta>0$ so small that (2.10) and the conclusions of Lemma 2.8 hold, let A_{0}, B_{0} and v_{0} be as in the proof of Theorem 1.2, and let A, B and X be as in Theorem 2.3.

As before, $\inf I_{\lambda}(B)>0$ if r is sufficiently small, and

$$
I_{\lambda}\left(R \pi\left((1-t) w+t v_{0}\right)\right) \leq 0 \quad \forall w \in A_{0}, 0 \leq t \leq 1
$$

if $\Theta_{\varepsilon, \delta}$ is sufficiently small and R is sufficiently large. On the other hand,

$$
I_{\lambda}(t w) \leq \frac{t^{p}}{p}\left(1-\frac{\lambda_{k}}{\Psi(w)}\right) \leq C R^{p} \delta^{N-p} \quad \forall w \in A_{0}, 0 \leq t \leq R
$$

by (2.10). It follows that $\sup I_{\lambda}(A)<\inf I_{\lambda}(B)$ if δ is also sufficiently small.
It only remains to verify (3.3) for suitable choice of $\delta(\varepsilon)$ and small ε. Maximizing the last expression in (3.5) over $0 \leq t \leq 1$ gives

$$
\begin{equation*}
\psi_{\lambda}(u) \leq\left[\psi_{\lambda}\left(v_{0}\right)^{(N-s) /(p-s)}+\psi_{\lambda}(w)^{(N-s) /(p-s)}\right]^{(p-s) /(N-s)} \tag{3.6}
\end{equation*}
$$

By (2.2), (2.5), and (2.6),
$\psi_{\lambda}\left(v_{0}\right)=\frac{\left(\int_{\Omega}\left[\left|\nabla v_{\varepsilon, \delta}\right|^{p}-\lambda_{k} v_{\varepsilon, \delta}^{p}\right] d x\right)^{+}}{\left(\int_{\Omega} \frac{v_{\varepsilon, \delta}^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \leq \mu_{s}-\frac{\varepsilon^{(p-1) p /(p-s)}}{C}+C \Theta_{\varepsilon, \delta}^{(N-p) /(p-s)}$,
and by (2.10) and (2.11),

$$
\psi_{\lambda}(w)=\frac{\left(1-\frac{\lambda_{k}}{\Psi(w)}\right)^{+}}{\left(\int_{\Omega} \frac{|w|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}} \leq C \delta^{N-p}
$$

Recalling that $\Theta_{\varepsilon, \delta}=\varepsilon \delta^{-(p-s) /(p-1)}$, if there exist $\alpha \in(0,(p-1) /(p-s))$ and a sequence $\varepsilon_{j} \rightarrow 0$ such that, for $\varepsilon=\varepsilon_{j}$ and $\delta=\varepsilon_{j}^{\alpha}, \psi_{\lambda}\left(v_{0}\right)<\mu_{s} / 3$, then $\psi_{\lambda}(u) \leq$ $2 \mu_{s} / 3$ for sufficiently large j by (3.6) and (3.8), which together with (3.4) gives the desired result. So we may assume that for all $\alpha \in(0,(p-1) /(p-s))$, $\psi_{\lambda}\left(v_{0}\right) \geq \mu_{s} / 3$ for all sufficiently small ε and $\delta=\varepsilon^{\alpha}$. Since $(p-s) /(N-s)<1$, then (3.6)-(3.8) with $\delta=\varepsilon^{\alpha}$ yield

$$
\begin{aligned}
\psi_{\lambda}(u) \leq & \psi_{\lambda}\left(v_{0}\right)\left[1+\left(\frac{\psi_{\lambda}(w)}{\psi_{\lambda}\left(v_{0}\right)}\right)^{(N-s) /(p-s)}\right] \\
\leq & \psi_{\lambda}\left(v_{0}\right)+C \psi_{\lambda}(w)^{(N-s) /(p-s)} \leq \mu_{s}-\varepsilon^{(p-1) p /(p-s)} \\
& \times\left[\frac{1}{C}-C \varepsilon^{(N-p)(N-s)\left(\alpha-\alpha_{1}\right) /(p-s)}-C \varepsilon^{(N-p)\left(\alpha_{2}-\alpha\right) /(p-1)}\right]
\end{aligned}
$$

where

$$
0<\alpha_{1}:=\frac{(p-1) p}{(N-p)(N-s)}<\frac{\left(N-p^{2}\right)(p-1)}{(N-p)(p-s)}=: \alpha_{2}<\frac{p-1}{p-s}
$$

by (1.3). Taking $\alpha \in\left(\alpha_{1}, \alpha_{2}\right)$ now gives the desired conclusion.

3.4. Proofs of Theorems 1.6 and 1.7

We only give the proof of Theorem 1.7. Proof of Theorem 1.6 is similar and simpler. By [6, Theorem 4.1.(2)], I_{λ} satisfies the (PS) ${ }_{c}$ condition for all

$$
c<\frac{p-s}{(N-s) p} \mu_{s}^{(N-s) /(p-s)},
$$

so we apply Theorem 2.5 with b equal to the right-hand side.
By Degiovanni and Lancelotti [4, Theorem 2.3], the sublevel set $\Psi^{\lambda_{k+m}}$ has a compact symmetric subset A_{0} with

$$
i\left(A_{0}\right)=k+m
$$

We take $B_{0}=\Psi_{\lambda_{k+1}}$, so that

$$
i\left(\mathcal{M} \backslash B_{0}\right)=k
$$

by (1.5). Let $R>r>0$ and let A, B and X be as in Theorem 2.5. For $u \in \Psi_{\lambda_{k+1}}$,

$$
I_{\lambda}(r u) \geq \frac{r^{p}}{p}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)-\frac{r^{p^{*}(s)}}{p^{*}(s) \mu_{s}^{p^{*}(s) / p}}
$$

by (1.4). Since $\lambda<\lambda_{k+1}$, and $s<p$ implies $p^{*}(s)>p$, it follows that $\inf I_{\lambda}(B)>0$ if r is sufficiently small. For $u \in A_{0} \subset \Psi^{\lambda_{k+1}}$,

$$
I_{\lambda}(R u) \leq \frac{R^{p}}{p}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)-\frac{R^{p^{*}(s)}}{p^{*}(s) \lambda_{k+1}^{p^{*}(s) / p} V_{s}(\Omega)^{(p-s) /(N-p)}}
$$

by (1.6), so there exists $R>r$ such that $I_{\lambda} \leq 0$ on A. For $u \in X$,

$$
\begin{aligned}
I_{\lambda}(u) & \leq \frac{\lambda_{k+1}-\lambda}{p} \int_{\Omega}|u|^{p} d x-\frac{1}{p^{*}(s) V_{s}(\Omega)^{(p-s) /(N-p)}}\left(\int_{\Omega}|u|^{p} d x\right)^{p^{*}(s) / p} \\
& \leq \sup _{\rho \geq 0}\left[\frac{\left(\lambda_{k+1}-\lambda\right) \rho}{p}-\frac{\rho^{p^{*}(s) / p}}{p^{*}(s) V_{s}(\Omega)^{(p-s) /(N-p)}}\right] \\
& =\frac{p-s}{(N-s) p}\left(\lambda_{k+1}-\lambda\right)^{(N-s) /(p-s)} V_{s}(\Omega)
\end{aligned}
$$

So
$\sup I_{\lambda}(X) \leq \frac{p-s}{(N-s) p}\left(\lambda_{k+1}-\lambda\right)^{(N-s) /(p-s)} V_{s}(\Omega)<\frac{p-s}{(N-s) p} \mu_{s}^{(N-s) /(p-s)}$
by (1.7). Theorem 2.5 now gives m distinct pairs of (nontrivial) critical points $\pm u_{j}^{\lambda}, j=1, \ldots, m$ of I_{λ} such that

$$
0<I_{\lambda}\left(u_{j}^{\lambda}\right) \leq \frac{p-s}{(N-s) p}\left(\lambda_{k+1}-\lambda\right)^{(N-s) /(p-s)} V_{s}(\Omega)
$$

Since

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{j}^{\lambda}\right|^{p} d x=p I_{\lambda}\left(u_{j}^{\lambda}\right)+\lambda \int_{\Omega}\left|u_{j}^{\lambda}\right|^{p} d x+\frac{p}{p^{*}(s)} \int_{\Omega} \frac{\left|u_{j}^{\lambda}\right|^{p^{*}(s)}}{|x|^{s}} d x \\
& \int_{\Omega}\left|u_{j}^{\lambda}\right|^{p} d x \leq V_{s}(\Omega)^{(p-s) /(N-s)}\left(\int_{\Omega} \frac{\left|u_{j}^{\lambda}\right|^{p^{*}(s)}}{|x|^{s}} d x\right)^{p / p^{*}(s)}
\end{aligned}
$$

by (1.6), and

$$
\int_{\Omega} \frac{\left|u_{j}^{\lambda}\right|^{p^{*}(s)}}{|x|^{s}} d x=\frac{(N-s) p}{p-s}\left[I_{\lambda}\left(u_{j}^{\lambda}\right)-\frac{1}{p} I_{\lambda}^{\prime}\left(u_{j}^{\lambda}\right) u_{j}^{\lambda}\right]=\frac{(N-s) p}{p-s} I_{\lambda}\left(u_{j}^{\lambda}\right),
$$

(1.8) follows. This completes the proof of Theorem 1.7.

References

[1] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity. Nonlinear Anal. 7(9), 981-1012 (1983)
[2] Benci, Vieri: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274(2), 533-572 (1982)
[3] Degiovanni, Marco, Lancelotti, Sergio: Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6), 907-919 (2007)
[4] Degiovanni, Marco, Lancelotti, Sergio: Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal. 256(11), 3643-3659 (2009)
[5] Fadell, Edward R., Rabinowitz, Paul H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45(2), 139-174 (1978)
[6] Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352(12), 57035743 (2000)
[7] Mosconi, S., Perera, K., Squassina, M., Yang, Y.: The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differ. Equ. 55(4), 105 (2016)
[8] Perera, Kanishka: Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal. 21(2), 301-309 (2003)
[9] Perera, K., Agarwal, R.P., O'Regan, D.: Morse Theoretic Aspects of p-Laplacian Type Operators. Mathematical Surveys and Monographs, vol. 161. American Mathematical Society, Providence, RI (2010)
[10] Perera, Kanishka, Squassina, Marco, Yang, Yang: Bifurcation and multiplicity results for critical p-Laplacian problems. Topol. Methods Nonlinear Anal. 47(1), 187-194 (2016)
[11] Perera, Kanishka, Szulkin, Andrzej: p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst. 13(3), 743-753 (2005)
[12] Rabinowitz, Paul H: Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(1), 215-223 (1978)
[13] Yang, Yang, Perera, Kanishka: N-Laplacian problems with critical TrudingerMoser nonlinearities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16(4), 1123-1138 (2016)

Kanishka Perera

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne FL32901
USA
e-mail: kperera@fit.edu

Wenming Zou

Department of Mathematical Sciences
Tsinghua University
Beijing 100084
China
e-mail: wzou@math.tsinghua.edu.cn

Received: 2 April 2017.
Accepted: 28 May 2018.

