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Abstract. We consider a nonlinear version of the Wheeler–DeWitt equa-
tion which was introduced by Cooper, Susskind, and Thorlacius in the
context of two-dimensional quantum cosmology. We establish the exis-
tence of global solutions to the Cauchy problem and Goursat problems
which, both, arise naturally in physics. Our method of proof is based
on a nonlinear transformation of the Wheeler–DeWitt equation and on
techniques introduced by Baez and collaborators and by Tsutsumi for
nonlinear wave equations.
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1. Introduction

Objective of this paper

The Wheeler–DeWitt equation provides a simple, yet challenging model which
describes a homogeneous isotropic Universe filled with a scalar field y with
mass m. This equation arose from an early attempt to combine ideas from
quantum mechanics and general relativity. The Wheeler–DeWitt is a linear,
but singular wave equation which reads as follows [8–10]:

∂2ψ

∂x2
+

p

x

∂ψ

∂x
− 1

x2

∂2ψ

∂y2
+ m2x4y2ψ − x2ψ = 0, (1.1)

in which the independent variable x ∈ (0,+∞) represents a scale factor and
the scalar field y is viewed as an independent variable. Moreover, p ∈ R is
a factor-ordering coefficient due to quantization, and the unknown function
ψ = ψ(x, y) ∈ C is the so-called wave function of the Universe for the mini-
superspace model under consideration.

A mathematical study of the corresponding Cauchy problem with pre-
scribed initial condition at y = 0, say

ψ(x, 0) = ψ0(x),
∂ψ

∂y
(x, 0) = ψ1(x), (1.2)
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was initiated by Dias and Figueira [4] in two simplified cases: they treated the
case x ∈ (0, R) with R > 0 as well as the massless case m = 0 in the whole
interval x ∈ (0,+∞) by introducing a suitable transformation of the equation
[6,7].

On the other hand, more recently for a modeling effects arising in quan-
tum cosmology, Cooper et al. [3] introduced a nonlinear Wheeler–DeWitt equa-
tion, namely

∂2ψ

∂x2
+

p

x

∂ψ

∂x
− 1

x2

∂2ψ

∂y2
+ m2x4y2ψ − x2ψ + λ(x) |ψ|rψ = 0, (1.3)

in which the function λ = λ(x) ∈ R is prescribed and r ≥ 1 is a parameter.
This model was found to provide a better description of some phenomena in
quantum cosmology. (We also refer [12] for an alternative nonlinear model.)
In Dias and Figueira [5], this nonlinear model was also consider in a simplified
case, that is, x ∈ (0, R) with R > 0, and the Cauchy problem was solved for
general data

(
ψ(x, 0), ∂ψ

∂y (x, 0)
)

and for the function λ(x) = λ xq−2, q ≥ 1
2 rp

with λ ∈ R.
In the present work, we pursue this analysis further and rely on the

transformation introduced in [6,7] (in the linear case) in order to study the
nonlinear equation (1.3) in the whole interval x > 0. Specifically, we assume
that the nonlinearity of the Wheeler–DeWitt equation satisfies the conditions

r ≥ 2, λ(x) = λ xq−2, q =
p − 1

2
r, λ ∈ R. (1.4)

By setting

z = log x, x ∈ (0,+∞) (1.5)

and in view of

u(z, y) = x
p−1
2 ψ(x, y) = e

p−1
2 z ψ(ez, y), (1.6)

we arrive at the following terminology.

Definition 1.1. The reduced nonlinear Wheeler–DeWitt equation by definition
is

∂2u

∂z2
− ∂2u

∂y2
− 1

4
(p − 1)2 u +

(
m2y2e6z − e4z

)
u + λ |u|ru = 0. (1.7)

in which u = u(z, y) is a complex-valued function defined over (z, y) ∈ R
2.

Observe that the principal part of (1.7) decomposes into two parts, i.e.

• the 1 + 1 Klein-Gordon operator, that is,

∂2u

∂z2
− ∂2u

∂y2
− 1

4
(p − 1)2 u (1.8)

• and a potential term of exponential type
(
m2y2e6z − e4z

)
u. (1.9)
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In addition, the nonlinear version of the Wheeler–DeWitt equation under con-
sideration also involves the nonlinear term

λ |u|ru. (1.10)

Our objective in this paper is establishing a well-posedness theory for the
Cauchy problem and for the Goursat problem by extending the methods in-
troduced originally by Baez et al. [1,2] and Tsutsumi [14] for nonlinear wave
equations.

Main result of this paper

First of all, in Sect. 2, we study the massless case m = 0 and consider the
Cauchy problem for the equation (1.7) with data(

u(x, 0),
∂u

∂y
(x, 0)

)
= (u0(x), v0(x)) ∈ X × H1

V , (1.11)

where (in this case y is regarded as our “time” variable)

V (z) = e4z,

H1
V =

{
u ∈ H1(R) / V 1/2u ∈ L2(R)

}
,

X =
{

u ∈ H1
V

/ d2u

dz2
− V u ∈ L2(R)

}
,

(1.12)

endowed with their natural norms. Here, we will be able to rely on rather
standard techniques for nonlinear Klein–Gordon equations (see for instance
[13] and the references therein). Considering next a particular class of initial
data and provided λ < 0, we study the sequence 1

vp(z, y) = eic2py up(z, cpy), (1.13)

where cp = 1
2 (p − 1) (with p �= 1) and up is the solution to the corresponding

Cauchy problem and, when p → ∞, we prove that the functions vp converge
in the topology C([−T, T ];L2(R)), ∀T > 0, toward a function

ṽ(ẑ, ŷ) ∈ C(R;L2(R)) ∩ L∞
loc(R;X) (1.14)

such that
∂ṽ

∂y
∈ L∞

loc(R;L2(R)), ṽ(ẑ, 0) = lim
p→∞ up(ẑ, 0) in L2(R), (1.15)

and, moreover, this function is nothing but a solution to the nonlinear
Schrodinger equation

i
∂ṽ

∂y
+

1
2

(
∂2ṽ

∂z2
− V ṽ + λ |ṽ|r ṽ

)
= 0. (1.16)

Our technique of proof for this latter statement is an adaptation of the method
developed by Tsutsumi [14] for two space dimensions and V = 0. Importantly,
our result validates a heuristic given by physicists about the Wheeler–DeWitt
equation.

1Here, i =
√−1.
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Next, in Sect. 3 we study the periodic Goursat problem associated with
the Wheeler–DeWitt equation (1.7), and establish the existence of 2π-periodic
solutions ((in the y variable) which is now regarded as the “space” variable),
when with data are prescribed on the characteristic cone

C0 =
{
(z, y) / z = |y|, |y| ≤ π

}
. (1.17)

Our technique of proof is an adaptation of the method developed by Baez et
al. [1,2] and begins by reducing the problem under consideration to a more
convenient Cauchy problem for an evolution equation. When m �= 0, in the
equation (1.7) we need to replace the function m2y2e6z by m2θ(y2) e6z where
θ(y2) is the 2π-periodic extension of the function y2 in [−π, π]. In order to
obtain smooth local (in the variable z) solutions, we restrict the Goursat data
accordingly, and to obtain global (in z) solutions we take λ > 0.

Two cases are of particular interest and are covered by our theorems in
this section:

• Case m2y2 = k2 (a positive constant). This is a simplification which
is often made in the physical applications, for instance in the study of
tunneling solutions; cf. [8].

• Case cp = 0, that is p = 1. The spatial curvature term e4z is also neglected
in the study of inflationary solutions, cf. again [8].

2. The Cauchy problem for the massless case

In this section we extend to the nonlinear equation (1.7), in the particular case
m = 0, the existence results for the Cauchy problem and the singular limit
when p → ∞ obtained in [6] and [7]. We write the equation (1.7) for m = 0:

∂2u

∂y2
− ∂2u

∂z2
+

1
4
(p − 1)2u + V u + λ |u|ru = 0, (2.1)

with V (z) = e4zu, (z, y) ∈ R
2.

We will study the Cauchy problem for initial data u(z, 0), ∂u
∂y (z, 0), for

z ∈ R. For this purpose we introduce, as in [6], the space (in z)

H1
V =

{
v ∈ H1(R) / V 1/2v ∈ L2(R)

}
(2.2)

with norm
‖v‖H1

V
=

(‖v‖2H1 + ‖V 1/2v‖22
)1/2

,

where ‖ · ‖p denotes the standard Lp norm. Let

X =
{

v ∈ H1
V

∣∣ ∂2v

∂z2
− V v ∈ L2

}
,

and H = H1
V × L2, D(A) = X × H1

V , A : D(A) ⊂ H → H defined by

A

(
v1
v2

)
=

(
0 1

∂2

∂z2 − V − c2p 0

) (
v1
v2

)
(2.3)

with cp = 1
2 (p − 1).
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With v = ∂u
∂y the equation (2.1) can be written in the first-order form

∂

∂y

(
u
v

)
= A

(
u
v

)
+ J

(
u
v

)
, J

(
u
v

)
=

(
0

−λ |u|ru
)

. (2.4)

The operator A is skew-self-adjoint in H (cf. [6], Theorem 1) and so generates
a unitary group of operators in H. We take the initial (in y) data

(
u0(ẑ) = u(ẑ, 0), v0(ẑ) =

∂u

∂y
(ẑ, 0)

)
∈ D(A).

We study first the existence of a local (in y) solution to the Cauchy
problem

u ∈ C ([0, y0];X) ∩ C1
(
[0, y0];H1

V

) ∩ C2
(
[0, y0], L2

)
. (2.5)

If ϕ =
(

u
v

)
∈ D(A) = X × H1

V it is easy to see, since H1(R) ↪→ L∞(R), that

Jϕ ∈ D(A), and if ϕ1 =
(

u1

v1

)
, ϕ2 =

(
u2

v2

)
∈ D(A) we have

A(Jϕ1 − Jϕ2) =
(−λ |u1|ru1 + λ |u2|ru2

0

)
,

∥∥J(ϕ1) − J(ϕ2)
∥∥2

A
=

∥∥J(ϕ1) − J(ϕ2)
∥∥2

H1
V ×L2 +

∥∥AJ(ϕ1) − AJ(ϕ2)
∥∥2

H1
V ×L2

= |λ|2 ∥∥|u1|ru1 − |u2|ru2

∥∥2

2
+ |λ|2 ∥∥|u1|ru1 − |u2|ru2

∥∥2

H1

+|λ|2
∥∥∥V 1/2

(|u1|ru1 − |u2|ru2

)∥∥∥
2

2
.

We have ∣∣|u1|ru1 − |u2|ru2

∣∣ ≤ c
(|u1|r + |u2|r

) |u1 − u2|
and so ∥∥∥V 1/2

(|u1|ru1 − |u2|ru2

)∥∥∥
2

≤ c
(‖ϕ1‖r

A + ‖ϕ2‖r
A

) ‖ϕ1 − ϕ2‖A

since H1(R) ↪→ L∞(R). Moreover, for r ≥ 2, it is not difficult to derive
∥∥|u1|ru1 − |u2|ru2

∥∥
H1 ≤ c

(‖u1‖r
H1 + ‖u2‖r

H1

) ‖u1 − u2‖H1

≤ c
(‖ϕ1‖r

A + ‖ϕ2‖r
A

) ‖ϕ1 − ϕ2‖A.

Hence, ∥∥J(ϕ1) − J(ϕ2)
∥∥

A
≤ c

(‖ϕ1‖r
A + ‖ϕ2‖r

A

) ‖ϕ1 − ϕ2‖A.

In view of Theorem X.72 in [13], we conclude the following.

Theorem 2.1. For ϕ0 =
(

u0

v0

)
∈ D(A), there exists a y0 > 0 and a unique

function ϕ(ŷ) = (u(ŷ), v(ŷ)), y ∈ [0, y0], such that ϕ ∈ C([0, y0];D(A)) ∩
C1([0, y0];H) and ∂

∂y

(
u
v

)
= A

(
u
v

)
+ J

(
u
v

)
, y ∈ [0, y0], ϕ(0) = ϕ0.

Returning to the Cauchy problem for (2.1) we deduce the following result:
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Corollary 2.1. For (u0, v0) ∈ D(A), there exists a y0 > 0 and a unique function
u(ŷ) ∈ C([0, y0];X) ∩ C1([0, y0];H) ∩ C2([0, y0];L2) satisfying (2.1) for y ∈
[0, y0] and u(0) = u0, ∂u

∂y (0) = v0.

Moreover, we have the energy conservation law

E(y) =
1
2

∫

R

∣∣∣∣
∂u

∂y

∣∣∣∣
2

dz +
1
4

(p − 1)2
∫

R

|u|2dz +
1
2

∫

R

V |u|2dz

+
λ

n + 2

∫

R

|u|r+2dz = E(0), y ∈ [0, y0].
(2.6)

Now, let us assume λ > 0. From (2.6) we establish the existence of a local
solution to the Cauchy problem, if p �= 1, setting ϕ(y) =

(
u(y), ∂u

∂y (y)
)
, y ∈

[0, y0], H = H1
V × L2,

‖AJ(ϕ)‖H ≤ c ‖ϕ‖r+1
H ≤ c. (2.7)

Hence, from the semigroup integral formula we deduce

‖Aϕ(y)‖H ≤ ‖Aϕ(0)‖H +
∫ y

0

‖AJ(ϕ(s))‖H ds

≤ ‖Aϕ0‖H + c

∫ y

0

‖ϕ(s)‖r+1
H ds

≤ ‖Aϕ0‖H + cy

and so, by Gronwall’s inequality,

‖Aϕ(y)‖H ≤ ‖Aϕ(0)‖H ecy.

We can thus state the following result.

Theorem 2.2. Assuming λ > 0, p �= 1 and (u0, v0) ∈ D(A), there is a unique
function u ∈ C((0,+∞);X) ∩ C1((0,+∞);H1

V ) ∩ C2((0,+∞);L2) satisfying
(2.1) and u(0) = u0, ∂u

∂y (0) = v0.

Now, consider, for each p �= 1 and with λ > 0,
(
up(0), ∂up

∂y (0)
)

∈ D(A),

the unique solution up ∈ C((0,+∞);X)∩C1((0,+∞);H1
V )∩C2((0,+∞);L2)

of the previous Cauchy problem.
Let us introduce (cf. [7]) the function

vp(z, y) = eic2py up(z, cpy), cp =
1
2
(p − 1) (2.8)

and
ε2p =

1
2 c2p

=
2

(p − 1)2
. (2.9)

We have

i
∂vp

∂y
− ε2p

∂2vp

∂y2
+

1
2

(
∂2vp

∂z2
− V vp − λ |vp|rvp

)
= 0,

vp(z, 0) = v0p(z) = u0p(z),
∂vp

∂y
(z, 0) = v1p(z) = cp(iu0p + u1p)(z),

(2.10)
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where u0p = up(0), u1p = ∂up

∂y (0). We assume

{u0p}p bounded in X, {u1p}p bounded in H1
V ,

u0p −→
p→∞ ṽ0 in L2(R), with ṽ0 ∈ X.

(2.11)

Using the technique in [14], we want to extend Theorem 3 in [7] to obtain the
following result:

Theorem 2.3. Assume (2.10) and (2.11). Then, there exists a unique function
ṽ ∈ C(R+;L2) ∩ L∞

loc(R+;X), such that vy ∈ L∞
loc(R+, L2), solution to the

Cauchy problem

i
∂ṽ

∂y
+

1
2

(
∂2ṽ

∂z2
− V ṽ − λ|ṽ|rṽ

)
= 0, (λ > 0, r ≥ 2),

ṽ(0) = ṽ0.

(2.12)

Moreover, for each T > 0, we have (with vp solution to (2.10)),

vp −→
p→∞ ṽ in C([0, T ];L2(R)) (with the sup norm).

Proof. To simplify the notation, we will replace vp by v and ε2p by ε2 (if nec-
essary) and we assume λ = 1.

Multiplying the equation in (2.10) by vy (complex conjugate of vy), in-
tegrating in R (in z) and taking the real part, we obtain (denoting by vy the
derivative ∂v

∂y , ...),

1
2

ε2
d

dy

∫
|vy|2dz+

1
4

d

dy

∫
|vz|2dz+

1
4

d

dy

∫
V |v|2dz+

1
2

1
r + 2

d

dy

∫
|v|r+2dz = 0.

(2.13)
Hence, with c independent of p and y,

εp‖(vp)y‖2 ≤ c, (2.14)
‖(vp)z‖2 ≤ c, (2.15)
‖vp‖r+2 ≤ c, (2.16)

‖V 1/2 vp‖2 ≤ c. (2.17)

Multiplying the equation in (2.10) by vp, integrating in R, and taking the
imaginary part, we obtain

ε2 Im
∫

vyyv dz − Re
∫

vyv dz = 0,

and since

Im
∫

vyyv dz = Im
(

d

dy

∫
vyv dz −

∫
vyvy dz

)
= Im

d

dy

∫
vyv dz,

we find

ε2
d

dy
Im

∫
vyv dz − d

dy

1
2

∫
|v|2dz = 0,

∫
|v|2dz ≤ 2 ε2 ‖vy‖2 ‖v‖2 + c,
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and so, by (2.14),
‖vp‖2 ≤ c. (2.18)

Now (the calculations can be justified by a suitable regularization tech-
nique) we take the y derivative in the equation in (2.10) to obtain, by multi-
plying by (vp)y, integrating and taking the imaginary part:

Im ε2
∫

∂3v

∂y3
vy dz − Re

∫
vyyvy dz − Im

1
2

∫
∂3v

∂y ∂2z
vy dz

+ Im
1
2

∫
V vyvy dz + Im

1
2

∫
(|v|rv)y vy dz = 0,

Im
d

dy
ε2

∫
vyyvy dz − 1

2
d

dy

∫
|vy|2dz +

r

2
Im

∫
|v|r−2 Re(vvy) vvy dz = 0,

and so, by (2.15), (2.18) and (2.11), for y > 0 we find
∫

|vy|2 dz ≤ c + ε2 ‖vyy‖2 ‖vy‖2 + c

∫ y

0

∫
|vy|2 dz dτ,

and so ∫
|(vp)y|2 dz ≤ c +

(
ε4p ‖(vp)yy‖22

)
+ c

∫ y

0

∫
|(vp)y|2 dz dτ. (2.19)

Now, we take again the y derivative in (2.10), multiply by (vp)yy, integrate
in R, and take the real part:

ε2
d

dy

∫
|vyy|2dz+

1
2

d

dy

∫
|vyz|2dz+

1
2

d

dy

∫
V |vy|2dz

1
2

Re
∫

(|v|rv)y vyy dz=0.

(2.20)
We have (cf. [14], pg. 640):

2Re
(
(|v|rv)y vyy

)
=

r

2
|v|r−2 d

dy
(vvy + vvy)2 + |v|r d

dy
|vy|2 (2.21)

−r|v|r−2
(
v|vy|2vy + v|vy|2vy

)
.

Hence, by (2.20) and (2.21), we obtain, by applying the Gagliardo–
Nirenberg inequality:

ε4
d

dy

∫
|vyy|2dz +

1
2

ε2
d

dy

∫
|vyz|2dz +

1
2

ε2
d

dy

∫
V |vy|2dz

+
ε2

8
d

dy

∫
|v|r−2 (Re(vvy))2 dz +

ε2

4
d

dy

∫
|v|r |vy|2dz

≤ c ε2
∫

|v|r−1 |vy|3 dz ≤ c ε2 ‖v‖r−1
∞ ‖vy‖5/2

2 ‖vyz‖1/2
2

≤ c ‖v‖r−1
∞

(
ε2 ‖vyz‖22

)1/4 ‖vy‖5/2
2 ε3/2.

Hence, in view of (2.15), (2.18), (2.11) and (2.19), we get

ε4
∫

|vyy|2dz + ε2
∫

|vyz|2dz + ε2
∫

V |vy|2dz

+ ε2
∫

|v|r−2 (Re(vvy))2 dz +
1
2

∫
|vy|2dz
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≤ c +
1
2

(
ε4‖vyy‖22

)
+ c

∫ y

0

‖vy‖5/2
2 ε3/2

(
ε2‖vyz‖22

)1/4
dτ

+ c

∫ y

0

∫
|vy|2 dz dτ.

Therefore, by (2.14), we obtain

1
2

ε4
∫

|vyy|2dz + ε2
∫

|vyz|2dz +
1
2

∫
|vy|2dz + ε2

∫
V |vy|2dz

≤ c + c

∫ y

0

‖vy‖2
(
ε2‖vyz‖22

)1/4
dτ + c

∫ y

0

∫
|vy|2 dz dτ

≤ c + c

∫ y

0

∫
|vy|2 dz dτ + c

∫ y

0

(
ε2‖vyz‖22

)1/2
dτ

≤ c + c

∫ y

0

∫
|vy|2 dz dτ + c

∫ y

0

ε2
∫

|vyz|2 dz dτ + c y.

We conclude that, by applying the Gronwall inequality, and for fixed T > 0,
and y ∈ [0, T ],

ε2p

∫
|(vp)yz|2dz +

∫
|(vp)y|2dz ≤ c(T ), (2.22)

ε4p

∫
|(vp)yy|2dz + ε2p

∫
V |(vp)y|2dz ≤ c(T ). (2.23)

We have, in particular, from (2.14), (2.15), (2.17), (2.18), (2.22),

vp ∈ L∞(R+;H1), V 1/2vp ∈ L∞(R+;L2),

(vp)y ∈ L∞(]0, T [;L2), εp(vp)y ∈ L∞(R+;L2).
(2.24)

From (2.10) (cf. [14], pg. 642, for similar computations with V ≡ 0) we deduce

ε2p
∂2vp

∂y2
− ε2q

∂2vq

∂y2
− i

∂

∂y
(vp − vq) − 1

2
∂2

∂z2
(vp − vq)

+
1
2
V (vp − vq) +

1
2
|vp|rvp − 1

2
|vq|rvq = 0.

Multiplying the previous equation by vp − ṽq, taking the imaginary part
and integrating in z, we see that for any fixed T > 0 and all y ∈ [0, T ],

d

dy
‖vp − vq‖22 + 2 Im

∫
(vp − vq)

(
ε2p

∂2vp

∂y2
− ε2q

∂2vq

∂y2

)
dz

= − Im
∫

(vp − vq)
(|vp|rvp − |vq|rvq

)
dz,

d

dy
‖vp − vq‖22 + 2 ε2p Im

∫
(vp − vq)

(
∂2vp

∂y2
− ∂2vq

∂y2

)
dz

+ 2(ε2p − ε2q) Im
∫

(vp − vq)
∂2vq

∂y2
dz

=
d

dy
‖vp − vq‖22 + 2(ε2p − ε2q)

d

dy
Im

∫
(vp − vq)

∂vq

∂y
dz
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− 2(ε2p − ε2q) Im
∫

d

dy
(vp − vq)

∂vq

∂y
dz

= − Im
∫

(vp − vq)
(|vp|rvp − |vq|rvq

)
dz.

Hence, we obtain

d

dy
‖vp − vq‖22 + 2(ε2p − ε2q)

d

dy
Im

∫
(vp − vq)

∂vq

∂y
dz

≤ (ε2p + ε2q) c(T ) +
(‖vp‖r−1

∞ + ‖vq‖r−1
∞

) ‖vp − vq‖22
≤ c(T ) (ε2p + ε2q) + c ‖vp − vq‖22.

For y ∈ [0, T ], we have

‖vp(y) − vq(y)‖22 ≤ (ε2p + ε2q) c(T ) + c

∫ y

0

‖vp(τ) − vq(τ)‖22 dτ.

Applying Gronwall’s inequality, we deduce that {vp} is a Cauchy sequence in
L∞(]0, T [;L2(R)) and so, by a suitable diagonalization method, there exists a
function ṽ ∈ L∞

loc(R+;L2(R)) and a subsequence vp −→
p→∞ ṽ in L∞

loc(R+;L2(R)).

By the previous estimates, it is easy to prove that

ṽ ∈ L∞
loc(R+;H1(R)), ṽy ∈ L∞

loc(R+;L2(R)),

V 1/2 ṽ ∈ L∞(R+;L2(R)), and so ṽ ∈ C(R+;L2(R)).

By applying Aubin’s Lemma (cf. [11]) there exists a subsequence vp −→
p→∞ ṽ

a.e. in R+×R. Hence, ṽ satisfies (2.12) in the sense of distributions and ṽ ∈
L∞
loc(R+;X). Finally, by standard methods, it is easy to see that ṽ is the unique

function with these properties that satisfies the Cauchy problem (2.12), and
this achieves the proof of Theorem 2.3. �

Remark 2.1. If, for λ > 0, p �= 1, u is the solution to the Cauchy problem for
the equation (2.1) under the conditions in Theorem 2.2, we can multiply (2.1)
by ∂u

∂z , then take the real part, and integrate over R (in z),

0 = Re
d

dy

∫
∂u

∂y

∂u

∂z
dz +Re

∫
V u

∂u

∂z
dz = Re

d

dy

∫
∂u

∂y

∂u

∂z
dz −2

∫
V |u|2 dz,

and so, by the energy conservation (2.6), we obtain
∫ y

0

∫
V |u|2 dz dτ ≤ c, (2.25)

c independent of y > 0, and so we have the decay property
∫ y+1

y

∫
V |u|2 dz dτ −→

y→∞ 0.
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3. The periodic Goursat problem

In this section, we investigate the nonlinear Wheeler–DeWitt equation by fol-
lowing the approach and techniques developed in [1]. The difference is that, in
our case, we have the following additional term in (1.7):

f(z, y)u, with f(z, y) = m2y2e6z − e4z − c2p, (3.1)

where cp = 1
2 (p − 1) and u is complex valued. With (in this case z will be the

“time” variable)

�u =
∂2u

∂z2
− ∂2u

∂y2
and g(u) = λ |u|ru (3.2)

the equation (1.7) can be rewritten as

�u + f(z, y)u + g(u) = 0. (3.3)

As in [1], we introduce the characteristic cones

Cz =
{
(τ, y) / τ = z + |y|, |y| ≤ π

}
(3.4)

and the functions φ+, φ−, φ, c0(z) and cπ(z), for a 2π periodic (in y) solution
u of equation (3.3), defined by

φ+(z, y) = u(z + y, y), 0 ≤ y ≤ π,

φ−(z, y) = u(z + y,−y), 0 ≤ y ≤ π,

φ(z, y) = (φ+(z, y), φ−(z, y)) ,

c0(z) = u(z, 0) = φ+(z, 0) = φ−(z, 0),

cπ(z) = u(z + π, π) = φ+(z, π) = φ−(z, π).

(3.5)

We then recall the following; see Lemma 1 in [1].

Lemma 3.1. If u is a C2 solution to the equation �u = h(z, y) on a neighbor-
hood U of Cz, when h is a continuous function in U , then

∂2
zyφ+(z, y) =

1
2

(
∂2

yφ+(z, y) + h+(z, y)
)
,

∂2
zyφ−(z, y) =

1
2

(
∂2

yφ−(z, y) + h−(z, y)
)
,

where h+(z, y) = h(z + y, y), h−(z, y) = h(z + y,−y), 0 ≤ y ≤ π.

Now, if u is a C2 function, 2π-periodic in y, solution to (3.3), we can
multiply by ∂u

∂z , take the real part, and integrate in y:

1
2

∂

∂z

∫ π

−π

(∣∣∣∣
∂u

∂z

∣∣∣∣
2

+
∣∣∣∣
∂u

∂y

∣∣∣∣
2
)

dy +
λ

r + 2
∂

∂z

∫ π

−π

|u|r+2dy

+
1
2

∂

∂z

∫ π

−π

f(z, y) |u|2dy − 1
2

∫ π

−π

∂f

∂z
(z, y) |u|2dy = 0. (3.6)
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In addition, with z′ = z + y, it is not difficult to deduce

1
2

∫ π

0

(|∂yφ+|2(z, y) + |∂yφ−|2(z, y)
)
dy

=
1
2

∫ π

−π

(∣∣∣∣
∂u

∂y

∣∣∣∣
2

(z′, y) +
∣∣∣∣
∂u

∂z

∣∣∣∣
2

(z′, y)

)
dy

+ Re
∫ π

−π

∂u

∂z
(z′, y)

∂u

∂y
(z′, y) dy (3.7)

and

∂

∂z
Re

∫ π

−π

∂u

∂z
(z′, y)

∂u

∂y
(z′, y) dy

= Re
∫ π

−π

∂2u

∂z2
(z′, y)

∂u

∂y
(z′, y) dy + Re

∫ π

−π

∂u

∂z
(z′, y)

∂2u

∂y ∂z
(z′, y) dy

= Re
∫ π

−π

(
∂2u

∂y2
(z′, y) − f(z′, y)u(z′, y) − λ |u|r u(z′, y)

)
∂u

∂y
(z′, y) dy

= −
∫ π

−π

(
f(z′, y)

1
2

∂

∂y
|u(z′, y)|2 − 1

r + 2
∂

∂y
|u|r+2(z′, y)

)
dy

=
1
2

∫ π

−π

∂f

∂y
(z′, y) |u(z′, y)|2 dy

=
1
2

∫ π

0

∂f

∂y
(z′, y) |φ+(z, y)|2 dy +

1
2

∫ π

0

∂f

∂y
(z′,−y) |φ−(z, y)|2 dy. (3.8)

From (3.6), (3.7) and (3.8), with z′ = z + y we deduce

1
2

∂

∂z

∫ π

0

(|∂yφ+|2(z, y) + |∂yφ−|2(z, y)
)

dy

= − λ

r + 2
∂

∂z

∫ π

0

(|φ+|r+2(z, y) + |φ−|r+2(z, y)
)
dy

− 1
2

∂

∂z

∫ π

0

(
f(z′, y) |φ+|2(z, y) + f(z′,−y) |φ−|2(z, y)

)
dy (3.9)

+
1
2

∫ π

0

(
∂f

∂z
(z′, y) |φ+|2(z, y) +

∂f

∂z
(z′,−y) |φ−|2(z, y)

)
dy

+
1
2

∫ π

0

(
∂f

∂y
(z′, y) |φ+|2(z, y) +

∂f

∂y
(z′,−y) |φ−|2(z, y)

)
dy

and so, with z′ = z + y, τ ′ = τ + y, we have

E(z) =
1
2

∫ π

0

(|∂yφ+|2(z, y) + |∂yφ−|2(z, y)
)
dy

+
λ

r + 2

∫ π

0

(|φ+|r+2(z, y) + |φ−|r+2(z, y)
)
dy

+
1
2

∫ π

0

(
f(z′, y) |φ+|2(z, y) + f(z′,−y) |φ−|2(z, y)

)
dy (3.10)
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= E(0) +
1
2

∫ z

0

∫ π

0

(
∂f

∂z
(τ ′, y) |φ+|2(τ, y) +

∂f

∂z
(τ ′,−y) |φ−|2(τ, y)

)
dy dz

+
1
2

∫ z

0

∫ π

0

(
∂f

∂y
(τ ′, y) |φ+|2(τ, y) +

∂f

∂y
(τ ′,−y) |φ−|2(τ, y)

)
dy dτ,

and E(z) is the energy associated to our problem.
Recall that φ(0, y) = (φ+(0, y), φ−(0, y)), 0 ≤ y ≤ π are the Goursat data

(u(y, y), u(y,−y)), 0 ≤ y ≤ π. For each z, that is, for each cone Cz, in [1] it is
introduced the Banach space (0 ≤ y ≤ π):

H(Cz) =

{
φ(z, ŷ) =

(
φ+(z, ŷ), φ−(z, ŷ)

)
=

(
u(z + ŷ, ŷ), u(z + ŷ,−ŷ)

) ∣∣∣

with finite norm ‖φ(z, ·)‖H(Cz)

=
(∫ π

0

(|∂yφ+(z, y)|2 + |∂yφ−(z, y)|2) dy

)1/2

+ |c0(z)|
and such that c0(z) = φ+(z, 0) = φ−(z, 0),

cπ(z) = φ+(z, π) = φ−(z, π)

}
. (3.11)

We have

H(Cz) ↪→ (Lp(0, π))2 , for 1 ≤ p ≤ +∞. (3.12)

Now, to solve the Goursat 2π-periodic (in y) problem for the equation (3.3),
with data

(u(y, y) = φ+(0, y), u(y,−y) = φ−(0, y))

(0 ≤ y ≤ π) in H(C0), we follow closely the idea in Section 4 of [1], which
reduces the problem to an abstract Cauchy form

φ(z) = Tzφ(0) − kz(fu + g(u)),

with kz linear with values in Cz defined by:

φ = (φ+, φ−), φ+(0, 0) = φ−(0, 0), φ+(0, π) = φ−(0, π),
φ+(z, y) = u(z + y, y), φ−(z, y) = u(z + y,−y),

(Tzφ(0))(z, y) =
(

φ+

(
0,

z + 2y

2

)
+ φ−

(
0,

z

2

)
− c0(0),

φ−

(
0,

z + 2y

2

)
+ φ+

(
0,

z

2

)
− c0(0)

)
,

for y ≤ π − z

2
,

(Tzφ(0))(z, y) =
(

φ+

(
0,

z + 2y

2
− π

)
+ φ−

(
0,

z

2

)
− 2 c0(0) + cπ(0),

φ−

(
0,

z + 2y

2
− π

)
+ φ+

(
0,

z

2

)
− 2 c0(0) + cπ(0)

)
,

for π − z

2
≤ y ≤ π,
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where

c0(z) = φ+

(
0,

z

2

)
+ φ−

(
0,

z

2

)
− c0(0),

cπ(z) = φ+

(
0,

z

2

)
+ φ−

(
0,

z

2

)
− 2 c0(0) + cπ(0),

c0(0) = φ+(0, 0) = φ−(0, 0), cπ(0) = φ+(0, π) = φ−(0, π),

and, for a continuous function h(z, y), 2π-periodic in y,

(kzh)±(y) =
∫ (z+2y)/2

0

∫ z/2

0

h
(
p + q,±(p − q)

)
dq dp, for y ≤ π − z

2
,

(kzh)±(y) =
∫ (z+2y)/2−π

0

∫ y+π

π

h
(
p + q,±(p − q)

)
dq dp

+
∫ π

0

∫ z/2

0

h
(
p + q,±(p − q)

)
dq dp

+
∫ (z+2y)/2

π

∫ z/2

p−π

h
(
p + q,±(p − q)

)
dq dp, for π − z

2
≤ y ≤ π.

(3.13)

Let us introduce, with Cτ defined in (3.4),

Dz =
⋃

Cτ , for 0 ≤ τ ≤ z.

For u continuous, 2π-periodic in y, it is easy to see, cf. [1] and with c indepen-
dent of z ∈ [0, π],

‖kz(fu + g(u))‖H(z) ≤ c‖fu + g(u)‖L2(Dz). (3.14)

Hence, by applying the estimate (8) in [1] and for all φ satisfying (3.13) and
z ∈ [0, π], we find

‖φ(z)‖H(Cz) ≤ (1 + c
√

z) ‖φ(0)‖H(C0) + c ‖fu + g(u)‖L2(Dz). (3.15)

Now, for a function φ = (φ+, φ−) defined in Cz we say that φ ∈ Lp(Cz),
1 ≤ p ≤ +∞, if φ+(z, ŷ) and φ−(z, ŷ) belong to Lp(0, π) and we put

‖φ‖Lp(Cz) = ‖φ+(z, ŷ)‖Lp(0,π) + ‖φ−(z, ŷ)‖Lp(0,π).

We have ‖φ‖L∞(Cz) ≤ c ‖φ‖H(Cz), for φ ∈ H(Cz). By setting in (3.13), Nz(φ) =
−kz(fu + g(u)), we want to prove the following result which is a variant of
Theorem 2 in [1].

Theorem 3.1. If φ(0) ∈ H(C0), then there is a z0 ∈ (0, π)] and a unique con-
tinuous function φ(ẑ) = (φ+(ẑ), φ−(ẑ)) : [0, z0] → H̃1(0, π) = {φ = (φ+, φ−) ∈
H1(0, π)2 | φ+(0) = φ−(0), φ+(π) = φ−(π)} such that

φ(z) = Tzφ(0) + Nz(φ), z ∈ [0, z0]. (3.16)

Proof. Replacing an iteration method by a fixed point argument, we follow the
lines of the proof of Theorem 2 in [1], which is a special case of the proof of
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Theorem 13 in [2]. We have, with an increasing continuous function θ : R → R

with θ(0) = 1,

‖Nz(φ1) − Nz(φ2)‖L2(0,π) ≤ θ(M) ‖φ1(z) − φ2(z)‖
H̃1(0,π)

if ‖φ1(z)‖
H̃1(0,π)

, ‖φ2(z)‖
H̃1(0,π)

≤ M,(3.17)

since H1((0, 2π)) ↪→ L∞((0, 2π)),

||a|ra − |b|rb| ≤ c
(|a|r−1 + |b|r−1

) |a − b|, a, b ∈ C,

and, in addition, we have, by (3.1), for z, y ∈ [0, π],

|f(z, y)| ≤ m2π2e6π + e4π + c2p.

For φ ∈ C([0, z0]; H̃1(0, π) let us define φ̃ ∈ C([0, z0], H̃1(0, π) by

φ̃(z) = Tzφ(0) + Nz(φ), z ∈ [0, z0].

With φi ∈ C([0, z0]; H̃1(0, π), i = 1, 2, φi+(z, ŷ) = ui(z + ŷ, ŷ) and φi−(z, ŷ) =
ui(z + ŷ,−ŷ), in view of (3.14), (3.15), (3.17), with X1 = C([0, z0]; H̃1(0, π),
we find

‖φ̃2 − φ̃1‖X1 ≤(1 + c
√

z0) ‖φ2(0) − φ1(0)‖
H̃1(0,π)

+ c θ(M)
∫ z0

0

‖φ2(z) − φ1(z)‖
H̃1(0,π)

dz

≤(1 + c
√

z0) ‖φ2(0) − φ1(0)‖
H̃1(0,π)

+ c θ(M) z0 ‖φ1 − φ2‖X

if ‖φ1‖X1 , ‖φ2‖X1 ≤ M (X1 endowed with the sup norm).
(3.18)

If we choose M ≥ ‖φ1(0)‖
H̃1(0,π)

+ 1, then from (3.18) with φ2 ≡ 0,

‖φ̃1‖X1 ≤ (1 + c
√

z0) ‖φ1(0)‖
H̃1(0,π)

+ c θ(M) z0 M

≤ (1 + c
√

z0) (M − 1) + c θ(M) z0 M ≤ M

for z0 ≤ z(M).
From (3.18) we also derive, for φ1, φ2 such that φ1(0) = φ2(0),

‖φ̃2 − φ̃1‖X1 ≤ c θ(M) z0 ‖φ2 − φ1‖X1 ≤ 1
2

‖φ2 − φ1‖X

for z0 ≤ z1(M). Then, for z0 ≤ min(z(M), z1(M))), the map φ → φ̃ is a strict
contraction in the subspace{

φ ∈ C([0, z0]; H̃1(0, π) / φ(0) = φ1(0), ‖φ‖X1 ≤ M
}

which is a Banach space. Hence, there is a unique fixed point, and the theorem
is proved. �

In order to prove a global (in z) existence result for the equation (3.16)
we need to extend (3.10) which was proved for u ∈ C2(Dz0) that is for φ =
(φ+, φ−) ∈ (C2([0, π]))2. In that case we must assume r ≥ 2 in (1.7), to extend
Theorem 4 in [1] to our case:



10 Page 16 of 18 J.-P. Dias and P. G. LeFloch NoDEA

Theorem 3.2. Assume the hypothesis of Theorem 3.1. Then the associated
function u in C2(Dz0) is a solution to equation (3.3) if and only if φ±(0) ∈
C2([0, π]) and satisfy the following nonlinear conditions:

∂yφ±(0, π) − ∂yφ±(0, 0) +
∫ π

0

(f(y, y)φ∓(0, y) + g(φ∓(0, y))) dy = 0,

∂2
yφ±(0, π) − ∂2

yφ±(0, 0)

= f(π, π)φ±(0, π) + g(φ±(0, π)) − f(0, 0)φ±(0, 0) − g(φ±(0, 0))

− 2
∫ π

0

(
∂f

∂z
(y,∓y)φ∓(0, y) + f(y,∓y) ∂zφ∓(0, y) +

∂

∂z
g(φ∓(0, y))

)
dy.

(3.19)

The proof of Theorem 3.2 is similar to the proof of Theorem 4 in [1]. In
particular, for the second condition in (3.19) we must apply Lemma 3.1.

To prove that the solution φ obtained in Theorem 3.1 is global in z, we
must extend to φ the energy formula (3.10), proved for φ ∈ C2. This can be
made by an approximation method exactly as it was developed in the proof
of Theorem 6 in [1]: we approximate φ(0) ∈ H(C0) = H̃1(0, π) by a sequence
{φn±(0)} ∈ H(C0)∩C2([0, π]) satisfying conditions (3.19). The corresponding
solutions φn = (φn+, φn−) satisfy (3.10) and, cf. a variant of Theorem 3 in [1],
we obtain ‖φn(z) − φ(z)‖

H̃1(0,π)
−→

n→∞ 0. Hence, the energy formula (3.10) can

be extended for φ ∈ C([0, z0]; H̃1(0, π).
Now, let φ ∈ C([0, z0]; H̃1(0, π) be the unique solution to (3.16) for a

given φ(0) ∈ H̃1(0, π). Let u be the associated function such that φ = (φ+, φ−),
φ+(z, y) = u(z + y, y), φ−(z, y) = u(z + y,−y), y ∈ [0, π] and assume λ > 0.
From (3.10) we deduce that

1
2

∫ π

0

(|∂yφ+|2 + |∂yφ−|2) (z, y) dy +
λ

r + 2

∫ π

0

(|φ+|r+2 + |φ−|r+2
)
(z, y) dy

≤ c(ε) + ε

∫ π

0

(|φ+|r+2 + |φ−|r+2
)
(z, y) dy + E(0)

+ c z + c

∫ z

0

∫ π

0

(|φ+|r+2 + |φ+|r+2
)
(τ, y) dy dτ, for each ε > 0.

We can choose ε < λ
r+2 and, by applying Gronwall’s inequality, it follows that

1
2

∫ π

0

(|∂yφ+|2 + |∂yφ−|2) (z, y) dy

+
λ

r + 2

∫ π

0

(|φ+|r+2 + |φ−|r+2
)
(z, y) dy

≤ c(z),

c continuous in (0,+∞). Hence, ‖φ(z)‖
H̃1(0,π)

≤c1(z), c1 continuous in (0,+∞).
Hence, we can finally state the following result.

Theorem 3.3. Assume λ > 0. Let φ0 = (φ0+, φ0−) ∈ H(C0) = H̃1(0, π) and
u0 its associated function such that φ0+(y) = u0(y, y), φ0−(y) = u0(y,−y),
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y ∈ (0, π)[. Then, there exists a unique function φ ∈ C((0,+∞); H̃1(0, π) such
that

φ(z) = Tz φ0 + Nz(φ), φ(0) = φ0, z ≥ 0,

and the associated function u(z, y) defined by

u(z + y, y) = φ+(z, y), u(z + y,−y) = φ−(z, y),

is a weak solution to the Goursat 2π-periodic (in y) problem for the equation
(3.3) in D = {(τ, y) / |y| ≤ τ ≤ z+ |y|, z ≥ 0, |y| ≤ π} and 2π−D translations
(with f replaced by f(ẑ, θ(ŷ)), where θ(ŷ) is the 2π-periodic extension of ŷ2

defined in [−π, π]). In addition, if φ0 ∈ C2([0, π]), then u is a classical solution
to the Goursat 2π-periodic (in y) problem for the equation (3.3) in the same
domain.
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