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1. Introduction

Consider the critical p-Laplacian problem{
−Δp u = λ |u|p−2 u + |u|p∗(s)−2

|x|s u in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in R
N containing the origin, 1 < p < N , λ > 0

is a parameter, 0 < s < p, and p∗(s) = (N −s) p/(N −p) is the critical Hardy–
Sobolev exponent. Ghoussoub and Yuan [6] showed, among other things, that
this problem has a positive solution when N ≥ p2 and 0 < λ < λ1, where
λ1 > 0 is the first eigenvalue of the eigenvalue problem{−Δp u = λ |u|p−2 u in Ω

u = 0 on ∂Ω.
(1.2)

In the present paper we mainly consider the case λ ≥ λ1. Our existence results
are the following.
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Theorem 1.1. If N ≥ p2 and 0 < λ < λ1, then problem (1.1) has a positive
ground state solution.

Theorem 1.2. If N ≥ p2 and λ > λ1 is not an eigenvalue of problem (1.2),
then problem (1.1) has a nontrivial solution.

Theorem 1.3. If
(N − p2)(N − s) > (p − s) p (1.3)

and λ ≥ λ1, then problem (1.1) has a nontrivial solution.

Remark 1.4. We note that (1.3) implies N > p2.

Remark 1.5. In the nonsingular case s = 0, related results can be found in
Degiovanni and Lancelotti [4] for the p-Laplacian and in Mosconi et al. [7] for
the fractional p-Laplacian.

Weak solutions of problem (1.1) coincide with critical points of the C1-
functional

Iλ(u) =
∫

Ω

[
1
p

(|∇u|p − λ |u|p)− 1
p∗(s)

|u|p∗(s)

|x|s
]

dx, u ∈ W 1,p
0 (Ω).

Recall that Iλ satisfies the Palais-Smale compactness condition at the level
c ∈ R, or the (PS)c condition for short, if every sequence (uj) ⊂ W 1,p

0 (Ω) such
that Iλ(uj) → c and I ′

λ(uj) → 0 has a convergent subsequence. Let

μs = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|p dx

(∫
Ω

|u|p∗(s)

|x|s dx

)p/p∗(s)
(1.4)

be the best constant in the Hardy–Sobolev inequality, which is independent
of Ω (see [6, Theorem 3.1.(1)]). It was shown in [6, Theorem 4.1.(2)] that Iλ

satisfies the (PS)c condition for all

c <
p − s

(N − s) p
μ(N−s)/(p−s)

s

for any λ > 0. We will prove Theorems 1.1 – 1.3 by constructing suitable
minimax levels below this threshold for compactness. When 0 < λ < λ1, we
will show that the infimum of Iλ on the Nehari manifold is below this level.
When λ ≥ λ1, Iλ no longer has the mountain pass geometry and a linking
type argument is needed. However, the classical linking theorem cannot be
used here since the nonlinear operator −Δp does not have linear eigenspaces.
We will use a nonstandard linking construction based on sublevel sets as in
Perera and Szulkin [11] (see also Perera et al. [9, Proposition 3.23]). Moreover,
the standard sequence of eigenvalues of −Δp based on the genus does not
give enough information about the structure of the sublevel sets to carry out
this construction. Therefore, we will use a different sequence of eigenvalues
introduced in Perera [8] that is based on a cohomological index.
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For 1 < p < ∞, eigenvalues of problem (1.2) coincide with critical values
of the functional

Ψ(u) =
1∫

Ω

|u|p dx

, u ∈ M =
{

u ∈ W 1,p
0 (Ω) :

∫
Ω

|∇u|p dx = 1
}

.

Let F denote the class of symmetric subsets of M, let i(M) denote the Z2-
cohomological index of M ∈ F (see Sect. 2.1), and set

λk := inf
M∈F, i(M)≥k

sup
u∈M

Ψ(u), k ∈ N.

Then 0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞ is a sequence of eigenvalues of (1.2) and

λk < λk+1 =⇒ i(Ψλk) = i(M \ Ψλk+1) = k, (1.5)

where Ψa = {u ∈ M : Ψ(u) ≤ a} and Ψa = {u ∈ M : Ψ(u) ≥ a} for a ∈ R

(see Perera et al. [9, Propositions 3.52 and 3.53]). We also prove the following
bifurcation and multiplicity results for problem (1.1) that do not require N ≥
p2. Set

Vs(Ω) =
∫

Ω

|x|(N−p) s/(p−s) dx,

and note that∫
Ω

|u|p dx ≤ Vs(Ω)(p−s)/(N−s)

(∫
Ω

|u|p∗(s)

|x|s dx

)p/p∗(s)

∀u ∈ W 1,p
0 (Ω) (1.6)

by the Hölder inequality.

Theorem 1.6. If

λ1 − μs

Vs(Ω)(p−s)/(N−s)
< λ < λ1,

then problem (1.1) has a pair of nontrivial solutions ±uλ such that∫
Ω

|∇uλ|p dx ≤ λ1 (λ1 − λ)(N−p)/(p−s) Vs(Ω).

Theorem 1.7. If λk ≤ λ < λk+1 = · · · = λk+m < λk+m+1 for some k,m ∈ N

and
λ > λk+1 − μs

Vs(Ω)(p−s)/(N−s)
, (1.7)

then problem (1.1) has m distinct pairs of nontrivial solutions ±uλ
j , j =

1, . . . , m such that∫
Ω

|∇uλ
j |p dx ≤ λk+1 (λk+1 − λ)(N−p)/(p−s) Vs(Ω). (1.8)

In particular, we have the following existence result that is new when
N < p2.

Corollary 1.8. If

λk − μs

Vs(Ω)(p−s)/(N−s)
< λ < λk

for some k ∈ N, then problem (1.1) has a nontrivial solution.
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Remark 1.9. We note that λ1 ≥ μs/Vs(Ω)(p−s)/(N−s). Indeed, let ϕ1 > 0 be
an eigenfunction associated with λ1. Then

λ1 =

∫
Ω

|∇ϕ1|p dx∫
Ω

ϕp
1 dx

≥
μs

(∫
Ω

ϕ
p∗(s)
1

|x|s dx

)p/p∗(s)

∫
Ω

ϕp
1 dx

≥ μs

Vs(Ω)(p−s)/(N−s)

by (1.4) and (1.6).

Remark 1.10. Since V0(Ω) is the volume of Ω, in the nonsingular case s = 0,
Theorems 1.6 & 1.7 and Corollary 1.8 reduce to Perera et al. [10, Theorem 1.1
and Corollary 1.2], respectively.

2. Preliminaries

2.1. Cohomological index

The Z2-cohomological index of Fadell and Rabinowitz [5] is defined as follows.
Let W be a Banach space and let A denote the class of symmetric subsets
of W \ {0}. For A ∈ A, let A = A/Z2 be the quotient space of A with each
u and −u identified, let f : A → RP∞ be the classifying map of A, and let
f∗ : H∗(RP∞) → H∗(A) be the induced homomorphism of the Alexander-
Spanier cohomology rings. The cohomological index of A is defined by

i(A) =

{
0 if A = ∅
sup

{
m ≥ 1 : f∗(ωm−1) �= 0

}
if A �= ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) =
Z2[ω].

Example 2.1. The classifying map of the unit sphere Sm−1 in R
m, m ≥ 1 is

the inclusion RPm−1 ⊂ RP∞, which induces isomorphisms on the cohomology
groups Hq for q ≤ m − 1, so i(Sm−1) = m.

The following proposition summarizes the basic properties of this index.

Proposition 2.2. (Fadell–Rabinowitz [5]) The index i : A → N ∪ {0,∞} has
the following properties:

(i1) Definiteness: i(A) = 0 if and only if A = ∅.
(i2) Monotonicity: If there is an odd continuous map from A to B (in partic-

ular, if A ⊂ B), then i(A) ≤ i(B). Thus, equality holds when the map is
an odd homeomorphism.

(i3) Dimension: i(A) ≤ dim W .
(i4) Continuity: If A is closed, then there is a closed neighborhood N ∈ A of

A such that i(N) = i(A). When A is compact, N may be chosen to be a
δ-neighborhood Nδ(A) = {u ∈ W : dist (u,A) ≤ δ}.

(i5) Subadditivity: If A and B are closed, then i(A ∪ B) ≤ i(A) + i(B).
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(i6) Stability: If SA is the suspension of A �= ∅, obtained as the quotient space
of A × [−1, 1] with A × {1} and A × {−1} collapsed to different points,
then i(SA) = i(A) + 1.

(i7) Piercing property: If A, A0 and A1 are closed, and ϕ : A×[0, 1] → A0∪A1

is a continuous map such that ϕ(−u, t) = −ϕ(u, t) for all (u, t) ∈ A ×
[0, 1], ϕ(A× [0, 1]) is closed, ϕ(A×{0}) ⊂ A0 and ϕ(A×{1}) ⊂ A1, then
i(ϕ(A × [0, 1]) ∩ A0 ∩ A1) ≥ i(A).

(i8) Neighborhood of zero: If U is a bounded closed symmetric neighborhood
of the origin, then i(∂U) = dimW .

2.2. Abstract critical point theorems

We will prove Theorems 1.2 and 1.3 using the following abstract critical point
theorem proved in Yang and Perera [13], which generalizes the well-known
linking theorem of Rabinowitz [12].

Theorem 2.3. Let I be a C1-functional defined on a Banach space W , and let
A0 and B0 be disjoint nonempty closed symmetric subsets of the unit sphere
S = {u ∈ W : ‖u‖ = 1} such that

i(A0) = i(S \ B0) < ∞.

Assume that there exist R > r > 0 and v ∈ S \ A0 such that

sup I(A) ≤ inf I(B), sup I(X) < ∞,

where

A = {tu : u ∈ A0, 0 ≤ t ≤ R} ∪ {R π((1 − t)u + tv) : u ∈ A0, 0 ≤ t ≤ 1} ,

B = {ru : u ∈ B0} ,

X = {tu : u ∈ A, ‖u‖ = R, 0 ≤ t ≤ 1} ,

and π : W \ {0} → S, u �→ u/ ‖u‖ is the radial projection onto S. Let Γ =
{γ ∈ C(X,W ) : γ(X) is closed and γ|A = idA}, and set

c := inf
γ∈Γ

sup
u∈γ(X)

I(u).

Then
inf I(B) ≤ c ≤ sup I(X), (2.1)

in particular, c is finite. If, in addition, I satisfies the (PS)c condition, then c
is a critical value of I.

Remark 2.4. The linking construction used in the proof of Theorem 2.3 in [13]
has also been used in Perera and Szulkin [11] to obtain nontrivial solutions
of p-Laplacian problems with nonlinearities that cross an eigenvalue. A sim-
ilar construction based on the notion of cohomological linking was given in
Degiovanni and Lancelotti [3]. See also Perera et al. [9, Proposition 3.23].

Now let I be an even C1-functional defined on a Banach space W , and
let A∗ denote the class of symmetric subsets of W . Let r > 0, let Sr =
{u ∈ W : ‖u‖ = r}, let 0 < b ≤ +∞, and let Γ denote the group of odd
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homeomorphisms of W that are the identity outside I−1(0, b). The pseudo-
index of M ∈ A∗ related to i, Sr, and Γ is defined by

i∗(M) = min
γ∈Γ

i(γ(M) ∩ Sr)

(see Benci [2]). We will prove Theorems 1.6 and 1.7 using the following critical
point theorem proved in Yang and Perera [13], which generalizes Bartolo et al.
[1, Theorem 2.4].

Theorem 2.5. Let A0 and B0 be symmetric subsets of S such that A0 is com-
pact, B0 is closed, and

i(A0) ≥ k + m, i(S \ B0) ≤ k

for some integers k ≥ 0 and m ≥ 1. Assume that there exists R > r such that

sup I(A) ≤ 0 < inf I(B), sup I(X) < b,

where A={Ru : u ∈ A0}, B = {ru : u ∈ B0}, and X ={tu : u∈A, 0 ≤ t ≤ 1}.
For j = k + 1, . . . , k + m, let

A∗
j = {M ∈ A∗ : M is compact and i∗(M) ≥ j} ,

and set

c∗
j := inf

M∈A∗
j

max
u∈M

I(u).

Then

inf I(B) ≤ c∗
k+1 ≤ · · · ≤ c∗

k+m ≤ sup I(X),

in particular, 0 < c∗
j < b. If, in addition, I satisfies the (PS)c condition for all

c ∈ (0, b), then each c∗
j is a critical value of I and there are m distinct pairs

of associated critical points.

Remark 2.6. Constructions similar to the one used in the proof of Theorem 2.5
in [13] have also been used in Fadell and Rabinowitz [5] to prove bifurcation
results for Hamiltonian systems and in Perera and Szulkin [11] to prove mul-
tiplicity results for p-Laplacian problems. See also Perera et al. [9, Proposition
3.44].

2.3. Some estimates

It was shown in [6, Theorem 3.1.(2)] that the infimum in (1.4) is attained by
the family of functions

uε(x) =
CN,p,s ε(N−p)/(p−s) p[

ε + |x|(p−s)/(p−1)
](N−p)/(p−s)

, ε > 0

when Ω = R
N , where CN,p,s > 0 is chosen so that∫

RN

|∇uε|p dx =
∫
RN

u
p∗(s)
ε

|x|s dx = μ(N−s)/(p−s)
s .
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Take a smooth function η : [0,∞) → [0, 1] such that η(s) = 1 for s ≤ 1/4 and
η(s) = 0 for s ≥ 1/2, and set

uε,δ(x) = η

( |x|
δ

)
uε(x), vε,δ(x) =

uε,δ(x)(∫
RN

u
p∗(s)
ε,δ

|x|s dx

)1/p∗(s)
, ε, δ > 0,

so that ∫
RN

v
p∗(s)
ε,δ

|x|s dx = 1. (2.2)

The following estimates were obtained in [6, Lemma 11.1.(1),(3),(4)]:∫
RN

|∇vε,δ|p dx ≤ μs + Cε(N−p)/(p−s), (2.3)

∫
RN

vp
ε,δ dx ≥

⎧⎪⎨
⎪⎩

1
C

ε(p−1) p/(p−s) if N > p2

1
C

ε(p−1) p/(p−s) |log ε| if N = p2,

(2.4)

where C = C(N, p, s, δ) > 0 is a constant. While these estimates are sufficient
for the proof of Theorem 1.2, we will need the following finer estimates in order
to prove Theorem 1.3.

Lemma 2.7. There exists a constant C = C(N, p, s) > 0 such that∫
RN

|∇vε,δ|p dx ≤ μs + CΘ(N−p)/(p−s)
ε,δ , (2.5)

∫
RN

vp
ε,δ dx ≥

⎧⎪⎨
⎪⎩

1
C

ε(p−1) p/(p−s) if N > p2

1
C

ε(p−1) p/(p−s) |log Θε,δ| if N = p2,

(2.6)

where Θε,δ = ε δ−(p−s)/(p−1).

Proof. We have

uε,δ(δx) = δ−(N−p)/p uΘε,δ,1(x)

and ∫
RN

u
p∗(s)
ε,δ

|x|s dx =
∫
RN

u
p∗(s)
Θε,δ,1

|x|s dx.

So

vε,δ(δx) = δ−(N−p)/p vΘε,δ,1(x)

and hence

∇vε,δ(δx) = δ−N/p ∇vΘε,δ,1(x).

Then∫
RN

|∇vε,δ(x)|p dx = δN

∫
RN

|∇vε,δ(δx)|p dx =
∫
RN

|∇vΘε,δ,1(x)|p dx
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and ∫
RN

vp
ε,δ(x) dx = δN

∫
RN

vp
ε,δ(δx) dx = δp

∫
RN

vp
Θε,δ,1(x) dx,

so (2.5) and (2.6) follow from (2.3) and (2.4), respectively. �

Let i, M, Ψ, and λk be as in the introduction, and suppose that λk <
λk+1. Then the sublevel set Ψλk has a compact symmetric subset E of index
k that is bounded in L∞(Ω) ∩ C1,α

loc (Ω) (see Degiovanni and Lancelotti [4,
Theorem 2.3]). Let δ0 = dist (0, ∂Ω), take a smooth function θ : [0,∞) → [0, 1]
such that θ(s) = 0 for s ≤ 3/4 and θ(s) = 1 for s ≥ 1, and set

vδ(x) = θ

( |x|
δ

)
v(x), v ∈ E, 0 < δ ≤ δ0

2
.

Since E ⊂ Ψλk is bounded in C1(Bδ0/2(0)),∫
Ω

|∇vδ|p dx ≤
∫

Ω\Bδ(0)

|∇v|p dx + C

∫
Bδ(0)

(
|∇v|p +

|v|p
δp

)
dx ≤ 1 + CδN−p

(2.7)
and∫

Ω

|vδ|p dx ≥
∫

Ω\Bδ(0)

|v|p dx =
∫

Ω

|v|p dx−
∫

Bδ(0)

|v|p dx ≥ 1
λk

−CδN , (2.8)

where C = C(N, p, s,Ω, k) > 0 is a constant. By (1.6) and (2.8),∫
Ω

|vδ|p∗(s)

|x|s dx ≥ 1
C

(2.9)

if δ > 0 is sufficiently small.
Now let π : W 1,p

0 (Ω)\{0} → M, u �→ u/ ‖u‖ be the radial projection
onto M, and set

w = π(vδ), v ∈ E.

If δ > 0 is sufficiently small,

Ψ(w) =

∫
Ω

|∇vδ|p dx∫
Ω

|vδ|p dx

≤ λk + CδN−p < λk+1 (2.10)

by (2.7) and (2.8), and

∫
Ω

|w|p∗(s)

|x|s dx =

∫
Ω

|vδ|p∗(s)

|x|s dx

(∫
Ω

|∇vδ|p dx

)p∗(s)/p
≥ 1

C
(2.11)

by (2.7) and (2.9). Since suppw = supp vδ ⊂ Ω \ B3δ/4(0) and suppπ(vε,δ) =
supp vε,δ ⊂ Bδ/2(0),

supp w ∩ suppπ(vε,δ) = ∅. (2.12)
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Set

Eδ = {w : v ∈ E} .

Lemma 2.8. For all sufficiently small δ > 0,

(i) Eδ ∩ Ψλk+1 = ∅,
(ii) i(Eδ) = k,
(iii) π(vε,δ) /∈ Eδ.

Proof. (i) follows from (2.10). By (i), Eδ ⊂ M\Ψλk+1 and hence

i(Eδ) ≤ i(M\Ψλk+1) = k

by the monotonicity of the index and (1.5). On the other hand, since E →
Eδ, v �→ π(vδ) is an odd continuous map,

i(Eδ) ≥ i(E) = k.

(ii) follows. (iii) is immediate from (2.12). �

3. Proofs

3.1. Proof of Theorem 1.1

All nontrivial critical points of Iλ lie on the Nehari manifold

N =
{

u ∈ W 1,p
0 (Ω) \ {0} : I ′

λ(u)u = 0
}

.

We will show that Iλ attains the ground state energy

c := inf
u∈N

Iλ(u)

at a positive critical point.
Since 0 < λ < λ1, N is closed, bounded away from the origin, and for

u ∈ W 1,p
0 (Ω) \ {0} and t > 0, tu ∈ N if and only if t = tu, where

tu =

⎡
⎢⎢⎣
∫

Ω

(|∇u|p − λ |u|p) dx∫
Ω

|u|p∗(s)

|x|s dx

⎤
⎥⎥⎦

(N−p)/(p−s) p

.

Moreover,

Iλ(tuu) = sup
t>0

Iλ(tu) =
p − s

(N − s) p
ψλ(u)(N−s)/(p−s),

where

ψλ(u) =

∫
Ω

(|∇u|p − λ |u|p) dx

(∫
Ω

|u|p∗(s)

|x|s dx

)p/p∗(s)
.
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By (2.2)–(2.4),

ψλ(vε,δ) ≤

⎧⎪⎨
⎪⎩

μs − ε(p−1) p/(p−s)

C
+ Cε(N−p)/(p−s) if N > p2

μs − ε(p−1) p/(p−s)

C
|log ε| + Cε(p−1) p/(p−s) if N = p2,

and in both cases the last expression is strictly less than μs if ε > 0 is suffi-
ciently small, so

c ≤ Iλ(tvε,δ
vε,δ) <

p − s

(N − s) p
μ(N−s)/(p−s)

s .

Then Iλ satisfies the (PS)c condition by [6, Theorem 4.1.(2)], and hence Iλ|N
has a minimizer u0 by a standard argument. Then |u0| is also a minimizer,
which is positive by the strong maximum principle.

3.2. Proof of Theorem 1.2

We will show that problem (1.1) has a nontrivial solution as long as λ > λ1

is not an eigenvalue from the sequence (λk). Then we have λk < λ < λk+1 for
some k ∈ N. Fix δ > 0 so small that the first inequality in (2.10) implies

Ψ(w) ≤ λ ∀w ∈ Eδ (3.1)

and the conclusions of Lemma 2.8 hold. Then let A0 = Eδ and B0 = Ψλk+1 ,
and note that A0 and B0 are disjoint nonempty closed symmetric subsets of
M such that

i(A0) = i(M \ B0) = k (3.2)

by Lemma 2.8 (i), (ii) and (1.5). Now let R > r > 0, let v0 = π(vε,δ), which is
in M \ A0 by Lemma 2.8 (iii), and let A, B and X be as in Theorem 2.3.

For u ∈ B0,

Iλ(ru) ≥ 1
p

(
1 − λ

λk+1

)
rp − rp∗(s)

p∗(s)μ
p∗(s)/p
s

.

Since λ < λk+1, and s < p implies p∗(s) > p, it follows that inf Iλ(B) > 0 if r
is sufficiently small.

Next we show that Iλ ≤ 0 on A if R is sufficiently large. For w ∈ A0 and
t ≥ 0,

Iλ(tw) ≤ tp

p

(
1 − λ

Ψ(w)

)
≤ 0

by (3.1). Now let w ∈ A0 and 0 ≤ t ≤ 1, and set u = π((1 − t)w + tv0).
Clearly, ‖(1 − t)w + tv0‖ ≤ 1, and since the supports of w and v0 are disjoint
by (2.12),
∫

Ω

|(1 − t)w + tv0|p∗(s)

|x|s dx = (1 − t)p∗(s)

∫
Ω

|w|p∗(s)

|x|s dx + tp
∗(s)

∫
Ω

v
p∗(s)
0

|x|s dx.
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In view of (2.11), and since

∫
Ω

v
p∗(s)
0

|x|s dx =

∫
Ω

v
p∗(s)
ε,δ

|x|s dx

(∫
Ω

|∇vε,δ|p dx

)p∗(s)/p
≥ 1

C

by (2.2) and (2.3) if ε > 0 is sufficiently small, it follows that

∫
Ω

|u|p∗(s)

|x|s dx =

∫
Ω

|(1 − t)w + tv0|p∗(s)

|x|s dx

‖(1 − t)w + tv0‖p∗(s)
≥ 1

C
.

Then

Iλ(Ru) ≤ Rp

p
− Rp∗(s)

p∗(s)

∫
Ω

|u|p∗(s)

|x|s dx ≤ 0

if R is sufficiently large.
Now we show that

sup Iλ(X) <
p − s

(N − s) p
μ(N−s)/(p−s)

s (3.3)

if ε > 0 is sufficiently small. Noting that

X = {ρ π((1 − t)w + tv0) : w ∈ Eδ, 0 ≤ t ≤ 1, 0 ≤ ρ ≤ R} ,

let w ∈ Eδ and 0 ≤ t ≤ 1, and set u = π((1 − t)w + tv0). Then

sup
0≤ρ≤R

Iλ(ρu) ≤ sup
ρ≥0

[
ρp

p

(
1 − λ

∫
Ω

|u|p dx

)
− ρp∗(s)

p∗(s)

∫
Ω

|u|p∗(s)

|x|s dx

]

=
p − s

(N − s) p
ψλ(u)(N−s)/(p−s), (3.4)

where

ψλ(u) =

(
1 − λ

∫
Ω

|u|p dx

)+

(∫
Ω

|u|p∗(s)

|x|s dx

)p/p∗(s)

=

(∫
Ω

[
|(1 − t)∇w + t ∇v0|p − λ |(1 − t)w + tv0|p

]
dx

)+

(∫
Ω

|(1 − t)w + tv0|p∗(s)

|x|s dx

)p/p∗(s)

≤
(1 − t)p

(
1 − λ

∫
Ω

|w|p dx

)+

+ tp
(

1 − λ

∫
Ω

vp
0 dx

)+

(
(1 − t)p∗(s)

∫
Ω

|w|p∗(s)

|x|s dx + tp
∗(s)

∫
Ω

v
p∗(s)
0

|x|s dx

)p/p∗(s)
(3.5)
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since the supports of w and v0 are disjoint. Since

1 − λ

∫
Ω

|w|p dx = 1 − λ

Ψ(w)
≤ 0

by (3.1),

ψλ(u) ≤ ψλ(v0)

=

(∫
Ω

[
|∇vε,δ|p − λ vp

ε,δ

]
dx

)+

(∫
Ω

v
p∗(s)
ε,δ

|x|s dx

)p/p∗(s)

≤

⎧⎪⎪⎨
⎪⎪⎩

μs − ε(p−1) p/(p−s)

C
+ Cε(N−p)/(p−s) if N > p2

μs − ε(p−1) p/(p−s)

C
|log ε| + Cε(p−1) p/(p−s) if N = p2

by (2.2)–(2.4). In both cases the last expression is strictly less than μs if ε > 0
is sufficiently small, so (3.3) follows from (3.4).

The inequalities (2.1) now imply that

0 < c <
p − s

(N − s) p
μ(N−s)/(p−s)

s .

Then Iλ satisfies the (PS)c condition by [6, Theorem 4.1.(2)], and hence c is a
positive critical value of Iλ by Theorem 2.3.

3.3. Proof of Theorem 1.3

The case where λ > λ1 is an eigenvalue, but not from the sequence (λk), was
covered in the proof of Theorem 1.2, so we may assume that λ = λk < λk+1

for some k ∈ N. Take δ > 0 so small that (2.10) and the conclusions of Lemma
2.8 hold, let A0, B0 and v0 be as in the proof of Theorem 1.2, and let A, B
and X be as in Theorem 2.3.

As before, inf Iλ(B) > 0 if r is sufficiently small, and

Iλ(R π((1 − t)w + tv0)) ≤ 0 ∀w ∈ A0, 0 ≤ t ≤ 1

if Θε,δ is sufficiently small and R is sufficiently large. On the other hand,

Iλ(tw) ≤ tp

p

(
1 − λk

Ψ(w)

)
≤ CRpδN−p ∀w ∈ A0, 0 ≤ t ≤ R

by (2.10). It follows that sup Iλ(A) < inf Iλ(B) if δ is also sufficiently small.
It only remains to verify (3.3) for suitable choice of δ(ε) and small ε.

Maximizing the last expression in (3.5) over 0 ≤ t ≤ 1 gives

ψλ(u) ≤
[
ψλ(v0)(N−s)/(p−s) + ψλ(w)(N−s)/(p−s)

](p−s)/(N−s)

. (3.6)
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By (2.2), (2.5), and (2.6),

ψλ(v0)=

(∫
Ω

[
|∇vε,δ|p−λk vp

ε,δ

]
dx

)+

(∫
Ω

v
p∗(s)
ε,δ

|x|s dx

)p/p∗(s)
≤ μs − ε(p−1) p/(p−s)

C
+CΘ(N−p)/(p−s)

ε,δ ,

(3.7)
and by (2.10) and (2.11),

ψλ(w) =

(
1 − λk

Ψ(w)

)+

(∫
Ω

|w|p∗(s)

|x|s dx

)p/p∗(s)
≤ CδN−p. (3.8)

Recalling that Θε,δ = ε δ−(p−s)/(p−1), if there exist α ∈ (0, (p−1)/(p−s)) and a
sequence εj → 0 such that, for ε = εj and δ = εα

j , ψλ(v0) < μs/3, then ψλ(u) ≤
2μs/3 for sufficiently large j by (3.6) and (3.8), which together with (3.4)
gives the desired result. So we may assume that for all α ∈ (0, (p−1)/(p− s)),
ψλ(v0) ≥ μs/3 for all sufficiently small ε and δ = εα. Since (p−s)/(N −s) < 1,
then (3.6)–(3.8) with δ = εα yield

ψλ(u) ≤ ψλ(v0)

[
1 +

(
ψλ(w)
ψλ(v0)

)(N−s)/(p−s)
]

≤ ψλ(v0) + C ψλ(w)(N−s)/(p−s) ≤ μs − ε(p−1) p/(p−s)

×
[

1
C

− Cε(N−p)(N−s)(α−α1)/(p−s) − Cε(N−p)(α2−α)/(p−1)

]
,

where

0 < α1 :=
(p − 1) p

(N − p)(N − s)
<

(N − p2)(p − 1)
(N − p)(p − s)

=: α2 <
p − 1
p − s

by (1.3). Taking α ∈ (α1, α2) now gives the desired conclusion.

3.4. Proofs of Theorems 1.6 and 1.7

We only give the proof of Theorem 1.7. Proof of Theorem 1.6 is similar and
simpler. By [6, Theorem 4.1.(2)], Iλ satisfies the (PS)c condition for all

c <
p − s

(N − s) p
μ(N−s)/(p−s)

s ,

so we apply Theorem 2.5 with b equal to the right-hand side.
By Degiovanni and Lancelotti [4, Theorem 2.3], the sublevel set Ψλk+m

has a compact symmetric subset A0 with

i(A0) = k + m.

We take B0 = Ψλk+1 , so that

i(M \ B0) = k
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by (1.5). Let R > r > 0 and let A, B and X be as in Theorem 2.5. For
u ∈ Ψλk+1 ,

Iλ(ru) ≥ rp

p

(
1 − λ

λk+1

)
− rp∗(s)

p∗(s)μ
p∗(s)/p
s

by (1.4). Since λ < λk+1, and s < p implies p∗(s) > p, it follows that
inf Iλ(B) > 0 if r is sufficiently small. For u ∈ A0 ⊂ Ψλk+1 ,

Iλ(Ru) ≤ Rp

p

(
1 − λ

λk+1

)
− Rp∗(s)

p∗(s)λ
p∗(s)/p
k+1 Vs(Ω)(p−s)/(N−p)

by (1.6), so there exists R > r such that Iλ ≤ 0 on A. For u ∈ X,

Iλ(u) ≤ λk+1 − λ

p

∫
Ω

|u|p dx − 1
p∗(s)Vs(Ω)(p−s)/(N−p)

(∫
Ω

|u|p dx

)p∗(s)/p

≤ sup
ρ≥0

[
(λk+1 − λ) ρ

p
− ρp∗(s)/p

p∗(s)Vs(Ω)(p−s)/(N−p)

]

=
p − s

(N − s) p
(λk+1 − λ)(N−s)/(p−s) Vs(Ω).

So

sup Iλ(X) ≤ p − s

(N − s) p
(λk+1 − λ)(N−s)/(p−s) Vs(Ω) <

p − s

(N − s) p
μ(N−s)/(p−s)

s

by (1.7). Theorem 2.5 now gives m distinct pairs of (nontrivial) critical points
±uλ

j , j = 1, . . . , m of Iλ such that

0 < Iλ(uλ
j ) ≤ p − s

(N − s) p
(λk+1 − λ)(N−s)/(p−s) Vs(Ω).

Since ∫
Ω

|∇uλ
j |p dx = p Iλ(uλ

j ) + λ

∫
Ω

|uλ
j |p dx +

p

p∗(s)

∫
Ω

|uλ
j |p∗(s)

|x|s dx,

∫
Ω

|uλ
j |p dx ≤ Vs(Ω)(p−s)/(N−s)

(∫
Ω

|uλ
j |p∗(s)

|x|s dx

)p/p∗(s)

by (1.6), and∫
Ω

|uλ
j |p∗(s)

|x|s dx =
(N − s) p

p − s

[
Iλ(uλ

j ) − 1
p

I ′
λ(uλ

j )uλ
j

]
=

(N − s) p

p − s
Iλ(uλ

j ),

(1.8) follows. This completes the proof of Theorem 1.7.

References

[1] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and ap-
plications to some nonlinear problems with “strong” resonance at infinity. Non-
linear Anal. 7(9), 981–1012 (1983)



NoDEA p-Laplacian problems Page 15 of 16 25

[2] Benci, Vieri: On critical point theory for indefinite functionals in the presence
of symmetries. Trans. Am. Math. Soc. 274(2), 533–572 (1982)

[3] Degiovanni, Marco, Lancelotti, Sergio: Linking over cones and nontrivial so-
lutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H.
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