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1. Introduction

The ferroelectricity is a property of some materials to have a spontaneous
electrical polarization that can be reversed by the application of an exter-
nal electric field. Ferroelectricity was demonstrated for first time in 1920 in
Rochelle salt by J. Valasek. The chemical and crystallographic complexity of
this salt restrained the research and suggested that the ferroelectricity was an
exotic property requiring very specific conditions. Moreover, this property did
not present any practical interest. A leap in the study of the ferroelectricity
happened in the early 1950s with the discovery of ferroelectric oxides with
perovskite structure: barium titanate (BaTiO3), lead titanate (PbTiO3), etc.
These simpler materials enabled the development of theories of ferroelectricity
and opened the way for industrial use of ferroelectric materials. Dielectric and
piezoelectric properties of ferroelectric materials are now used in a wide vari-
ety of contexts. In particular, thin ferroelectric materials are receiving great
interest due to their various applications to memory and storage devices, elec-
tronic circuits with miniaturized and integrated forms, etc. as, for instance,
radio frequency identification cards (RFID) and ferroelectric tunnel junction
(FTJ) (see [7,22]).

In this paper, we start from a non-convex and nonlocal 3D-variational
model for the electric polarization in a ferroelectric material. Via an asymptotic
process based on dimensional reduction, we obtain a rigorous 1D-variational
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model for the electric polarization in a ferroelectric thin wire. In this study,
we do not consider any deformation of the ferroelectric material.

Precisely, let

Ωn = hnω ×
]
−1

2
,
1
2

[
, n ∈ N,

be a 3D ferroelectric cylindrical device with small cross-section hnω and thick-
ness 1, where hn ∈]0, 1[, n ∈ N, is a parameter tending to zero and ω ⊂ R

2

is an open polygonal set. In this material, the response to an applied elec-
tric field changes the electric displacement as D = εE + 4πp, where ε > 0 is
the dielectric permeability, p is the spontaneous electric polarization field and
E = −Dϕ is the electric field which satisfies the electrostatic equation{

div(−εDϕ + 4πp) = 0 in Ωn,
(−εDϕ + 4πp) · ν = 0 on ∂Ωn,

(1.1)

with ν denoting the unit outer normal on ∂Ωn. The free energy associated with
Ωn is non-convex, nonlocal and it is given by (see [5,21,23] for an explanation
of the model)

En : p = (p1, p2, p3) ∈ (H1(Ωn))3 → 1
h2

n

[
β

∫
Ωn

|rotp|2dx +
∫

Ωn

|divp|2dx+

+α

∫
Ωn

(|p|2 − 1)2dx +
∫

Ωn

|Dϕ|2dx −
∫

Ωn

(gn · p)dx

]
,

(1.2)
where α and β are positive constants, gn ∈ (

L2(Ωn)
)3 is an external electric

field, x = (x1, x2, x3) = (x′, x3) denotes the generic point of R3 and · denotes
the inner product in R

3.
Remark that β

∫
Ωn

|rotp|2dx +
∫
Ωn

|divp|2dx reduces to the classical en-
ergy

∫
Ωn

|Dp|2dx when β = 1 (see Lemma 2.1), so roughly speaking this term
penalizes the spatial variation of p, while the term α

∫
Ωn

(|p|2 − 1)2dx induces
a phase transition of p. So the body is driven to have regions of uniform polar-
ization separated by thin transition layers. The external energy

∫
Ωn

(gn · p)dx
favors the polarization parallel to an externally applied field.

Imposing appropriate convergence assumptions on the rescaled exterior
field in Ω = ω × ]− 1

2 , 1
2

[
[see (3.1) and (3.6)], we prove that (see Theorem 5.1)

lim
n

min{En(p) : p ∈ (H1(Ωn))3, p · ν = 0 on ∂Ωn} =

min
{
E∞(q) : q ∈ H1

0

(]− 1
2 , 1

2

[)} (1.3)

where, in (1.3), p · ν means that inner product between the trace of p on ∂Ωn

and the unit outer normal on ∂Ωn, and

E∞ : q ∈ H1
0

(]
−1

2
,
1
2

[)
→ β|ω|

∫ 1
2

− 1
2

∣∣∣∣ dq

dx3

∣∣∣∣
2

dx3 + α|ω|
∫ 1

2

− 1
2

(|q|2 − 1
)2

dx3+

+
(

4π

ε

)2

|ω|
∫ 1

2

− 1
2

|q|2dx3 −
∫ − 1

2

− 1
2

g3qdx3,
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with g = (g1, g2, g3) denoting the integral over x′ on cross section ω of the(
L2(Ω)

)3-weak limit of the rescaled external field. More precisely, we obtain
(H1(Ω))3-strong convergence for a subsequence of rescaled polarizations. The
limit polarization depends only on x3 ∈] − 1

2 , 1
2 [, it is parallel to the wire (i.e.

the first two components are zero), while its third component solves the limit
problem in (1.3). We remark that the nonlocal term in (1.2) transforms into(

4π
ε

)2 |ω| ∫ 1
2

− 1
2

|q|2dx3. So the limit problem becomes local. The reduced model
is justified by reasons of simplicity and economy, especially by a numerical
point of view.

We explicitly point out that this phenomenon does not appear in the
3D-2D dimensional reduction, where the limit problem depending only on x′

and defined on the cross section of the thin film retains the same properties
of the 3D starting problem, i.e. it remains non-convex, nonlocal and with the
same boundary condition (see Theorem 5.1 in [14]).

On the other side, the limit problem in (1.3) has some similarities with
the 3D-2D dimensional reduction in the case where in the left hand side of
(1.3) boundary condition p · ν = 0 is replaced by

p ∧ ν = 0 on ∂Ωn, (1.4)

with ∧ denoting the cross product in R
3. In fact, in the 3D-2D dimensional

reduction with boundary condition (1.4), one obtains an uniaxial local limit
problem, i.e. the first two components of the limit polarization are zero, while
the third component depending only on x′ solves a local problem on the cross
section of the thin film with the homogeneous Dirichlet boundary condition
(see Theorem 5.3 in [14]).

In the case of a wire with boundary condition (1.4), we prove that the
rescaled polarization converges strongly in (H1(Ω))3 to (0, 0, 0) (see Theorem
5.2).

Although the prefix “ferro” was borrowed from ferromagnetism and the
3D model of ferromagnetic micro devices is close to our model, the limit be-
havior of a ferromagnetic thin wire is completely different. In fact, the ferro-
magnetic energy associated with Ωn = hnω×] − 1

2 , 1
2 [ is given by

Jn : m ∈ H1(Ωn, S2)

→ 1
h2

n

[
β

∫
Ωn

|Dm|2dx +
∫

Ωn

ψ(m)dx +
∫
R3

|Dϕ|2dx −
∫

Ωn

(gn · m)dx

]
,

where S2 denotes the unit sphere of R3, ψ : S2 → [0,+∞[ is a continuous and
even function and

div(−Dϕ + m) = 0 in R
3,
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understanding m = 0 in R
3 \ Ωn. Then, as the cross section of Ωn vanishes, it

results (see [4,13,19])

lim
n

min{Jn(m) : m ∈ H1(Ωn, S2)}

= min

{
β|ω|

∫ 1
2

− 1
2

∣∣∣∣ dμ

dx3

∣∣∣∣
2

dx3 + |ω|
∫ 1

2

− 1
2

ψ(μ)dx3 −
∫ 1

2

− 1
2

gμdx3

+
∫
R2

∫ 1
2

− 1
2

|μ1(x3)Dp(y, z) + μ2(x3)Dq(y, z)|2dx3dydz :

μ = (μ1, μ2, μ3) ∈ H1
(]− 1

2 , 1
2

[
, S2

) }
,

(1.5)

where p ∈ W 1(R2) and q ∈ W 1(R2) are the weak solutions of⎧⎪⎪⎨
⎪⎪⎩

Δp = 0 in ω,
Δp = 0 in R

2 \ ω,[
∂p

∂ν

]
= νe1 on ∂ω,

⎧⎪⎪⎨
⎪⎪⎩

Δq = 0 in ω,
Δq = 0 in R

2 \ ω,[
∂q

∂ν

]
= νe2 on ∂ω,

respectively, with W 1(R2) denoting the Beppo-Levi space on R
2, ν the exterior

unit normal to ∂ω,
[

∂·
∂ν

]
the jump of ∂·

∂ν on ∂ω, and e1 = (1, 0), e2 = (0, 1).
Unlike the ferroelectric 1D limit, generally this magnetization limit is not

uniaxial, i.e. the first two components of the solutions of the limit problem in
(1.5) are not zero. In some particular cases, it becomes uniaxial. For instance,
it is easy to check that the unique solutions of the limit problem in (1.5) are
μ = (1, 0, 0) or μ = (−1, 0, 0), if ψ = 0 and g = 0.

For the study of ferromagnetic thin structures, we refer to [1–4,8–13,16–
19]. For the asymptotic partial domain decomposition in thin wires, see recent
results in [15].

Mainly, we consider the case p · ν = 0 on ∂Ωn. The proofs of our results
are based on accurate a priori estimates and on the given boundary conditions
which provide a first characterization of the H1(Ω)-weak limit of the rescaled
polarization. These informations allows us to identify the limit of the nonlo-
cal term, i.e. the limit of the electric field satisfying the electrostatic equation
(1.1). Then, using the main idea of Γ-convergence method, we characterize
completely the limit polarization as solution of a minimization problem. Fi-
nally, we prove that the convergences are H1(Ω)-strong. At the end of the
paper, we sketch the proof for the case p ∧ ν = 0 on ∂Ωn.

To simplify computations, in the sequel we assume ε = 4π.

2. The setting of the problems

For every n ∈ N, let

Pn =
{

p ∈ (
H1(Ωn)

)3
: p · ν = 0 on ∂Ωn

}

and Sn =
{

p ∈ (
H1(Ωn)

)3
: p ∧ ν = 0 on ∂Ωn

}
.
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Lemma 2.1. It results that

‖Dp‖2
(L2(Ωn))9 = ‖rotp‖2

(L2(Ωn))3 + ‖divp‖2
L2(Ωn), ∀p ∈ Pn ∪ Sn, ∀n ∈ N.

(2.1)

Proof. Fix n ∈ N. It is known that this equality holds true in (Pn ∪ Sn) ∩
(H2(Ωn))3 (see the last three lines in the proof of Lemma 2.2 in [6]). Con-
sequently, using the density of Pn ∩ (H∞(Ωn))3 in Pn and the density of
Sn ∩ (H∞(Ωn))3 in Sn (see Lemma 2.6 in [6]) one obtains (2.1). Precisely,
apply Lemma 2.6 in [6] (with its notations) in the simple case where {Ωj} is
the trivial polyhedral partition of Ωn composed on Ωn only, ε = μ = 1, and
Σ is the skeleton formed by the union of the closed edges of Ωn. Then, in this
case one has H∞

T (Ωn, 1) = Pn ∩ (H∞(Ωn))3, H∞
N (Ωn, 1) = Sn ∩ (H∞(Ωn))3,

HT (Ωn, 1) = Pn, and HN (Ωn, 1) = Sn. �

For every n ∈ N and p ∈ (
L2(Ωn)

)3, Lax-Milgram Theorem ensures that
the following problem:

ϕp ∈ H1(Ωn),
∫

Ωn

ϕpdx=0,

∫
Ωn

((−Dϕp+p) · Dϕ) dx = 0, ∀ϕ ∈ H1(Ωn),

(2.2)
admits a unique solution.

For every n ∈ N , let

En : p ∈ (H1(Ωn))3 → 1

h2
n

∫
Ωn

[β|rotp|2 + |divp|2+α(|p|2−1)2+|Dϕp|2−(gn · p)]dx,

(2.3)

where gn ∈ (
L2(Ωn)

)3 and ϕp is the unique solution of (2.2). By using (2.1)
and the direct method of Calculus of Variations, it is easy to see that the
following problems

min{En(p) : p ∈ Pn}, (2.4)
min{En(p) : p ∈ Sn} (2.5)

admit solution. The aim of this paper is to study the asymptotic behavior, as
n diverges, of problems (2.4) and (2.5).

3. The rescaling

As it is usual, problems (2.4) and (2.5) can be reformulated on a fixed domain
through the following rescaling:

x = (x1, x2, x3) ∈ Ω = ω×] − 1
2
,
1
2
[→ (hnx1, hnx2, x3) ∈ Ωn = hnω×] − 1

2
,
1
2
[.

Precisely, setting

P =
{

p ∈ (
H1(Ω)

)3
: p · ν = 0 on ∂Ω

}
and

S =
{

p ∈ (
H1(Ω)

)3
: p ∧ ν = 0 on ∂Ω

}

where ν denotes also the unit outer normal on ∂Ω, and for every n ∈ N

fn : x = (x1, x2, x3) ∈ Ω → gn(hnx1, hnx2, x3), (3.1)
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Dn : p ∈ (
H1(Ω)

)3
(resp. H1(Ω))

→
(

1
hn

∂p

∂x1
,

1
hn

∂p

∂x2
,

∂p

∂x3

)
∈ (L2(Ω))9

(
resp. (L2(Ω))3

)
,

divn : p = (p1, p2, p3) ∈ (
H1(Ω)

)3 → 1
hn

∂p1

∂x1
+

1
hn

∂p2

∂x2
+

∂p3

∂x3
∈ L2(Ω),

rotn : p = (p1, p2, p3) ∈ (
H1(Ω)

)3 →(
1
hn

∂p3

∂x2
− ∂p2

∂x3
,
∂p1

∂x3
− 1

hn

∂p3

∂x1
,

1
hn

∂p2

∂x1
− 1

hn

∂p1

∂x2

)
∈ (L2(Ω))3,

functional En defined in (2.3) is rescaled in the following one:

En : p ∈ (H1(Ω))3 →
∫
Ω

[β|rotnp|2 + |divnp|2 + α(|p|2 − 1)2 + |Dnφp|2 − (fn · p)]dx,

(3.2)

where φp is the unique solution of the following problem:

φp ∈ H1(Ω),
∫

Ω

φpdx = 0,

∫
Ω

((−Dnφp + p) · Dnφ) dx = 0, ∀φ ∈ H1(Ω),

(3.3)
which rescales problem (2.2). Then, the goal of this paper turns in studying
the asymptotic behavior, as n diverges, of the following problems:

min{En(p) : p ∈ P}, (3.4)

min{En(p) : p ∈ S}. (3.5)

To this aim, we assume that

fn ⇀ f = (f1, f2, f3) weakly in (L2(Ω))3. (3.6)

We conclude this section recalling that (2.1) transforms into the following
one:

‖Dnp‖2
(L2(Ω))9 = ‖rotnp‖2

(L2(Ω))3 +‖divnp‖2
L2(Ω), ∀p ∈ P ∪S, ∀n ∈ N. (3.7)

4. A convergence result for problem (3.3)

Proposition 4.1. Let {pn}n∈N ⊂ (
L2(Ω)

)3 be such that

pn → (0, 0, q) strongly in
(
L2(Ω)

)3
, (4.1)

with q ∈ L2(Ω) independent of x′. Moreover, let φpn
be the unique solution of

(3.3) with p = pn. Then, it results that

φpn
−→

∫ x3

− 1
2

q(t)dt −
∫ 1

2

− 1
2

(∫ x3

− 1
2

q(t)dt

)
dx3 strongly in H1(Ω), (4.2)

1
hn

Dx′φpn
→ 0 strongly in

(
L2(Ω)

)2
. (4.3)
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Proof. Since {pn}n∈N is bounded in
(
L2(Ω)

)3, there exists a positive constant
c such that

‖Dnφpn
‖(L2(Ω))3 ≤ c, ∀n ∈ N.

Consequently, by virtue of the Poincaré-Wirtinger inequality, there exist a
subsequence of N, still denoted by {n}, and (in possible dependence of the
subsequence) τ ∈ H1(Ω), independent of x′ and with zero average, and ξ ∈(
L2(Ω)

)2 such that

φpn
⇀ τ weakly in H1(Ω), (4.4)

1
hn

Dx′φpn
⇀ ξ weakly in

(
L2(Ω)

)2
. (4.5)

Now, passing to the limit in the equation satisfied by φpn
with test func-

tions ψ independent of x′, that is ψ ∈ H1
(]− 1

2 , 1
2

[)
, convergences (4.1) and

(4.4) entail that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1
2

− 1
2

((
− dτ

dx3
+ q

)
dψ

dx3

)
dx3 = 0, ∀ψ ∈ H1

(]
−1

2
,
1
2

[)
,

τ ∈ H1

(]
−1

2
,
1
2

[)
,

∫ 1
2

− 1
2

τdx3 = 0.

Since this problem admits the unique solution

τ(x3) =
∫ x3

− 1
2

q(t)dt −
∫ 1

2

− 1
2

(∫ x3

− 1
2

q(t)dt

)
dx3, in

]
−1

2
,
1
2

[
,

from (4.4) it follows that

φpn
⇀

∫ x3

− 1
2

q(t)dt −
∫ 1

2

− 1
2

(∫ x3

− 1
2

q(t)dt

)
dx3 weakly in H1(Ω). (4.6)

By using the equation satisfied by φpn
, (4.1), (4.5), (4.6) and a l.s.c.

argument, one obtains that
∫

Ω

|ξ|2dx + |ω|
∫ 1

2

− 1
2

q2dx3 ≤ lim
n

∫
Ω

|Dnφpn
|2dx

= lim
n

∫
Ω

(Dnφpn
· pn) dx = |ω|

∫ 1
2

− 1
2

q2dx3, (4.7)

which provides that ξ = (0, 0), and that convergences (4.5) and (4.6) are
strong and hold true for the whole sequence since the limits are uniquely
identified. �

Remark 4.2. We point out that from (4.2) and (4.3) it follows that

lim
n

∫
Ω

|Dnφpn
|2dx = |ω|

∫ 1
2

− 1
2

|q|2dx3.
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5. The main results

At first, we consider the case p · ν = 0 on ∂Ω.
Let

P∞ =
{

q ∈ H1(Ω) : q is independent of x′ and q = 0 on ω ×
{

−1
2
,
1
2

}}

� H1
0

(]
−1

2
,
1
2

[)
(5.1)

and

E∞ : q ∈ P∞ → β|ω|
∫ 1

2

− 1
2

∣∣∣∣ dq

dx3

∣∣∣∣
2

dx3 + α|ω|
∫ 1

2

− 1
2

(|q|2 − 1
)2

dx3

+|ω|
∫ 1

2

− 1
2

|q|2dx3 −
∫ − 1

2

− 1
2

(∫
ω

f3dx′q
)

dx3,

(5.2)

where f3 is defined in (3.6).
The following statement contains the main result of this section:

Theorem 5.1. Assume (3.6). For every n ∈ N, let En be defined in (3.2), pn

be a solution of (3.4) and φpn
be the unique solution of (3.3) with p = pn.

Moreover, let P∞ and E∞ be defined in (5.1) and (5.2), respectively. Then,
there exist an increasing sequence of positive integer numbers {ni}i∈N and (in
possible dependence of the subsequence) q ∈ P∞ such that

pn → (0, 0, q) strongly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.3)

1
hn

Dx′pn → 0 strongly in
(
L2(Ω)

)6
, (5.4)

φpn
→

∫ x3

− 1
2

q(t)dt −
∫ 1

2

− 1
2

(∫ x3

− 1
2

q(t)dt

)
dx3 strongly in H1(Ω), (5.5)

1
hn

Dx′φpn
→ 0 strongly in

(
L2(Ω)

)2
, (5.6)

where q is a solution of the following problem

E∞(q) = min{E∞(q) : q ∈ P∞}. (5.7)

Moreover, the convergence of the energies holds true, that is

lim
n

En(pn) = E∞(q). (5.8)

Proof. The proof of this theorem will be performed in several steps. The first
step is devoted to prove that there exist a subsequence of N, still denoted by
{n}, and (in possible dependence of the subsequence) q ∈ P∞ � H1

0

(]− 1
2 , 1

2

[)
and z = (z1, z2, z3) ∈ (

L2(] − 1
2 , 1

2 [,H1
m(ω))

)3 such that

pn ⇀ (0, 0, q) weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.9)

1
hn

Dx′pn ⇀ Dx′z weakly in
(
L2(Ω)

)6
, (5.10)
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∫
ω

(
∂z1

∂x1
+

∂z2

∂x2

)
dx′ = 0, for x3 a.e. in

]
−1

2
,
1
2

[
, (5.11)

where the subscript “m” means zero average.
Since 0 ∈ P , it results that∫

Ω
(β|rotnpn|2 + |divnpn|2 + α|pn|4 − 2α|pn|2)dx ≤ ‖fn‖(L2(Ω))3‖pn‖(L2(Ω))3 , ∀n ∈ N.

(5.12)

By using the continuous embedding of (L4(Ω))3 into (L2(Ω))3, estimate (5.12)
gives

α

|Ω| ‖pn‖3
L2(Ω) − 2α‖pn‖L2(Ω) ≤ ‖fn‖(L2(Ω))3 , ∀n ∈ N, (5.13)

from which, by virtue of (3.6), it follows the existence of a positive constant c
such that

‖pn‖(L2(Ω))3 ≤ c, ∀n ∈ N. (5.14)

Then, combining (5.14), (3.6), (5.12) and (3.7), one obtains also the existence
of a positive constant c such that

‖Dnpn‖(L2(Ω))9 ≤ c, ∀n ∈ N. (5.15)

Estimates (5.14) and (5.15) provide the existence of a subsequence of N,
still denoted by {n}, and (in possible dependence of the subsequence) p =
(p1, p2, p3) ∈ P , independent of x′, such that

pn ⇀ p weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
.

In particular, since p is independent of x′ and p · ν = 0 on ∂Ω, it results that
p3 ∈ H1

0 (] − 1
2 , 1

2 [) and (p1, p2) = (0, 0). Hence, (5.9) holds true with q = p3.
To prove (5.10), for i = 1, 2, 3 and for every n ∈ N set

mn,i : x3 ∈
]
−1

2
,
1
2

[
−→

∫
ω

pn,i(x′, x3)dx′.

By using the Poincaré-Wirtinger inequality, there exists a positive constant c
such that, for x3 a.e. in

]− 1
2 , 1

2

[
,∥∥∥∥ 1

hn
(pn,i(·, x3) − mn,i(x3))

∥∥∥∥
H1

m(ω)

≤ c

hn
‖Dx′pn,i(·, x3)‖L2(ω) ,

∀n ∈ N, i = 1, 2, 3.

Thus, integrating these inequalities over x3 ∈ ]− 1
2 , 1

2

[
, estimate (5.15) gives

(5.10).
To prove (5.11), we remark that

(
1

hn
pn,1,

1
hn

pn,2

)
·ν′ = 0 on ∂ω×]− 1

2 , 1
2 [,

where ν′ denotes the unit outer normal on ∂ω. Consequently, it results that∫
Ω

(
ϕ(x3)

(
1
hn

∂pn,1

∂x1
(x′, x3) +

1
hn

∂pn,2

∂x2
(x′, x3)

))
dx

=
∫

∂ω×]− 1
2 , 1

2 [

(
ϕ(x3)

(
1
hn

pn,1,
1
hn

pn,2

)
· ν′

)
dσ=0, ∀ϕ ∈ C∞

0

(]
−1

2
,
1
2

[)
.

(5.16)
Then, (5.11) is obtained passing to the limit in (5.16) and using (5.10).
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The second step is devoted to identify q and z. Since (0, 0, q) ∈ P for
every q ∈ H1

0

(]− 1
2 , 1

2

[)
, it results that

En(pn) ≤ En((0, 0, q)), ∀q ∈ H1
0

(]
−1

2
,
1
2

[)
, ∀n ∈ N. (5.17)

Then, passing to the limit in (5.17), by virtue of (3.6), Proposition 4.1, (5.9),
(5.10) and a l.s.c. argument one obtains that

β

∫
Ω

(∣∣∣∣ ∂z3

∂x2

∣∣∣∣
2

+
∣∣∣∣ ∂z3

∂x1

∣∣∣∣
2

+
∣∣∣∣ ∂z2

∂x1
− ∂z1

∂x2

∣∣∣∣
2
)

dx +
∫

Ω

∣∣∣∣ ∂z1

∂x1
+

∂z2

∂x2
+

dq

dx3

∣∣∣∣
2

dx

+α|ω|
∫ 1

2

− 1
2

(|q|2 − 1)2dx3 + |ω|
∫ 1

2

− 1
2

|q|2dx3 −
∫ 1

2

− 1
2

(∫
ω

f3dx′q
)

dx3

≤ lim inf
n

En(pn) ≤ lim sup
n

En(pn) ≤ E∞(q), ∀q ∈ H1
0

(]
−1

2
,
1
2

[)
.

(5.18)
On the other hand, taking into account that q is independent of x′ and

(5.11), it results that

∫
Ω

∣∣∣∣ ∂z1

∂x1
+

∂z2

∂x2
+

dq

dx3

∣∣∣∣
2

dx =
∫

Ω

∣∣∣∣ ∂z1

∂x1
+

∂z2

∂x2

∣∣∣∣
2

dx + |ω|
∫ 1

2

− 1
2

∣∣∣∣ dq

dx3

∣∣∣∣
2

dx3.

(5.19)
Hence, inserting (5.19) in (5.18), one has that

β

∫
Ω

(∣∣∣∣ ∂z3

∂x2

∣∣∣∣
2

+
∣∣∣∣ ∂z3

∂x1

∣∣∣∣
2

+
∣∣∣∣ ∂z2

∂x1
− ∂z1

∂x2

∣∣∣∣
2
)

dx +
∫

Ω

∣∣∣∣ ∂z1

∂x1
+

∂z2

∂x2

∣∣∣∣
2

dx + E∞(q)

≤ lim inf
n

En(pn) ≤ lim sup
n

En(pn) ≤ E∞(q), ∀q ∈ H1
0

(]
−1

2
,
1
2

[)
,

(5.20)
which entails that ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂z1

∂x1
+

∂z2

∂x2
= 0, a.e. in Ω,

∂z2

∂x1
− ∂z1

∂x2
= 0, a.e. in Ω,

∂z3

∂x1
=

∂z3

∂x2
= 0, a.e. in Ω

(5.21)

(in particular, z3 = 0 a.e. in Ω since z3 ∈ L2(] − 1
2 , 1

2 [,H1
m(ω))). Consequently,

inserting (5.21) in (5.20), one obtains that q solves problem (5.7) and conver-
gence (5.8) holds true. We remark that convergence in (5.8) holds true for the
whole sequence since the limit is uniquely identified. Moreover, (5.5) and (5.6)
follow from (5.9) and Proposition 4.1.

In the last step, we identify (z1, z2) in (5.10) and prove that convergences
in (5.9) and (5.10) are strong. To this aim, by combining (5.8) with (3.6), (5.5),
(5.6) and (5.9), one obtains that
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lim
n

∫
Ω

(
β|rotnpn|2 + |divnpn|2) dx = |ω|

∫ 1
2

− 1
2

∣∣∣∣ dq

dx3

∣∣∣∣
2

dx3

=
∫

Ω

(
β |rot(0, 0, q)|2 + |div(0, 0, q)|2

)
dx.

(5.22)
Moreover, from (5.9), (5.10) and (5.21) it follows that⎧⎪⎪⎨
⎪⎪⎩

rotnpn ⇀

(
∂z3

∂x2
, − ∂z3

∂x1
,

∂z2

∂x1
− ∂z1

∂x2

)
= (0, 0, 0) = rot(0, 0, q) weakly in

(
L2(Ω)

)3
divnpn ⇀

∂z1

∂x1
+

∂z2

∂x2
+

dq

dx3
=

dq

dx3
= div(0, 0, q) weakly in L2(Ω).

(5.23)

Consequently, combining (5.22) with (5.23), one derives that{
rotnpn → rot(0, 0, q) strongly in

(
L2(Ω)

)3

divnpn → div(0, 0, q) strongly in L2(Ω).
(5.24)

Finally, from (3.7) and (5.24) one deduces that

Dnpn → D(0, 0, q) strongly in
(
L2(Ω)

)9
,

which entails that Dx′z = 0 (in particular, also (z1, z2) = (0, 0) a.e. in Ω since
(z1, z2) ∈ (

L2(] − 1
2 , 1

2 [,H1
m(ω))

)2) and that convergences in (5.9) and (5.10)
are strong. We remark that also convergence in (5.10) holds true for the whole
sequence since the limit is uniquely identified. �

Now, we consider the case p ∧ ν = 0 on ∂Ω.

Theorem 5.2. Assume (3.6). For every n ∈ N, let En be defined in (3.2), pn be
a solution of (3.5) and φpn

be the unique solution of (3.3) with p = pn. Then,
it results that

pn → 0 strongly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
, (5.25)

1
hn

Dx′pn → 0 strongly in
(
L2(Ω)

)6
, (5.26)

φpn
→ 0 strongly in H1(Ω), (5.27)

1
hn

Dx′φpn
→ 0 strongly in

(
L2(Ω)

)2
. (5.28)

Moreover, the convergence of the energies holds true, that is

lim
n

En(pn) = 0. (5.29)

Proof. We sketch the proof. By arguing as in the proof of Theorem 5.1, there
exist a subsequence of N, still denoted by {n}, and (in possible dependence of
the subsequence) p = (p1, p2, p3) ∈ S, independent of x′, and z = (z1, z2, z3) ∈(
L2(] − 1

2 , 1
2 [,H1

m(ω))
)3 such that such that

pn ⇀ p weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
.

1
hn

Dx′pn ⇀ Dx′z weakly in
(
L2(Ω)

)6
.
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In particular, since p is independent of x′ and p ∧ ν = 0 on ∂ω×] − 1
2 , 1

2 [, it
results that p = 0, that is

pn ⇀ 0 weakly in
(
H1(Ω)

)3
and strongly in

(
L4(Ω)

)3
.

Finally, the proof proceeds as in Theorem 5.1. We remark explicitly that
in this case we do not have (5.11), but really we do not need it, since the limit
of pn is (0, 0, 0). �
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