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Abstract. Let Ω ⊂ R
N (N ≥ 1) be a bounded and smooth domain and

a : Ω → R be a sign-changing weight satisfying
∫
Ω

a < 0. We prove the
existence of a positive solution uq for the problem

(Pa,q)

{ −Δu = a(x)uq in Ω,
∂u
∂ν

= 0 on ∂Ω,

if q0 < q < 1, for some q0 = q0(a) > 0. In doing so, we improve the
existence result previously established in Kaufmann et al. (J Differ Equ
263:4481–4502, 2017). In addition, we provide the asymptotic behavior of
uq as q → 1−. When Ω is a ball and a is radial, we give some explicit con-
ditions on q and a ensuring the existence of a positive solution of (Pa,q).
We also obtain some properties of the set of q’s such that (Pa,q) admits a
solution which is positive on Ω. Finally, we present some results on non-
negative solutions having dead cores. Our approach combines bifurcation
techniques, a priori bounds and the sub-supersolution method.
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1. Introduction

Let Ω be a bounded and smooth domain of R
N with N ≥ 1, and 0 < q < 1.

The purpose of this article is to discuss the existence of positive solutions for
the problem

(Pa,q)
{−Δu = a(x)uq in Ω,

∂u
∂ν = 0 on ∂Ω,

where Δ is the usual Laplacian in R
N , and ν is the outward unit normal to

∂Ω. Throughout this article, unless otherwise stated, we assume that r > N
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and a ∈ Lr (Ω) is such that

(H0) a changes sign and
∫

Ω

a < 0.

We set a± := max(±a, 0). Note that the change of sign in a means that
|supp a±| > 0, where |A| stands for the Lebesgue measure of A ⊂ R

N . By a
nonnegative solution of (Pa,q) we mean a function u ∈ W 2,r (Ω) (and hence u ∈
C1(Ω)) that satisfies the equation for the weak derivatives and the boundary
condition in the usual sense, and such that u ≥ 0 in Ω. If, in addition, u > 0
in Ω, then we call it a positive solution of (Pa,q). In this case, we shall also say
that (q, u) is a positive solution of (Pa,q). Let us denote by P◦ the interior of
the positive cone of C1(Ω), i.e.

P◦ :=
{
u ∈ C1(Ω) : u > 0 on Ω

}
.

We observe that a positive solution of (Pa,q) need not belong to P◦ (see e.g.
Remark 1.5 below).

Very few works have been devoted to (Pa,q), the first and main one being
[4], where the following results were established (see Theorem 2.1 and Lemmas
2.1 and 3.1 therein):

Theorem 1.0. (Bandle–Pozio–Tesei [4]) Let 0 < q < 1 and a be a sign-changing
Hölder continuous function on Ω. Then, the following three assertions hold:

(i) If (Pa,q) has a positive solution then
∫
Ω

a < 0.
(ii) If

∫
Ω

a < 0, then (Pa,q) has at least one nontrivial nonnegative solution.
(iii) (Pa,q) has at most one solution in P◦.

Denoting by Ω+ = Ω+(a) the largest open subset of Ω where a > 0 a.e.
let us consider the following two conditions:

(H1)Ω+ has finitely many connected components and
∣
∣(supp a+) \ Ω+

∣
∣ = 0,

(H+) ∂Ω+ satisfies the inner sphere condition with respect to Ω+.

Remark 1.1.

(i) One may easily see that Theorem 1.0 (i) and (iii) still hold if a ∈ Lr(Ω),
with r > N , cf. the proofs of [4, Lemma 2.1, and Lemma 3.1]. Moreover,
we deduce that so does Theorem 1.0 (ii), by using a variational approach
as the one in the proof of [16, Corollary 1.8].

(ii) If a is Hölder continuous, Ω+ has finitely many connected components
and (H+) holds, then [4, Theorem 3.1] shows, in particular, that (Pa,q)
has at most one nonnegative solution u such that u > 0 in Ω+. This result
can be extended to a ∈ Lr(Ω), r > N , with the same proof, assuming
now (H1) and (H+).

Let us mention that some of the above results were extended in [1] to a
problem that is a linear perturbation of (Pa,q). However, no sufficient condi-
tions for the existence of positive solutions have been provided in [1,4]. Let us
point out that, due to the non-Lipschitzian character of uq at u = 0 and the
change of sign in a, the strong maximum principle does not apply to (Pa,q).
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As a consequence, one cannot derive the positivity of nontrivial nonnegative
solutions of (Pa,q).

To the best of our knowledge, the first existence result on positive solu-
tions of (Pa,q) has been proved in our recent work [16]. We recall it now. Under
(H1), we showed that every nontrivial nonnegative solution of (Pa,q) belongs
to P◦ if q is close enough to 1 (see [16, Theorem 1.7]). This positivity result
was proved via a continuity argument inspired by [14, Theorem 4.1] (see also
[15]), which is based on the fact that the strong maximum principle applies
to (Pa,q) if q = 1. As a consequence, assuming in addition (H0), we deduced
that if q is close enough to 1 then (Pa,q) has a unique nontrivial nonnegative
solution, which belongs to P◦ (see [16, Corollary 1.8]). Let us mention that, in
general, uniqueness of nonnegative solutions for (Pa,q) does not hold (see e.g.
the proof of Theorem 1.4 (ii) below).

Regarding the Dirichlet counterpart of (Pa,q), we refer to [3,18] for the
existence of nontrivial nonnegative solutions, and to [10,11,13,16] for the exis-
tence of a positive solution. Finally, let us mention, as already pointed out in
[1,3,4], that problems like (Pa,q) and its Dirichlet counterpart naturally arise
in population dynamics models, cf. [12,17].

Our purpose in this article is to carry on the investigation of (Pa,q),
refining and extending the existence results on positive solutions established
in [16]. In particular, following a different approach to the one in [16], we shall
remove (H1) and prove that under (H0) the problem (Pa,q) has a solution
uq ∈ P◦ for q close to 1. As a byproduct, we deduce that (H0) is necessary and
sufficient for the existence of a positive solution of (Pa,q) for some q ∈ (0, 1),
see Corollary 1.3. Moreover, we shall provide the stability properties of uq

and its asymptotic behavior as q → 1− (see Theorem 1.2 below). Note that
the stability analysis for solutions in P◦ of (Pa,q) is not easily carried out for
q ∈ (0, 1) in general (see Remark 2.6 (ii)).

Under (H0), let us denote by μ1 (a) the first positive eigenvalue of the
problem

(Eμ,a)
{−Δφ = μa(x)φ in Ω,

∂φ
∂ν = 0 on ∂Ω,

and by φ1 = φ1(a) the associated positive eigenfunction satisfying
∫
Ω

φ2
1 = 1.

It is well known that μ1(a) is simple, and φ1 ∈ P◦.
We shall look at q as a bifurcation parameter in (Pa,q). As a matter of

fact, note that if μ1(a) = 1, then u = tφ1 solves (Pa,1), i.e. (Pa,q) has the
trivial line Γ1 of solutions in P◦, where

Γ1 := {(q, u) = (1, tφ1) : t > 0}.

We shall obtain, for q close to 1, a curve of solutions in P◦ bifurcating from
Γ1 (see Fig. 1).

Let us recall that a solution u ∈ P◦ of (Pa,q) is said to be asymptotically
stable (respect. unstable) if γ1(q, u) > 0 (respect. < 0), where γ1(q, u) is the
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Figure 1. Bifurcating solutions in P◦ from the trivial line
Γ1. a Case μ1(a) = 1, b Case μ1(a) > 1 and c Case μ1(a) < 1

first eigenvalue of the linearized eigenvalue problem at u, namely,
{−Δϕ = qa(x)uq−1ϕ + γϕ in Ω,

∂ϕ
∂ν = 0 on ∂Ω.

In addition, u is said to be weakly stable if γ1(q, u) ≥ 0.
Set

t∗ := exp
[

−
∫
Ω

a (x)φ2
1 log φ1∫

Ω
a (x) φ2

1

]

. (1.1)

We are now in position to state our main results.

Theorem 1.2. Assume (H0). Then there exists q0 = q0 (a) ∈ (0, 1) such that
(Pa,q) has a solution uq ∈ P◦ for q0 < q < 1. Moreover, uq is asymptotically
stable and satisfies the asymptotics

uq ∼ μ1(a)− 1
1−q t∗φ1 as q → 1−,

i.e. μ1(a)
1

1−q uq → t∗φ1 in C1(Ω) as q → 1−. More specifically:
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(i) If μ1(a) = 1, then uq → t∗φ1 in C1(Ω) as q → 1−.
(ii) If μ1(a) > 1, then uq → 0 in C1(Ω) as q → 1−.
(iii) If μ1(a) < 1, then min

Ω
uq → ∞ as q → 1−.

As a consequence of Theorem 1.0 (i) (see Remark 1.1 (i)) and Theorem
1.2, we derive the following:

Corollary 1.3. (Pa,q) has a positive solution (or a solution in P◦) for some
q ∈ (0, 1) if and only if (H0) holds.

We shall prove Theorem 1.2 using a bifurcation technique based on the
Lyapunov–Schmidt reduction, which yields the existence of bifurcating solu-
tions in P◦ from Γ1 provided that μ1(a) = 1. By a suitable rescaling, we deduce
then the results for the case μ1(a) �= 1. Let us also point out that, in general,
it is hard to give a lower estimate for q0 (a), see Remark 1.5 below.

Now, our next results concern the sets

A = Aa:={q∈(0, 1) : any nontrivial nonnegative solution of (Pa,q) lies in P◦}
and

I = Ia := {q ∈ (0, 1) : (Pa,q) has a solution u ∈ P◦}.

We observe that if (H0) holds then (Pa,q) has a nontrivial nonnegative solution
for any 0 < q < 1 (see e.g. the proof of [16, Corollary 1.8]), so that A ⊆ I. In
[16, Theorem 1.9], we proved, under (H0) and (H1), that A = (qa, 1) for some
qa ∈ [0, 1).

Let us now introduce a stronger assumption than (H1):

(H ′
1) Ω+ is connected and

∣
∣(supp a+) \ Ω+

∣
∣ = 0.

Note that (H ′
1) corresponds to (H1) with Ω+ consisting of a single connected

component.
We shall complement [16, Theorem 1.9] as follows:

Theorem 1.4.

(i) If (H0) holds then I = (qi, 1) for some qi ∈ [0, 1). Moreover, if (H ′
1)

and (H+) hold, then for all q ∈ (0, 1), there exists a unique nontrivial
nonnegative solution of (Pa,q). In particular, I = A.

(ii) There exists a ∈ C(Ω) such that Aa � Ia. More precisely, given Ω :=
(x0, x1) ⊂ R and q ∈ (0, 1), there exists a ∈ C(Ω) such that q ∈ Ia \ Aa.

Remark 1.5. As a consequence of Theorem 1.4 (i), it follows that, given q ∈
(0, 1), there exists a ∈ C(Ω) such that q �∈ Ia. Indeed, let q ∈ (0, 1), and define
Ω := (0, π),

r :=
2

1 − q
∈ (2,∞) , and a (x) := r1− 2

r

(
1 − r cos2 x

)
for x ∈ Ω.

One can check that u (x) := sinr x
r is a (strictly positive in Ω) solution of

{−u′′ = a(x)uq in Ω,
u′ = 0 on ∂Ω.
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It follows that q �∈ Aa because u �∈ P◦. Now, since a satisfies (H ′
1) and (H+),

we deduce from Theorem 1.4 (i) that u is the unique nontrivial nonnegative
solution of (Pa,q), and Ia = Aa. Consequently, we have q �∈ Ia.

When Ω is a ball and a is radial, we shall exhibit some explicit conditions
on q and a so that (Pa,q) admits a positive solution. This will be done via
the well known sub-supersolutions method. In Theorem 1.6 below we give a
condition that guarantees the existence of a positive solution (not necessarily
in P◦), while Theorem 1.8 provides us with a solution in P◦.

Given 0 < R0 < R, we write

BR0 :=
{
x ∈ R

N : |x| < R0

}
,

AR0,R :=
{
x ∈ R

N : R0 < |x| < R
}

,

ωN−1 := surface area of the unit sphere ∂B1 in R
N .

If f is a radial function, we write (with a slight abuse of notation) f (x) :=
f (|x|) := f (r). We first consider the case that supp a+ is contained in BR0

for some R0 ∈ (0, R).

Theorem 1.6. Let Ω := BR and a ∈ L∞ (Ω) be a radial function such that∫
Ω

a < 0. Assume that there exists R0 > 0 such that:

• a ≥ 0 in BR0 ;
• a ≤ 0 in AR0,R;
• r → a(r) is differentiable and nonincreasing in (R0, R), and

1 − q

1 + q

∫

AR0,R

a− ≤
∫

BR0

a+. (1.2)

Then (Pa,q) has a positive solution.

Remark 1.7. The condition (1.2) can also be formulated as

− ∫
Ω

a
∫
Ω

|a| ≤ q < 1. (1.3)

In particular, we see that (1.2) is satisfied if q is close enough to 1. Note that
if we replace a by

aδ = a+ − δa−, with δ > δ0 :=

∫
Ω

a+

∫
Ω

a− ,

then the left-hand side in (1.3) approaches 1 as δ → ∞, so that this condition
becomes very restrictive for aδ as δ → ∞. On the other side, we have that∫
Ω

aδ → 0− as δ → δ+
0 , so that (1.3) becomes much less constraining for aδ as

δ → δ+
0 . A similar argument will be used in Remark 4.5.

Next we consider the case that supp a− is contained in BR0 for some
R0 ∈ (0, R).
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Theorem 1.8. Let Ω := BR and a ∈ L∞ (Ω) be a radial function such that∫
Ω

a < 0. Assume that there exists R0 ∈ (0, R) such that a ≥ 0 in AR0,R, and

1 − q

2q + N (1 − q)
ωN−1R

N
0

∥
∥a−∥

∥
L∞(BR0 )

<

∫

AR0,R

a+. (1.4)

Then (Pa,q) has a solution u ∈ P◦.

Remark 1.9. Observe that unlike in Theorem 1.6, no differentiability nor mono-
tonicity condition is imposed on a− in Theorem 1.8. Note again that (1.4) is
also clearly satisfied if q is close enough to 1.

Finally, we shall investigate the existence of nonnegative dead core solu-
tions of (Pa,q). Following [3,4], the set {x ∈ Ω : u(x) = 0} is called the dead
core of a nontrivial nonnegative solution u of (Pa,q). Let us mention that in
the proof of Theorem 1.4 (ii) we shall see that, when N = 1, for any q ∈ (0, 1)
there exists a with (Pa,q) admitting a solution in P◦ and also nonnegative
solutions with nonempty dead cores.

Indeed, we give some sufficient conditions for the existence of dead core
solutions of (Pa,q). We introduce the following condition:

(H2) b1∈L∞(Ω), b2 ∈ C(Ω), b1, b2 ≥ 0 and supp b1 ∩ {x ∈ Ω : b2(x) > 0} = ∅.

Given a nonempty open subset G ⊆ Ω and σ > 0, we set

Gσ := {x ∈ G : dist(x, ∂G) > σ}. (1.5)

We call the set Ω \ Ωσ a tubular neighborhood of ∂Ω.

Theorem 1.10.

(i) Let q ∈ (0, 1), and assume that (H ′
1) holds and Ω+ contains a tubular

neighborhood of ∂Ω. Then, every nontrivial nonnegative solution of (Pa,q)
is positive on ∂Ω. In particular, if u is a nontrivial nonnegative solution
of (Pa,q), then either u ∈ P◦ or u has a nonempty dead core.

(ii) Let aδ := b1 − δb2, with b1, b2 �≡ 0 satisfying (H2), and δ > 0. If we set
G := {x ∈ Ω : b2(x) > 0} then, given 0 < q < 1 and σ > 0, there exists
δ0 = δ0(σ, q) > 0 such that any nontrivial nonnegative solution of (Paδ,q)
with q ∈ (0, q] vanishes in Gσ if δ ≥ δ0.

The rest of the paper is organized as follows: in Sect. 2 we establish
some bifurcation results and stability properties for solutions in P◦ of (Pa,q),
whereas Sect. 3 is devoted to the proof of Theorems 1.2, 1.6 and 1.8. In Sect. 4
we prove Theorem 1.4 and some corollaries of it. Finally, Sect. 5 is concerned
with the existence of dead core solutions and the proof of Theorem 1.10.

2. Bifurcation analysis

This section is devoted to the bifurcation analysis of (Pa,q), where q is the
bifurcation parameter. First we establish, under (H0) and (H1), some a priori
bounds for nontrivial nonnegative solutions of (Pa,q), which imply that no
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Figure 2. A bifurcation curve of the unique nontrivial non-
negative solution when μ1(a) = 1, conditions (H ′

1), (H+) hold,
and Ω+ contains a tubular neighborhood of ∂Ω. Here the full
curve represents solutions in P◦, whereas the dotted curve
represents dead core solutions

nontrivial nonnegative solutions bifurcate from zero or from infinity at any q ∈
[0, 1). More precisely, we shall see that given q ∈ [0, 1) there exists no sequence
{qn} ⊂ (0, 1) such that qn → q and (Pa,qn

) has a nontrivial nonnegative
solution un satisfying un → 0 in C(Ω) or ‖un‖∞ → ∞.

Proposition 2.1.

(i) Assume (H1). Then, given q1 ∈ (0, 1), there exists C > 1 such that
‖u‖L∞(Ω) > C−1 for all nontrivial nonnegative solutions of (Pa,q) with
q ∈ (0, q1].

(ii) Assume (H0). Then, given q1 ∈ (0, 1), there exists C > 1 such that
‖u‖L∞(Ω) < C for all nontrivial nonnegative solutions of (Pa,q) with
q ∈ (0, q1].

Proof.

(i) First we obtain an a priori bound from below. Assume by contradiction
that there exist 0 < qn ≤ q < 1 and un nontrivial nonnegative solutions
of (Pa,qn

) such that un → 0 in C(Ω). Then, thanks to (H1), we may
assume that un �≡ 0 in some fixed subdomain Ω′ ⊂ Ω+. By the strong
maximum principle, we deduce that un > 0 in Ω′.
We fix c > 0 sufficiently large such that λ1(ca,Ω′) < 1, where λ1(m,Ω)
denotes the first positive eigenvalue of the Dirichlet problem

{−Δφ = λm (x) φ in Ω,
φ = 0 on ∂Ω,

and observe that vn := c
1

1−qn un are nontrivial nonnegative solutions of
(Pca,qn

). We now apply [16, Lemma 2.5] to get a ball B ⊂ Ω′ and a
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positive function ψ in B such that

vn = c
1

1−qn un ≥ ψ in B,

where ψ and B do not depend on n. It follows that un ≥ c− 1
1−qn ψ in B,

which provides a contradiction, since qn ≤ q < 1.

(ii) We obtain now an a priori bound from above. Assume to the contrary
that there exist 0 < qn ≤ q < 1 and un nontrivial nonnegative solutions
of (Pa,qn

) such that ‖un‖ := ‖un‖H1(Ω) → ∞. We set vn := un

‖un‖ , so
that we may assume that vn ⇀ v0 in H1(Ω) and vn → v0 in Ls(Ω) for
s ∈ [1, 2∗). From (Pa,qn

) we have that
∫

Ω

|∇vn|2 =
(∫

Ω

a(x)vqn+1
n

)

‖un‖qn−1.

Since qn ≤ q < 1, it follows that
∫
Ω

|∇vn|2 → 0. Hence, we deduce
that vn → v0 in H1(Ω), and v0 is a positive constant. Finally, since∫
Ω

a(x)vqn+1
n > 0 we derive that

∫
Ω

a ≥ 0, which contradicts (H0). By
elliptic regularity, we have the desired conclusion. �
In view of Proposition 2.1, we see that, under (H0) and (H1), bifurcation

from zero or from infinity can only occur at q = 1. As already mentioned,
we shall look at q as a bifurcation parameter in (Pa,q), and then seek for
bifurcating solutions in P◦ from the trivial line Γ1 = {(1, tφ1) : t > 0} when
μ1(a) = 1. To this end, we employ the Lyapunov–Schmidt reduction for (Pa,q),
based on the positive eigenfunction φ1. We set

A := −Δ − a(x) and D(A) = W 2,r
N (Ω) :=

{

u ∈ W 2,r(Ω) :
∂u

∂ν
= 0 on ∂Ω

}

.

The usual decomposition of D(A) is given by the formula

D(A) = KerA + X2; u = tφ1 + w,

where t =
∫
Ω

uφ1, and w = u − (
∫
Ω

uφ1)φ1. So, X2 is characterized as

X2 =
{

w ∈ W 2,r
N (Ω) :

∫

Ω

wφ1 = 0
}

.

On the other hand, put Y := Lr(Ω) = Y1 + R(A), where

R(A) :=
{

f ∈ Lr(Ω) :
∫

Ω

fφ1 = 0
}

,

and

Y1 = 〈φ1〉 := {sφ1 : s ∈ R}.

Let Q be the projection of Y to R(A), given by

Q[f ] := f −
(∫

Ω

fφ1

)

φ1.

We reduce (Pa,q) to the following coupled equations:

Q[Au] = Q[a (x) (uq − u)],



12 Page 10 of 34 U. Kaufmann, H. Ramos Quoirin and K. Umezu NoDEA

(1 − Q)[Au] = (1 − Q)[a (x) (uq − u)].

The first equation yields

− Δw − a(x)w = Q[a (x) {(tφ1 + w)q − (tφ1 + w)}], (2.1)

where we have used the fact that
∫
Ω

Auφ1 =
∫
Ω

uAφ1 = 0. The second equation
implies that

0 = (1 − Q)[a (x) (uq − u)]

=
(∫

Ω

a(x) {(tφ1 + w)q − (tφ1 + w)} φ1

)

φ1,

and thus, that

0 =
∫

Ω

a(x) {(tφ1 + w)q − (tφ1 + w)} φ1. (2.2)

Now, we see that (q, t, w) = (1, t, 0) satisfies (2.1) and (2.2) for any t > 0.
So, first we solve (2.1) with respect to w, around (q, t, w) = (1, t0, 0) for a fixed
t0 > 0. To this end, we introduce the mapping F : (1 − δ, 1 + δ) × (t0 − d, t0 +
d) × Bρ(0) → R(A) given by

F (q, t, w) := −Δw − a (x) w − Q[a (x) {(tφ1 + w)q − (tφ1 + w)}],

where Bρ(w) is the ball in X2 centered at w and with radius ρ > 0. It is clear
that F (1, t0, 0) = 0. Moreover, the Fréchet derivative Fw(q, t, w) : X2 → R(A)
is given by

Fw(q, t, w)ϕ = −Δϕ − a (x)ϕ − Q[a (x) (q(tφ1 + w)q−1 − 1)ϕ].

We see that Fw(1, t0, 0)ϕ = −Δϕ − a (x) ϕ. Hence,

Fw(1, t0, 0)ϕ = 0 ⇐⇒ ϕ = cφ1 for some c > 0.

Since ϕ ∈ X2, it follows that
∫
Ω
(cφ1)φ1 = 0, and thus c = 0. This means that

Fw(1, t0, 0) is injective. It is also surjective from the fact that
∫
Ω

fφ1 = 0 if
and only if there exists ϕ such that

{−Δϕ − a(x)ϕ = f in Ω,
∂ϕ
∂ν = 0 on ∂Ω.

Since Fw(1, t0, 0) is continuous, from the bounded inverse theorem we infer that
Fw(1, t0, 0) is an isomorphism. Hence, the implicit function theorem applies,
and consequently, we have

F (q, t, w) = 0, (q, t, w) � (1, t0, 0)

⇐⇒ w = w(q, t), (q, t) � (1, t0) such that w(1, t0) = 0.

We plug w(q, t) into (2.2) to get the following bifurcation equation in R
2:

Φ(q, t) :=
∫

Ω

a(x){(tφ1 + w(q, t))q − (tφ1 + w(q, t)}φ1 = 0, (q, t) � (1, t0).

We are now in position to prove the following result:
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Theorem 2.2. Assume (H0). If μ1(a) = 1, then the following assertions hold:
(i) Assume that (qn, un) ∈ (0, 1) × P◦ are solutions of (Pa,qn

) such that
(qn, un) → (1, tφ1) ∈ Γ1 in R × W 2,r(Ω) for some t > 0. Then, we have
t = t∗, where t∗ is given by (1.1).

(ii) The set of positive solutions of (Pa,q) consists of Γ1∪Γ2 in a neighborhood
of (q, u) = (1, t∗φ1) in R × W 2,r(Ω), where

Γ2 := {(q, t(q)φ1 + w(q, t(q))) : |q − 1| < δ∗} for some δ∗ > 0.

Here t(q) and w(q, t(q)) are smooth with respect to q and satisfy t(1) = t∗
and w(1, t∗) = 0.

Proof. Let us first verify assertion (i). Since (qn, un) → (1, tφ1) in R×W 2,r(Ω)
for some t > 0, we have Φq(1, t) = 0 by the implicit function theorem. By direct
computations, we get

Φq(q, t) =
∫

Ω

a (x)
[

(tφ1 + w)q

{

log(tφ1 + w) +
qwq

tφ1 + w

}

− wq

]

φ1. (2.3)

Putting q = 1 and using that w(1, t) = 0, we find that

Φq(1, t) =
∫

Ω

a (x)
[

(tφ1)
{

log(tφ1) +
wq(1, t)

tφ1

}

− wq(1, t)
]

φ1

= t

∫

Ω

a (x) φ2
1 log(tφ1) (2.4)

= t

{

(log t)
∫

Ω

a (x) φ2
1 +

∫

Ω

a (x)φ2
1 log φ1

}

.

Thus

t = t∗ := exp
[

−
∫
Ω

a (x) φ2
1 log φ1∫

Ω
a (x) φ2

1

]

,

as claimed in assertion (i).
Next, we verify assertion (ii). To this end, we use the fact that the

map (q, t) �→ N(q, t) = tq is analytic around (q, t) = (1, t∗), and apply the
implicit function theorem. We consider partial derivatives of Φ, and check
that ∂kΦ

∂tk (1, t) = 0 and Φqt(1, t∗) > 0. In fact, the case k = 1 is straightforward
since Γ1 is a trivial line of solutions of (Pa,q). Moreover, for k ≥ 2, we have
that
∂kΦ
∂tk

(q, t) = (q − 1)Φk(q, t) +
∫

Ω

a(x)
{

q(tφ1 + w)q−1 ∂kw

∂tk
(q, t) − ∂kw

∂tk
(q, t)

}

φ1

for some continuous function Φk of (q, t) at (1, t), so that ∂kΦ
∂tk (1, t) = 0 for all

k ∈ N and t > 0. Since (q, t) �→ tq = exp[q log t] is analytic at (q, t) = (1, t), for
any t > 0, a regularity result for the implicit function theorem (see e.g. [19])
ensures that so is w(q, t) around (1, t∗), and thus so is Φ(q, t). Combining this
result with the fact that ∂kΦ

∂tk (1, t) = 0 for all k ∈ N, we deduce that Φ(q, t) is
given around (1, t∗) by

Φ(q, t) = (q − 1)Φ̂(q, t), where



12 Page 12 of 34 U. Kaufmann, H. Ramos Quoirin and K. Umezu NoDEA

Φ̂(q, t) =
1
2
Φqq(1, t∗)(q − 1) + Φqt(1, t∗)(t − t∗)

+ higher order terms w.r.t. (q − 1) and (t − t∗).

Therefore, applying the implicit function theorem to Φ̂(q, t) at (1, t∗), we infer
that the set Φ(q, t) = 0 around (1, t∗) is given completely by

q = 1, and t = t(q) with t(1) = t∗,

provided that Φqt(1, t∗) �= 0, and thus, the desired conclusion follows.
It remains to check that Φqt(1, t∗) > 0: by a direct computation from

(2.3), we observe that

Φqt =
∫

Ω

a (x)
[

q(tφ1 + w)q−1(φ1 + wt)
{

log(tφ1 + w) +
qwq

tφ1 + w

}

+(tφ1 + w)q

{
φ1 + wt

tφ1 + w
+

qwqt(tφ1 + w) − qwq(φ1 + wt)
(tφ1 + w)2

}

− wqt

]

φ1.

Letting q = 1, it follows that

Φqt(1, t) =
∫

Ω

a (x) [(φ1 + wt(1, t)) log(tφ1) + (φ1 + wt(1, t))]φ1. (2.5)

We differentiate (2.1) with respect to t, and we obtain that

−Δwt − a (x) wt = Q[a (x) {q(tφ1 + w)q−1(φ1 + wt) − (φ1 + wt)}].

Letting q = 1 again, we deduce that

−Δwt(1, t) − a (x)wt(1, t) = 0, and wt(1, t) ∈ X2.

Hence, wt(1, t) = 0, and thus, it follows from (2.5) that

Φqt(1, t) =
∫

Ω

a (x) [φ1 log(tφ1) + φ1]φ1

=
∫

Ω

a (x) φ2 log(tφ1) +
∫

Ω

a (x)φ2
1

When t = t∗, we know that
∫
Ω

a (x)φ2 log(t∗φ1) = 0 from (2.4), so that

Φqt(1, t∗) =
∫

Ω

a (x) φ2
1 > 0,

as desired. �

Next, as we did for q < 1 close to 1, we show that the Lyapunov–Schmidt
reduction is useful for the case q > 0 close to 0. Indeed, we exhibit how to
construct a such that (Pa,q) possesses a solution in P◦ for q > 0 arbitrarily
close to 0. Consider the problem

(Pa,0)
{−Δu = a(x) in Ω,

∂u
∂ν = 0 on ∂Ω.

It is easy to check that (Pa,0) has a solution if and only if
∫
Ω

a = 0, in which
case all solutions are of the form u + c, where c is any constant and u is a
particular solution.
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Assume now that a �≡ 0 and
∫
Ω

a = 0 (in particular, a changes sign). We
set X := {u ∈ W 2,r(Ω) : ∂u

∂ν = 0 on ∂Ω}, and write X = 〈1〉 + X2, where 〈1〉
is the set of constant functions and X2 := {w ∈ W 2,r(Ω) :

∫
Ω

w = 0}. Let w0

be the unique solution of (Pa,0) such that w0 ∈ X2, and t0 > 0 be such that
u0 = t0 + w0 > 0 on Ω. Then u0 ∈ P◦ solves (Pa,0).

Given ε, δ > 0 and q ∈ (−δ, δ), we consider the following perturbation of
(Pa,0):

(Pa−ε,q)
{−Δu = (a(x) − ε)uq in Ω,

∂u
∂ν = 0 on ∂Ω.

Note that if ε is sufficiently small, then a−ε changes sign, and
∫
Ω
(a(x)−ε) < 0.

Note also that (Pa−ε,q) admits (q, ε, u) = (0, 0, t0 +w0) as a solution. Our aim
is to look for positive solutions of (Pa−ε,q) in a neighborhood of (0, 0, t0 +w0).
Let Y2 := {f ∈ Lr(Ω) :

∫
Ω

f = 0} and Q be the usual projection of Lr(Ω) to
Y2, given by Q[f ] := f − 1

|Ω|
∫
Ω

f . Following the Lyapunov–Schmidt approach
already used in Theorem 2.2, we reduce (Pa−ε,q) to the following coupled
equations

Q[−Δu] = Q[(a − ε)uq], (2.6)

(1 − Q)[−Δu] = (1 − Q)[(a − ε)uq]. (2.7)

Associated with (2.6), we define the mapping

F : (−δ0, δ0) × (−ε0, ε0) × (t0 − d0, t0 + d0) × Bρ0(w0) → Y2

by

F (q, ε, t, w) := −Δw − Q[(a − ε)(t + w)q],

where Bρ0(w0) is the ball in X2 with center w0 and radius ρ0. We note that
F (0, 0, t0, w0) = 0, since Q[a] = a. The Fréchet derivative Fw(q, ε, t, w) : X2 →
Y2 is given by

Fw(q, ε, t, w)ϕ = −Δϕ − Q[(a − ε)q(t + w)q−1ϕ].

Taking (q, ε, t, w) = (0, 0, t0, w0), we see that Fw(0, 0, t0, w0)ϕ = −Δϕ, so
that Fw(0, 0, t0, w0) is bijective, and the implicit function theorem applies.
Consequently, we have

F (q, ε, t, w) = 0, (q, ε, t, w) � (0, 0, t0, w0)

⇐⇒ w = w(q, ε, t), (q, ε, t) � (0, 0, t0) with w(0, 0, t0) = w0.

Using w(q, ε, t), we derive from (2.7) the equation

Ψ(q, ε, t) :=
∫

Ω

(a(x) − ε)(t + w(q, ε, t))q = 0 in R
3.

Note that Ψ(0, 0, t0) = 0. We prove now the following result:

Proposition 2.3. Given ε > 0 sufficiently small, there exists qε > 0 such that
uε = t0 + w(qε, ε, t0) > 0 on Ω, and Ψ(qε, ε, t0) = 0. Moreover, qε → 0+ as
ε → 0+. Consequently, uε ∈ P◦ is a solution of (Pa−ε,qε

).
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Proof. We apply the implicit function theorem for Ψ at (0, 0, t0). We observe
that

∂Ψ
∂q

=
∫

Ω

(a(x) − ε)(t + w)q

{

log(t + w) +
q

t + w

∂w

∂q

}

,

and therefore
∂Ψ
∂q

(0, 0, t0) =
∫

Ω

a(x) log u0.

Since u0 is a solution in P◦ of (Pa,0), we see that

0 <

∫

Ω

|∇u0|2
u0

=
∫

Ω

−Δu0 log u0 =
∫

Ω

a(x) log u0,

which implies that ∂Ψ
∂q (0, 0, t0) > 0. Hence, the implicit function theorem

ensures that

Ψ(q, ε, t) = 0, (q, ε, t) � (0, 0, t0) ⇔ q

= q(ε, t), (ε, t) � (0, t0) with q(0, t0) = 0.

Next we show that ∂q
∂ε (0, t0) > 0. To this end, we differentiate Ψ with

respect to ε, obtaining that

∂Ψ
∂ε

=
∫

Ω

{

−(t + w)q + (a(x) − ε)q(t + w)q−1 ∂w

∂ε

}

,

and so
∂Ψ
∂ε

(0, 0, t0) = −|Ω| < 0.

It follows that

∂q

∂ε
(0, t0) = −

∂Ψ
∂ε (0, 0, t0)
∂Ψ
∂q (0, 0, t0)

=
|Ω|

∫
a(x) log u0

> 0.

Using the mean value theorem, we deduce that for ε > 0 small enough,

q(ε, t0) = q(0, t0) +
∂q

∂ε
(θε, t0)ε > 0,

for some 0 < θ < 1. Thus

q(ε, t0) → q(0, t0) = 0 as ε → 0+,

as desired. �

Remark 2.4. Let us analyze the asymptotic behavior of nontrivial nonnegative
solutions of (Pa,q) as q → 0+ under (H0) and (H1). From Proposition 2.1, we
know that bifurcation from zero or from infinity does not occur as q → 0+.
It is thus natural to investigate the limit of a sequence {un} of nontrivial
nonnegative solutions of (Pa,qn

) with qn → 0+. Since {un} is bounded in
L∞(Ω), it follows, by elliptic regularity, that up to a subsequence, un → u0 in
C1(Ω) with u0 �≡ 0. We point out that u0 must vanish in a nonempty subset



NoDEA Positive solutions of an elliptic Neumann problem Page 15 of 34 12

of Ω with positive measure (in other words, u0 has a nonempty dead core).
Indeed, if u0 > 0 a.e. in Ω, then, passing to the limit, we have that

∫

Ω

∇u0∇v =
∫

Ω

a(x)v, ∀v ∈ C1(Ω),

i.e. u0 is a positive solution of (Pa,0). Integrating this equation, we deduce that∫
Ω

a = 0, which is a contradiction.

2.1. Stability properties

We conclude this section discussing the stability of the bifurcating positive
solutions provided by Theorem 2.2 (ii).

Proposition 2.5. Assume (H0). If μ1(a) = 1, then the bifurcating positive solu-
tion u(q) = t(q)φ1 + w(q, t(q)) given by Theorem 2.2 (ii) is asymptotically
stable (respect. unstable) for q < 1 (respect. q > 1).

Proof. Consider

− Δϕ1(q) = qa(x)u(q)q−1ϕ1(q) + γ1(q)ϕ1(q), (2.8)

where γ1(q) := γ1(q, u(q)), and ϕ1(q) is a positive eigenfunction associated to
γ1(q). We see that γ1(1) = 0 and ϕ1(1) = φ1. To analyse γ1(q) for q �= 1, we
differentiate (2.8) with respect to q, to obtain that

−Δϕ′
1 = a (x) uq−1ϕ1 + qa(x)uq−1

(

log u + (q − 1)
u′

u

)

ϕ1 + qa(x)uq−1ϕ′
1

+ γ′
1ϕ + γ1ϕ

′
1.

Letting q = 1 here, it follows that

Aϕ′
1(1) = γ′

1(1)φ1 + a(x){φ1 + φ1 log(t∗φ1)},

and thus, by the divergence theorem,

0 =
∫

Ω

Aϕ′
1(1)φ1 − ϕ′

1(1)Aφ1 = γ′
1(1) +

∫

Ω

a(x) (φ1 + φ1 log(t∗φ1)) φ1.

Since
∫
Ω

a(x)φ2
1 log(t∗φ1) = 0, we obtain that

γ′
1(1) = −

∫

Ω

a(x)φ2
1 < 0.

The desired conclusion follows from the fact that γ1(1) = 0. �

Remark 2.6.

(i) The stability result of Proposition 2.5 also follows from [5, Theorem 1].
Even though this result assumes a to be smooth and the nonlinearity
to be C2 at 0, one may easily see that under our assumptions it also
applies to solutions of (Pa,q) in P◦. More generally, it shows that any
such solution is asymptotically stable for every 0 < q < 1.
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(ii) When q > 1, we can deduce (by a well known approach) that every
solution u ∈ P◦ of (Pa,q) is unstable. Indeed, linearizing (Pa,q) at u we
obtain −Δϕ = qa(x)uq−1ϕ + γϕ. The divergence theorem yields that

0 >

∫

Ω

u

ϕ1

∑

j

∂

∂xj

(

ϕ2
1

∂

∂xj

(
u

ϕ1

))

= (q − 1)
∫

Ω

a(x)uq+1 + γ1

∫

Ω

u2,

where γ1 = γ1(q) and ϕ1 = ϕ1(q). Hence, we obtain

γ1 <
(1 − q)

∫
Ω

a(x)uq+1

∫
Ω

u2
< 0.

3. Proofs of Theorems 1.2, 1.6 and 1.8

Proof of Theorem 1.2: Let us first observe that by Theorem 2.2, there exists
q0 = q0(a) < 1 such that (Pa,q) has a solution uq ∈ P◦ for q0 < q < 1.
Moreover, the proof of [4, Lemma 3.1] can be adapted to our setting, so that
(Pa,q) has no other positive solution for q0 < q < 1. We consider now the
asymptotic behavior of uq as q → 1−. Assertion (i) is a direct consequence of
Theorem 2.2 (ii) and elliptic regularity.

Assume now that μ1 = μ1(a) �= 1 and set v := μ
1

1−q

1 u. Note that if u
solves (Pa,q) then v solves (Pã,q), where ã := μ1a. Indeed,

−Δv = μ
1

1−q

1 a (x) uq = μ1a (x) vq = ã (x) vq.

Moreover, we easily see that μ1(ã) = 1. By item (i), we get a positive solution
vq of (Pã,q) such that vq → t∗(ã)φ1(ã), where φ1(ã) is a positive eigenfunction
of (E1,ã), which is nothing but (Eμ1,a), i.e. φ1(ã) = φ1(a) and t∗(ã) = t∗(a) .

In this way, we obtain a positive solution uq = μ
1

q−1
1 vq of (Pa,q) for q close to

1. In particular, we see that if μ1 > 1 then μ
1

q−1
1 → 0, so that uq → 0 in C1(Ω)

as q → 1−. On the other hand, if μ1 < 1, then μ
1

q−1
1 → ∞, so that min

Ω
uq → ∞

when q → 1−.
Finally, the asymptotic stability of uq is a direct consequence of Propo-

sition 2.5. �

When proving Theorems 1.6, 1.8 and 1.4, we shall repeatedly use the
following remark:

Remark 3.1.

(i) Since (Pa,q) is homogeneous, we see that (Pa,q) has a nonnegative
(respect. positive) solution if and only if, for any σ > 0 fixed, (Pσa,q)
has a nonnegative (respect. positive) solution.

(ii) Lemma 2.4 in [4] (which is proved using Proposition 2.1 therein) gives
the existence of arbitrarily large supersolutions of (Pa,q) provided that∫
Ω

a < 0. Although it is assumed that a is Hölder continuous in [4], one
can see that Lemma 2.4 and Proposition 2.1 still hold (with the same
proof) if a ∈ L∞(Ω).
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Proof of Theorem 1.6: We proceed in several steps. By Remark 3.1, it is
enough to provide a positive (in Ω) weak subsolution for (Pb,q), where b := γa
and γ := 1/ (1 − q). Observe that γq = γ − 1. We note also that, since∫

BR
a < 0, it holds that R0 < R. Let us first define

C :=
1 − q

1 + q
,

w (r) := C

∫ R

r

1
tN−1

∫ R

t

a− (y) yN−1 dy dt := Cφ (r) , r ∈ [R0, R] .

Then, w (R) = w′ (R) = 0 and w (r) > 0 for all r ∈ [R0, R). Also, a few
computations show that

φ′′ +
N − 1

r
φ′ = a− (r) . (3.1)

Let now z (r) := wγ (r). We claim that

− Δz ≤ γa (x) zq a.e. in AR0,R. (3.2)

Indeed, since z is radial, there holds

Δz = z′′ +
N − 1

r
z′

= γ (γ − 1) wγ−2 (w′)2 + γwγ−1w′′ +
γ (N − 1)

r
wγ−1w′,

and also

−γa (r) zq ≤ γa− (r) wγq = γa− (r) wγ−1.

Thus, in order to prove the claim it is enough to verify that

(γ − 1)
(w′)2

w
+ w′′ +

N − 1
r

w′ ≥ a− (r) .

Now, taking into account (3.1) and that w = Cφ, the above inequality is
equivalent to

F (r) := (γ − 1) (φ′)2 ≥
(

1
C

− 1
)

a− (r) φ := G (r) . (3.3)

We observe next that F (R) = G (R) = 0 and F ′ (r) ≤ 0 for all r ∈ [R0, R]
(recall that φ′ ≤ 0). So, in order to check (3.3) it suffices to see that F ′ (r) ≤
G′ (r) for such r. Now,

F ′ (r) = 2 (γ − 1) φ′φ′′,

G′ (r) =
(

1
C

− 1
) ((

a− (r)
)′

φ + a− (r) φ′
)

≥
(

1
C

− 1
)

a− (r) φ′,

where we used the fact that a is differentiable and nonincreasing in AR0,R.
Therefore, F ′ (r) ≤ G′ (r) provided that

2 (γ − 1) φ′φ′′ ≤
(

1
C

− 1
)

a− (r) φ′,
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i.e.

2 (γ − 1)
(

−N − 1
r

φ′ + a− (r)
)

≥
(

1
C

− 1
)

a− (r) . (3.4)

But (3.4) holds by our election of C. Indeed, since φ′ ≤ 0, one only has to
observe that 2 (γ − 1) = 1

C − 1.
On the other side, let v be a solution of

{−Δv = γa (x) vq in BR0 ,
v = z (R0) on ∂BR0 .

(3.5)

Such v can be easily constructed by the sub and supersolutions method, since
a ≥ 0 in BR0 . Moreover, v is radial. Indeed, this follows from either the fact
that the sub and supersolutions can be chosen radial, or because the solution
of (3.5) is unique (cf. [7]) and v (Sx) is also a solution if S is an isometry of
R

N . Furthermore, it is also easy to check that r → v(r) is nonincreasing in
(0, R0) because a ≥ 0 in BR0 . Hence, by the divergence theorem (as stated e.g.
in [6], p. 742),

v′ (R0) ωN−1R
N−1
0 =

∫

BR0

Δv = −
∫

BR0

γavq

≤ −γvq (R0)
∫

BR0

a = −γwγq (R0)
∫

BR0

a. (3.6)

On the other hand, recalling that γ − 1 = γq, we obtain that

z′ (R0) = γwγ−1 (R0) w′ (R0) = −γwγq (R0)
C

RN−1
0

∫ R

R0

a− (y) yN−1 dy

and so

z′ (R0) ωN−1R
N−1
0 = −γwγq (R0) CωN−1

∫ R

R0

a− (y) yN−1 dy

= −γwγq (R0) C

∫

AR0

a−. (3.7)

Next we observe that v′ (R0) ≤ z′ (R0). Indeed, taking into account (3.6), (3.7)
and the definition of C, we see that this is true by (1.2).

To conclude the existence assertion, we define u := z in AR0,R and u := v

in BR0 . Then u ∈ H1
0 (Ω) ∩ L∞ (Ω), u > 0 in Ω and ∂u

∂ν = 0 on ∂Ω. Moreover,
recalling (3.2), (3.5) and that v′ (R0) ≤ z′ (R0), the divergence theorem yields
that u is a weak subsolution of (Pb,q). �

Remark 3.2. As one can see from the proof of Theorem 1.6, the condition
(1.2) guarantees the existence of a positive subsolution for the corresponding
Dirichlet problem. Thus, since arbitrarily large supersolutions can be easily
obtained in the Dirichlet case (see e.g. [10, Remark 1.1]), it follows that (1.2)
ensures the existence of a positive solution for the analogous Dirichlet problem.
Moreover, we point out that this condition substantially improves some of the
results known in that case (see [10, Section 3]).
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Proof of Theorem 1.8: Given ε ∈ [0, q), we define

γε :=
1 − ε

1 − q
, Cε :=

(
R2ε

0

2
‖a−‖∞

2 (γε − 1) + N
+ ε

) 1
1−ε

.

We note that both ε �→ γε and ε �→ Cε are continuous, that

ε = γεq − (γε − 1) , γε − 1 =
q − ε

1 − q
> 0, (3.8)

and that

2C0 =
‖a−‖∞

2 (γ0 − 1) + N
=

1 − q

2q + N (1 − q)

∥
∥a−∥

∥
∞ . (3.9)

Given r ∈ [0, R0] and δ ≥ 0, we set uδ,ε (r) := Cεr
2 + δ. We now observe

that we can fix ε > 0 small enough such that

u′
0,ε (R0) < uε

0,ε (R0)
1

RN−1
0

∫ R

R0

a (y) yN−1 dy. (3.10)

Indeed, u′
0,ε (R0) = 2CεR0 and uε

0,ε (R0) =
(
CεR

2
0

)ε, and so (3.10) holds if and
only if

2C1−ε
ε RN

0 < R2ε
0

∫ R

R0

a (y) yN−1 dy. (3.11)

Now, by (1.4) and (3.9),

2C0R
N
0 =

1 − q

2q + N (1 − q)
RN

0

∥
∥a−∥

∥
∞ <

∫
AR0,R

a

ωN−1
=

∫ R

R0

a (y) yN−1 dy.

Thus, (3.11) (and consequently (3.10)) holds for ε > 0 sufficiently small.
Next, we note that, by definition,

2C1−ε
ε >

‖a−‖∞ R2ε
0

2 (γε − 1) + N
.

Therefore, for all r ∈ [0, R0],

4Cε (γε − 1) + 2NCε − ∥
∥a−∥

∥
∞

(
Cεr

2
)ε

> 0. (3.12)

In view of this inequality, we may fix δ > 0 such that

4C2
ε r2 (γε − 1)
Cεr2 + δ

+ 2NCε − ∥
∥a−∥

∥
∞

(
Cεr

2 + δ
)ε

> 0 ∀r ∈ [0, R0] . (3.13)

Indeed, we pick first any δ0 > 0 small enough such that, for all δ ∈ (0, δ0],

2NCε >
∥
∥a−∥

∥
∞ δε.

Then there exists r0 = r0 (δ0) > 0 such that

2NCε >
∥
∥a−∥

∥
∞

(
Cεr

2 + δ
)ε ∀r ∈ [0, r0] ,

and thus (3.13) clearly holds for all r ∈ [0, r0]. Suppose now that r ∈ [r0, R0].
Then, from (3.12) we derive that

4C2
ε r2 (γε − 1)

Cεr2
+ 2NCε − ∥

∥a−∥
∥

∞
(
Cεr

2
)ε

> 0 ∀r ∈ [r0, R0] . (3.14)
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Now, since by Dini’s theorem the left-hand side of (3.13) converges to the left-
hand side of (3.14) uniformly in r ∈ [r0, R0] as δ → 0+, then, decreasing δ0 if
necessary, we also see that (3.13) holds for all r ∈ [r0, R0].

Finally, since u′
0,ε = u′

δ,ε and u0,ε < uδ,ε, recalling (3.10), we get that

u′
δ,ε (R0) < uε

δ,ε (R0)
1

RN−1
0

∫ R

R0

a (y) yN−1 dy. (3.15)

We fix for the rest of the proof ε, δ > 0 such that (3.13) and (3.15) hold.
Let zδ,ε (r) := uγε

δ,ε (r). Let us show that

Δzδ,ε ≥ γε

∥
∥a−∥

∥
∞ zq

δ,ε in BR0 . (3.16)

Note that (3.16) implies that −Δzδ,ε ≤ γεa (x) zq
δ,ε a.e. in BR0 . We compute

Δzδ,ε = γε

(
(γε − 1) uγε−2

δ,ε |∇uδ,ε|2 + uγ−1
δ,ε Δuδ,ε

)

= γε

(
4C2

ε r2 (γε − 1) uγε−2
δ,ε + 2NCεu

γε−1
δ,ε

)
.

Thus, in order to prove (3.16) it is enough to see that

4C2
ε r2 (γε − 1) uγε−2

δ,ε + 2NCεu
γε−1
δ,ε ≥ ∥

∥a−∥
∥

∞ uγεq
δ,ε .

Furthermore, since ε = γεq − (γε − 1) (recall (3.8)), this is equivalent to

4C2
ε r2 (γε − 1)

uδ,ε
+ 2NCε ≥ ∥

∥a−∥
∥

∞ uε
δ,ε.

But taking into account the definition of uδ,ε, we see that the above inequality
holds thanks to (3.13).

On the other side, let us define

φ (r) :=
∫ R

r

1
tN−1

∫ R

t

a (y) yN−1 dy dt, r ∈ [R0, R] ,

K :=
γε

γ0
φ (R0) + [uδ,ε (R0)]

γε/γ0 ,

w (r) := K − γε

γ0
φ (r) , and

v (r) := wγ0 (r) .

Note that v (R0) = zδ,ε (R0), and observe also that

w′ (r) =
γε

γ0

1
rN−1

∫ R

r

a (y) yN−1 dy,

and hence w′ (R) = 0 (and v′ (R) = 0). We also infer that w (r) > 0 for
r ∈ [R0, R] since w (R0) > 0 and w is increasing. Moreover,

w′′ +
N − 1

r
w′ = −γε

γ0
a (r) . (3.17)

We prove now that

− Δv ≤ γεa (x) vq a.e. in AR0,R. (3.18)
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Indeed, since v is radial, (3.18) is equivalent to

−Δv = −v′′ − N − 1
r

v′

= −γ0

(

(γ0 − 1) wγ0−2 (w′)2 + wγ0−1w′′ +
(N − 1)

r
wγ0−1w′

)

≤ γεa (r) wγ0−1 = γεa (r) wγ0q = γεa (r) vq,

and the above inequality clearly holds by (3.17).
We next verify that

z′
δ,ε (R0) ≤ v′ (R0) . (3.19)

We have that

z′
δ,ε (R0) = γεu

γε−1
δ,ε (R0) u′

δ,ε (R0) ,

v′ (R0) = γ0w
γ0−1 (R0) w′ (R0) ,

and so it suffices to check that

γεu
γε−1
δ,ε (R0) u′

δ,ε (R0) ≤ γ0w
γ0−1 (R0) w′ (R0) . (3.20)

We observe now that, by definition, wγ0 (R0) = uγε

δ,ε (R0), and hence

wγ0−1 (R0) = [uδ,ε (R0)]
γε(γ0−1)

γ0 .

Therefore, (3.20) can be written as

γεu
′
δ,ε (R0) ≤ γ0 [uδ,ε (R0)]

γε(γ0−1)
γ0

−(γε−1)
w′ (R0) .

Now, γ0 − 1 = q/ (1 − q) and so, recalling the first equality in (3.8), we see
that

γε (γ0 − 1)
γ0

− (γε − 1) = ε.

Thus, we have to verify that

γεu
′
δ,ε (R0) ≤ γ0u

ε
δ,ε (R0) w′ (R0) . (3.21)

But

w′ (R0) =
γε

γ0

1
RN−1

0

∫ R

R0

a (y) yN−1 dy,

and so (3.21) follows immediately from (3.15).
Taking into account (3.16), (3.18) and (3.19), the proof can now be ended

as the proof of Theorem 1.6. �

Remark 3.3. Note that if we take δ = 0 in the proof of Theorem 1.8, then the
subsolution vanishes at the origin. This is why we have to choose ε > 0 and
we cannot pick ε = 0.
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Remark 3.4. Although Theorems 1.6 and 1.8 hold in particular for N = 1,
in this case one can obtain similar results without assuming that a is even.
More precisely, if Ω := (α, β) and μ ∈ Ω, a quick look at the proofs of the
aforementioned theorems shows that one can replace BR0 and AR0,R by (α, μ)
and (μ, β) respectively, in order to reach a similar conclusion.

4. Proof of Theorem 1.4 and some corollaries

4.1. Application of the implicit function theorem

In this subsection, we make good use of the implicit function theorem to show
that I is open. Let q0 ∈ (0, 1) be such that u0 ∈ P◦ is a solution of (Pa,q0).
We set U0 := (0, 1)×B0, where B0 is an open ball in W 2,r

N (Ω), centered at u0,
and such that B0 ⊂ P◦ (this is possible since W 2,r

N (Ω) ⊂ C1(Ω)). We consider
the nonlinear mapping

F : U0 → Lr(Ω); F(q, u) = −Δu − a(x)uq.

We see that F and its Fréchet derivative Fu(q, u) are well defined. More pre-
cisely, F maps U0 continuously to Lr(Ω), and Fu(q, u) is a bounded linear
operator from W 2,r

N (Ω) to Lr(Ω).
Now, we have the following:

Proposition 4.1. Let u0 ∈ P◦ be a solution of (Pa,q0) with q0 ∈ (0, 1). Then
the Fréchet derivative Fu(q0, u0) maps W 2,r

N (Ω) onto Lr(Ω) homeomorphically,
and there exists a continuous curve q �→ u(q) from (q0−δ0, q0+δ0) to W 2,r

N (Ω),
for some δ0 > 0, such that u(q0) = u0, F (q, u(q)) = 0, and u(q) ∈ P◦ for
q ∈ (q0 − δ0, q0 + δ0). In particular, I is open.

Proof. We show how to apply the implicit function theorem to (q0, u0) such
that F(q0, u0) = 0, with q0 ∈ (0, 1) and u0 ∈ P◦. Note that

Fu(q0, u0)ϕ = −Δϕ − q0a(x)uq0−1
0 ϕ.

We claim that

Fu(q0, u0) : W 2,r
N (Ω) → Lr(Ω) is homeomorphic. (4.1)

To verify it, we study the eigenvalue problem

Fu(q0, u0)ϕ = γϕ.

By γ1 = γ1(q0, u0) we denote the smallest eigenvalue (which is simple) of this
equation, and by ϕ1 a positive eigenfunction belonging to P◦, associated to
γ1. Then, arguing as in the proof of [5, Theorem 1], we shall show that γ1 > 0.

Using the divergence theorem, we can deduce that
∫

Ω

(−Δu0)q0u
q0−1
0 ϕ1 + uq0

0 Δϕ1 =
∫

Ω

|∇u0|2q0(q0 − 1)uq0−2
0 ϕ1. (4.2)

Indeed, a direct computation yields
∫

Ω

div
(
∇u0q0u

q0−1
0 ϕ1

)
=

∫

Ω

(Δu0)q0u
q0−1
0 ϕ1
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+
∫

Ω

q0(q0 − 1)|∇u0|2uq0−2
0 ϕ1

+
∫

Ω

q0(∇u0∇ϕ1)u
q0−1
0 .

Then, the divergence theorem provides
∫

Ω

div
(
∇u0q0u

q0−1
0 ϕ1

)
=

∫

∂Ω

∂u0

∂ν
q0u

q0−1
0 ϕ1 = 0.

In a similar manner, we deduce by a direct computation that
∫

Ω

div (∇ϕ1u
q0
0 ) =

∫

Ω

(Δϕ1)u
q0
0 +

∫

Ω

(∇ϕ1∇u0)q0u
q0−1
0 ,

and by use of the divergence theorem that
∫

Ω

div (∇ϕ1u
q0
0 ) =

∫

∂Ω

∂ϕ1

∂ν
uq0

0 = 0.

Combining these assertions, we obtain (4.2). Now, it follows from (4.2) that
∫

Ω

|∇u0|2q0(q0 − 1)uq0−2
0 ϕ1

=
∫

Ω

(−Δu0)q0u
q0−1
0 ϕ1 + uq0

0 (Δϕ1)

=
∫

Ω

(a(x)uq0
0 )q0u

q0−1
0 ϕ1 + uq0

0 (−q0a(x)uq0−1
0 ϕ1 − γ1ϕ1)

= −γ1

∫

Ω

uq0
0 ϕ1,

and thus that

γ1 =
q0(1 − q0)

∫
Ω

|∇u0|2uq0−2
0 ϕ1∫

Ω
uq0

0 ϕ1
> 0,

as desired.
The assertion γ1 > 0 tells us that Fu(q0, u0) is bijective. Since Fu(q0, u0)

is continuous, the bounded inverse theorem yields (4.1).
We are now ready to apply the implicit function theorem to F at (q0, u0),

which provides us with some δ0 > 0 such that F(q, u(q)) = 0 for q ∈ (q0 −
δ0, q0 + δ0), q �→ u(q) ∈ W 2,r

N (Ω) is continuous, and u(q0) = u0. In particular,
q �→ u(q) ∈ C1(Ω) is continuous, so that u(q) ∈ P◦ for every q ∈ (q0 − δ0, q0 +
δ0), since u(q0) ∈ P◦. Therefore, (q0 − δ0, q0 + δ0) ⊂ I, i.e. I is open. �

4.2. Proof of Theorem 1.4 (i)

First we note, as a consequence of Theorem 1.2, that I �= ∅ since (H0) holds.
Let q0 ∈ I and u0 ∈ P◦ be a corresponding solution of (Pa,q0). Given

q ∈ (q0, 1), define

γ :=
1 − q0

1 − q
> 1, and w := γ

−1
1−q uγ

0 .
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Then, a brief computation yields that

−Δw = −γ
−1
1−q γ

(
(γ − 1) uγ−2

0 |∇u0|2 + uγ−1
0 Δu0

)

≤ γ
−1
1−q γuγ−1

0 a (x)uq0
0

= a (x)wq a.e. in Ω

and ∂w
∂ν = 0 on ∂Ω. In other words, w is a subsolution of (Pa,q) belonging to

P◦. So, recalling Remark 3.1 (ii), we obtain a solution u ∈ P◦ of (Pa,q), and
thus q ∈ I. Therefore, defining qi := inf I and noting Proposition 4.1, the
former assertion follows.

Since (H0) holds, one can see by a variational approach that (Pa,q) has
a nontrivial nonnegative solution for any 0 < q < 1 (see e.g. the proof of [16,
Corollary 1.8]), and thus A ⊆ I. Assume now (H ′

1) and (H+). Let q ∈ (0, 1),
and suppose by contradiction that there exist u and v nontrivial nonnegative
solutions of (Pa,q) with u �≡ v. We claim that u �≡ 0 in Ω+. Indeed, if not, then
Δu ≥ 0 in Ω and ∂u

∂ν = 0 on ∂Ω, and therefore the maximum principle says
that u ≡ 0 in Ω, which is not possible. Now, taking into account that Ω+ is
connected (by (H ′

1)), arguing as in Lemma 2.2 in [4] we infer that u > 0 in
Ω+. But, since the same reasoning applies to v, this contradicts the uniqueness
result of [4, Theorem 3.1] (see Remark 1.1 (ii)).

Finally, recalling that A ⊆ I, we deduce that A = I, and thus, the latter
assertion follows. �

4.3. Proof of Theorem 1.4 (ii)

After a dilation and a translation, we can assume that Ω := (−2, 2). For any
q ∈ (0, 1), we shall construct a ∈ C(Ω) such that (Pa,q) has one solution in P◦

and two nontrivial nonnegative solutions having nonempty dead cores. This
result will be proved in two parts, in accordance with the value of q.

(i) First we consider q ∈ [
1
3 , 1

)
. We define

r :=
2

1 − q
∈ [3,∞) and f (x) :=

(x + 1)r

r
.

Note that rq = r − 2. Let p be the polynomial given by

p (x) := αx3 + βx2 + γx + δ,

where

α := −2r−2 (r + 1)
3

, β := 2r−3 (3r + 1) ,

γ := −2r−1 (r − 1) , δ :=
2r−3

3

(
24
r

+ 5r − 13
)

.

One can verify that

p (1) = f (1) , p′ (1) = f ′ (1) , p′′ (1) = f ′′ (1) , p′ (2) = 0. (4.3)
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Figure 3. The indefinite weight a in the case q = 1
3

Moreover, it also holds that p is increasing in (1, 2), and in particular it
follows that p > 0 in [1, 2]. Set

a (x) :=

⎧
⎪⎨

⎪⎩

− (r − 1) rq if x ∈ [0, 1] ,
− p′′(x)

[p(x)]q if x ∈ [1, 2] ,

a (−x) if x ∈ [−2, 0] ,

(see Fig. 3) and observe that a ∈ C(Ω) since (recall that rq = r − 2)

− p′′ (1)
[p (1)]q

= − f ′′ (1)
[f (1)]q

= − (r − 1) rq.

Also, since p > 0 in [1, 2], it follows from the definition that a changes
sign in (1, 2). Furthermore,

∫ 2

1

a = −
∫ 2

1

p′′ (x)
[p (x)]q

= −
[

p′ (x)
[p (x)]q

∣
∣
∣
∣

2

1

+ q

∫ 2

1

[p′ (x)]2

[p (x)]q+1

]

<
p′ (x)

([p (x)])q

∣
∣
∣
∣

1

2

=
p′ (1)

[p (1)]q
=

f ′ (1)
[f (1)]q

= 2rq

and hence
∫ 2

0

a < 2rq − (r − 1) rq ≤ 0
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Figure 4. The nontrivial nonnegative solutions u1, u2 with
dead cores and a solution u in P◦ (which is even, by unique-
ness) in the case q = 1

3

since r ≥ 3. Therefore,
∫
Ω

a < 0. Define now

u1 (x) :=

⎧
⎪⎨

⎪⎩

0 if x ∈ [−2,−1] ,
f (x) if x ∈ [−1, 1] ,
p (x) if x ∈ [1, 2] ,

and u2 (x) := u1 (−x). Taking into account (4.3), we see that u1, u2 ∈
C2(Ω). Moreover, one can see that u1 and u2 are two distinct nonnegative
nontrivial solutions of the problem

{−u′′ = a(x)uq in Ω,
u′ = 0 on ∂Ω.

(4.4)

Now, a simple integration by parts shows that

max (u1 (x) , u2 (x)) =
{

u2(x) in [−2, 0] ,
u1(x) in [0, 2] ,

is a strictly positive weak subsolution of (4.4). Thus, since
∫
Ω

a < 0, by
Remark 3.1 (ii) there exist arbitrary large supersolutions of (4.4) and we
then obtain a solution u ∈ P◦ of (4.4), see Fig. 4. It follows that q ∈ I,
but q �∈ A, since u1 and u2 are nontrivial nonnegative solutions having
nonempty dead cores.
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(ii) Now we consider q ∈ (
0, 1

3

)
. We proceed as above, the only difference

being the definition of p. For K > 0, let

p (x) = pK (x) := αx4 + βx3 + γx2 + δx + μ,

where

α := 3

(
2r

r
− K

)

+ 2r−3 (r + 7) , β := −16

(
2r

r
− K

)

+ 2r−3 (−6r − 38) ,

γ := 30

(
2r

r
− K

)

+ 2r−3 (13r + 71) , δ := −24

(
2r

r
− K

)

− 2r−3 (12r + 52) ,

μ := 8
2r

r
− 7K + 2r−3 (4r + 12) .

One can check that

p (1) = f (1) , p′ (1) = f ′ (1) , p′′ (1) = f ′′ (1) , (4.5)
p′ (2) = 0, p (2) = K.

We observe that p > 0 in [1, 2]. Indeed, since

p (1) , p′ (1) , p′′ (1) , p (2) > 0 = p′ (2) ,

if p ≤ 0 somewhere, then p′′ would vanish at least at three points in (1, 2),
which is impossible since p′′ has degree 2. It follows that

aK (x) := − p′′
K (x)

[pK (x)]q
∈ C([1, 2]).

We claim now that for all K > 0 large enough, ak changes sign in (1, 2)
and

∫ 2

1
aK < 0. Indeed, aK(1) < 0, and for K sufficiently large we have

p′′
K(2) < 0, so that aK(2) > 0. Hence, the first assertion follows. To show

the second one, we first note that
∫ 2

1

aK = −K1−q

∫ 2

1

p′′
K (x)
K

(
K

pK (x)

)q

, (4.6)

lim
K→∞

pK (x)
K

= −3x4 + 16x3 − 30x2 + 24x − 7 = (7 − 3x) (x − 1)3 := g (x) ,

and

lim
K→∞

p′′
K (x)
K

= −36x2 + 96x − 60 = 12 (5 − 3x) (x − 1) := 12h (x) .

Define

H(x) := −x3 + 4x2 − 5x + 2 = (2 − x)(x − 1)2 > 0 in (1, 2).

Then, H ′ = h. Also, since 2 − 3q > 0 we see that lim
x→1+

H(x)g(x)−q = 0.

Therefore, an integration by parts yields that
∫ 2

1

h (x)
gq (x)

= H(x)g(x)−q
∣
∣2
1

−
∫ 2

1

H(x)
(
g(x)−q

)′ (4.7)

= q

∫ 2

1

H(x)g(x)−(q+1)g′(x) > 0
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because g′ > 0 in (1, 2). It follows from (4.6) and (4.7) that

lim
K→∞

∫ 2

1

aK = −∞,

and therefore the claim is proved. We can then fix some K > 0 such
that aK changes sign in Ω and

∫
Ω

aK < 0, and thus the proof can be
completed as in the previous case.

�
Remark 4.2. Let us point out that, by the uniqueness results in [4], for every
q ∈ (0, 1), the problem (Pa,q) with the weight aq constructed in the above
proof has exactly three (nontrivial) nonnegative solutions. Indeed, one can
verify that Ω+(aq) has exactly two connected components (taking K large if
q < 1/3), say O1 and O2. Now, by [4, Theorem 3.1] there exists at most one
nonnegative solution which is positive in O1 and zero in O2, and vice-versa.
Also, by the aforementioned theorem, there exists at most one nonnegative
solution which is positive in both O1 and O2. Since the nontrivial nonnegative
solutions u satisfy that either u > 0 in Oi or u ≡ 0 in Oi (see [4, Lemma
2.2]), our assertion follows because from the maximum principle we deduce
that there is no nontrivial nonnegative solution vanishing in both O1 and O2.
Let us also remark that the solution in P◦ is even: indeed, if not, we would
have four nontrivial nonnegative solutions. Summing up, for this family of
even weights aq, there exist two (nontrivial) noneven nonnegative solutions
with nonempty dead cores, and one even solution in P◦.

Remark 4.3. Let aq be as in the first case of the proof of Theorem 1.4 (ii),
but now with q ∈ [0, 1). A quick look at the aforementioned proof shows that∫
Ω

aq > 0 for q > 0 close enough to 0. Indeed, this follows easily from the fact
that

∫
Ω

a0 = 2. Furthermore, for such q’s, reasoning as therein we obtain two
(nontrivial) nonnegative solutions of (Paq,q). In other words, this result shows
that, unlike for the existence of positive solutions, the condition

∫
Ω

a < 0 is
not necessary in order to have existence of (nontrivial) nonnegative solutions
of (Pa,q). Let us add that this matter has already been noted in [4, Section
2.3].

As an immediate consequence of Theorems 1.8 and 1.4 (i), we have the
following result:

Corollary 4.4. Let Ω := BR and a ∈ L∞ (Ω) be a radial function such that∫
Ω

a < 0 and a ≥ 0 in AR0,R for some R0 ∈ (0, R). Then,
(

1 − KN

1 − KN + 2K
, 1

)

⊆ I, where K = K(a) :=

∫
AR0,R

a

ωN−1RN
0 ‖a−‖L∞(BR0 )

.

Moreover,
(

1 − KN

1 − KN + 2K
, 1

)

⊆ A

if a ≤ 0 in BR0 .
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Proof. Since
∫
Ω

a < 0, a direct computation gives that KN < 1. Let q ∈(
1−KN

1−KN+2K , 1
)
. Then one can check that (1.4) is satisfied and thus there exists

u ∈ P◦ solution of (Pa,q), so that q ∈ I. The last assertion of the corollary is
now immediate from Theorem 1.4 (i2). �

Remark 4.5. Let us point out that I(a) may approach the whole interval
(0, 1) as the coefficient a varies. To show this, we may use either the sub and
supersolutions method (Corollary 4.4), or a bifurcation analysis (Proposition
2.3). Let us also add that, however, we believe that there is no a such that
I (a) = (0, 1), but we are not able to prove it.

(i) Given any fixed q0 ∈ (0, 1), Corollary 4.4 provides some cases in which
(q0, 1) ⊆ I = A. Indeed, in order to see this it suffices to find a such that
K(a) satisfies 1 > K(a)N ≈ 1. One may take for instance Ω := B1 and

a (x) := σχA 1
2 ,1

(x) − χB 1
2

(x) , for x ∈ Ω,

where σ > 0. Since K(a)N = σ
(
2N − 1

)
, it is easy to choose σ ade-

quately.
(ii) Let a ∈ L∞(Ω) be given by a(x) := σχΩ1(x)−χΩ2(x)a2(x), where σ > 0,

a2 ≥ 0, and Ω1,Ω2 are disjoint subsets of Ω such that
∫
Ω

a = 0. Then,
for any ε > 0 small, we see that a − ε changes sign,

∫
Ω
(a − ε) < 0, and

Ω+(a − ε) = Ω+(a). By combining Theorem 1.4 (i) and Proposition 2.3,
we see that Ia−ε approaches (0, 1) as ε → 0+. Additionally, if Ω+(a)
satisfies (H ′

1) and (H+), then Aa−ε = Ia−ε approaches (0, 1) as ε → 0+.

5. Proof of Theorem 1.10

Proof of Theorem 1.10 (i): Let Ω0 be a tubular neighborhood of ∂Ω such that
a > 0 a.e. in Ω0, with smooth boundary ∂Ω0 = ∂Ω ∪ Γ0, where Γ0 = ∂Ω0 ∩ Ω.
We consider the following concave mixed problem

⎧
⎪⎨

⎪⎩

−Δv = a+(x)vq in Ω0,
∂v
∂ν = 0 on ∂Ω,

v = 0 on Γ0.

(5.1)

Proceeding as in [2, Lemma 3.3], we see that the comparison principle holds
for (5.1), i.e. v ≤ v on Ω0 for any nonnegative supersolution v and subsolution
v of (5.1) such that v, v > 0 in Ω0.

Let u be a nontrivial nonnegative solution of (Pa,q). Then u is a super-
solution of (5.1). In addition, u > 0 in Ω0. Indeed, recalling (H ′

1), we observe
that

0 <

∫

Ω

|∇u|2 =
∫

Ω

a(x)uq+1 ≤
∫

supp a+
a(x)uq+1 =

∫

Ω+

a(x)uq+1.

It follows that u �≡ 0 in Ω+. Also, since Ω+ is connected (by (H ′
1)), the strong

maximum principle yields that u > 0 in Ω+, and consequently u > 0 in Ω0 as
claimed.
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On the other hand, in order to construct a subsolution, we consider the
following mixed eigenvalue problem:

⎧
⎪⎨

⎪⎩

−Δψ = σa+(x)ψ in Ω0,
∂ψ
∂ν = 0 on ∂Ω,

ψ = 0 on Γ0.

(5.2)

By σ1 > 0, we denote the smallest eigenvalue of (5.2), and by ψ1 an eigenfunc-
tion associated to σ1 satisfying ψ1 > 0 on Ω0 \ Γ0. Then, we see that εqψ1 is
a subsolution of (5.2) for some εq > 0 small. By the comparison principle, we
deduce that εqψ1 ≤ u on Ω0, from which the desired conclusion follows. �

The following result will be used in the proof of Theorem 1.10 (ii):

Lemma 5.1. Under the conditions of Theorem 1.10 (ii), let q ∈ (0, 1) and
δ2 > 0 such that

∫
Ω

aδ2 < 0. Then, there exists C > 1 such that ‖u‖L∞(Ω) < C
for all nonnegative solutions u of (Paδ,q) with q ∈ (0, q] and δ ≥ δ2.

Proof. Let u be a nonnegative solution of (Paδ,q) with q ∈ (0, q] and δ ≥ δ2.
Then u is a subsolution of (Paδ,q) for δ = δ2. In view of Remark 3.1 (ii), we
can construct a supersolution w of (Paδ2 ,q) such that u ≤ w. Hence, the sub
and supersolutions method ensures the existence of a nonnegative solution v of
(Paδ2 ,q) such that u ≤ v ≤ w. By Proposition 2.1 (ii), (Paδ2 ,q) has an a priori
bound for nonnegative solutions in L∞(Ω), which is uniform in q ∈ (0, q]. The
lemma now follows. �

Proof of Theorem 1.10 (ii): We proceed as in the proofs of [9, Theorem 1(iv)]
and [8, Theorem 3.1]. Let q ∈ (0, 1) and δ2 > 0 be the constant given by Lemma
5.1, and u be a nontrivial nonnegative solution of (Paδ,q) with q ∈ (0, q] and
δ ≥ δ2. Given σ > 0, we pick a0 > 0 such that

b2(z) ≥ a0 for all z ∈ Gσ/2, (5.3)

where we have used the continuity of b2. Let us fix x ∈ Gσ/2, and consider
d(x) := dist(x, ∂Gσ/2), where d(x) > 0 since Gσ/2 is open. We then define

v1(y) := d(x)−αu(x + d(x)y), for |y| ≤ 1. (5.4)

Let α := 2/(1 − q), so that 2 − α + αq = 0. If |y| < 1 then, using (5.3), a brief
computation yields

−Δv1(y) = d(x)2−αaδ(x + d(x)y)u(x + d(x)y)q

= −δb2(x + d(x)y) v1(y)q

≤ −δa0 v1(y)q.

Here, we have used the fact that x + d(x)y ∈ Gσ/2. If |y| = 1, then we have

v1(y) ≤ d(x)−αC, (5.5)

where C > 1 is provided by Lemma 5.1.
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Given ε > 0, we now consider the problem

(Qδ,ε)
{−Δv = −δa0v

q in B1,
v = ε on ∂B1.

We observe from (5.5) that v1 is a subsolution of (Qδ,ε) if

d(x)−αC ≤ ε. (5.6)

Next, we construct a supersolution of (Qδ,ε). For r = |y|, we define

z1(r) :=
{

0, 0 ≤ r ≤ 1
2 ,

A
(
r − 1

2

)α
, 1

2 < r ≤ 1,
(5.7)

where A is a positive constant to be determined. Since α > 2, we have z1 ∈
C2(B1), and in addition,

Δz1 = z′′
1 +

N − 1
r

z′
1 = Aα(α − 1)

(

r − 1
2

)α−2

+
N − 1

r
Aα

(

r − 1
2

)α−1

≤ Aα(α − 1)
(

r − 1
2

)α−2

+ (N − 1)Aα

(

r − 1
2

)α−2

≤ δa0

(

A

(

r − 1
2

)α)q

= δa0z
q
1 for

1
2

< r < 1,

if Aα(α − 1) + (N − 1)Aα ≤ δa0A
q, i.e.

A ≤
(

δa0

α(α − 1) + (N − 1)α

) 1
1−q

. (5.8)

Moreover, we note that

z1(1) = A

(
1
2

)α

≥ ε,

provided that
A ≥ 2αε. (5.9)

Hence, from (5.6), (5.8) and (5.9), it follows that if

2αd(x)−αC ≤ 2αε ≤ A ≤
(

δa0

α(α − 1) + (N − 1)α

) 1
1−q

,

i.e.

d(x) ≥ 2C
1
α

(
α(α − 1) + (N − 1)α

δa0

) 1
2

,

then v1 is a subsolution of (Qδ,ε), and in addition, z1 is a supersolution of
(Qδ,ε). Since 2 < α ≤ 2/(1 − q) =: α, this occurs for some ε = εδ,x if

d(x) ≥ 2
(

α(α − 1) + (N − 1)α
C−1δa0

) 1
2

=: dδ. (5.10)

Now, using the comparison principle for (Qδ,ε) (which is deduced from
the weak maximum principle) we derive that v1 ≤ z1, so that

d(x)−αu(x) = v1(0) ≤ z1(0) = 0,
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and consequently, u(x) = 0. Therefore, we have proved that if x ∈ Gσ/2 satisfies
(5.10), then u(x) = 0 for any nontrivial nonnegative solution u of (Paδ,q) with
q ∈ (0, q]. Since dδ in (5.10) does not depend on u or q, and converges to 0 as
δ → ∞, we have the desired conclusion. �

Remark 5.2.

(i) The conclusion of Theorem 1.10 (ii) still holds if aδ := b− δχG, with b,G
satisfying

(H ′
2)

{
b ∈ L∞(Ω), 0 �≡ b ≥ 0, and
∅ �= G ⊂ Ω is an open subset such that supp b ∩ G = ∅.

Here δ > 0 and χG is the characteristic function of G.
(ii) Let aδ := b1 − δb2 with b1, b2 �≡ 0 satisfying (H2), and δ > 0.

(ii1) In addition to (H ′
1), let us assume that

supp b1 ∪ {x ∈ Ω : b2(x) > 0} = Ω.

Let q ∈ (0, 1). Theorem 1.10 (ii) then shows that the support of any
nontrivial nonnegative solution of (Paδ,q) approaches Ω+ (in some
sense) as δ → ∞.

(ii2) Combining Theorem 1.2 and Theorem 1.10 (ii), we find δ1 > 0 and
0 < q1 ≤ q0 < 1 such that any nontrivial nonnegative solution
of (Paδ,q) with δ = δ1 has a nonempty dead core for q ∈ (0, q1],
whereas this problem has a unique solution in P◦ and no other non-
trivial nonnegative solutions for q ∈ (q0, 1). Furthermore, according
to Theorem 1.4 (i) and Theorem 1.10 (i), we see that if (H ′

1) and
(H+) hold and Ω+ contains a tubular neighborhood of ∂Ω, then
q1 = q0, and the nontrivial nonnegative solution for q ∈ (0, q0] is
also unique (see Fig. 2).

(ii3) As we shall see from its proof, Theorem 1.10 (ii) holds also for the
Dirichlet counterpart of (Paδ,q). In particular, it complements [16,
Theorem 1.1] as follows: given q ∈ (0, 1) there exist 0 < δ1 < δ0

such that every nontrivial nonnegative solution u of
{−Δu = aδ(x)uq in Ω,

u = 0 on ∂Ω,

satisfies u > 0 in Ω and ∂u
∂ν < 0 on ∂Ω for δ < δ1, whereas u has a

nonempty dead core for δ > δ0.
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