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Abstract. The existence of a capacity solution to a coupled nonlinear
parabolic–elliptic system is analyzed, the elliptic part in the parabolic
equation being of the form − div a(x, t, u,∇u). The growth and the co-
ercivity conditions on the monotone vector field a are prescribed by an
N -function, M , which does not have to satisfy a Δ2 condition. Therefore
we work with Orlicz–Sobolev spaces which are not necessarily reflexive.
We use Schauder’s fixed point theorem to prove the existence of a weak
solution to certain approximate problems. Then we show that some subse-
quence of approximate solutions converges in a certain sense to a capacity
solution.
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1. Introduction

In recent years, there has been an increasing interest in the study of vari-
ous mathematical problems involving the operators satisfying non-polynomial
growth conditions instead of having the usual p-structure which employ the
standard theory of monotone operators relying on the Sobolev space W 1,p(Ω),
the origins of which can be traced back to the work of Orlicz in the 1930s. Later
on, Polish and Czechoslovak mathematicians investigated the modular function
spaces (see, for example, Musielak [19] and Krasnoselskii and Rutickii [18]).
Many properties of Sobolev spaces have been extended to Orlicz–Sobolev
spaces, mainly by Dankert [7] Donaldson and Trudinger [9] and O’Neil [20]
(see also [1] for an excellent account of those works). At present, the oper-
ators satisfying non-polynomial growth arouse much interest with the devel-
opment of elastic mechanics, electro-rheological fluids as an important class
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of non-Newtonian fluids (sometimes referred to as smart fluids). The electro-
rheological fluids are characterized by their ability to highly change in their
mechanical properties under the influence of an external electromagnetic field.
A mathematical model of electro-rheological fluids was proposed by Rajagopal
and Ru̇žička [21,22] we refer for instance to [4] and [6] for different non-
standard growth conditions and to [5] and [17] for some recent existence results
in the context of non-polynomial growth. According to Diening [8] we are
strongly convinced that these more general spaces will become increasingly
important in modeling modern materials.

This paper deals with the existence of a capacity solution to a coupled
system of parabolic–elliptic equations, whose unknowns are the temperature
inside a semiconductor material, u, and the electric potential, ϕ, namely

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− div a(x, t, u,∇u) = ρ(u)|∇ϕ|2 in QT = Ω × (0, T ),

div(ρ(u)∇ϕ) = 0 in QT ,

ϕ = ϕ0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

u = 0 on ∂Ω × (0, T ),

(1.1)

where Ω ⊂ R
d, d ≥ 2, is the space region occupied by the semiconductor,

Au = −div a(x, t, u,∇u) is a Leray-Lions operator defined on W 1,x
0 LM (QT ),

M is an appropriate N -function, and the functions ϕ0 and u0 are given.
The functional spaces to deal with these problems are Orlicz-Sobolev

spaces. In general, Orlicz–Sobolev spaces are neither reflexive nor separable.
This problem may be regarded as a generalization of the so-called ther-

mistor problem arising in electromagnetism [3,13,14].
Since we are dealing with a nonuniformly elliptic problem (see assump-

tion (3.6) on ρ(s) below), one readily realizes that the search of weak solutions
to problem (1.1) are not well suited. Indeed, ρ(s) may converge to zero as |s|
tends to infinity and as a result, if u is unbounded in QT , the elliptic equation
becomes degenerate at points where u is infinity and, therefore, no a priori
estimates for ∇ϕ will be available and thus, ϕ may not belong to a Sobolev
space. Instead of ϕ, we may consider the function Φ = ρ(u)|∇ϕ|2 as a whole
and then show that belongs to L2(QT )d. This means that a new formulation
of the original system is possible and the solution to this new formulation will
be called capacity solution.

The concept of capacity solution was first introduced by Xu in [25] in
the analysis of a modified version of the thermistor problem. The same author
applied this concept to more general settings where weaker assumptions [24]
or mixed boundary conditions [26] are considered.

The existence of a capacity solution of (1.1) in the classical Sobolev spaces
has been proved by González Montesinos and Ortegón Gallego in [14].
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After establishing the continuity of a certain mapping, we use Schauder’s
fixed point theorem to prove the existence of a weak solution to an approxi-
mate problem. Then we show that some subsequence of approximate solutions
converges in a certain sense to a capacity solution.

The main goal of this paper is to prove the existence of a capacity solution
of (1.1) in the sense of Definition 4.1 (see Sect. 3) for a general N -function,
M , along with the lack of reflexivity in this setting combined with the nonuni-
formly elliptic character of the elliptic equation.

This work is organized as follows. In Sect. 2 we recall some well-known
properties and results on Orlicz-Sobolev spaces. Section 3 is devoted to specify
the assumptions on data. In Sect. 4 we give the definition of a capacity solution
of (1.1). Finally, in Sect. 5 we present the existence result and its proof.

2. Preliminaries

In this section we present some well-known results on Orlicz and Orlicz–
Sobolev spaces. Most of them can be found in [1,10–12,15,16] and [18].

Let M : R+ → R
+ be an N -function, i.e., M is a convex function, with

M(t) > 0 for t > 0, M(t)
t → 0 as t → 0 and M(t)

t → ∞ as t → ∞. Equivalently,
M admits the representation: M(t) =

∫ t

0
m(s) ds where m : R+ → R

+ is a non-
decreasing and right continuous function, with m(0) = 0, m(t) > 0 for t > 0,
and m(t) → ∞ as t → ∞. The N -function M̄ conjugate to M is defined by
M̄(t) =

∫ t

0
m̄(s) ds, where m̄ : R

+ → R
+ is given by m̄(t) = sup{s /m(s) ≤

t}.
The N -function M is said to satisfy the Δ2-condition if, for some k > 0,

M(2t) ≤ k M(t) for all t ≥ 0. (2.1)

When this inequality holds only for t ≥ t0 > 0, M is said to satisfy the
Δ2-condition near infinity.

Let P and M be two N -functions. The notation P � M means that P
grows essentially less rapidly than M , i.e., for each ε > 0,

P (t)
M(εt)

→ 0 as t → ∞. (2.2)

This is the case if and only if, for each ε > 0,

M−1(t)
P−1(εt)

→ 0 as t → ∞. (2.3)

We will extend these N -functions into even functions on all R. Let Ω be an
open subset of R

d, d ∈ N. The Orlicz class LM (Ω) (resp. the Orlicz space
LM (Ω)) is defined as the set of (equivalence classes of) real-valued measurable
functions u on Ω such that:
∫

Ω

M(u(x)) dx < +∞
(

resp.
∫

Ω

M
(u(x)

λ

)
dx < +∞ for some λ > 0

)

.

(2.4)
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Notice that LM (Ω) is a Banach space under the so-called Luxemburg norm,
namely

‖u‖M,Ω = inf
{

λ > 0 /

∫

Ω

M
(u(x)

λ

)
dx ≤ 1

}

, (2.5)

and LM (Ω) is a convex subset of LM (Ω). Indeed, LM (Ω) is the linear hull of
LM (Ω). The closure in LM (Ω) of the set of bounded measurable functions with
compact support in Ω̄ is denoted by EM (Ω). The equality EM (Ω) = LM (Ω)
holds if and only if M satisfies the Δ2-condition, for all t or for t large according
to whether Ω has infinite measure or not.

The dual of EM (Ω) can be identified with LM̄ (Ω) by means of the pairing∫

Ω
u(x)v(x) dx, and the dual norm on LM̄ (Ω) is equivalent to ‖.‖M̄,Ω. The

space LM (Ω) is reflexive if and only if M and M̄ satisfy the Δ2-condition, for
all t or for t large, according to whether Ω has infinite measure or not.

In LM (Ω) we define the Orlicz norm ||u||(M) by

||u||(M) = sup
∫

Ω

u(x)v(x) dx, (2.6)

where the supremum is taken over all v ∈ EM̄(Ω) such that ||v||M̄,Ω ≤ 1. An
important inequality in LM (Ω) is the following:

∫

Ω

M(u(x)) dx ≤ ||u||(M) for all u ∈ LM (Ω) such that ||u||(M) ≤ 1, (2.7)

wherefrom we readily deduce
∫

Ω

M

(
u(x)

||u||(M)

)

dx ≤ 1 for all u ∈ LM (Ω)\{0}. (2.8)

It can be shown that the norm || · ||(M) is equivalent to the Luxemburg
norm ‖ · ‖M,Ω. Indeed,

||u||M,Ω ≤ ||u||(M) ≤ 2||u||M,Ω for all u ∈ LM (Ω). (2.9)

Also, the Hölder inequality holds
∫

Ω

|u(x)v(x)|dx ≤ ||u||M,Ω||v||(M̄) for all u ∈ LM (Ω) and v ∈ LM̄ (Ω),

in particular, if Ω has finite measure, Hölder’s inequality yields the continuous
inclusion LM (Ω) ⊂ L1(Ω).

We now turn to the Orlicz–Sobolev space. W 1LM (Ω) (resp. W 1EM (Ω))
is the space of all functions u such that u and its distributional derivatives up
to order one lie in LM (Ω) (resp. EM (Ω)). This is a Banach space under the
norm

‖u‖1,M,Ω =
∑

|α|≤1

‖∇αu‖M,Ω. (2.10)

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the prod-
uct of d + 1 copies of LM (Ω). Denoting this product by ΠLM , we will use the
weak topologies σ(ΠLM ,ΠEM̄ ) and σ(ΠLM ,ΠLM̄ ). The space W 1

0 EM (Ω) is
defined as the (norm) closure of the Schwartz space D(Ω) in W 1EM (Ω) and
the space W 1

0 LM (Ω) as the σ(ΠLM ,ΠEM̄ ) closure of D(Ω) in W 1LM (Ω).
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Convergence in norm in Orlicz or Orlicz–Sobolev spaces is rather strict
when M does not satisfies the Δ2-condition. To this end, it is very convenient
to introduce the concept of modular convergence.

Definition 2.1. Let (un) ⊂ LM (Ω) and u ⊂ LM (Ω). We say that un converges

to u for the modular convergence in LM (Ω) if for some λ > 0,
∫

Ω

M
(un − u

λ

)

dx → 0. Let (un) ⊂ W 1LM (Ω) and u ⊂ W 1LM (Ω). We say that (un) converges
to u for the modular convergence in W 1LM (Ω) if ∇αun converges to ∇αu for
the modular convergence in LM (Ω), for all multiindex α = (α1, . . . , αd) ∈ Z

d

such that |α| = α1 + · · · + αd ≤ 1 and αj ≥ 0 for all 1 ≤ j ≤ d.

If M satisfies the Δ2-condition on (near infinity only when Ω has finite
measure), then modular convergence coincides with norm convergence. This is
not true in the general case. For instance, consider the following 1D example:
Ω = (0, 1), M(s) = e|s| − |s| − 1, un(x) = log

(
1 + 1

n
√

x

)
, n ∈ N, x ∈ (0, 1).

Since M(un(x)) ≤ 1
n

√
x

we have limn→∞
∫ 1

0
M(un) = 0 and thus un → 0 in

LM (0, 1) for the modular convergence. On the other hand, for ε > 0 we obtain

M

(
un(x)

ε

)

≥ 1
n1/εx1/(2ε)

− 1
εn

√
x

− 1,

so that
∫ 1

0

M
(un

ε

)
= +∞ for all 0 < ε <

1
2
,

and, consequently, (un) does not converge in the norm of LM (0, 1).
The following result shows that the modular convergence in LM implies,

in particular, the convergence in the weak-∗ topology σ(LM , LM̄ ).

Lemma 2.2. ([11,16]) Let (un) ⊂ LM (Ω), u ∈ LM (Ω) and v ∈ LM̄ (Ω) such
that un → u with respect to the modular convergence. Then,

1. unv → uv strongly in L1(Ω). In particular,
∫

Ω
unv → ∫

Ω
uv.

2. Furthermore, if (vn) ⊂ LM̄ (Ω) is such that vn → v with respect to the
modular convergence, then unvn → uv strongly in L1(Ω).

Proof. Let λ > 0 and μ > 0 such that M((un − u)/λ) → 0 strongly in L1(Ω)
and M̄(v/μ) ∈ L1(Ω). Take a subsequence (unk

)k such that unk
v → uv a.e. in

Ω. Then

|unk
v − uv| ≤ λμ

[

M

(
unk

− u

λ

)

+ M̄

(
v

μ

)]

,

and thus, from Lebesgue’s dominated convergence theorem it yields unk
v → uv

strongly in L1(Ω). Since the limit uv does not depend on the subsequence
(unk

)k, it is the whole sequence (un) that converges strongly in L1(Ω). In
order to show the second assertion, we have

unvn − uv = (un − u)(vn − v) + (unv − uv) + (vnu − uv),
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and thus, if μ > 0 is such that M̄((vn −v)/μ) → 0 strongly in L1(Ω), it yields

|unvn − uv| ≤ λμ

[

M

(
un − u

λ

)

+ M̄

(
vn − v

μ

)]

+ |unv − uv| + |vnu − uv|,

and using the first assertion, we deduce the desired result. �

Lemma 2.3. Assume that the open set Ω ⊂ R
d has finite measure. If P � M

and un → u for the modular convergence in LM (Ω), then un → u strongly in
EP (Ω).

Proof. By Theorem 2.1 in [23] we have un, u ∈ EP (Ω). Let ε > 0 be arbitrary.
There exists λ > 0 such that

∫

Ω

M
(un − u

λ

)
→ 0, when n → ∞.

Therefore, there exists h ∈ L1(Ω) such that

M
(un − u

λ

)
≤ h a.e. in Ω,

for a subsequence still denoted un. Now choose t0 > 0 such that

P ( t
ε )

M( t
λ )

≤ 1, when t ≥ t0.

Then,

P
(un − u

ε

)
≤ M

(un − u

λ

)
+ P

( t0
ε

)
≤ h + P

( t0
ε

)
a.e. x ∈ Ω.

Since h + P ( t0
ε ) ∈ L1(Ω), we have

P
(un − u

ε

)
→ 0 in L1(Ω),

by Lebesgue’s dominated convergence theorem. As ε > 0 is arbitrary, we have
un → u in EP (Ω). �

Let W−1LM̄ (Ω) (resp. W−1EM̄ (Ω)) denote the space of distributions on
Ω which can be written as sums of derivatives of order up to one of functions
in LM̄ (Ω) (resp. EM̄ (Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense
in W 1

0 LM (Ω) for the modular convergence and for the topology σ(ΠLM ,ΠLM̄ )
(see [15]). Consequently, the action of a distribution in W−1LM̄ (Ω) on an
element of W 1

0 LM (Ω) is well defined. For more details the reader is referred
to [1,18].

For K > 0, we define the truncation at height K, TK : R → R by

TK(s) = min(K,max(s,−K)) =

{
s if |s| ≤ K,

Ks/|s| if |s| > K,
(2.11)

The following abstract lemmas will be applied to the truncation opera-
tors.
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Lemma 2.4. ([15]). Let F : R → R be a Lipschitz continuous function such that
F (0) = 0. Let M be an N -function and let u ∈ W 1LM (Ω) (resp. W 1EM (Ω)).

Then F (u) ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Moreover, if the set of dis-
continuity points D of F ′ is finite, then

∂

∂xi
F (u) =

⎧
⎨

⎩

F ′(u)
∂u

∂xi
a.e. in {x ∈ Ω / u(x) /∈ D},

0 a.e. in {x ∈ Ω / u(x) ∈ D}.

Lemma 2.5. ([15]) Let F : R → R be a Lipschitz continuous function such
that F (0) = 0. We assume that the set of discontinuity points of F ′ is finite.
Let M be an N -function, then the mapping F : W 1LM (Ω) → W 1LM (Ω) is
sequentially continuous with respect to the weak-∗ topology σ(ΠLM ,ΠEM̄ ).

Let Ω be a bounded open subset of R
d, d ∈ N, T > 0 and set QT =

Ω × (0, T ). Let M be an N -function. For each α = (α1, . . . , αd) ∈ Z
d, with

αj ≥ 0 for all j, 1 ≤ j ≤ d, denote by ∇α
x the distributional derivative on QT

of order α with respect to the variable x ∈ Ω, and |α| = α1 + · · · + αd. The
inhomogeneous Orlicz–Sobolev spaces are defined as follows,

W 1,xLM (QT ) = {u ∈LM (QT ) /∇α
xu ∈ LM (QT ) for all α with |α| ≤ 1},

W 1,xEM (QT ) = {u ∈ EM (QT ) /∇α
xu ∈EM (QT ) for all α with |α| ≤ 1}.

The last space is a subspace of the first one, and both are Banach spaces
under the norm,

‖u‖ =
∑

|α|≤1

‖∇α
xu‖M,QT

.

We can easily show that they form a complementary system when Ω satisfies
the segment property [15]. These spaces are considered as subspaces of the
product space ΠLM (QT ) = LM (QT )d+1. We shall also consider the weak-∗
topologies σ(ΠLM ,ΠEM̄ ) and σ(ΠLM ,ΠLM̄ ). If u ∈ W 1,xLM (QT ) then the
function t −→ u(t) = u(t, ·) is defined a.e. in [0, T ] with values in W 1LM (Ω).
If, further, u ∈ W 1,xEM (QT ) then the concerned function is a W 1EM (Ω)-
valued and is strongly measurable. Furthermore the following embedding holds:
W 1,xEM (QT ) ⊂ L1(0, T ;W 1EM (Ω)). The space W 1,xLM (QT ) is not in gen-
eral separable. If u ∈ W 1,xLM (QT ), we can not conclude that the function
u(t) is measurable on (0, T ). However, the scalar function t → ‖u(t)‖M,Ω

is in L1(0, T ). The space W 1,x
0 EM (QT ) is defined as the (norm) closure in

W 1,xEM (QT ) of D(QT ). We can easily show as in [16] that when Ω has the
segment property, then each element u of the closure of D(QT ) with respect
of the weak-∗ topology σ(ΠLM ,ΠEM̄ ) is a limit, in W 1,xLM (QT ), of some
sequence (un) ⊂ D(QT ) for the modular convergence, i.e., there exists λ > 0
such that for all |α| ≤ 1,

∫

QT

M

(∇α
xun − ∇α

xu

λ

)

dxdt → 0 as n → ∞.
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From Lemma 2.2, this implies that (un) converges to u in W 1,xLM (QT )
for the weak-∗ topology σ(ΠLM ,ΠLM̄ ). Consequently,

D(QT )
σ(ΠLM ,ΠEM̄ )

= D(QT )
σ(ΠLM ,ΠLM̄ )

.

This space will be denoted by W 1,x
0 LM (QT ). Furthermore, W 1,x

0 LM (QT ) ∩
ΠEM = W 1,x

0 EM (QT ). Poincaré’s inequality also holds in W 1,x
0 LM (QT ), i.e.,

there is a constant C > 0 such that for all u ∈ W 1,x
0 LM (QT ) one has,

∑

|α|≤1

‖∇α
xu‖M,QT

≤ C
∑

|α|=1

‖∇α
xu‖M,QT

.

Thus both sides of the last inequality are equivalent norms on W 1,x
0 LM (QT ).

We have then the following complementary system
(

W 1,x
0 LM (QT ) F

W 1,x
0 EM (QT ) F0

)

F being the dual space of W 1,x
0 EM (QT ). It is also, except for an isomorphism,

the quotient of ΠLM̄ by the polar set W 1,x
0 EM (QT )⊥, and will be denoted by

F = W−1,xLM̄ (QT ) and it can be shown that,

W−1,xLM̄ (QT ) =

⎧
⎨

⎩
f =

∑

|α|≤1

∇α
xfα / fα ∈ LM̄ (QT )

⎫
⎬

⎭
.

This space will be equipped with the usual quotient norm

‖f‖ = inf
∑

|α|≤1

‖fα‖M̄,QT
,

where the infimum is taken over all possible decompositions f =
∑

|α|≤1 ∇α
xfα,

fα ∈ LM̄ (QT ). The space F0 is then given by,

F0 =

⎧
⎨

⎩
f =

∑

|α|≤1

∇α
xfα / fα ∈ EM̄ (QT )

⎫
⎬

⎭
,

and is denoted by F0 = W−1,xEM̄ (QT ).

Remark 2.6. We can easily check, using Lemma 2.4, that each Lipschitz con-
tinuous mapping F , with F (0) = 0, acts in the inhomogeneous Orlicz–Sobolev
space of order one W 1,xLM (QT ) and W 1,x

0 LM (QT ) with values in the same
space, respectively.

In the sequel, we will make use of the following results which concern
mollification with respect to time and space variables and some trace results.
For a function u ∈ L1(QT ) we introduce the function ũ ∈ L1(Ω × R) as
ũ(x, s) = u(x, s)χ(0,T ) and define, for all μ > 0, t ∈ [0, T ] and a.e. x ∈ Ω, the
function uμ given as follows

uμ(x, t) = μ

∫ t

−∞
ũ(x, s)exp(μ(s − t)) ds. (2.12)



NoDEA Capacity solution in Orlicz–Sobolev spaces Page 9 of 37 14

Lemma 2.7. ([11])

1. Let u ∈ LM (QT ). Then uμ ∈ C([0, T ];LM (Ω)) and uμ → u as μ → +∞
in LM (QT ) for the modular convergence.

2. Let u ∈ W 1,xLM (QT ). Then uμ ∈ C([0, T ];W 1LM (Ω)) and uμ → u as
μ → +∞ in W 1,xLM (QT ) for the modular convergence.

3. Let u ∈ EM (QT ) (respectively, u ∈ W 1,xEM (QT )). Then uμ → u as
μ → +∞ strongly in EM (QT ) (respectively, strongly in W 1,xEM (QT )).

4. Let u ∈ W 1,xLM (QT ) then ∂uμ

∂t = μ(u − uμ) ∈ W 1,xLM (QT ).
5. Let (un) ⊂ W 1,xLM (QT ) and u ∈ W 1,xLM (QT ) such that un → u

strongly in W 1,xLM (QT ) (respectively, for the modular convergence).
Then, for all μ > 0, (un)μ → uμ strongly in W 1,xLM (QT ) (respectively,
for the modular convergence).

Lemma 2.8. ([11]) Let M be an N -function. Let (un) ⊂ W 1,xLM (QT ) such
that, un ⇀ u weakly-∗ in W 1,xLM (QT ) for σ(ΠLM ,ΠEM̄ ) and ∂un

∂t = hn +kn

in D′(QT ) with (hn) bounded in W−1,xLM̄ (QT ) and (kn) bounded in the space
L1(QT ). Then, un → u strongly in L1

loc(QT ).
If further, un ∈ W 1,x

0 LM (QT ) then un → u strongly in L1(QT ).

Lemma 2.9. ([12]) Let Ω be a bounded open subset of R
d with the segment

property. Consider the Banach space

W =
{

u ∈ W 1,x
0 LM (QT ) /

∂u

∂t
∈ W−1,xLM̄ (QT ) + L1(QT )

}

.

Then the embedding W ⊂ C([0, T ];L1(Ω)) holds true and is continuous.

Lemma 2.10. ([12]) Let M be an N -function. If F is bounded in W 1,x
0 LM (QT )

and
{

∂f
∂t / f ∈ F

}
is bounded in W−1,xLM̄ (QT ) then F is relatively compact

in L1(QT ).

Lemma 2.11. ([12]) Let Y be a Banach space such that L1(Ω) ⊂ Y with con-
tinuous embedding. If F is bounded in W 1,x

0 LM (QT ) and is relatively compact
in L1(0, T ;Y ) then F is relatively compact in EP (QT ) for all P � M .

3. Assumptions and statement of the main results

In the sequel, Ω is a bounded open set in R
d, d ≥ 2 an integer, T > 0 is given

and QT = Ω × (0, T ). We consider the Banach space W given as follows

W =
{

v ∈ W 1,x
0 LM (QT ) /

∂v

∂t
∈ W−1,xLM̄ (QT )

}

provided with its standard norm

||v||W = ||v||W 1,xLM (QT ) +
∥
∥
∥
∥

∂v

∂t

∥
∥
∥
∥

W −1,xLM̄ (QT )

.
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Throughout this paper 〈·, ·〉 stands for the duality pairing between the spaces
W 1,xLM (QT )∩L2(QT ) and W−1,xLM̄ (QT )+L2(QT ) or between W 1,x

0 LM (QT )
and W−1,xLM̄ (QT ), and we assume the following assumptions:

M(t) =
∫ |t|

0

m(s) ds and P (t) =
∫ |t|

0

p(s) ds are two N -functions such that

P � M, and t ≤ p(t) for all t ≥ 0. (3.1)

Consider a second order partial differential operator

A : D(A) ⊂ W 1,x
0 LM (QT ) → W−1,xLM̄ (QT )

in divergence form A(u) = −div a(x, t, u,∇u), where a : Ω×(0, T )×R×R
d →

R
d is a Carathéodory function satisfying, for almost every (x, t) ∈ QT and for

all s, s1, s2 ∈ R, ξ, ξ∗ ∈ R
d,

|a(x, t, s, ξ)| ≤ ζ
[
c(x, t) + M̄−1(P (ks)) + M̄−1(M(k|ξ|))

]
, (3.2)

|a(x, t, s1, ξ) − a(x, t, s2, ξ)| ≤ ζ
[
e(x, t) + |s1| + |s2| + P−1(kM(|ξ|))

]
,

(3.3)
(a(x, t, s, ξ) − a(x, t, s, ξ∗))(ξ − ξ∗) ≥ αM(|ξ − ξ∗|), (3.4)
a(x, t, s, 0) = 0, (3.5)

where c ∈ EM̄ (QT ), e ∈ EP (QT ) and α, ζ, k > 0 are given real numbers.

ρ ∈ C(R) and there exists ρ̄ ∈ R such that 0 < ρ(s) ≤ ρ̄, for all s ∈ R,

(3.6)
ϕ0 ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ), (3.7)
u0 ∈ L2(Ω). (3.8)

Lemma 3.1. Let P : R → R be an N -function with the representation P (t) =
∫ |t|

0

p(s) ds, such that s ≤ p(s), for all s ≥ 0. Then the following continuous

inclusions hold true: LP (Ω) ↪→ L2(Ω) ↪→ LP̄ (Ω). In particular, W 1
0 LP (Ω) ↪→

H1
0 (Ω) and H−1(Ω) ↪→ W−1LP̄ (Ω).

Furthermore, if M is an N -function such that P � M , then the same
continuous inclusions hold true for M , that is, LM (Ω) ↪→ L2(Ω) ↪→ LM̄ (Ω),
W 1

0 LM (Ω) ↪→ H1
0 (Ω) and H−1(Ω) ↪→ W−1LM̄ (Ω).

Proof. We have P (t) =
∫ |t|

0

p(s) ds ≥
∫ |t|

0

sds = t2/2, that is t2 ≤ 2P (t) for

all t ∈ R. Consequently,
∫

Ω

v2 dx ≤ 2
∫

Ω

P (v) dx, for all v ∈ LP (Ω). (3.9)

Taking v = u/‖u‖(P ) with u �= 0 in (3.9) and using (2.8) it yields

‖u‖L2(Ω) ≤
√

2‖u‖(P ) for all u ∈ LP (Ω),

and the first assertions of this Lemma are readily deduced.
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Now let P � M . Owing to the convexity of P and M we can derive the
following estimates

P (t) ≤ P (1)|t| for |t| ≤ 1, and P (t) ≤ P (1)
M(1)

M(t) for |t| ≥ 1.

Then, taking v ∈ LM (Ω) we deduce
∫

Ω

v2 dx≤ 2
∫

{|v|<1}
P (v) dx + 2

∫

{|v|≥1}
P (v) dx

≤ 2P (1)
∫

Ω

|v|dx +
P (1)
M(1)

∫

Ω

M(v) dx

≤ C1‖v‖(M) + C2

∫

Ω

M(v) dx.

Making v = u/‖u‖(M), u �= 0, in this last inequality and using (2.8) we finally
deduce

‖u‖L2(Ω) ≤ C3‖u‖(M) for all u ∈ LM (Ω),

where C3 = (C1 + C2)1/2. �

Remark 3.2. Under the assumptions of Lemma 3.1, we have

L2(0, T ;H−1(Ω)) ↪→ W−1,xLP̄ (QT ) ↪→ W−1,xEM̄ (QT ).

Indeed, let f ∈ L2(0, T ;H−1(Ω)). Then, for some fα ∈ L2(QT ), |α| ≤ 1,
f =

∑
|α|≤1 ∇α

xfα. Since L2(QT ) ⊂ LP̄ (QT ) ⊂ EM̄ (QT ) we deduce that f ∈
W−1,xLP̄ (QT ) ↪→ W−1,xEM̄ (QT ).

Remark 3.3. If we take the N -function P (t) = |t|r/r, 1 < r < +∞, we are in
the case of the classical Lebesgue spaces Lr and we have, P̄ (t) = |t|r′

/r′ with
1
r + 1

r′ = 1 and p(t) = tr−1. The condition 0 ≤ t ≤ p(t) is equivalent to r ≥ 2
and the following continuous inclusions hold Lr(Ω) ↪→ L2(Ω) ↪→ Lr′

(Ω), and
also W 1,r

0 (Ω) ↪→ H1
0 (Ω) and H−1(Ω) ↪→ W−1,r′

(Ω).

4. Definition of a capacity solution

The definition of a capacity solution for problem (1.1) can be stated as follows.

Definition 4.1. A triplet (u, ϕ,Φ) is called a capacity solution of (1.1) if the
following conditions are fulfilled:

(C1) u ∈ W, a(x, t, u,∇u) ∈ LM̄ (QT )d, ϕ ∈ L∞(QT ), Φ ∈ L2(QT )d,
(C2) (u, ϕ,Φ) verifies the system of differential equations

⎧
⎨

⎩

∂u

∂t
− div a(x, t, u,∇u) = div(ϕΦ) in QT ,

div Φ = 0 in QT ,
(4.1)

(C3) For every S ∈ C1
0 (R), one has S(u)ϕ − S(0)ϕ0 ∈ L2(0, T ;H1

0 (Ω)),
and

S(u)Φ = ρ(u)[∇(S(u)ϕ) − ϕ∇S(u)],
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(C4) u(·, 0) = u0 in Ω.

Notice that, thanks to Lemma 2.9 and the regularity of u, we obtain in
particular u ∈ C([0, T ];L1(Ω)) and thus the initial condition (C4) makes sense
at least in L1(Ω).

5. An existence result

This section is devoted to the proof of the following existence theorem which
is the main result of this work.

Theorem 5.1. Under the assumptions (3.2)–(3.8), the system (1.1) admits a
capacity solution.

In order to prove this result, we will need to show the existence of a weak
solution to a similar problem but with stronger assumptions, namely, there
exists c ∈ EM̄ (QT ), and two real numbers ζ > 0 and k ≥ 0, such that for
almost every (x, t) ∈ QT and for all s ∈ R, ξ ∈ R

d,

|a(x, t, s, ξ)| ≤ ζ
[
c(x, t) + M̄−1(M(k|ξ|))

]
, (5.1)

{
ρ ∈ C(R) and there exist ρ1 and ρ2 ∈ R such that

0 < ρ1 ≤ ρ(s) ≤ ρ2, for all s ∈ R.
(5.2)

Theorem 5.2. Assume (3.2)–(3.8), with (5.1) and (5.2) instead of (3.2) and
(3.6), respectively. Then there exists a weak solution (u, ϕ) to problem (1.1),
that is

u ∈ W 1,x
0 LM (QT ) ∩ C([0, T ];L2(Ω)), a(x, t, u,∇u) ∈ LM̄ (QT )d,

ϕ − ϕ0 ∈ L∞(0, T ;H1
0 (Ω)) ∩ L∞(QT ),

u(·, 0) = u0 in Ω,
∫ t

0

〈
∂u

∂t
, φ

〉

+
∫ t

0

∫

Ω

a(x, t, u,∇u)∇φ = −
∫ t

0

∫

Ω

ρ(u)ϕ∇ϕ∇φ,

for all φ ∈ W 1,x
0 LM (QT ), for all t ∈ [0, T ],

∫

Ω

ρ(u)∇ϕ∇ψ = 0, for all ψ ∈ H1
0 (Ω), a.e. t ∈ (0, T ).

Proof. So as to prove the existence of a weak solution, Schauder’s fixed point
theorem will be applied together with the existence and uniqueness result of
a weak solution to a parabolic equation.

For every ω ∈ EP (QT ) and almost everywhere t ∈ (0, T ), we consider the
elliptic problem {

div(ρ(ω)∇ϕ) = 0 in Ω,

ϕ = ϕ0 on ∂Ω × (0, T ).
(5.3)

Thanks to Lax-Milgram’s theorem, (5.3) has an unique solution ϕ(t) ∈
H1(Ω), in fact, ϕ is measurable in t with values in H1(Ω) [3]. In that case, it
is ϕ ∈ L∞(0, T ;H1(Ω)). Indeed, by the maximum principle we have

||ϕ||L∞(QT ) ≤ ||ϕ0||L∞(QT ). (5.4)
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Using ϕ − ϕ0 ∈ H1
0 (Ω) as a test function in (5.3) we get,

∫

Ω

ρ(ω)∇ϕ∇(ϕ − ϕ0) = 0,

hence

ρ1

∫

Ω

|∇ϕ|2 dx ≤
∫

Ω

ρ(ω)|∇ϕ||∇ϕ0|dx ≤ ρ2

∫

Ω

|∇ϕ||∇ϕ0|dx.

By the Cauchy-Schwarz inequality, we obtain
∫

Ω

|∇ϕ|2 dx ≤ C(ρ1, ρ2, ϕ0) = C, a.e. t ∈ (0, T ). (5.5)

Notice that the right hand side in the original parabolic equation is
ρ(u)|∇ϕ|2 ∈ L1(Ω × (0, T )). Thanks to the elliptic equation, this term also
belongs to the space L2(0, T ;H−1(Ω)). Indeed, let φ ∈ D(Ω) and take ξ = φϕ
as a test function in (5.3). We have, for a.e. t ∈ [0, T ],

∫

Ω

ρ(ω)∇ϕ∇(φϕ) dx = 0,

that is
∫

Ω

ρ(ω)|∇ϕ|2φ dx = −
∫

Ω

ρ(ω)ϕ∇ϕ∇φ dx = 〈div(ρ(ω)ϕ∇ϕ), φ〉D′(Ω),D(Ω) .

This means that

ρ(ω)|∇ϕ|2 = div(ρ(ω)ϕ∇ϕ) in D′(Ω) and a.e. in [0, T ]. (5.6)

Since ρ(ω)ϕ∇ϕ ∈ L2(QT )d we finally deduce the regularity

div(ρ(ω)ϕ∇ϕ) ∈ L2(0, T ;H−1(Ω)).

The identity (5.6) is one of the keys that allows us to solve the classical ther-
mistor problem and the introduction of the notion of a capacity solution as
well.

Now we introduce the following parabolic problem
⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− div a(x, t, ω,∇u) = div(ρ(ω)ϕ∇ϕ) in QT ,

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω.

(5.7)

The variational formulation of the parabolic equation is given as follows.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ W 1,x
0 LM (QT ) ∩ C([0, T ];L2(Ω)), a(x, t, ω,∇u) ∈ LM̄ (QT ),

∫ t

0

〈
∂u

∂t
, φ

〉

+
∫ t

0

∫

Ω

a(x, t, ω,∇u)∇φ = −
∫ t

0

∫

Ω

ρ(ω)ϕ∇ϕ∇φ,

for all φ ∈ W 1,x
0 LM (QT ), for all t ∈ [0, T ],

u(·, 0) = u0 in Ω.

(5.8)

Notice that div(ρ(ω)ϕ∇ϕ) ∈ L2(0, T ;H−1(Ω)) ↪→ W−1,xEM̄ (QT ) due to
(5.3), (5.4), (5.5), Lemma 3.1 and Remark 3.2.
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The existence of a solution to (5.8) is obtained by a straightforward appli-
cation of Theorem 1, p. 107 in [10]. Also we can easily check that the solution
of (5.8) is unique [2] Now, we show that |∇u| ∈ LM (QT ), and the estimates

∫ T

0

∫

Ω

M(|∇u|) dxdt ≤ C(u0, ϕ0, α, T, ρ2) = C0, (5.9)

‖a(x, t, ω,∇u)‖M̄,QT
≤ C1, (5.10)

where C1 only depends on data, but not on ω. Indeed, let λ > 0 such that
|∇u|/λ ∈ LM (QT ). Since ϕ ∈ L2(0, T ;H1(Ω)) ⊂ W 1,xLM̄ (QT ), there exists
μ > 0 such that 2

αμρ2||ϕ0||L∞(QT )|∇ϕ| ∈ LM̄ (QT ). By taking φ = u as a
test function in (5.8), from (3.4), (3.5), (5.2), (5.4) and Young’s inequality, we
obtain
α

λμ

∫ T

0

∫

Ω

M(|∇u|) dxdt ≤ 1
λμ

∫ T

0

∫

Ω

a(x, t, ω,∇u)∇u dxdt ≤ 1
2λμ

||u0||2L2(Ω)

+
αμ

2

∫ T

0

∫

Ω

M̄

(
2

αμ
ρ2||ϕ0||L∞(QT )|∇ϕ|

)

dxdt +
α

2μ

∫ T

0

∫

Ω

M(|∇u|/λ) dxdt.

This shows that |∇u| ∈ LM (QT ) and, consequently, the estimate (5.9) is de-
rived by just taking λ = 1 in this last inequality. In order to obtain (5.10),
first notice that from the last inequality we also have

∫ T

0

∫

Ω

a(x, t, ω,∇u)∇u dxdt ≤ αC0. (5.11)

Then, owing to (3.4), for any φ ∈ W 1,x
0 EM (QT ) such that ‖∇φ‖M,QT

= 1/(k+
1) it yields

0 ≤
∫ T

0

∫

Ω

(a(x, t, ω,∇u) − a(x, t, ω,∇φ))(∇u − ∇φ) dxdt,

and thus, using (5.11) and Young’s inequality,
∫ T

0

∫

Ω

a(x, t, ω,∇u)∇φ dxdt

≤
∫ T

0

∫

Ω

a(x, t, ω,∇u)∇u dxdt −
∫ T

0

∫

Ω

a(x, t, ω,∇φ)(∇u − ∇φ) dxdt

≤ αC0 +
∫ T

0

∫

Ω

|a(x, t, ω,∇φ)∇u|dxdt +
∫ T

0

∫

Ω

a(x, t, ω,∇φ)∇φ dxdt

≤ αC0 + 2ζ

∫ T

0

∫

Ω

[

M̄

(
a(x, t, ω,∇φ)

2ζ

)

+ M(|∇u|)
]

dxdt

+2ζ

∫ T

0

∫

Ω

[

M̄

(
a(x, t, ω,∇φ)

2ζ

)

+ M(|∇φ|)
]

dxdt,

where ζ is the constant appearing in (5.1). Since

M̄

(
a(x, t, ω,∇φ)

2ζ

)

≤ 1
2
(M̄(c(x, t)) + M(k|∇φ|)) a.e. in QT ,
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then, using (2.7)

∫ T

0

∫

Ω

M̄

(
a(x, t, ω,∇φ)

3ζ

)

dxdt ≤ 1
2

∫ T

0

∫

Ω

M̄(c(x, t)) dxdt +
1
2

= C2.

Notice that C2 only depends on data (but not on ω). Therefore, gathering all
these estimates, we deduce for all φ ∈ W 1,x

0 EM (QT ) such that ‖∇φ‖M,QT
=

1/(k + 1)

∫ T

0

∫

Ω

a(x, t, ω,∇u)∇φ dxdt ≤ C1,

which finally yields the estimate (5.10) by considering the dual norm on
LM̄ (QT ).

Also from (3.2), (5.2), (5.4), (5.5) and (5.10) we obtain

∂u

∂t
∈ W−1,xLM̄ (QT ) and

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

W −1,xLM̄ (QT )

≤ C3, (5.12)

where, again, C3 is a constant depending only on data, but not on ω.
We may define the operator G : ω ∈ EP (QT ) −→ G(ω) = u ∈ W, with

u being the unique solution to (5.8). From Lemma 2.10, and Lemma 2.11
with Y = L1(Ω), we have that W ↪→ EP (QT ) with compact embedding.
Consequently, G maps EP (QT ) into itself and, due to the estimates (5.9) and
(5.12), G is a compact operator. Moreover, from (5.9) we have, for R > 0 large
enough G(BR) ⊂ BR where BR = {v ∈ EP (QT ) / ||v||LP (QT ) ≤ R}.

To complete the proof, it remains to show that G is a continuous operator.
Thus, let (ωn) ⊂ BR be a sequence such that ωn → ω strongly in EP (QT ) and
consider the corresponding functions to ωn, that is, un = G(ωn) and ϕn and
put Fn = ρ(ωn)ϕn∇ϕn and F = ρ(ω)ϕ∇ϕ. We have to show that

un → u = G(ω) strongly in EP (QT ).

Owing to P � M and (5.9), we have ∇u ∈ EP (QT )d. Since the inclusion
LP (QT ) ⊂ L2(QT ) is continuous, we also have ωn → ω strongly in L2(QT )
and thus, we may extract a subsequence, still denoted in the same way, such
that ωn → ω a.e. in QT . Then, it is an easy task to show that ϕn → ϕ strongly
in L2(0, T ;H1(QT )) and, consequently, also for another subsequence denoted
in the same way, Fn → F strongly in L2(QT ).

On the other hand, since (ωn) ⊂ LP (QT ) is bounded, in virtue of the
estimates obtained above, we deduce, again modulo a subsequence,

un → U in EP (QT ), for some U ∈ EP (QT ), (5.13)

∇un → ∇U weakly in L2(QT )d, (5.14)
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By subtracting the respective equations of (5.8) for un and u, and taking
φ = un − u as a test function, for all t ∈ [0, T ], we obtain

1
2
||un(t) − u(t)||2L2(Ω)

+
∫ t

0

∫

Ω

(a(x, s, ωn,∇un) − a(x, s, ω,∇u))∇(un − u)

= −
∫ t

0

∫

Ω

(Fn − F )∇(un − u). (5.15)

By using (3.4), we get

(a(x, s, ωn,∇un) − a(s, t, ω,∇u))∇(un − u) ≥ αM(|∇(un − u)|)
+(a(x, s, ωn,∇u) − a(x, s, ω,∇u))∇(un − u).

Let hn = a(x, s, ωn,∇u) − a(x, s, ω,∇u) and gn = ∇(un − u). Then, |hn| → 0
a.e. in QT . For a given positive number λ0, to be chosen later, we have

∫ t

0

∫

Ω

|hngn| =
∫

{|gn|≤λ0}
|hngn| +

∫

{|gn|>λ0}
|hngn|. (5.16)

For the first term of the right hand side of (5.16), we have
∫

{|gn|≤λ0}
|hngn| ≤ λ0

∫

QT

|hn| = λ0

∫

{|hn|≤4ζ}
|hn| + λ0

∫

{|hn|>4ζ}
|hn|.

The first of these last integrals converges trivially to zero. As for second one,
using the fact that |hn|

4ζ > 1 on the set {|hn| > 4ζ} and (3.9), it yields

λ0

∫

{|hn|>4ζ}
|hn| ≤ 4ζλ0

∫

{|hn|>4ζ}

( |hn|
4ζ

)2

≤ 8ζλ0

∫

QT

P

( |hn|
4ζ

)

.

In virtue of (3.3), we deduce

P

( |hn|
4ζ

)

≤ 1
4

(P (e) + P (ωn) + P (ω) + kM(|∇u|)) ,

and since P (ωn) → P (ω) strongly in L1(QT ), by Lebesgue’s dominated theo-
rem it yields that

lim
n→∞

∫

QT

P

( |hn|
4ζ

)

= 0,

and consequently

lim
n→∞

∫

{|gn|≤λ0}
|hngn| = 0.

For the second term of the right hand side of (5.16), we use Young’s inequality
and (3.9). It yields,

∫

{|gn|>λ0}
|hngn| ≤ 1

2α

∫

QT

|hn|2 +
α

2

∫

{|gn|>λ0}
|gn|2

≤ (4ζ)2

α

∫

QT

P

( |hn|
4ζ

)

+ α

∫

{|gn|>λ0}
P (|gn|).
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It has been already shown that the first of these terms converges to zero. As
for the second one, since P � M , we can take λ0 large enough such that
P (s) ≤ M(s) for |s| > λ0, and then,

α

∫

{|gn|>λ0}
P (|gn|) ≤ α

∫ t

0

∫

Ω

M(|gn|) = α

∫ t

0

∫

Ω

M(|∇(un − u)|).

Consequently, for some sequence (εn) ⊂ R, εn → 0, we have the following
estimate

1
2
||un(t) − u(t)||2L2(Ω) ≤ −

∫ t

0

∫

Ω

(Fn − F )∇(un − u) dxds + εn,

and integrating this inequality over [0, T ], we have

1
2
||un − u||2L2(QT ) ≤ −

∫ T

0

∫

Ω

(T − t)(Fn − F )∇(un − u) dxdt + Tεn. (5.17)

The first term of right hand side in (5.17) converges to zero since Fn → F
strongly in L2(QT )d and (T − t)(∇un − ∇u) is bounded in L2(QT )d. In con-
clusion, un → u strongly in L2(QT ). Since this limit does not depend upon
the subsequence one may extract, it is in fact the whole sequence (un) which
converges to u strongly in L2(QT ). On the other hand, in virtue of (5.13), we
also have un → U strongly in L2(QT ), so that u = U and we can rewrite (5.13)
to give un → u strongly in EP (QT ). This shows that G is continuous and this
ends the proof of Theorem 5.2. �

Remark 5.3. It can be easily shown that we can rid of the assumption (3.3) in
Theorem 5.2 when M̄ verifies the Δ2-condition. Also in the case a(x, t, s, ξ) =
ã(x, t, ξ).

Proof of Theorem 5.1

The proof is divided into several steps, first we introduce a sequence of approx-
imate problems and derive a priori estimates for the approximate problem and
we show two intermediate results, namely the strong convergence in L1(QT )
of both ∇un and ϕn, where (un, ϕn) is a weak solution to the approximate
problem of (1.1).
Step 1. For every n ∈ N, we introduce the following regularization of the data,

ρn(s) = ρ(s) +
1
n

, (5.18)

an(x, t, s, ξ) = a(x, t, Tn(s), ξ), (5.19)

and consider the approximate system given as

∂un

∂t
− div

(
an(x, t, un,∇un)

)
= ρn(un)|∇ϕn|2 in QT , (5.20)

div(ρn(un)∇ϕn) = 0 in QT , (5.21)
un = 0 on (0, T ) × ∂Ω, (5.22)
ϕn = ϕ0 on (0, T ) × ∂Ω, (5.23)
un(·, 0) = u0 in Ω. (5.24)
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From (3.2) we deduce

|a(x, t, Tn(s), ξ)| ≤ ζ
[
c(x, t) + M̄−1(P (k|Tn(s)|)) + M̄−1(M(k|ξ|))

]

≤ ζ
[
cn(x, t) + M̄−1(M(k|ξ|))

]
,

where cn ∈ EM̄ (QT ) is given by cn(x, t) = c(x, t)+M̄−1(P (kn)). Also, in view
of (3.6), we have that

n−1 ≤ ρn(s) ≤ ρ3 + 1 = ρ4, for all s ∈ R. (5.25)

Thus, we can apply Theorem 5.2 to deduce the existence of a weak solu-
tion (un, ϕn) to the system (5.20)–(5.24).

By the maximum principle we have

||ϕn||L∞(QT ) ≤ ||ϕ0||L∞(QT ), (5.26)

hence there exists a function ϕ ∈ L∞(QT ) and a subsequence, still denoted in
the same way, such that

ϕn → ϕ weakly- ∗ in L∞(QT ). (5.27)

Now let multiply (5.21) by ϕn − ϕ0 ∈ L2(0, T ;H1
0 (Ω)) and integrate over QT .

We get
∫ T

0

∫

Ω

ρn(un)∇ϕn∇(ϕn − ϕ0) dxdt = 0,

hence ∫ T

0

∫

Ω

ρn(un)|∇ϕn|2 dxdt ≤ C1, for all n ≥ 1, (5.28)

where C1 = C1(ρ̄, ‖ϕ0‖L2(0,T ;H1(Ω))). Consequently, the sequence (ρn(un)∇ϕn)
is bounded in L2(QT ). Thus, there exists a function Φ ∈ L2(QT )d and a
subsequence, still denoted in the same way, such that

ρn(un)∇ϕn → Φ weakly in (L2(QT ))d. (5.29)

This weak limit function Φ ∈ (L2(QT ))d is in fact the third component of the
triplet appearing in the Definition 4.1 of a capacity solution.

Taking un as a test function in (5.20), for all t ∈ [0, T ], we obtain

1
2
||un(t)||2L2(Ω) +

∫ t

0

∫

Ω

a(x, t, Tn(un),∇un)∇un dxdt

=
1
2
||u0||2L2(Ω) −

∫ t

0

∫

Ω

ρn(un)ϕn∇ϕn∇un dxdt.

(5.30)

From (3.4), (3.5), (5.26) and (5.25), we get

α

∫ t

0

∫

Ω

M(|∇un|) dxdt ≤ 1
2
||u0||2L2(Ω) +

∫ t

0

∫

Ω

||ϕ0||L∞(QT )ρ2∇ϕn∇un dxdt,

(5.31)
and in virtue of Young’s inequality, we may deduce, for all t ∈ [0, T ],

∫ t

0

∫

Ω

M(|∇un|) dxdt ≤ C, (5.32)
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where C is a positive constant not depending on n. It follows that the sequence
(un) is bounded in W 1,x

0 LM (QT ). Consequently, there exist a subsequence of
(un), still denoted in the same way, and a function u ∈ W 1,x

0 LM (QT ) such
that:

un ⇀ u in W 1,x
0 LM (QT ) for σ(ΠLM ,ΠEM̄ ). (5.33)

On the other hand, Let φ ∈ W 1,x
0 EM (QT )d be arbitrary with ‖∇φ‖(M) =

1/(k + 1). In view of the monotonicity of an, one easily has
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫

QT

an(x, t, un,∇un)∇φ ≤
∫

QT

an(x, t, un,∇un)∇un

−
∫

QT

an(x, t, un,∇φ)(∇un − ∇φ)

≤ C +
∫

QT

|an(x, t, un,∇φ)∇un| +
∫

QT

an(x, t, un,∇φ)∇φ.

(5.34)

We can show that the two last integrals in (5.34) are bounded with respect
to n. Indeed, for the first one, by Young’s inequality
∫

QT

|an(x, t, un,∇φ)∇un| ≤ 3ζ

∫

QT

[

M̄

(
a(x, t, Tn(un),∇φ)

3ζ

)

+ M(|∇un|)
]

,

using (3.2) we have

3ζM̄

(
a(x, t, Tn(un),∇φ)

3ζ

)

≤ ζ
(
M̄(c(x, t)) + P (kTn(un)) + M(k∇φ)

)
,

since (un) is bounded in W 1,x
0 LM (QT ), and owing to Poincare’s inequality,

there exists λ > 0 such that
∫

QT
M(un/λ) ≤ 1 for all n ≥ 1. Also, since

P � M , there exists s0 > 0 such that P (ks) ≤ P (ks0)+M(s/λ) for all s ∈ R.
Consequently,

3ζ

∫

QT

M̄

(
a(x, t, Tn(un),∇φ)

3ζ

)

≤ ζ

(∫

QT

M̄(c(x, t)) + |QT |P (ks0)

+
∫

QT

M(un/λ) +
∫

QT

M(k∇φ)
)

≤ C,

,

and thus
∫

QT
|an(x, t, un,∇φ)∇un| ≤ C, for all n ≥ 1 and φ ∈ W 1,x

0 EM (QT )d

such that ‖∇φ‖(M) = 1/(k + 1). On the other hand, the second integral
in (5.34), namely

∫

QT
an(x, t, un,∇φ)∇φ can be dealt in the same way so

that it is easy to check that it is also bounded. Gathering all these estimates,
and using the dual norm, one easily deduce that

(an(x, t, un,∇un)) is bounded in LM̄ (QT )d. (5.35)

Thus, up to a subsequence, still denoted in the same way, there exists δ ∈
LM̄ (QT )d such that

an(x, t, un,∇un) ⇀ δ in LM̄ (QT )d for σ(ΠLM̄ ,ΠEM ). (5.36)
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Finally, since both sequences (div an(x, t, un,∇un)) and (div(ρn(un)ϕn∇ϕn))
are bounded in the space W−1,xLM̄ (QT ) then, according to (5.20), we have

(
∂un

∂t

)

is bounded in W−1,xLM̄ (QT ). (5.37)

Consequently, (un) ⊂ W is bounded and, since the embedding W ↪→ EP (QT )
is compact, for a subsequence, still denoted in the same way, we have

un → u strongly in EP (QT ) and a.e. in QT , (5.38)

where u ∈ W 1,x
0 LM (QT ) is also the limit function appearing in (5.33).

Step 2. Introduction of regularized sequences and the almost everywhere con-
vergence of the gradients.

We first introduce two smooth sequences, namely, (vj) ⊂ D(QT ) and
(ψi) ⊂ D(Ω) such that

1. vj → u in W 1,x
0 LM (QT ) for the modular convergence;

2. vj → u and ∇vj → ∇u and almost everywhere in QT ;
3. ψi → u0 strongly in L2(Ω);
4. ‖ψi‖L2(Ω) ≤ 2‖u0‖L2(Ω), for all i ≥ 1.

For a fixed positive real number K, we consider the truncation function at
height K, TK , defined in (2.11). Then, for every K,μ > 0 and i, j ∈ N, we
introduce the function wi

μ,j ∈ W 1,x
0 LM (QT ) (to simplify the notation, we drop

out the index K) defined as wi
μ,j = TK(vj)μ+e−μtTK(ψi), where TK(vj)μ is the

mollification with respect to time of TK(vj) given in (2.12). From Lemma (2.7),
we know that

∂wi
μ,j

∂t
= μ(TK(vj) − wi

μ,j), wi
μ,j(·, 0) = TK(ψi),

|wi
μ,j | ≤ K a.e in QT , (5.39)

wi
μ,j → wi

μ
def= TK(u)μ + e−μtTK(ψi) in W 1,x

0 LM (QT ), (5.40)

for the modular convergence as j → ∞.

TK(u)μ + e−μtTK(ψi) → TK(u) in W 1,x
0 LM (QT ), (5.41)

for the modular convergence as μ → ∞. Since we may consider subsequences
in (5.39)–(5.41), we will assume without loss of generality that the convergences
(5.40) and (5.41) also hold almost everywhere in QT .

We will establish the following proposition.

Proposition 5.4. Let (un, ϕn) be a solution of the approximate problem (5.20)–
(5.24). Then,

∇un → ∇u a.e. in QT , (5.42)
as n tends to +∞.

Proof. In the sequel and throughout the paper, χj
s and χs will denote, respec-

tively, the characteristic functions of the sets

Qj
s =

{
(x, t) ∈ QT / |∇TK(vj)| ≤ s

}
and Qs =

{
(x, t) ∈ QT / |∇TK(u)| ≤ s

}
.
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We also introduce the primitive of the truncation function TK vanishing
at the origin, ΘK , that is

ΘK(t) =
∫ t

0

TK(s)ds =

{
t2/2 if |t| ≤ K,

K|t| − K2/2 if |t| > K.
(5.43)

It is straightforward to show that 0 ≤ ΘK(t) ≤ K|t| for all t ∈ R.
We will also make use of the following notation for vanishing sequences:

ε(n) means a sequence such that limn→∞ ε(n) = 0 or lim supn→∞ ε(n) = 0;
ε(n, j) is a term such that limj→∞ limn→∞ ε(n, j) = 0 where any occurrence
of lim may be substituted by lim sup. And so on for ε(n, j, μ), etc.

For any μ, ν > 0 and i, j, n ≥ 1 we may use the admissible test function
ϕμ,i

n,j,ν = Tν(un − wi
μ,j) in (5.20). This leads to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈
∂un

∂t
, ϕμ,i

n,j,ν

〉

+
∫

QT

an(x, t, un,∇un)∇Tν(un − wi
μ,j) dxdt

=
∫

QT

ρn(un)|∇ϕn|2ϕμ,i
n,j,ν dxdt.

(5.44)

By using (5.28), we get
〈∂un

∂t
, ϕμ,i

n,j,ν

〉
+
∫

QT

an(x, t, un,∇un)∇Tν(un − wi
μ,j) dxdt ≤ C1ν. (5.45)

As far as the parabolic term is concerned, we have
〈

∂un

∂t
, Tν(un − wi

μ,j)
〉

=

〈
∂un

∂t
− ∂wi

μ,j

∂t
, Tν(un − wi

μ,j)

〉

+

〈
∂wi

μ,j

∂t
, Tν(un − wi

μ,j)

〉

. (5.46)

The first term of the right hand side in (5.46) can be written as
〈

∂un

∂t
− ∂wi

μ,j

∂t
, Tν(un − wi

μ,j)

〉

=
∫

Ω

Θν(un(T ) − wi
μ,j(T )) −

∫

Ω

Θν(u0 − TK(ψi)).

Since 0 ≤ ∫

Ω
Θν(u0 − TK(ψi)) ≤ ν

∫

Ω
|u0 − TK(ψi)| ≤ ν|Ω|1/2(

∫

Ω
|u0 − TK

(ψi)|2)1/2 ≤ 3‖u0‖L2(Ω)|Ω|1/2ν = C2ν, we deduce that, for all i, j, n ≥ 1 and
μ, n,K > 0, it is

〈
∂un

∂t
− ∂wi

μ,j

∂t
, Tν(un − wi

μ,j)

〉

≥ −C2ν. (5.47)

As for the second term of the right hand side in (5.46) we have
〈∂wi

μ,j

∂t
, Tν(un − wi

μ,j)
〉

= μ

∫

QT

(TK(vj) − wi
μ,j)Tν(un − wi

μ,j). (5.48)
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Passing to the limit first in n → ∞, then in j → ∞, it yields

lim
j→∞

lim
n→∞

〈
∂wi

μ,j

∂t
, Tν(un − wi

μ,j)

〉

= μ

∫

QT

(TK(u) − wi
μ)Tν(u − wi

μ).

Owing to (5.39) and (5.40) we have |wi
μ| ≤ K almost everywhere in QT . Also,

since sTν(s) ≥ 0 for all s ∈ R, we deduce, for all μ, ν,K > 0 and i ≥ 1,

lim
j→∞

lim
n→∞

〈
∂wi

μ,j

∂t
, Tν(un − wi

μ,j)

〉

≥ 0. (5.49)

Gathering (5.46), (5.47) and (5.49) we finally obtain, for all μ, ν,K > 0 and
i ≥ 1, the following estimate for the parabolic term

lim inf
j→∞

lim inf
n→∞

〈
∂un

∂t
, Tν(un − wi

μ,j)
〉

≥ −C2ν. (5.50)

It remains to analyze the diffusion term of (5.44). We have

∫

QT

an(x, t, un,∇un)∇Tν(un − wi
μ,j) dxdt

=
∫

{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇(un − wi
μ,j) dxdt

=
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇(un − wi
μ,j) dxdt

+
∫

{|un|≤K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇(un − wi
μ,j) dxdt

=
∫

{|TK(un)−wi
μ,j |≤ν}

an(x, t, TK(un),∇TK(un))(∇TK(un) − ∇wi
μ,j) dxdt

+
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇un dxdt

−
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇wi
μ,j dxdt.

By (3.4) and (3.5) we have

∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇un dxdt

≥ α

∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

M(|∇un|) dxdt ≥ 0,
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which implies that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫

QT

an(x, t, un,∇un)∇Tν(un − wi
μ,j) dxdt

≥
∫

{|TK(un)−wi
μ,j |≤ν}

an(x, t, TK(un),∇TK(un))(∇TK(un) − ∇wi
μ,j)

−
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇wi
μ,j dxdt.

(5.51)
On one hand, let us observe that for any K > 0, and for n large enough,
namely n > K + ν ≥ K, we have,

an(x, t, TK(un),∇TK(un)) = a(x, t, TK(un),∇TK(un)). (5.52)

On the other hand, from (5.39), we have |wi
μ,j | ≤ K a.e. in QT , then in the

set {|un − wi
μ,j | ≤ ν}, we have |un| ≤ |un − wi

μ,j | + |wi
μ,j | ≤ ν + K. Then for

n > ν + K, we obtain,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

an(x, t, un,∇un)∇wi
μ,j dxdt

=
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wi
μ,j dxdt.

(5.53)
From (5.52) and (5.53), (5.51) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

QT

an(x, t, un,∇un)∇Tν(un − wi
μ,j) dxdt

≥
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇wi
μ,jTK(un) − ∇wi

μ,j)

−
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wi
μ,j .

(5.54)
We put

J1 =
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wi
μ,j dxdt.

Since (a(x, t, TK+ν(un),∇TK+ν(un))) is bounded in (LM (QT ))d, we have,

a(x, t, TK+ν(un),∇TK+ν(un)) ⇀ lK+ν

weakly in LM (QT ) in σ(ΠLM ,ΠEM ) as n tends to infinity and since

∇wi
μ,jχ{|un|>K}∩{|un−wi

μ,j |≤ν} → ∇wi
μ,jχ{|u|>K}∩{|u−wi

μ,j |≤ν}
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strongly in (EM (QT ))d as n tends to infinity, we have,
∫

{|un|>K}∩{|un−wi
μ,j |≤ν}

a(x, t, Tν+K(un),∇Tν+K(un))∇wi
μ,j dxdt

→
∫

{|u|>K}∩{|u−wi
μ,j |≤ν}

lK+ν∇wi
μ,j dxdt

as n goes to infinity.
Using Lemma 2.2 with the convergences (5.40), (5.41), together with the

almost everywhere convergence, and letting first j then μ tend to infinity, we
obtain (notice that the index i disappears in this process)
∫

{|u|>K}∩{|u−wi
μ,j |≤ν}

lK+ν∇wi
μ,j →

∫

{|u|>K}∩{|u−TK(u)|≤ν}
lK+ν∇TK(u) = 0,

since ∇TK(u) = 0 in the set {|u| > K}. This gives

J1 = ε(n, j, μ, i). (5.55)

Using (5.50), (5.54) and (5.55) in (5.45), we obtain
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un) − ∇wi
μ,j) dxdt

≤ Cν + ε(n, j, μ, i). (5.56)

where C = (C1 + C2).
On the other hand, note that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un) − ∇wi
μ,j) dxdt

=
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un) − ∇TK(vj)χs
j)

+
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(vj)χs
j − ∇wi

μ,j)

= J2 + J3.

(5.57)
The integral term J3 tends to 0 as first n, then j, μ, i and s go to ∞.

Indeed, since,

a(x, t, TK(un),∇TK(un)) ⇀ lK weakly in (LM (QT ))d,

and since,

(∇TK(vj)χs
j − ∇wi

μ,j)χ{|TK(un)−wi
μ,j |≤ν}

→ (∇TK(vj)χs
j − ∇wi

μ,j)χ{|TK(u)−wi
μ,j |≤ν}

strongly in (EM (QT ))d as n → ∞, then

lim
n→∞ J3 =

∫

{|TK(u)−wi
μ,j |≤ν}

lK · (∇TK(vj)χs
j − ∇wi

μ,j) dxdt.
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Letting j, μ, i and s, in this order, tend to infinity we readily deduce that

J3 = ε(n, j, μ, i, s). (5.58)

Consequently, from (5.56), (5.57) and (5.58), one has
⎧
⎪⎨

⎪⎩

J2 =
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un))(∇TK(un) − ∇TK(vj)χs
j)

≤ Cν + ε(n, i, j, μ, s).
(5.59)

Let Mn be the following non-negative expression

Mn = (a(x, t, TK(un),∇TK(un)) − a(x, t, TK(un),∇TK(u)))
·(∇TK(un) − ∇TK(u)),

then for any 0 < θ < 1, we write

In,r =
∫

Qr

Mθ
n dxdt.

We have
∫

Qr

Mθ
n =

∫

Qr

Mθ
nχ{|TK(un)−wi

μ,j |≤ν} +
∫

Qr

Mθ
nχ{|TK(un)−wi

μ,j |>ν}. (5.60)

Using Hölder’s inequality the second term of the right-side hand is less than,
(∫

Qr

Mn dxdt

)θ

.

(∫

Qr

χ{|TK(un)−wi
μ,j |>ν} dxdt

)1−θ

.

Note that,
∫

Qr

Mn dxdt =
∫

Qr

a(x, t, TK(un),∇TK(un))∇TK(un) dxdt

−
∫

Qr

a(x, t, TK(un),∇TK(un))∇TK(u) dxdt

+
∫

Qr

a(x, t, TK(un),∇TK(u))∇TK(u) dxdt

−
∫

Qr

a(x, t, TK(un),∇TK(u))∇TK(un) dxdt.

Since (a(x, t, TK(un),∇TK(un))) is bounded in (LM (QT ))d, (∇TK(un)) is
bounded in (LM (QT ))d and (a(x, t, TK(un),∇TK(u))) is bounded in L∞(Qr),
we have (Mn) is bounded in L1(Qr).

It follows that there exists a constant C3 > 0 such that
∫

Qr

Mθ
nχ{|TK(un)−wi

μ,j |>ν} dxdt ≤ C3 meas{|TK(un) − wi
μ,j | > ν}1−θ.

(5.61)
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Using again Hölder’s inequality, it yields
∫

Qr

Mθ
nχ{|TK(un)−wi

μ,j |≤ν} dxdt

≤
(∫

Qr

1 dxdt

)1−θ
(∫

{|TK(un)−wi
μ,j |≤ν}∩Qr

Mn dxdt

)θ

≤ C4

(∫

{|TK(un)−wi
μ,j |≤ν}∩Qr

Mn dxdt

)θ

. (5.62)

From (5.61) and (5.62), we obtain

In,r ≤ C3 meas{|TK(un) − wi
μ,j | > ν}1−θ

+C4

(∫

{|TK(un)−wi
μ,j |≤ν}∩Qr

Mn dxdt

)θ

. (5.63)

On the other hand, we have for every s ≥ r, r > 0
∫

{|TK(un)−wi
μ,j |≤ν}∩Qr

Mn dxdt ≤
∫

{|TK(un)−wi
μ,j |≤ν}∩Qs

Mn dxdt

=
∫

{|TK(un)−wi
μ,j |≤ν}∩Qs

[a(x, t, TK(un),∇TK(un)) − a(x, t, TK(un),∇TK(u)χs)]

·[∇TK(un) − ∇TK(u)χs] dxdt

≤
∫

{|TK(un)−wi
μ,j |≤ν}

[a(x, t, TK(un),∇TK(un)) − a(x, t, TK(un),∇TK(u)χs)]

·[∇TK(un) − ∇TK(u)χs] dxdt

≤
∫

{|TK(un)−wi
μ,j |≤ν}

[a(x, t, TK(un),∇TK(un)) − a(x, t, TK(un),∇TK(vj)χs
j)]

·[∇TK(un) − ∇TK(vj)χs
j ] dxdt

+
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un)) · [∇TK(vj)χs
j − ∇TK(u)χs] dxdt

+
∫

{|TK(un)−wi
μ,j |≤ν}

[a(x, t, TK(un),∇TK(vj)χs
j) − a(x, t, TK(un),∇TK(u)χs)]

·∇TK(un) dxdt

−
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(vj)χs
j) · ∇TK(vj)χs

j dxdt

+
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(u)χs) · ∇TK(u)χs dxdt

= I1 + I2 + I3 + I4 + I5.



NoDEA Capacity solution in Orlicz–Sobolev spaces Page 27 of 37 14

We will take the limit first in n then in j, μ, i and s as they tend to
infinity in these last five integrals.

Starting with I1, we have

I1 =
∫

{|TK(un)−wi
μ,j |≤ν}
(a(x, t, TK(un),∇TK(un)) − a(x, t, TK(un),∇TK(vj)χs

j))

·(∇TK(un) − ∇TK(vj)χs
j) dxdt

=
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(un)) · (∇TK(un) − ∇TK(vj)χs
j)

−
∫

{|TK(un)−wi
μ,j |≤ν}

a(x, t, TK(un),∇TK(vj)χs
j)

·(∇TK(un) − ∇TK(vj)χs
j)

= J2 − J3.

Since the sequence (a(x, t, TK(un),∇TK(vj)χs
j)χ{|TK(un)−wi

μ,j |≤ν})n con-
verges to a(x, t, TK(u),∇TK(vj)χs

j)χ{|TK(u)−wi
μ,j |≤ν} strongly in (EM (QT ))d

and (∇TK(un)) converges to ∇TK(u) weakly in (LM (QT ))d for σ(ΠLM ,ΠEM ),
we then have

J3 =
∫

{|TK(u)−wi
μ,j |≤ν}

a(x, t, TK(u),∇TK(vj)χs
j)(∇TK(u) − ∇TK(vj)χs

j) + ε(n).

Using the almost everywhere convergence of wi
μ,j and since (∇TK(vj)χs

j)j con-
verges to ∇TK(u)χs strongly in (EM (QT ))d, (a(x, t, TK(u),∇TK(vj)χs

j))j con-
verges to a(x, t, TK(u),∇TK(u)χs) strongly in (LM (QT ))d, we deduce

J3 =
∫

QT

a(x, t, TK(u),∇TK(u)χs)(∇TK(u) − ∇TK(u)χs) dxdt + ε(n, j, μ, i)

= ε(n, j, μ, i, s).

Gathering all these estimates, taking into account (5.59), we obtain

I1 ≤ Cν + ε(n, j, μ, i, s) = ε(n, j, μ, i, s, ν). (5.64)

As for I2, since (a(x, t, TK(un),∇TK(un)))n converges to lK weakly in the
space (LM (QT ))d for σ(ΠLM ,ΠEM ) and, in its turn, the sequence
((∇TK(vj)χs

j − ∇TK(u)χs)χ{|TK(un)−wi
μ,j |≤ν})n converges to (∇TK(vj)χs

j −
∇TK(u)χs)χ{|TK(u)−wi

μ,j |≤ν} strongly in (EM (QT ))d, we obtain

I2 =
∫

{|TK(u)−wi
μ,j |≤ν}

lK(∇TK(vj)χs
j − ∇TK(u)χs) dxdt + ε(n).

By letting now j → ∞, and using Lebesgue’s theorem, we deduce then that

I2 = ε(n, j). (5.65)



14 Page 28 of 37 H. Moussa, F. Ortegón Gallego and M. Rhoudaf NoDEA

Similar tools as above yield

I3 = ε(n, j). (5.66)

I4 = −
∫

QT

a(x, t, TK(u),∇TK(u)χs)∇TK(u)χs + ε(n, j, μ, i, s). (5.67)

I5 =
∫

QT

a(x, t, TK(u),∇TK(u)χs)∇TK(u)χs + ε(n, j, μ, i, s). (5.68)

Combining (5.63)–(5.68), we get

In,r ≤ C4ε(n, j, μ, i, s, ν)θ + C3 meas{|TK(un) − wi
μ,j | > ν}1−θ. (5.69)

Consequently, when we take the limsup first in n, then in j, μ, i, s and
ν in (5.69), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

lim sup
n→∞

∫

Qr

(
(a(x, t, TK(un),∇TK(un)) − a(x, t, TK(un),∇TK(u)))

·(∇TK(un) − ∇TK(u))
)θ

dxdt = 0.

According to (3.4) this last expression implies that

lim
n→∞

∫

Qr

M(∇TK(un) − ∇TK(u))θdxdt = 0.

hence, for a subsequence, ∇TK(un) → ∇TK(u) almost everywhere in Qr. Since
r > 0 is arbitrary, we may deduce that, maybe for another subsequence,
∇TK(un) → ∇TK(u) almost everywhere in QT . Finally, since K > 0 is ar-
bitrary, it yields, still for a subsequence,

∇un → ∇u a.e in QT . (5.70)

This ends the proof of Proposition 5.4. �

Remark 5.5. A straightforward consequence of Proposition 5.4 is that, owing
to (5.36), δ = a(x, t, u,∇u) that is,

∇an(x, t, un∇un) ⇀ a(x, t, u,∇u) in LM̄ (QT )d for σ(ΠLM̄ ,ΠEM ). (5.71)

Step 3. In this step, we will show that ϕn → ϕ strongly in L1(QT ) modulo a
subsequence.

The strongly convergence of (ϕn) in L1(QT ) is based in the next result
which generalizes that of González Montesinos and Ortegón Gallego in [14],
Lemma 4 (see also [25]).

Lemma 5.6. Let P be an N -function which admits the representation: P (t) =
∫ t

0

p(s) ds with t ≤ p(t), (un) is a bounded sequence in W 1,xLM (QT ) such that

un → u strongly in EP (QT ). Then there exists a subsequence (un(k)) ⊂ (un)
such that, for every ε > 0, there exists a constant value M = M(ε) and a
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function ψ ∈ L1(0, T ;W 1,1(Ω)) satisfying the following properties:

0 ≤ ψ ≤ 1. (5.72)
||ψ − 1||L1(QT ) + ||∇ψ||L1(QT ) ≤ ε. (5.73)
|u|, |un(k)| ≤ M on {ψ > 0} for all k ≥ 1. (5.74)

Proof. According to lemmas 2.3 and 3.1 we deduce the the following continuous
inclusions:

LP (QT ) ↪→ LP̄ (QT ) ↪→ LM̄ (QT ).

Since (un) is relatively compact in EP (QT ), we can extract a subsequence
(un(k)) ⊂ (un) such that :

∞∑

k=1

||un(k) − u||LM̄ (QT ) ≤ 1. (5.75)

Fix K > 0 to be chosen later big enough and introduce the function γ given
by

γ = (|u| − K)+ +
∞∑

k=1

(|un(k) − u| − K)+. (5.76)

Then putting vk = un(k) − u, k ≥ 1, and v0 = u, we have
∫

QT

(|vk| − K)+ +
∫

QT

|∇(|vk| − K)+|

=
∫

{|vk|>K}
(|vk| − K)+

|vk|
|vk| +

∫

{|vk|>K}
|∇(|vk| − K)+| |vk|

|vk|

≤ 1
K

(||vk||LM (QT ) + ||∇vk||LM (QT ))||vk||LM̄ (QT ).

Summing up these inequalities, bearing in mind that (un(k)) and (vk) are
bounded in W 1,xLM (QT ) and (5.76), we deduce

∞∑

k=0

(||(|vk| − K)+||L1(QT ) + ||(|∇vk| − K)+||L1(QT ))

≤ C0

K

∞∑

k=0

||vk||LM̄ (QT ) =
C0

K

(

||u||LM̄ (QT ) +
∞∑

k=1

||un(k) − u||LM̄ (QT )

)

≤ C0

K
(||u||LM̄ (QT ) + 1) =

C

K
.

Hence

||γ||L1(0,T ;W 1,1(Ω)) ≤ C

K
.

It is straightforward to check that the function ψ = (1 − γ)+ verifies the
asserted condition (5.72)–(5.74) for K ≥ C/ε and M = K + 1. �
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The next two results analyze the behavior of certain subsequences of (ϕn).
They will allow us, together with the convergences deduced in the previous
steps, to pass to the limit in the approximate problems (5.20)–(5.24) in order
to show the existence of a capacity solution to the system (1.1).

Lemma 5.7. ([14]) Let (un, ϕn) be a weak solution to the system (5.20)–(5.24),
u ∈ EP (QT ) and ϕ ∈ L∞(QT ) the limit functions appearing, respectively,
in (5.27) and (5.38). Then, for any function S ∈ C1

0 (R), there exists a subse-
quence, still denoted in the same way, such that

S(un)ϕn ⇀ S(u)ϕ weakly in L2(0, T ;H1(Ω)). (5.77)

Moreover, if 0 ≤ S ≤ 1, then there exists a constant C > 0, independent of S,
such that

lim sup
n→∞

∫

QT

ρn(un)|∇[S(un)ϕn − S(u)ϕ]|2 ≤ C||S′||∞(1 + ||S′||∞). (5.78)

Lemma 5.8. There exists a subsequence (ϕn(k)) ⊂ (ϕn) such that

lim
k→∞

∫

QT

|ϕn(k) − ϕ| = 0. (5.79)

Proof. The proof of this result is almost identical to that of Lemma 4.8 in [14].
For the sake of completeness, we include it here.

Since the conditions of Lemma 5.6 are fulfilled by a suitable subsequence
(un(k)), we have for every ε > 0 there exists M > 0 and ψ ∈ L1(0, T ;W 1,1(Ω))
such that (5.72)–(5.74) are satisfied. By (5.74), there exists CM > 0 such that

ξk
def= ρn(k)(un(k)) ≥ CM on {ψ > 0}, for all k ≥ 1. (5.80)

We consider a sequence of regular functions (Sm) ⊂ C1
0 (R) such that

0 ≤ Sm ≤ 1, Sm = 1 in [−M,M], for all k ≥ 1. (5.81)

||S′
m||L∞(R) ≤ 1

m
, for all m ≥ 1. (5.82)

From (5.74) and (5.81), we write

∫

QT

|ϕn(k) − ϕ| =
∫

{ψ>0}
|Sm(un(k))ϕn(k) − Sm(u)ϕ| +

∫

{ψ=0}
|ϕn(k) − ϕ|.

Inserting ±ψ|Sm(un(k))ϕn(k) − Sm(u)ϕ| in the first integral above and
−ψ|ϕn(k) − ϕ| = 0 in the second one, then owing to (5.26), (5.27), (5.72)
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and using Poincaré’s inequality, we obtain
∫

QT

|ϕn(k) − ϕ| =
∫

{ψ>0}
ψ|Sm(un(k))ϕn(k) − Sm(u)ϕ|

+
∫

{ψ>0}
(1 − ψ)|Sm(un(k))ϕn(k) − Sm(u)ϕ| +

∫

{ψ=0}
(1 − ψ)|ϕn(k) − ϕ|

≤ C0

∫

QT

|∇(ψ(Sm(un(k))ϕn(k) − Sm(u)ϕ))| + 2‖ϕ0‖L∞(QT )

∫

QT

|1 − ψ|

≤ 2C0‖ϕ0‖L∞(QT )

∫

QT

|∇ψ| + C0

∫

QT

|∇(Sm(un(k)))ϕn(k) − Sm(u)ϕ)|

+ 2‖ϕ0‖L∞(QT )

∫

QT

|1 − ψ|,

Putting C∗ = 2||ϕ0||L∞(Ω) max(C0, 1), KM = C0C
−1/2
M |Ω|1/2T 1/2 and taking

into account (5.73) and (5.80), we deduce
∫

QT

|ϕn(k) − ϕ| ≤ C∗ε + C0

∫

QT

ξ
−1/2
k ξ

1/2
k |∇(Sm(un(k)))ϕn(k) − Sm(u)ϕ)|

C∗ε + KM

(∫

QT

ξk|∇(Sm(un(k)))ϕn(k) − Sm(u)ϕ|2
)1/2

,

Owing to (5.78) and (5.82), we obtain

lim sup
k→∞

∫

QT

|ϕn(k) − ϕ| ≤ C∗ε + KM

(
C||S′

m||∞(1 + ||S′
m||∞)

)1/2

≤ C∗ε + KMC1/2

[
1
m

(
1 +

1
m

)]1/2

.

And since ε > 0 and m ≥ 1 are arbitrary, we derive the desired result. �

Step 5. Passing to the limit.
According to (5.27), (5.29), (5.33), (5.35) and (5.37), it is straightforward

that the condition (C1) of Definition 1 is fulfilled. The convergences in Propo-
sition 5.4 and Lemma 5.8 lead us to (C2) of Definition 1, and in order to obtain
the condition (C3), using Proposition 5.4 and Lemma 5.8 again with (5.77), it
is enough to let k goes to infinity in the following expression

S(un(k))ρn(k)(un(k))∇ϕn(k) =ρn(k)(un(k))[∇(S(un(k))ϕn(k)) − ϕn(k)∇S(un(k))]

Step 6. Regularity of u.
Finally, it remains to establish the regularity u ∈ C([0, T ];L1(Ω)). Though

this is a straightforward consequence of Lemma 2.9, since u ∈ W ⊂ W ⊂
C([0, T ];L1(Ω)), it is interesting to show this property from the results de-
duced on the previous steps about the (sub)sequences (un) and (ϕn) and how
the notion of capacity solution is used along this proof. To this end, we go
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back to the expression (5.44) but the integration in time happens in the inter-
val (0, τ) for any τ ∈ (0, T ], namely (see [12])

〈
∂un

∂t
, Tν(un − wi

μ,j)
〉

Qτ

=
∫

Qτ

an(x, t, un,∇un)(∇wi
μ,j − ∇un)χ{|un−wi

μ,j |≤ν}

−
∫

Qτ

ρn(un)ϕn∇ϕn∇Tν(un − wi
μ,j). (5.83)

where ν ∈ (0, 1], Qτ = (0, τ) × Ω and 〈·, ·〉Qτ
is the duality product between

W−1,xLM̄ (Qτ ) and W 1,x
0 LM (Qτ ). We will consider the necessary subsequences

to assure the almost everywhere convergence in QT of ϕn → ϕ, un → u,
∇un → ∇u, and also for (Tν(un − wi

μ,j)), etc. From (5.71) we readily obtain

lim
n→∞

∫

Qτ

an(x, t, un,∇un)∇wi
μ,jχ{|un−wi

μ,j |≤ν}

=
∫

Qτ

a(x, t, u,∇u)∇wi
μ,jχ{|u−wi

μ,j |≤ν}.

Also, by Fatou’s lemma we get

lim
n→∞

∫

Qτ

a(x, t, u,∇u)∇uχ{|u−wi
μ,j |≤ν}

≤ lim inf
n→∞

∫

Qτ

an(x, t, un,∇un)∇unχ{|un−wi
μ,j |≤ν}.

Then, passing to the limit in these two expressions, first in j, then in μ, i and
K, we deduce, uniformly in τ , that
∫

Qτ

an(x, t, un,∇un)(∇wi
μ,j − ∇un)χ{|un−wi

μ,j |≤ν} ≤ ε(n, j, μ, i,K). (5.84)

The analysis of the term
∫

Qτ
ρn(un)ϕn∇ϕn∇Tν(un − wi

μ,j) dxdt is more
involved. Here the difficulty relies on the fact that the sequence (ρn(un)|∇ϕn|2)
does not converge, in general, strongly in L1(QT ). In order to deal with this
situation, we are going to make use of the properties already shown for a
capacity solution. Indeed, we first notice that ∇Tν(un − wi

μ,j) = 0 in the set
{|un| ≤ K + ν} ⊂ {|un| ≤ K + 1}. Then we consider a sequence of functions
SK ⊂ C1

0 (R) such that

0 ≤ SK ≤ 1, SK = 1 in [−(K + 1),K + 1], for all K > 0.

||S′
K ||L∞(R) ≤ 1

K + 1
, for all K > 0.
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We have
∫

Qτ

ρn(un)ϕn∇ϕn∇Tν(un − wi
μ,j) dxdt

=
∫

Qτ

ρn(un)ϕn∇[SK(un)ϕn]∇Tν(un − wi
μ,j) dxdt

=
∫

Qτ

ρn(un)ϕn∇[SK(un)ϕn − S(u)ϕ]∇Tν(un − wi
μ,j) dxdt

+
∫

Qτ

ρn(un)ϕn∇[SK(u)ϕ]∇Tν(un − wi
μ,j) dxdt = L1 + L2.

According to the almost everywhere convergence of (un) and (ϕn) together
with (5.26) and (5.33), we readily deduce that

lim
n→∞ L2 =

∫

Qτ

ρ(u)ϕ∇[SK(u)ϕ]∇Tν(u − wi
μ,j) dxdt,

and using the identity (C3), already shown in the previous step, namely,
ρ(u)∇[SK(u)ϕ] = SK(u)Φ + ϕ∇SK(u), we can easily obtain the estimate
L2 = ε(n, j, μ, i,K).

As for the term L1, we use (5.78) to get, for some constant C > 0,

|L1|2 ≤
(∫

Qτ

ρn(un)|∇[SK(un)ϕn − S(u)ϕ]|2 dxdt

)

·
(∫

Qτ

ρn(un)|ϕn|2|∇Tν(un − wi
μ,j)|2 dxdt

)

≤ C

K + 1
,

and thus it is also L1 = ε(n, j, μ, i,K).
Consequently, we get, for any fixed ν ∈ (0, 1] and uniformly in τ ∈ [0, T ],
∫

Qτ

ρn(un)ϕn∇ϕn∇Tν(un − wi
μ,j) dxdt ≤ ε(n, j, μ, i,K). (5.85)

Gathering (5.83), (5.84) and (5.85) we get the estimate
〈

∂un

∂t
, Tν(un − wi

μ,j)
〉

Qτ

≤ ε(n, j, μ, i,K). (5.86)

Then we write, as in (5.46)–(5.49),
∫

Ω

Θν(un(x, τ) − wi
μ,j(x, τ)) dx

=
〈∂(un − wi

μ,j)
∂t

, Tν(un − wi
μ,j)

〉

Qτ

+
∫

Ω

Θν(u0 − TK(ψi)) dx

=
〈∂un

∂t
, Tν(un − wi

μ,j)
〉

Qτ

−
〈∂wi

μ,j

∂t
, Tν(un − wi

μ,j)
〉

Qτ

+
∫

Ω

Θν(u0 − TK(ψi)) dx.
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Consequently, owing to (5.49) and (5.86), it yields, for every fixed ν ∈ (0, 1]
and uniformly in τ ∈ [0, T ],

∫

Ω

Θν(un(x, τ) − wi
μ,j(x, τ)) dx ≤ ε(n, j, μ, i,K),

and using the convexity of the function Θν we may also derive the following
estimate
∫

Ω

Θν

(
1
2 (un(x, τ) − um(x, τ))

)
dx ≤ 1

2

∫

Ω

Θν(un(x, τ) − wi
μ,j(x, τ)) dx

+
1
2

∫

Ω

Θν(um(x, τ) − wi
μ,j(x, τ)) dx

≤ ε(n, j, μ, i,K) + ε(m, j, μ, i,K),

and thus, for any fixed ν > 0 and uniformly in τ ∈ [0, T ], we have
∫

Ω

Θν

(
1
2 (un(x, τ) − um(x, τ))

)
dx ≤ ε(n) + ε(m). (5.87)

Consequently, using the definition of Θν and (5.87), for all τ ∈ [0, T ], it is
∫

Ω

1
2 |un(x, τ) − um(x, τ)|dx

≤
∫

{|un(x,τ)−um(x,τ)|≤2ν}
1
2 |un(x, τ) − um(x, τ)|dx

+
∫

{|un(x,τ)−um(x,τ)|>2ν}
1
2 |un(x, τ) − um(x, τ)|dx

≤ |Ω|ν +
1
ν

∫

{|un(x,τ)−um(x,τ)|>2ν}
ν
2 |un(x, τ) − um(x, τ)|dx

= |Ω|ν +
1
ν

∫

{|un(x,τ)−um(x,τ)|>2ν}

[

Θν

(
1
2 |un(x, τ) − um(x, τ)|

)
+

ν2

2

]

dx

=
3
2
|Ω|ν +

1
ν

(ε(n) + ε(m)).

This last estimate shows that (un) is a Cauchy sequence in C([0, T ];L1(Ω))
and, in particular, its limit u lies in this space.

This completes the proof of the Main Theorem.

Remark 5.9. According to the proof of the existence result given in the Main
Theorem, this result also holds if the assumption (3.8), namely, u0 ∈ L2(Ω)
is changed to u0 ∈ L1(Ω). Indeed, it is enough to rewrite the initial condi-
tion (5.24) in the approximate system as follows: un(·, 0) = Tn(u0) in Ω.
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[14] González Montesinos, M.T., Ortegón Gallego, F.: Existence of a capacity so-
lution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl.
Anal. 6(1), 23–42 (2007)

[15] Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with
rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 163–205
(1974)

[16] Gossez, J.P.: Some approximation properties in Orlicz–Sobolev. Stud. Math. 74,
17–24 (1982)

[17] Hadj Nassar, S., Moussa, H., Rhoudaf, M.: Renormalized Solution for a nonlinear
parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl.
Math. Comput. 249, 253–264 (2014)

[18] Krasnosel’skii, M.A., Rutickii, Y.B.: Convex Functions and Orlicz Spaces. No-
ordhoff, Groningen (1969)

[19] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics,
vol. 1034. Springer, Berlin (1983)

[20] O’Neil, R.: Fractional integration in Orlicz spaces. Trans. Am. Math. Soc. 115,
300–328 (1965)
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