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Abstract. This paper concerns Carleman estimate and its applications
for a linearized bidomain model in electrocardiology, which describes the
electrical activity in the cardiac tissue. We first establish a new Carleman
estimate for this reaction–diffusion system. By means of this Carleman
estimate, we study two problems for the linearized bidomian model, a
Cauchy problem and an inverse conductivities problem. We prove a con-
ditional stability result for the Cauchy problem and a Hölder stability
result for the inverse conductivities problem.
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1. Introduction

Let Ω ⊂ R
3 be a bound domain with smooth boundary ∂Ω. We further set

QT := Ω× (0, T ), ΣT := ∂Ω× (0, T ). Then the bidomain model describing the
electrical activity in the cardiac tissue can be written as follows [13]:

⎧
⎨

⎩

cm∂tv − ∇ · (Mi(x)∇ui) + Iion(v, w) = Ii, (x, t) ∈ QT ,
cm∂tv + ∇ · (Me(x)∇ue) + Iion(v, w) = Ie, (x, t) ∈ QT ,
∂tw − H(v, w) = h, (x, t) ∈ QT ,

(1.1)

where ui = ui(x, t), ue = ue(x, t) represent the intracellular and extracellu-
lar electric potentials respectively, and their difference, v = ui − ue is called
the transmembrane potential. w = w(x, t) is the gating or recovery variable,
which represents the ionic current variables. The positive constant cm is the
surface capacitance of the membrane. The anisotropic properties of the media
are modeled by intracellular and extracellular conductivity tensors Mi(x) and
Me(x), details see [13].
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We denote by Ii and Ie the internal and the external current stimulus
respectively. Moreover, H(v, w) and Iion(v, w) are functions which correspond
to the widely known FitzHugh–Nagumo model for the membrane and ionic
currents, i.e.

H(v, w) = av − bw, (1.2)

Iion(v, w) = −σ(w − v(1 − v)(v − θ)), (1.3)

where a, b, σ, θ are given positive constants, see [4].
As for the direct problem about the bidomain model, [7,25] and the

references therein, proved the existence of the weak or the strong solution in
the framework of the suitable Banach spaces. Additionally, different numerical
methods have been used for solving this type of bidomain model in [10,11,26].

When dropping the effect of w in (1.1) and letting

Mi(x) = μMe(x), x ∈ Ω (1.4)

with some constant μ ∈ R, the bidomain model (1.1) can be rewritten as the
following monodomain model [18]

{
cm∂tv − μ

μ+1∇ · (Me(x)∇v) + h(v) = f, (x, t) ∈ QT ,

−∇ · (M(x)∇ue) = ∇ · (Mi(x)∇v), (x, t) ∈ QT ,
(1.5)

with M = Mi + Me and suitable f , h(v). Bendahmane and Chaves-Silva [5]
proved null controllability of the approximating system of (1.5) by means of a
single control on ω:

{
cm∂tv − μ

μ+1∇ · (Me(x)∇v) + h(v) = f1ω, (x, t) ∈ QT ,

ε∂tue − ∇ · (M(x)∇ue) = ∇ · (Mi(x)∇v), (x, t) ∈ QT ,
(1.6)

with any sufficiently small ε > 0 by Carleman estimate. Further the null con-
trollability for a monodomain model (1.5) was shown. Ainseba, Bendahmane
and He [1] established a Carleman estimate for a linearized version of (1.6).
Then by using this Carleman estimate, a stability result for recovering the con-
ductivities was obtained. In these two papers, the weight function of Carleman

estimate is singular like eλψ(x)−e
2λ‖ψ‖

C(Ω)

t(T−t) with suitable ψ, which is very diffi-
cult applied to study Cauchy problem for the bidomain model. Additionally,
Lassoued, Mahjoub and Zemzemi [19] studied a parameter identification in-
verse problem in cardiac electro-physiology. Boulakia and Schenone [6] proved
a Carleman estimate for a reaction–diffusion equation coupled with an ODE.
However, to the best of our knowledge there is no publications about Carleman
estimates for the bidomain model.

Carleman estimate is a class of weighted energy estimates connected with
the differential operator, which can be applied to many aspects, such as stabi-
lization and control theory [14,16], coefficient inverse problems [8,22,27] and
unique continuation [12,21,23,28] and so on.

The main objective of this paper is to obtain Carleman estimate for the
linearized bidomain model. As its applications, we consider the following two
problems, a Cauchy problem and an inverse conductivities problem.
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Cauchy problem. Letting Γ be an arbitrary non-empty sub-boundary of ∂Ω
and ΓT := Γ × (0, T ), we determine (ui, ue) in

{
cm∂tv − ∇ · (Mi(x)∇ui) + av = f, (x, t) ∈ QT ,
cm∂tv + ∇ · (Me(x)∇ue) + bv = g, (x, t) ∈ QT ,

(1.7)

by a lateral Cauchy data

(ui, ue) |ΓT
= (p, q). (1.8)

Inverse conductivities problem. Letting ω be a given sub-domain such that
∂ω ⊃ ∂Ω and t0 be a given time, we determine Mi,Me in
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cm∂tv − ∇ · (Mi(x)∇ui) + a11v + a12w = f, (x, t) ∈ QT ,
cm∂tv + ∇ · (Me(x)∇ue) + a21v + a22w = g, (x, t) ∈ QT ,
∂tw + a31v + a32w = h, (x, t) ∈ QT ,
ui(x, t) = ue(x, t) = 0, (x, t) ∈ ΣT ,
v(x, 0) = ui,0(x) − ue,0(x) := v0(x), w(x, 0) = w0(x), (x, t) ∈ Ω,

(1.9)

by observation data

(ui, ue)|ω×(0,T ) and (ui(x, t0), ue(x, t0), w(x, t0)) , x ∈ Ω. (1.10)

Remark 1.1. Generally, the conductivities Mi and Me are two matrices given
by

Mj(x) = σt
j(x)I + (σl

j(x) − σt
j(x))al(x)aT

l (x),

where σl
j and σt

j , j ∈ {i, e} are the intra- and extracellular conductivities along
and transversal to the direction of the fiber (parallel to al(x)), respectively. In
the case of equal anisotropy [20], i.e. the so-called anisotropy ratios σl

i/σt
i =

1 and σl
e/σt

e = 1, the Mi and Me are simplified as Mi(x) = Mi(x)I and
Me(x) = Me(x)I with Mi(x) = σt

i(x), Me(x) = σt
e(x), which is the case we

discussed. If Mi and Me in bidomain model are two metrics, such an inverse
problem is still open and more complicated. For example, Yuan and Yamamoto
[29] studied an inverse problem for recovering the matrix A in the following
parabolic equation:

yt − ∇ · (A(x)∇y) = h(x, t), (x, t) ∈ QT ,

where A(x) = (aij(x))1≤i,j≤n with aij = aji. In order to prove a stability
result, they need n(n + 3)/2 times measurement data to determine n(n +
1)/2 unknown aij . Additionally, some technique conditions are included in the
stability results, details see [29].

We make the following assumptions for Cauchy problem.
(A1) Mi,Me ∈ C1(Ω) such that

Mi > ε0, Me > ε0 in Ω

with a positive constant ε0;
(A2) f, g ∈ L2(QT ), a, b ∈ C(QT );
(A3) p, q ∈ H1(ΓT ).
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Theorem 1.1. Let Γ ⊂ ∂Ω be an arbitrary non-empty sub-boundary and (A1)-
(A3) be held, and let (ui, ue) ∈ (L2(0, T ;H1(Ω))

)2 be a solution of (1.7) and
(1.8). For any ε > 0 and an arbitrary bounded domain Ω0 such that Ω0 ⊂ Ω∪Γ,
∂Ω0 ∩ ∂Ω is a non-empty open subset of ∂Ω and ∂Ω0 ∩ ∂Ω � Γ, there exist
positive constants C and κ ∈ (0, 1) such that

||ui||L2(ε,T−ε;H1(Ω0)) + ||ue||L2(ε,T−ε;H1(Ω0)) ≤ CI1−κJκ, (1.11)

where

I = ‖ui‖L2(0,T ;H1(Ω)) + ||ue||L2(0,T ;H1(Ω)),

J = ‖f‖L2(QT ) + ‖g‖L2(QT ) + ||p||H1(ΓT ) + ||q||H1(ΓT ).

Since ε > 0 and Ω0 ⊂ Ω are chosen arbitrary provided that the constraints
on Ω0 in Theorem 1.1 are fulfilled, we have the following unique continuation
result.

Corollary 1.2. Under the same assumptions as in Theorem 1.1, if

f(x, t) = g(x, t) = 0, (x, t) ∈ QT , p(x, t) = q(x, t) = 0, (x, t) ∈ ΓT ,

then ui = ue = 0 a.e. in QT .

To state our second main result, i.e. Hölder stability for our inverse con-
ductivities problem, we first introduce the set

W =
{
(Mi, Me) ∈ (C1(Ω)

)2
; Mi > ε0, Me > ε0 in Ω,

(Mi, Me)|∂Ω = (ai, ae), (∇Mi, ∇Me)|∂Ω = (bi,be),

|∇ui[Mi, Me](x, t0) · (x − x0)| ≥ ε0, |∇ue[Mi, Me](x, t0) · (x − x0)| ≥ ε0 in Ω
}

for fixed sufficiently smooth functions ai, ae,bi,be on Γ and a positive constant
ε0, where x0 ∈ R

N \ Ω is a fixed point. Here (ui[Mi,Me], ue[Mi,Me]) denotes
the solution of the problem (1.9) corresponding to (Mi,Me).

Assumptions.(A1’) ω ⊂ Ω is a given sub-domain such that ∂ω ⊃ ∂Ω, i.e. ω is
a small neighborhood near ∂Ω inside Ω;

(A2’) f, g, h ∈ H2(QT ), aij ∈ C2(QT )(1 ≤ i ≤ 3, 1 ≤ j ≤ 2), ui,0, ue,0 ∈
H3(Ω), w0 ∈ H1(Ω);

(A3’) ui, ue ∈ C2([0, T ];W 2,∞(Ω)) ∩ C([0, T ];H3(Ω)), w ∈ W 2,∞(QT ) ∩
C([0, T ]; H1(Ω)).

Remark 1.2. As [1] or [2], we need the technical condition |∇ui · (x−x0)| ≥ ε0
and |∇ue · (x − x0)| ≥ ε0 to apply Lemma 4.2 below. However, it is very hard
to find how a suitable condition should be imposed to (Mi,Me) to guarantee
the existence of ε0.

Remark 1.3. Similar to [3], the condition ∂ω ⊃ ∂Ω is used to apply Carleman
estimate to solutions with compact supports.

Remark 1.4. Condition (A3’) is a regularity requirement on ui, ue and w for
our stability results. In fact, we could deduce such regularity as (A3’) from
the method proposed by Colli-Franzone and Savaré in [9], in which the global
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existence in time and uniqueness for the solution of the bidomain model is
proved. Since our paper focuses on the stability for our inverse conductivities
problem, we do not stick to the exact condition to yield the regularity condi-
tion (A3’). For this reason, without loss of generality we assume that aij are
constants and the functions f, g, h, v0, w0 are sufficiently smooth. By a simple
calculation, we obtain for j = 1, 2, 3, 4 that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cm∂j+1
t v − ∇ · (Mi(x)∇∂j

t ui) + a11∂
j
t v + a12∂

j
t w = ∂j

t f, (x, t) ∈ QT ,

cm∂j+1
t v + ∇ · (Me(x)∇∂j

t ue) + a21∂
j
t v + a22∂

j
t w = ∂j

t g, (x, t) ∈ QT ,

∂j+1
t w + a31∂

j
t v + a32∂

j
t w = ∂j

t h, (x, t) ∈ QT ,

∂j
t ui(x, t) = ∂j

t ue(x, t) = 0, (x, t) ∈ ΣT ,

∂j
t v(x, 0) = vj(x), ∂j

t w(x, 0) = wj(x), (x, t) ∈ Ω,

(1.12)

with

vj(x)

=
1

cm

[
∇ · (Mi∇vj−1(x)) + ∇ · (Mi∇ue,j−1(x)) − a11vj−1(x)

−a12wj−1(x) + ∂j−1
t f(x, 0)

]
,

wj(x) = −a31vj−1(x) − a32wj−1(x) + ∂j−1
t h(x, 0),

where ue,j−1 is the solution of the following elliptic problem
⎧
⎨

⎩

−∇ · ((Mi + Me)(x)∇ue,j−1) = ∇ · (Mi(x)∇vj−1)
−(a11 − a21)vj−1−(a12 − a22)wj−1+∂j−1

t f(x, 0) − ∂j−1
t g(x, 0), x∈Ω,

ue,j−1(x) = 0, x∈∂Ω.
(1.13)

From Theorem 2 and Remark 3.2 in [9], we deduce that ∂4
t ui, ∂

4
t ue ∈ L2(0, T ;

H2(Ω)), i.e. ui, ue ∈ H4(0, T ;H2(Ω)) for sufficiently smooth f, g, h and v0, w0.
Then by the standard theory for the ordinary differential equation, we obtain
∂3

t w ∈ C([0, T ];H2(Ω)) because of
{

∂t

(
∂3

t w
)

+ a32∂
3
t w = ∂3

t h − a31∂
3
t v ∈ L2(0, T ;H2(Ω)),

∂3
t w(x, 0) = w3(x) ∈ H2(Ω). (1.14)

Obviously,
{−∇ · (Mi(x)∇∂3

t ui) = ∂3
t f − cm∂4

t v − a11∂
3
t v − a12∂

3
t w ∈ L2(0, T ;H2(Ω)),

∂3
t ui(x, t) = 0, (x, t) ∈ ΣT .

(1.15)

From the regularity of the elliptic equation, it follows that ∂3
t ui ∈ L2(0, T ;

H4(Ω)), i.e. ui ∈ H3(0, T ;H4(Ω)) ↪→ C2([0, T ];W 2,∞(Ω)) ∩ C([0, T ];H3(Ω)).
Similarly, the same regularity also holds for ue. The regularity of w is easy to
obtain by the equation of w and v ∈ H3(0, T ;H4(Ω)).

Now we state our second main result in this paper.
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Theorem 1.3. Let (Mi,Me), (M̃i, M̃e) ∈ W and (A1’)-(A3’) be held, and let
(ui, vi, w) and (ũi, ũe, w̃) be two solutions of (1.9) corresponding to (Mi,Me)
and (M̃i, M̃e). Then there exist positive constants C and μ ∈ (0, 1) such that

‖Mi − M̃i‖H1(Ω) + ‖Me − M̃e‖H1(Ω) ≤ CKμL(1−μ) (1.16)

where

K =||ui − ũi||H2(0,T ;L2(Ω)) + ||ue − ũe||H2(0,T ;L2(Ω)) + ||w − w̃e||H2(0,T ;L2(Ω)),

L =‖ui − ũi‖H2(0,T ;H1(ω)) + ‖ue − ũe‖H2(0,T ;H1(ω))

+ ‖(ui − ũi)(·, t0)‖H3(Ω)+‖(ue − ũe)(·, t0)‖H3(Ω)+‖(w − w̃e)(·, t0)‖H1(Ω).

Remark 1.5. Similarly to [1], we can expect the Lipschitz stability in place of
(1.16). For it, we have to estimate K by Mi − M̃i and Me − M̃e.

The following uniqueness is a direct result from Theorem 1.3.

Corollary 1.4. Under the same assumptions as in Theorem 1.3, if

ui(x, t) = ũi(x, t), ue(x, t) = ũe(x, t), (x, t) ∈ ω × (0, T ),

ui(x, t0) = ũi(x, t0), ue(x, t0) = ũe(x, t0), w(x, t0) = w̃(x, t0), x ∈ Ω,

then Mi = M̃i, Me = M̃e a.e. in Ω.

The remainder of the paper is organized as follows. In the next section,
we prove a Carleman estimate for the linearized bidomain model. In Sect. 3,
we give the proof of the stability result of Cauchy problem, i.e. Theorem 1.1. In
last section, we prove Hölder stability for our inverse conductivities problem,
i.e. Theorem 1.3.

2. Carleman estimate

This section is devoted to prove a Carleman estimate for the linearized bido-
main model. In order to formulate our Carleman estimate, we introduce a
function ψ

ψ(x, t) = d(x) − β(t − t0)2, ϕ(x, t) = eλψ(x,t), (x, t) ∈ QT , (2.1)

with a parameter β > 0 and a large parameter λ > 0, where d ∈ C2(Ω) satisfies
|∇d| �= 0 on Ω.

Now we state the main result in this section.

Theorem 2.1. Let D ⊂ QT with smooth boundary, F,G ∈ L2(QT ) and (A1),
(A2) be held. Then there exist positive constants λ0 = λ0(Ω, T, β), s0 =
s0(Ω, T, β, λ0) and C = C(Ω, T, β, λ) such that
∫

D

[|∂tv|2 + s(|∇ui|2 + |∇ue|2) + s3(|ui|2 + |ue|2)
]
e2sϕdxdt

≤ C

∫

D

s
(|F |2 + |G|2) e2sϕdxdt + CseCs

(
‖ui‖2

H1(∂D) + ‖ue‖2
H1(∂D)

)

(2.2)
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for all λ > λ0 and s ≥ s0, provided that ui, ue ∈ L2(0, T ;H2(Ω)), v ∈
H1(0, T ;L2(Ω)) satisfies

{
cm∂tv − ∇ · (Mi(x)∇ui) = F, (x, t) ∈ QT ,
cm∂tv + ∇ · (Me(x)∇ue) = G, (x, t) ∈ QT .

(2.3)

Proof. By using ui = v + ue, we have
{

cm∂tv − ∇ · (Mi(x)∇v) − ∇ · (Mi(x)∇ue) = F, (x, t) ∈ QT ,
cm∂tv + ∇ · (Me(x)∇ue) = G, (x, t) ∈ QT .

(2.4)

Further, by the second equation in (2.4), we can obtain

−∇ · (Mi(x)∇ue) =
cmMi(x)∂tv − Mi(x)G

Me(x)
+ A(x) · ∇ue (2.5)

with

A(x) :=
Mi(x)∇Me(x) − Me(x)∇Mi(x)

Me(x)
.

Substituting (2.5) into (2.4) yields
{

cm

(
1 + Mi(x)

Me(x)

)
∂tv − ∇ · (Mi(x)∇v) = F + Mi(x)

Me(x)
G − A(x) · ∇ue, (x, t) ∈ QT ,

cm∂tv + ∇ · (Me(x)∇ue) = G, (x, t) ∈ QT .

(2.6)

Further, letting ûe = ϕ− 1
2 ue and then we have

{
cm

(
1 + Mi(x)

Me(x)

)
∂tv − ∇ · (Mi(x)∇v) = F + Mi(x)

Me(x)
G − A(x) · ∇ue, (x, t) ∈ QT ,

−∇ · (Me(x)∇ûe) = ϕ− 1
2 (cm∂tv − G) + H(ûe, ∇ûe), (x, t) ∈ QT ,

(2.7)

where

H(ûe, ∇ûe) = λMe(x)∇ψ · ∇ûe +

[
1

2
λ∇ψ · ∇Me +

(
1

4
λ2|∇ψ|2 +

1

2
λΔψ

)

Me

]

ûe.

Applying the Carleman estimate for the parabolic equation (Theorem
3.2, [28]) to the equation of v in (2.7), we obtain that there exist positive
constants λ1, s1(λ) and C such that
∫

D

[
s−1ϕ−1|∂tv|2 + sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

]
e2sϕdxdt

≤ C

∫

D

(|F |2 + |G|2+|∇ue|2
)
e2sϕdxdt + CeC(λ)s

∫

∂D

(|∇x,tv|2 + |v|2) dxdt

(2.8)

for all λ ≥ λ1, s ≥ s1(λ), which yields
∫

D

(
ϕ−1|∂tv|2 + s2λ2ϕ|∇v|2 + s4λ4ϕ3|v|2) e2sϕdxdt

≤ C

∫

D

s
(|F |2 + |G|2 + |∇ue|2

)
dxdt+CseC(λ)s

∫

∂D

(|∇x,tv|2 + |v|2) dxdt.

(2.9)
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Note that Theorem 3.2 in [28] holds also for elliptic operator, since all terms
on the left-hand side of Carleman estimate are derived from the decomposition
of elliptic operators esϕ∇ · (Me(x)∇ûe). Then similar to (2.8), we obtain the
following Carleman estimate for ûe:

∫

D

(sλ2ϕ|∇ûe|2 + s3λ4ϕ3|ûe|2)e2sϕdxdt

≤ C

∫

D

[
ϕ−1

(|G|2 + |∂tv|2)+
(
λ4|ûe|2 + λ2|∇ûe|2

) ]
e2sϕdxdt

+ CeC(λ)s

∫

∂D

(|∇x,tûe|2 + |ûe|2
)
dxdt. (2.10)

Obviously,

Cϕ− 1
2 |∇ue| − Cλϕ− 1

2 |ue| ≤ |∇ûe| ≤ Cϕ− 1
2 |∇ue| + Cλϕ− 1

2 |ue|. (2.11)

Noticing that ϕ has positive lower and upper bound depending λ and using
(2.10) and (2.11), we have

∫

D

[
sλ2|∇ue|2 +

(
s3λ4ϕ2 − sλ4

) |ue|2
]
e2sϕdxdt

≤ C

∫

D

ϕ−1
(|G|2 + |∂tv|2) e2sϕdxdt

+ C(λ)eC(λ)s

∫

∂D

(|∇x,tue|2 + |ue|2
)
dxdt, (2.12)

if we choose s such that s ≥ 2Cϕ−1. Multiplying (2.9) by (C+1) and adding up
(2.12) to absorb the term of vt on the right-hand side of (2.12), and choosing
λ such that λ ≥ C(C + 1) to absorb the term ∇ue on the right-hand side of
(2.9), we can obtain
∫

D

(
ϕ−1|∂tv|2 + s2λ2ϕ|∇v|2 + s4λ4ϕ3|v|2) e2sϕdxdt

+
∫

D

(
sλ2|∇ue|2 + s3λ4ϕ2|ue|2

)
e2sϕdxdt

≤ C(λ)
∫

D

s
(|F |2+|G|2) e2sϕdxdt+C(λ)seC(λ)s

(
‖v‖2

H1(∂D)+‖ue‖2
H1(∂D)

)

for sufficiently large s. Finally, noting that v = ui − ue, we can obtain the
desired estimate (2.2). This completes the proof of Theorem 2.1. �

3. Proof of the Theorem 1.1

Now we prove the conditional stability of our inverse problem, i.e. Theorem
1.1. The proof is based on the idea used in [24].

Proof of Theorem 1.1. We first choose a bounded Ω1 with smooth boundary
such that

Ω � Ω1, Γ = ∂Ω ∩ Ω1, ∂Ω\Γ ⊂ ∂Ω1 (3.1)
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where Ω1 is constructed by taking a union of Ω and a domain Ω̃ such that
∂Ω̃ ∩ Ω = Γ. Furthermore, we introduce d ∈ C2(Ω1) such that

d(x) > 0 x ∈ Ω1, d|∂Ω1 = 0, |∇d(x)| > 0, x ∈ Ω. (3.2)

Then, since Ω0 ⊂ Ω1, we can choose a sufficiently large N > 1 such that
{

x ∈ Ω1; d(x) >
4
N

||d||C(Ω1)

}

∩ Ω ⊃ Ω0 (3.3)

Moreover for any given 0 < ε < 1, we choose β > 0 such that

βε2 > ||d||C(Ω1)
>

1
2
βε2 (3.4)

For 0 < ε < 1 and given N , there exist finite tj , j = 1, 2, . . . , n0 such that tj ∈
[ε, T − ε] and (ε, T − ε) ⊂ ∪n0

j=1(tj − ε√
2N

, tj + ε√
2N

). Further we set ϕj(x, t) =

eλψj(x,t), ψj(x, t) = d(x) − β(t − tj)2 and Dj = {(x, t);x ∈ Ω, ϕj(x, t) > μ1}
for fixed j, where μk = exp(λ( k

N ||d||C(Ω1)
− βε2

2N )), k = 1, 2, 3, 4. Similar to [24],
we can verify that

Ω0 ×
(

tj − ε√
2N

, tj +
ε√
2N

)

⊂ Dj ⊂ Ω × (tj − ε, tj + ε) (3.5)

and ∂Dj ⊂ ΓT ∪ Σ1 with Σ1 = {(x, t);x ∈ Ω, ϕj(x, t) = μ1}.
Let χ1 ∈ C∞(Rn+1) such that 0 ≤ χ1 ≤ 1 and

χ1(x, t) =

{
1, ϕj(x, t) > μ3,

0, ϕj(x, t) < μ2.

We set ûi = χ1ui, ûe = χ1ue, f̂ = χ1f, ĝ = χ1g, v̂ = χ1v, and see that (ûi, ûe)
satisfies

⎧
⎪⎪⎨

⎪⎪⎩

cm∂tv̂ − ∇ · (Mi(x)∇ûi)

= f̂ + cm∂tχ1v − av̂ − ∇ · (Mi(x)ui∇χ1) − Mi(x)∇χ1 · ∇ui, (x, t) ∈ Dj ,
cm∂tv̂ + ∇ · (Me(x)∇ûe)

= ĝ + cm∂tχ1v − bv̂ + ∇ · (Me(x)ue∇χ1) + Me(x)∇χ1 · ∇ue, (x, t) ∈ Dj .

Additionally, by μ1 < μ2 and the definition of χ1, we see that ûi = ûe =
|∇ûi| = |∇ûe| = 0 on Σ1. Hence by Theorem 2.1 we find that

∫

Dj

[
s
(|∇ûi|2 + |∇ûe|2

)
+ s3

(|ûi|2 + |ûe|2
)]

e2sϕj dxdt

≤ C

∫

Dj

s
(
|f̂ |2 + |ĝ|2 + |v̂|2

)
e2sϕj dxdt + CseCs

(
||ui||2H1(ΓT ) + ||ue||2H1(ΓT )

)

+ C

∫

Dj

s
(|∂tχ1|2+|∇χ1|2+|Δχ1|2

)× (|∇ui|2+|∇ue|2+|ui|2+|ue|2)e2sϕj dxdt

(3.6)
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for all s ≥ s0. Since |∂tχ1|2 + |∇χ1|2 + |Δχ1|2 �= 0 on {(x, t) ∈ QT | μ2 ≤
ϕj(x, t) ≤ μ3} and |v̂| ≤ C(|ûi| + |ûe|), we further have

∫

Dj

[
s
(|∇ûi|2 + |∇ûe|2

)
+ s3

(|ûi|2 + |ûe|2
)]

e2sϕj dxdt

≤ Cse2μ3sI2 + CseCsJ2. (3.7)

On the other hand, by ϕj(x, t) ≥ μ4 for (x, t) ∈ Ω0 × (tj − ε√
2N

, tj +
ε√
2N

) ⊂ Dj and ûi = ui, ûe = ue when ϕj(x, t) ≥ μ4, we find that
∫

Dj

[
s
(|∇ûi|2 + |∇ûe|2

)
+ s3

(|ûi|2 + |ûe|2
)]

e2sϕj dxdt

≥ e2sμ4

∫ tj+
ε√
2N

tj− ε√
2N

∫

Ω0

[
s
(|∇ui|2 + |∇ue|2

)
+ s3

(|ui|2 + |ue|2
)]

dxdt

(3.8)

Hence, by (3.7) and (3.8) we have

s

(

||ui||2
L2
(
tj− ε√

2N
,tj+

ε√
2N

;H1(Ω0)
) + ||ue||2

L2
(
tj− ε√

2N
,tj+

ε√
2N

;H1(Ω0)
)

)

≤ Cse2s(μ3−μ4)I2 + CseCsJ2 (3.9)

for all s ≥ s0 and j = 1, 2, . . . , n0. Summing up over j, we obtain

||ui||2L2(ε,T−ε;H1(Ω0))
+ ||ue||2L2(ε,T−ε;H1(Ω0))

≤ Ce2s(μ3−μ4)I2 + CeCsJ2 (3.10)

for all s ≥ s0. Setting s := s + s0 and replacing C by CeCs0 , we obtain (3.10)
for all s ≥ 0. Finally, minimizing the right-hand side of (3.10) with respect to
s, we obtain

||ui||2L2(ε,T−ε;H1(Ω0))
+ ||ue||2L2(ε,T−ε;H1(Ω0))

≤ 2CI2(1−κ)J2κ (3.11)

with κ = 2(μ4−μ3)
C+2(μ4−μ3)

. The proof of Theorem 1.1 is completed. �

4. Proof of the Theorem 1.3

This section devotes to proving Hölder stability for our inverse conductivi-
ties problem, i.e. Theorem 1.3, by means of Carleman estimate (2.2). In this
section, we choose

d(x) = (x − x0)2 + M, x ∈ Ω

with a fixed point x0 ∈ R
N\Ω and a constant M such that

ψ(x, t) = (x − x0)2 − β(t − t0)2 + M > 0, (x, t) ∈ QT .

Obviously, we have |∇d| �= 0 on Ω. Fix δ > 0 and β > 0 such that

β min
{
t20, (T − t0)2

}
> max

x∈Ω
(x − x0)2 + 2δ. (4.1)
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Then the function ψ satisfies the following properties

max
x∈Ω

ψ(x, 0) ≤ M − 2δ, max
x∈Ω

ψ(x, T ) ≤ M − 2δ (4.2)

and

min
x∈Ω

ψ(x, t0) ≥ M. (4.3)

By (4.2), we can choose ε sufficiently small to satisfy

max
x∈Ω

ψ(x, t) ≤ M − δ, t ∈ [0, 2ε] ∪ [T − 2ε, T ]. (4.4)

In the following we fix λ = λ0 and use C to denote a generic positive constant
depending on x0,Ω, T, β, ε0 and λ0, but not independent of s.

Let (ui, ue, w) and (ũi, ũe, w̃) be two solutions of (1.9) corresponding to
(Mi,Me) and (M̃i, M̃e) respectively, and let (ui, ue, w) = (ui − ũi, ue − ũe,

w − w̃), v = ui − ue,
(
M i,Me

)
=
(
Mi − M̃i,Me − M̃e

)
. Then for j = 1, 2, 3

we have
⎧
⎪⎪⎨

⎪⎪⎩

cm∂j
t v − ∇ · (Mi(x)∇∂j−1

t ui) + a11∂
j−1
t v + a12∂

j−1
t w = Fj , (x, t) ∈ QT ,

cm∂j
t v + ∇ · (Me(x)∇∂j−1

t ue) + a21∂
j−1
t v + a22∂

j−1
t w = Gj , (x, t) ∈ QT ,

∂j
t w + a31∂

j−1
t v + a32∂

j−1
t w = Hj , (x, t) ∈ QT ,

∂j−1
t ui(x, t) = ∂j−1

t ue(x, t) = 0, (x, t) ∈ ΣT ,
(4.5)

where

Fj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇ ·
(
M i(x)∇∂j−1

t ũi

)
, j = 1,

∇ ·
(
M i(x)∇∂j−1

t ũi

)
− ∂j−1

t a11v − ∂j−1
t a12w, j = 2,

∇ ·
(
M i(x)∇∂j−1

t ũi

)
−∑2

k=1 k∂j−k
t a11∂k−1

t v −∑2
k=1 k∂j−k

t a12∂k−1
t w, j = 3,

Gj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇ ·
(
Me(x)∇∂j−1

t ũe

)
, j = 1,

−∇ ·
(
Me(x)∇∂j−1

t ũe

)
− ∂j−1

t a21v − ∂j−1
t a22w, j = 2,

−∇ ·
(
Me(x)∇∂j−1

t ũe

)
−∑2

k=1 k∂j−k
t a21∂k−1

t v −∑2
k=1 k∂j−k

t a22∂k−1
t w, j = 3,

Hj =

⎧
⎪⎨

⎪⎩

0, j = 1,

−∂j−1
t a31v − ∂j−1

t a32w, j = 2,

−∑2
k=1 k∂j−k

t a31∂k−1
t v −∑2

k=1 k∂j−k
t a32∂k−1

t w, j = 3.

In order to apply Carleman estimate (2.2) to (4.5), we need to introduce
a cut function χ2(x, t) = ξ(x)η(t) ∈ C∞

0 (QT ) such that 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1
and

{
ξ(x) = 1, x ∈ Ω \ ω,
ξ(x) = 0, x ∈ R

N \ Ω,

{
η(t) = 1, t ∈ [2ε, T − 2ε],
η(t) = 0, t ∈ [0, ε] ∪ [T − ε, T ]. (4.6)
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Letting (ûi, ûe, ŵ) = (χ2∂
j−1
t ui, χ2∂

j−1
t ue, χ2∂

j−1
t w), v̂ = ûi − ûe and F̂ =

χ2Fj , Ĝ = χ2Gj , Ĥ = χ2Hj , by a direct calculation we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm∂tv̂ − ∇ · (Mi(x)∇ûi) = F̂ + cm∂tχ2

(
∂j−1

t ui − ∂j−1
t ue

)

−a11v̂ − a12ŵ − ∇ · (Mi(x)∂j−1
t ui∇χ2) − Mi(x)∇χ2 · ∇∂j−1

t ui, (x, t) ∈ QT ,

cm∂tv̂ + ∇ · (Me(x)∇ûe) = Ĝ + cm∂tχ2

(
∂j−1

t ui − ∂j−1
t ue

)

−a21v̂ − a22ŵ + ∇ · (Me(x)∂j−1
t ue∇χ2) + Me(x)∇χ2 · ∇∂j−1

t ue, (x, t) ∈ QT ,

∂tŵ + a31v̂ + a32ŵ = Ĥ + ∂tχ2∂
j−1
t w, (x, t) ∈ QT .

Then we have

Lemma 4.1. Let (A1’)-(A3’) be held. Then there exist positive constants s1

and C such that

3∑

j=1

∫ T−2ε

2ε

∫

Ω

[
s
(
|∂j−1

t ∇ui|2 + |∂j−1
t ∇ue|2

)

+ s3
(
|∂j−1

t ui|2 + |∂j−1
t ue|2

)]
e2sϕdxdt

≤ C

∫

QT

s2
(|M i|2 + |∇M i|2 + |Me|2 + |∇Me|2

)
e2sϕdxdt

+ Cs exp(2seλ0(M−δ))K2 + Cs3eCsL2 (4.7)

for s ≥ s1.

Proof. By applying Theorem 2.1 to (ûi, ûe), we have
∫

QT

[
s
(|∇ûi|2 + |∇ûe|2

)
+ s3

(|ûi|2 + |ûe|2
) ]

e2sϕdxdt

≤ C

∫

QT

s
(
|F̂ |2 + |Ĝ|2 + |ŵ|2

)
e2sϕdxdt

+ C

∫

QT

s|∂tχ2|2
(∣
∣
∣∂

j−1
t ui

∣
∣
∣
2

+
∣
∣
∣∂

j−1
t ue

∣
∣
∣
2
)

e2sϕdxdt

+ C

∫

QT

s
(|∇χ2|2 + |Δχ2|2

)

× (|∇∂j−1
t ui|2 + |∇∂j−1

t ue|2 + |∂j−1
t ui|2 + |∂j−1

t ue|2)e2sϕdxdt (4.8)

for all s ≥ s0. On the other hand, we can write ŵ as

ŵ(x, t) =e
− ∫ t

t0
a32(x,τ)dτ

[

ŵ(x, t0)

+
∫ t

t0

e
∫ τ
t0

a32(x,s)ds
(
Ĥ + ∂tχ2∂

j−1
t w − a31v̂

)
(x, τ)dτ

]

,
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which leads to
∫

QT

|ŵ|2e2sϕdxdt ≤ C

∫

QT

|∂j−1
t w(x, t0)|2e2sϕdxdt

+ C

∫

QT

∣
∣
∣
∣

∫ t

t0

e
∫ τ
t0

a32(x,s)ds
(
Ĥ + ∂tχ2∂

j−1
t w − a31v̂

)
(x, τ)dτ

∣
∣
∣
∣

2

e2sϕdxdt

≤ C

∫

QT

|∂j−1
t w(x, t0)|2e2sϕdxdt

+ C

∫

QT

(t − t0)
∫ t

t0

∣
∣
∣

(
Ĥ + ∂tχ2∂

j−1
t w − a31v̂

)
(x, τ)

∣
∣
∣
2

dτe2sϕdxdt

≤ C

∫

QT

|∂j−1
t w(x, t0)|2e2sϕdxdt

− Cs−1

∫

QT

∫ t

t0

∣
∣
∣

(
Ĥ + ∂tχ2∂

j−1
t w − a31v̂

)
(x, τ)

∣
∣
∣
2

dτ
(
e2sϕ

)

t
dxdt

≤ C

∫

QT

|∂j−1
t w(x, t0)|2e2sϕdxdt

+ Cs−1

∫

QT

(
|Ĥ|2 + |∂tχ2∂

j−1
t w|2 + |v̂|2

)
e2sϕdxdt.

Namely,
∫

QT

s2|ŵ|2e2sϕdxdt ≤ C

∫

QT

s2|∂j−1
t w(x, t0)|2e2sϕdxdt

+ C

∫

QT

s
(
|Ĥ|2 + |∂tχ2∂

j−1
t w|2 + |v̂|2

)
e2sϕdxdt. (4.9)

Therefore, by adding up (4.8) and (4.9) we find that for j = 1, 2, 3,
∫

QT

s

(∣
∣
∣∇
(
χ2∂

j−1
t ui

)∣
∣
∣
2

+
∣
∣
∣∇
(
χ2∂

j−1
t ue

)∣
∣
∣
2
)

e2sϕdxdt

+
∫

QT

[
s3
(
|χ2∂

j−1
t ui|2 + |χ2∂

j−1
t ue|2

)
+ s2|χ2∂

j−1
t w|2

]
e2sϕdxdt

≤ C

∫

QT

s|χ2|2
(|Fj |2 + |Gj |2 + |Hj |2

)
e2sϕdxdt

+ C

∫

QT

s2|∂j−1
t w(x, t0)|2e2sϕdxdt

+ C

∫

QT

s
(|∇χ2|2 + |Δχ2|2

)
(|∇∂j−1

t ui|2 + |∇∂j−1
t ue|2 + |∂j−1

t ui|2

+ |∂j−1
t ue|2)e2sϕdxdt

+ C

∫

QT

s|∂tχ2|2
(∣
∣
∣∂

j−1
t ui

∣
∣
∣
2

+
∣
∣
∣∂

j−1
t ue

∣
∣
∣
2

+
∣
∣
∣∂

j−1
t w

∣
∣
∣
2
)

e2sϕdxdt.

(4.10)



4 Page 14 of 20 B. Wu et al. NoDEA

Obviously,
3∑

j=1

|χ2| (|Fj | + |Gj | + |Hj |)

≤ C
(∣
∣M i| + |∇M i| + |Me| + |∇Me

∣
∣
)

+ C

2∑

j=1

|χ2|
(
|∂j−1

t v| + |∂j−1
t w|

)

≤ C
(∣
∣M i| + |∇M i| + |Me| + |∇Me

∣
∣
)

+ C
2∑

j=1

(
|χ2∂

j−1
t ui| + |χ2∂

j−1
t ue| + |χ2∂

j−1
t w|

)
. (4.11)

By (4.5), we obtain
3∑

j=1

|∂j−1
t w(·, t0)|

≤ C (|w(·, t0)| + |v(·, t0)| + |∂tv(·, t0)|)
≤ C

(|w(·, t0)| + |ui(·, t0)| + |ue(·, t0)| + |Δui(·, t0)| + |M i| + |∇M i|
)
.

(4.12)

Then summing up over j in (4.10), substituting (4.11) and (4.12) into (4.10)
and choosing s sufficiently large to absorb the terms ∂j−1

t ui, ∂
j−1
t ue and ∂j−1

t w
on the right-hand side of (4.11), we find that

3∑

j=1

∫ T−2ε

2ε

∫

Ω\ω

[
s
(
|∂j−1

t ∇ui|2 + |∂j−1
t ∇ue|2

)
+ s3

(
|∂j−1

t ui|2 + |∂j−1
t ue|2

)]
e2sϕdxdt

≤ C

∫

QT

s2
(|M i|2 + |∇M i|2 + |Me|2 + |∇Me|2) e2sϕdxdt

+ Cs exp(2seλ0(M−δ))
(
||ui||2H2(0,T ;L2(Ω)) + ||ue||2H2(0,T ;L2(Ω)) + ||w||2H2(0,T ;L2(Ω))

)

+ Cs2eCs
(
‖ui(·, t0)‖2

H2(Ω) + ‖ue(·, t0)‖2
L2(Ω) + ‖w(·, t0)‖2

L2(Ω)

)

+ CseCs
(
‖ui‖2

H2(0,T ;H1(ω)) + ‖ue‖2
H2(0,T ;H1(ω))

)
, (4.13)

where we have used Supp(∇χ2),Supp(Δχ2) ⊂ ω, Supp(∂tχ2) ⊂ [ε, 2ε] ∪ [T −
2ε, T −ε], (4.4) and (4.6). This yields the desired estimate (4.7). This completes
the proof of Lemma 4.1. �

To prove our stability result, we also need a Carleman estimate for the
following first-order partial differential equation:

B(x) · ∇ϑ(x) + B0(x)ϑ(x) = R(x), x ∈ Ω, (4.14)

where B ∈ (W 1,∞(Ω)
)3 and B0 ∈ W 1,∞(Ω). The follow Lemma can be found

in [15] or [2].

Lemma 4.2. We assume

|B(x) · ∇d| > 0, x ∈ Ω.
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Then there exists positive constants s2 and C such that

s2

∫

Ω

|ϑ|2esϕ(x,t0)dx ≤ C

∫

Ω

|R|2esϕ(x,t0)dx (4.15)

and

s2

∫

Ω

|∇ϑ|2esϕ(x,t0)dx ≤ C

∫

Ω

(|R|2 + |∇R|2) esϕ(x,t0)dx (4.16)

for all s ≥ s2 and ϑ ∈ H2(Ω) satisfying ϑ(x) = 0, ∇ϑ(x) = 0, x ∈ ∂Ω.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. By (4.5), we have

∇M i(x) · ∇ũi(x, t0) + M i(x)Δũi(x, t0)

= cm∂tv(x, t0) − ∇ · (Mi(x)∇ui(x, t0))

+ a11(x, t0)v(x, t0) + a12(x, t0)w(x, t0) (4.17)

Applying Lemma 4.2 to (4.17), we find that
∫

Ω

s2
(|M i|2 + |∇M i|2

)
e2sϕ(x,t0)dx

≤ C

∫

Ω

(|∂tv(x, t0)|2 + |∂t∇v(x, t0)|2
)
e2sϕ(x,t0)dx

+ CeCs
(
‖ui(·, t0)‖2

H3(Ω) + ‖ue(·, t0)‖2
H3(Ω) + ‖w(·, t0)‖2

H1(Ω)

)
(4.18)

for all s ≥ s2. A similar estimate holds for Me. Therefore we obtain
∫

Ω

s2
(|M i|2 + |Me|2 + |∇M i|2 + |∇Me|2

)
e2sϕ(x,t0)dx

≤ C

∫

Ω

(|∂tv(x, t0)|2 + |∂t∇v(x, t0)|2
)
e2sϕ(x,t0)dx + CeCsL2. (4.19)

Let η̃ ∈ C∞
0 [0, T ] such that η̃(t0) = 1 and Supp(η̃) ⊂ [2ε, T − 2ε]. Then we

have
∫

Ω

(|∂tv(x, t0)|2 + |∂t∇v(x, t0)|2) e2sϕ(x,t0)dx

=

∫ t0

0

∫

Ω

[
η̃(t)

(|∂tv(x, t)|2 + |∂t∇v(x, t)|2) e2sϕ(x,t)
]

t
dxdt

≤
∫ t0

0

∫

Ω
(∂tη̃ + 2sη̃∂tϕ)

(|∂tv|2 + |∂t∇v|2) e2sϕdxdt

+

∫ t0

0

∫

Ω
2η̃
(
∂tv∂2

t v + ∂t∇v · ∂2
t ∇v

)
e2sϕdxdt

≤ C

3∑

j=2

∫ T−2ε

2ε

∫

Ω
s
(
|∂j−1

t v|2 + |∂j−1
t ∇v|2

)
e2sϕdxdt

≤ C
3∑

j=2

∫ T−2ε

2ε

∫

Ω
s
(
|∂j−1

t ui|2 + |∂j−1
t ue|2 + |∂j−1

t ∇ui|2 + |∂j−1
t ∇ue|2

)
e2sϕdxdt.

(4.20)
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From (4.19) and (4.20), it follows that
∫

Ω
s2
(|Mi|2 + |Me|2 + |∇Mi|2 + |∇Me|2) e2sϕ(x,t0)dx

≤ C

3∑

j=2

∫ T −2ε

2ε

∫

Ω
s
(
|∂j−1

t ui|2 + |∂j−1
t ue|2 + |∂j−1

t ∇ui|2 + |∂j−1
t ∇ue|2

)
e2sϕdxdt

+ CeCsL2. (4.21)

Substituting (4.21) into (4.7) leads to
∫

Ω

s2
(|M i|2 + |Me|2 + |∇M i|2 + |∇Me|2

)
e2sϕ(x,t0)dx

≤ C

∫

QT

s2
(|M i|2 + |∇M i|2 + |Me|2 + |∇Me|2

)
e2sϕdxdt

+ Cs exp(2seλ0(M−δ))K2 + Cs3eCsL2 (4.22)

for all s ≥ s∗ = max{s1, s2}. Since ϕ(x, t0) > ϕ(x, t) for t �= t0, Lebesgue’s
dominated convergence theorem yields

∫

QT

(|M i|2 + |∇M i|2 + |Me|2 + |∇Me|2
)
e2sϕdxdt

=
∫

Ω

(|M i|2 + |Me|2 + |∇M i|2 + |∇Me|2
)
e2sϕ(x,t0)

×
(∫ T

0

e−2s(ϕ(x,t0)−ϕ(x,t))

)

dtdx

≤ ε

∫

Ω

(|M i|2 + |Me|2 + |∇M i|2 + |∇Me|2
)
e2sϕ(x,t0)dx (4.23)

for sufficiently small ε > 0, as s → +∞. We can choose ε sufficiently small to
absorb the first term on the right-hand side into the left-hand side to obtain

s2

∫

Ω

(|M i|2 + |Me|2 + |∇M i|2 + |∇Me|2
)
e2sϕ(x,t0)dx

≤ Cs exp(2seλ0(M−δ))K2 + Cs3eCsL2. (4.24)

Additionally, since ϕ(x, t0) ≥ exp(λ0M) in Ω, we have

s2

∫

Ω

(|M i|2 + |Me|2 + |∇M i|2 + |∇Me|2
)
e2sϕ(x,t0)dx

≥ Cs2 exp(2seλ0M )
(
‖M i‖2

H1(Ω) + ‖Me‖2
H1(Ω)

)
. (4.25)

Therefore, it follows from (4.24) and (4.25) that

‖M i‖2
H1(Ω) + ‖Me‖2

H1(Ω) ≤ Ce−2σsK2 + Cs exp(−2seλ0M )eCsL2

≤ Ce−2σsK2 + CeCsL2 (4.26)

for s ≥ s∗ with s∗ exp(−2s∗eλ0M ) < 1, where σ = eλ0M − eλ0(M−δ). Setting
s := s + s∗ and replacing C by CeCs∗

, we obtain (4.26) for all s ≥ 0. Finally,
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minimizing the right-hand side of (4.26) with respect to s, we obtain

‖M i‖2
H1(Ω) + ‖Me‖2

H1(Ω) ≤ CK2μL2(1−μ) (4.27)

with μ = C
C+2σ . This completes the proof of Theorem 1.3. �

5. Conclusion

In this paper, we prove two stability results for a linearized bidomain model in
electrocardiology. One is a conditional stability for Cauchy problem (Theorem
1.1), which shows that we could determine (ui, ue) in an arbitrary sub-domain
Ω0 by the lateral data of (ui, ue) on arbitrary non-empty sub-boundary of
∂Ω. In other words, in order to obtain the data in interior domain, we only
need to measure the lateral data on some sub-boundary rather than the whole
boundary in engineering environment. This can greatly reduce the measure-
ment data. In equal anisotropy case, our another stability (Theorem 1.3) gives
a Hölder stability for recovering two conductivity functions by the data in
a suitable small interior domain and the data at a fixed time. Such kinds
of inverse problems of determining the physical parameters in applied model
have not only a great theoretical value but also a certain realistic value, which
would provide theoretical support for researchers to develop stable and effi-
cient numerical methods. Widely open is the case of strong anisotropy. Since in
this case the conductivities in the longitudinal direction are higher than those
across the fiber, one has to identify the unknown σl

i, σ
t
i , σ

l
e, σ

t
e and a direction

al in matrices Mi and Me, which needs more measurement data and more
elegant mathematical analysis.

Our stability solves what data could determine the conductivities in
mathematics. However, how to measure the data without injury, especially
in the interior of the heart, is still a hard problem. A method in medicine is
using catheter interventions. Measuring the data on the surface of the torso
is noninvasive and much easier to manipulate. Therefore, similar inverse prob-
lems for a more complicated model consisting of a geometric torso model and
a model of the electric activation in the heart [20] have more realistic meaning.
Our future research will focus on this subject.
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