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Abstract. We discuss a geometric configuration for a class of homeomor-
phisms in R® producing the existence of infinitely many periodic points
as well a complex dynamics due to the presence of a topological horse-
shoe. We also show that such a class of homeomorphisms appears in the
classical Lotka—Volterra system.
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1. Introduction

Systems of ordinary differential equations of the form
¥ =2 (t,x), (1.1)

where 2 : R x RV — R¥ is a vector field T-periodic in the t-variable, arise
in large number of different situations, such as mechanical systems subject to
periodic disturbances, biological models concerning the interaction of species
in a seasonally varying environment, electric circuit theory, dynamics of fluids,
etc. In this setting, the study of existence and multiplicity of periodic solutions,
as well as the search for solutions with more complex behavior, plays a crucial
role in the investigations about Eq. (1.1). Accordingly, a great deal of research
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has been performed in such a direction, both from the point of view of studying
the dynamical system properties associated with the solutions, and in the
development of new functional analytic tools which provide the existence and
multiplicity of fixed points for some operator equations. See [10,20,21,25,32]
for important contributions and basic references about the subject.

This paper is devoted to the search of periodic solutions and chaotic dy-
namics for the Poincaré map associated with Eq. (1.1) in the three—dimensional
case. In the literature one can find many different concepts of complex dynam-
ics or “chaotic motions” for a map. The definition of chaos which we are going
to use is manly motivated by Smale’s expository article [37]. Intuitively, we
can say that a chaotic phenomenon occurs if it is possible to reproduce, within
the system and varying the initial conditions, all the possible outcomes of a
coin-flipping experiment. To describe more formally this situation we consider
a map [ acting on a metric space X, k > 2 nonempty compact disjoint sets
Hy,...,Hi_1 and a compact set A C Uf;olHi which is invariant under f, that
is f(A) = A. The itinerary of each point € A, under the action of f is ex-
pressed by means of the Picard sequence y,+1 = f(yn), with yo = z, or, in
other terms, by the trajectory (f™(x)),. Such trajectory is coded as a sequence
of symbols (s,,), with s, € {0,...,k—1}, where s,, = j means that f"(z) € H;
with 7 =0,...,k—1. Representing the orbits of a map f by sequences of sym-
bols is a widely explored point of view, dating back to Hadamard, Birkhoff,
Morse-Hedlund, Cartwright-Littlewood and Levinson (see [28]). In order to
present a simpler situation, let us confine ourselves for a moment to the case
of only two symbols, say 0 and 1. In this framework, a fundamental model
is given by the so-called Bernoulli shift which is a map o acting on the set
Yo = {0,1}% of bi-infinite sequences of two symbols and defined as

0 (Sn)nez — (8))nez, with s/, = s,41.

According to the above procedure, a strategy to prove the presence of complex
dynamics for a given map f, is to link the behavior of f on the invariant set
A to that of the Bernoulli shift o on . The connection between f| and o is
formally expressed by a continuous map g : A — s which makes the diagram

AT

g (1.2)

E2?232

commutative. In some examples the map g is a homeomorphism between com-
pact spaces (recall that X5 is a compact space endowed with a standard metric
for the product topology). In such a case we say that f is conjugate to o. When
this situation occurs, o reproduces the dynamics of f in A and all the topo-
logical properties of o, like transitivity and density of the periodic points, are
inherited by f.

In the sixties [35,36], Smale provided a geometrical and very useful de-
scription of a diffeomorphism f on manifolds having an invariant set on which
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FIGURE 1. A typical image representing the Smale horseshoe.
The horizontal strips Hy and H; are mapped to the vertical
strips Vp and V3

f is conjugate to o. In the planar setting the map can be described as a func-
tion which contracts a square @ = [0,1]? in the x-direction, expands it in the
y direction and further twists it around, in such a manner that f(Q) looks as
a horseshoe over @ (see Fig. 1). For more details about this construction and
various applications of this prototypical example, we refer to some classical
books like [11,28].

The theory of Smale horseshoes has been successfully applied to some
specific situations, leading to rigorous proofs of the existence of chaotic dy-
namics. These applications are not restricted to the planar case since they
can be developed in the higher dimensional setting too, for instance, in the
Mel'nikov or the Sil'nikov configurations or in other geometrical constructions
(see [11]). In general, however, such tools are not easy to apply. This fact has
motivated several authors to propose different approaches in which some tech-
nical assumptions related to the classical Smale horseshoe, are, at a certain
extent, relaxed to suitable conditions of more topological nature. Such a point
of view was already present in the pioneering works of Smale and Alekseev
and, more explicitly, in the Conley and Moser approach in [28, Chapter 3].
More recent contributions in this topological direction, using different tools,
like Conley index theory, homological methods, topological degree, have been
obtained by Kennedy, Yorke, Gidea, Mischaikow, Mrozek, Srzednicki, Wéjcik,
Zgliczynski and their collaborators (see, for instance, [6,18,38,41-43] and the
references therein). A possible way to develop the underlying geometry for the
Smale horseshoe was proposed by Burns and Weiss in [4] as a method by which
one proves that a set is mapped across itself in the appropriate way. Figure 2
shows a simple case in which a rectangle is crossed by a horseshoe-like set
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FI1GURE 2. Example of a bad crossing. In this picture we have
a rectangular domain R which is transformed by a homeomor-
phism f into a horseshoe type figure. Observe that there is no
fixed point for f in R. Furthermore, for each x € R, we have
f?(x) ¢ R and therefore R does not contain any nonempty
invariant set

in a wrong manner. Such kind of questions are also raised and discussed by
Kennedy, Kogak and Yorke in the last part of the article [16].

In the present work we consider a topological approach for detecting
the presence of horseshoe type phenomena for a map ¢ defined on a domain
homeomorphic to the unit cube C := [0,1]3. The “appropriate crossing” of
¢(C) along C is technically expressed by a property that we name stretching
along the paths. Roughly speaking it means that any path ( contained in C
and joining two opposite faces of C, contains at least two sub-paths which are
stretched by f along C and connect the same faces as ¢ (see Sect. 2 for the
formal definitions and more details). Our method can be viewed as a variant
of the theory of topological horseshoes developed by Kennedy and Yorke [17].

As in other topological methods generalizing Smale’s construction, also in
our approach we are able to obtain a compact invariant set A and a commuta-
tive diagram like in (1.2), with g continuous and surjective (but not necessarily
one-to-one), which, technically speaking, corresponds to the case of a semicon-
Jugation. Even if this is a weaker form of chaos [as we cannot ensure in general
that the map ¢ in (1.2) is a bijection], the semiconjugation to the Bernoulii
shift is an important feature of any reasonable definition of chaotic dynamics,
as pointed out by Block and Coppel in [3].

In general, as shown by classical examples [6,17], the surjectivity of g does
not ensure the presence of periodic points for the given map f. In contrast with
this fact, our results provide the existence of infinitely many periodic points in
the invariant set. More precisely we can prove that, for any periodic sequence
¢ = (Sp)nez € Yo the counter-image g~!(c) contains at least one periodic
point having the same period of the sequence c. This makes our approach
particularly suitable to study the periodic problem associated with (1.1), for
instance, in connection to the search of subharmonic solutions. In conclusion
we can say that, in relation to other definitions of chaotic dynamics considered
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in the literature, our notion is consistent with the concept of chaos in the coin-
tossing sense [19,37] but with a special emphasis toward the existence and
multiplicity of periodic (harmonic and subharmonic) solutions. Similar kind of
chaotic dynamics have been detected under different topological approaches
(see, for instance, [6,38,41-43]).

As a concrete application of our method we study the classical Lotka—
Volterra model for two predators (2 and x3) and one prey (z;) in a periodic
environment. More in detail, we consider the system

) =z (a(t) — a1 (t)z1 — ara(t)xe — arz(t)zs)

why = x2(B(t) + az1(t)x1 — aza(t)rs — azs(t)rs) (1.3)
wy = x3(Y(t) + az1(t)z1 — azz(t)ze — azs(t)zs)
(

where all the coefficients are T-periodic and a;;(t) > 0. Although we focus our
attention on system (1.3), our approach enables us to consider different models
for the interaction, like Holling type, Beddington—DeAngelis or Gompertz.

Lotka—Volterra equations have been extensively studied from different
perspectives, dealing with problems such as permanence, stability, extinc-
tion, existence and multiplicity of periodic solutions, or invading species (see
[1,7,8,22,23,26,39]). Fewer results, however, concern the presence of chaotic
dynamics for these equations, especially from an analytic point of view.

The application of our general topological method to system (1.3) is based
on a splitting of the associated Poincaré map ¢ as a composition of three func-
tions f, g, h. For each of these functions we assume some geometrical conditions
which are a direct consequence of some hypotheses on the coefficients of (1.3).
In order to express the topological properties required for such maps in the
clearest manner, we first present a prototypical situation where the essential
features can be easily described.

To conclude this Introduction, we remark that developments of the theory
of topological horseshoes have been applied in the planar context or to some
higher dimensional Hamiltonians (see [2,5,29,41] and the references therein).
Up to now, fewer applications in higher dimension and, especially in the non-
Hamiltonian setting, like in case of (1.3), are available.

The plan of the paper is the following. In Sect. 2 we recall from [34]
our main definitions and abstract results which are applied in the paper. Sub-
sequently, we illustrate a three-dimensional geometry producing a horseshoe
type dynamics for a homeomorphism which can be split as the composition of
three maps. Section 4 is devoted to the presentation of our main result (The-
orem 4.2) for a classical Lotka—Volterra system describing the interaction of
two predators and one prey in a periodic environment. The proof with all the
details is given the last section.

2. Topological results

In this section we collect the main definitions and the abstract results which
are needed for the proofs of our theorems. We refer the interested reader to
[34] for more details and [30,31] for related general results. Our method deals
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with continuous maps acting on suitable sets named oriented cylinders. By an
oriented cylinder of RY we mean a set which is homeomorphic to the product
of a closed ball in RV~! with a compact interval and where we have put in
evidence two opposite faces. Sets of this form have been also considered in
similar approaches by other authors as [2,43] and are also called (u,v)-sets or
“windows”, in the literature. Since our results are stable by homeomorphisms
deforming the domain, we can consider, as a generic example, a (solid) cylinder
of the form

Cg:BR X [0,1]3

where By is the closed ball in RN ! with center at the origin and radius R > 0.
The base and the top of the cylinder will be denoted by ¢, = Br x {0} and
%, = Br x {1}. Formally, an oriented cylinder is the pair

€ :=(¢,¢),

with

€ =%, UF .
The sets ¢, and €] are the two components of €.

Let K be a (nonempty) compact subset of 4 and let ® : ¥ — RY be

a continuous map. We say that the pair (®, K) has the stretching along the
paths property with respect to ¢ and write

(®,K) : €=,

if, for every (continuous) path ¢ : [to,t1] — % such that ((to) € 6, and
C(t1) € €, (or ((to) € €, and ((t1) € 6, ), there exists a subinterval [sg, s1]
of [to,t1] for which we have that

C(t) e K, forall te€ [sg,s1];

D(¢(t)) € €, forall t € [sg,s1];

D(¢(s0)) and ®(¢(s1)) belong to different components of €.

If Ky and K are two (nonempty) compact and disjoint subsets of % such that
(®,K;) : €<%, for i=0,1,
then we also write
(@, Ko, K1) : €%

The above definitions easily extend to the case in which the stretching property
is satisfied between two different (oriented) cylinders. In this framework, the
following result holds [34, Theorem 2.1].

Theorem 2.1. Let ‘g, Ko and Ky be as above and let ® : iﬁ —>~RN be a
homeomorphism (onto its image). Suppose that (®, Ko, K1) : €<>%. Then ®
is chaotic.

The term “chaotic” in the above theorem refers to dynamics of coin-
tossing type as described in the Introduction. More specifically, the following
situation occurs: There exists a compact set A C Ko U Ky which is invariant
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under ® and such that for any two-sided sequence (s, )nez € Lo there exists a
point w € A with

" (w) € K, , foreachn € Z. (2.1)

Moreover, if (sn)nez is a k-periodic sequence (that is s;41 = s; for some k > 1
and all i € Z) there exists at least one k-periodic point of ® satisfying (2.1).
In this setting, A can be chosen so that the set of periodic points Per ® is
dense in A and ®|, is semiconjugate to the Bernoulli shift on 35 (see [27] for
a complete list of the properties).

In view of the applications, we have intentionally stated our results for
the case of a map ® which is a homeomorphism. The theory can be generalized
for continuous maps.

3. A prototypical example

In order to show how Theorem 2.1 can be applied to a three dimensional ODE
system, we describe a model example in which the map ¢ may be split as the
composition of three functions. To make our assumptions more transparent,
we restrict our presentation to a simpler situation, namely the case where the
domain is a cube. The same construction can be adapted to more general
frameworks in which the pertinent domains of the involved maps are compact
sets homeomorphic to the unit cube.

Consider in R? the set R := [0,1]% and its sub-cube Rq := [1/4,3/4]* x
[0,1]. Let ¢ : R® — R3 be a map which can be expressed as the composition
of three homeomorphisms as

¢=hogof.
On such functions the following assumptions are made.

(Hy) There exist two compact disjoint subsets Ky and K of R such that for
any path ¢ = (¢1,(2,¢3) : [to,t1] — R with (a(to) = 0 and (a(t1) = 1,
there exist two subintervals [s], s{],[s5, s5] C [to,t1] such that for all
0 € [s},s7] (7 = 1,2) it holds that ((#) € K; and, moreover, f(((0)) € R,
with f1(¢(s})) = 0 and f1(¢(s})) =1 (or, viceversa).

(Hy) For any path ¢ = (C1, (2, (3) : [to, t1] — R with (1 (to) = 0 and 1 (1) = 1,
there exists a subinterval [s', s”] C [to, 1] such that g(¢(0)) € Ry for all
0 € [s,s"] with g3(¢(s")) = 0 and g5(¢(s”)) =1 (or, viceversa).

(Hp) hi(Ro), hs(Ro) C [0,1] and, moreover,

max ha(21,22,0) <0, V(x1,22,0) € Ry

minhg(ml,xg,l) > 1, V(l‘l,l‘g,l) € Ry,
or

min ho(x1,22,0) > 1, V(x1,22,0) € Ry

max ha(21,22,1) <0, V(z1,22,1) € Ry.

The following result is a direct consequence of Theorem 2.1. The straightfor-
ward proof is omitted.
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o f(@®)

FIGURE 3. A pictorial description of condition (Hy). Notice
that (H/) refers to a three-dimensional situation. For simplic-
ity we have drawn a projection in the x; xo-plane. We have
used a different aspect ratio, so that the unit square looks as
a rectangle. Comparing this configuration with that of Fig. 2,
we see that we are in presence of a “bad crossing”. This is not
in contradiction with the Smale horseshoe construction since
(Hy) is only one of the three steps that we need in order to
obtain the correct geometry for the map ¢

Theorem 3.1. Under the assumptions (Hy),(Hy) and (Hp), the map ¢ is
chaotic on the set R.

The geometry associated with the map f apparently reminds that of a
Smale’s horseshoe (see Fig. 3). However, the way in which f(R) crosses the
domain R may not provide such a dynamical behavior. Indeed, for a map f as
depicted in Fig. 3 we may not have even fixed points.

4. Statement of the main results

In this section we focus our attention on a predator—prey type Lotka—Volterra
system of the form

117/1 = $1(Oz(t) — all(t)xl — alg(t)$2 — alg(t)xg)
£Cl2 = .’Eg(ﬁ(t) + agl(t)l'l — (LQQ(fZ).’EQ - agg(t)l'g) (41)
{,Cg = SCg(’Y(t) + CL31(t).’L‘1 — agg(t)aig — a33(t)x3)

where all the coefficients are T-periodic and a;;(t) > 0.

In our model the variables x5 and x3 refer to populations predating the
prey 1. We take into account also the presence of inter-competition between
x9 and x3 and intra-competition in each species. The (periodic) dependence
on time of the coefficients of system (4.1) is introduced in order to model
the seasonal effects of the environment. In many ecological situations, such a
dependence is expressed as a switching between two or more regimes, where
each regime is described by an autonomous system. In mathematical biology
these equations are known as systems with seasonal succession [9,12,13]. For
instance, these systems naturally appear when the behavior of some species
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alternates between different states (like migration, hibernation, or breeding
periods), see [9,12-15,24].

Our aim is to prove the presence of chaotic dynamics for the Poincaré
map associated with (4.1). Recall that the Poincaré map is defined as

®:R3 — R} = {(21,22,23) 12; >0, fori=123}
p— x(T;p),

where z(t; p) is the maximal solution of the system with initial condition at
p. To this end, as a first step, we consider the following class of equations
describing seasonal succession

rh =2 (aM) — agé)mg)
zh = zo(— M + aéll)xl) forall te nT,nT+Ti,neZ (4.2)

b =0
ot =z (a® — a(123)x3)
zh = 29(B3 — x) forall te nT+ Ty, nT+Th +Ta[,neZ (4.3)

th = 23(—1 ) + aw)

) =0
zh=a9(f®) —a3) forall te T +T+To,(n+1)T,neZ (4.4)
=0

where all the parameters are strictly positive. For convenience we introduce
the notation (S) to denote the above T-periodic system made by (4.2)—(4.4)
and set

T3 I:T—Tl—TQ.

In system (S) we perform a switching among three different seasons of length
Ty, Ty and T3. Accordingly, the Poincaré map ® associated with (S) can be
expressed as

®=hogof,

where f, g and h are the Poincaré maps for systems (4.2)—(4.4) at the times
Ty, Tz and T3, respectively. By the special form of (S) it easily follows that ®
is defined on the whole positive cone Ri.

Now we are in a position to present our main result for (S).

Theorem 4.1. With respect to the parameters in (S), assume that
28 <« —. (4.5)

Then there exist v, T, Ty = To (Y?)) and Ty so that if v > ~5 and T; > T}
(fori=1,2,3), the Poincaré map associated with (S) is chaotic.
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Remark 4.1. In the proof we estimate v, Ty, Ty = Ty (y?) and Ty depend-
ing on the coefficients of the equations. The compact invariant set A where
the Poincaré map ® exhibits a chaotic behavior is contained in a suitable
cylindrical set which is constructed inside the interior int(R%) of the positive
cone. Consequently, by the invariance of the boundary of Ri for all systems
of the form (4.1), we also know that the corresponding complex solutions lie
in int(R?).

It is easy to check that system (S) is a particular case of the Lotka—
Volterra system (4.1). For instance, «(t) is the function defined stepwise as
alt) = aM if t € [0,Ty[, as a(t) = o) if t € [T}, Ty + Ty[ and as a(t) = 0
if t € [Ty + T5,T| and then extended by T-periodicity on the whole real line.
Clearly, the same trick can be made on all the coefficients of (4.1), so that (S)
appears as an example of (4.1) with stepwise periodic coefficients. It might
be interesting to investigate to what extent we can obtain a similar result
for system (4.1) for more general T-periodic coefficients. From the proof of
Theorem 4.1 we shall see that the result about chaotic dynamics is robust
with respect to small perturbations of the Poincaré map. Technically, this
claim follows by the same argument as in [34]. This fact can be then applied in
order to extend the previous result to a broader class of coeflicients in system
(4.1) Namely, we have the following.

Theorem 4.2. Fiz all the parameters in (S) satisfying the conditions of Theo-
rem 4.1, i.e., assume (4.5), as well as v? > ~5 and T; > Ty (fori = 1,2,3).
Then there exists € > 0 such that if the distance in L} between the previous
parameters in (S) and the coefficients of (4.1) is smaller than €, the Poincaré
map associated with (4.1) is chaotic.

Given two T-periodic integrable functions f(¢) and g(t), their distance in

L is given by fOT |f(t)—g(t)| dt. In our setting, the e-assumptions in Theorem
4.2 mean that

i Ty +T, T
/ la(t) — oM dt + / la(t) — o P| dt + / la(t)|dt <€, (4.6)
0 Ty Ty +T,
and so on (for the other coefficients).
We observe that the functions satisfying conditions of form (4.6) are not
necessary “piecewise constant” and they can be taken as smooth as we like.
We stress that, as a consequence of our definition of chaotic dynamics, un-
der the assumptions of Theorem 4.2 we have infinitely many periodic solutions
(subharmonics) for system (4.1). Indeed, the following result holds.

Corollary 4.1. Fiz all the parameters in (S) satisfying the conditions of Theo-
rem 4.1, i.e., assume (4.5), as well as Y2 > ~3 and T; > T} (fori=1,2,3).
Then there exists € > 0 such that if the distance in Lk between the previous
parameters in (S) and the coefficients of (4.1) is smaller than e, system (4.1)
has at least two T-periodic solutions as well as subharmonic solutions of any
order with range in int(R3).
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To the best of our knowledge, it seems not an easy task to achieve mul-
tiplicity results for this kind of systems using functional analytic tools, due to
the lack of a Hamiltonian structure for (4.1).

5. Proofs

We split the proof of Theorem 4.1 into four steps. In the first one we construct
a topological parallelepiped (that is a set in intRf_ homeomorphic to the unit
cube) where the result of Sect. 3 is applied. In each of the three remaining steps
we check the validity of the assumptions (Hy), (Hg), (Hy) for the corresponding
Poincaré maps.

Step 1: Definition of the parallelepiped.
First of all we consider the two-dimensional Lotka—Volterra system

“:x““”‘“g?> (5.1)
= xo(—BV + all ).

As is well known, the equilibrium point (3™ / a(211), al/ a(112)) is a global center
in the open first quadrant. Such a point is surrounded by a family of closed
curves which are the level lines of the energy function

E(a1,m2) = aYar — aMlogzy + aMay — BV log 2, (5.2)
satisfying
E(x1,22) =k >min€ = 5(5(1)/a§11),04(1)/a§12)).

An elementary argument, together with condition (4.5), enables us to deduce
that there exists £ > 0 such that for all 0 < ¢ < / the following property holds.

The solution of (5.1) with initial point at (/6’(1)/11511),5(2)/2)) leaves the
rectangle

1BD /o) — £,8D Jas) + €] x [82 /4,382 /4]
across the sides
(8D /aly) — £} x [62 /4,382 /4] and {8D /al) + £} x [8?) /4,352 /4].

Analogously, the solution with initial point at (ﬂ(l)/aéll),3ﬂ(2)/2)) leaves the
rectangle

8D Jagy) — 0,60 fagy) + 4] x [561 /4,769 /4
across the sides
(BW /o) — 0} x [58P /4,78 /4] and {BD /al) + £} x [58? /4,75? /4].

The standard proof is omitted. The interested reader can find more details in
[33]. However, we observe that ¢ can be explicitly estimated.
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FIGURE 4. A pictorial description of B

After this preliminary discussion, we can properly define the parallele-
piped. To this aim, we introduce the cylindrical region Cyl C int]R:j_ defined
by

(2) (2) (3) (3)
{($1,172) : 5($1,$2):5(ﬂ(1)/a§11)7$g)With 1’386 [57’ 3% ] }X |:ﬁ77 3[32 }

Next, we fix a constant ¢ €0, /[ and define the set

B:= Cyln{(x1,z9,23) : 1 € [ﬁ(l)/agll) — E,,@’(l)/aéll) + )}

(see Fig. 4 for a visualization of such a set).

By the choice of ¢ we know that B consists into exactly two connected
components. Between these two components we select the one containing the
point (6(1)/aé11),6(2),ﬂ(3)). We denote by P such a component. By construc-
tion, we observe that the following inclusion holds

M= lﬁﬂ) B +4 " [3ﬁ(2) 55(2)] y [@ 35(3)] o

) YT ) )
oD ) 14 2 2

a

(see also Fig. 5).

Our goal will be to prove that the set P contains a horseshoe for ® under
a suitable choice of times 77, 15, and T3 using Theorem 3.1. In this proof the
set P will play the role of the cube R, while the set corresponding to Ry will be
defined as a suitable subset Py of the parallelepiped M. The precise definition
of Py will be given in Step 3.
Step 2: Proof of the property (Hy).
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FIGURE 5. The set P with M inside

Consider the differential system

zh =z (a® — a(112):172)
rlh = 2o~ + agll)xl) (5.3)
xh =0

The set of the equilibrium points in intRi for system (5.3) is given by the

vertical line
1) oM
L = {(5(1),(1),1'3) . I3 > O} .
azr  G12

Every horizontal plane x3 = constant > 0 is invariant for the solutions of
1) M
).

system (5.3) and on this plane there is a global center at the point (%,
a1
Therefore, for any point g := (29, 29,29) ¢ L and for any 7 > 0, we can define

a rotation number in the following way:

T
agz)

e I
1 (372(t§CIO) - W)Xl(t) - (xl(t;qo) - %)Xz(t)
rot(qo, 7) = 2—/ 12 . RS dt,
™ 1 a1
0 (331(75;%) - fm) + (332(75;610) - ﬁ)
21 12
where
X (t):= t (1) _ (1) t Xo(t):= t: _ A (1) t:
1) =z1(t;q0) (@ —ay5 z2(t; q0)),  Xa(t):=z2(t; o) (=B + agy z1(t; o))

and (z1(t;qo), 2(t;qo), 23) is the solution of system (5.3) departing at time

t = 0 from the initial point gq.

The rotation number is an algebraic count of the number of turns around
the equilibrium point in the plane z3 = 29 during the time interval [0, 7]. Since
the trajectories of (5.3) wind counterclockwise in the x; zo-plane, the function
7 — rot(qo, 7) is strictly increasing for any gg & L.
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To prove the stretching property (Hy) we focus our attention on four
“vertical” faces of P. Namely, we define

P o= {(z1, 22, 73) € P : E(1,22) = EBD/alY, 32 /2)3,

P! = {(a1,23,23) € P+ E(wr,m2) = E(BY faly),35@ /2)}
and
R = {(z1,72,23) EP: 71 = 5(1)/091) — 1,

R" = {(x1,20,23) €P: 21 = 5(1)/a§11) + L}

All the points of P’ (respectively, P”) are periodic points of system (5.3) which
share the same period. We denote by T| and by T} the common periods for
all the points of P’ and P”, respectively. Since

E(BY fazy 5 /2) > €8 fay), 35 2),
by the monotonicity of the period with respect to the energy level (see [40,
Theorem 2]) we know that

T, > Ty.
Now we fix
T > Tl*
where
. 5TTY

After that, we introduce the two integers m’ and m’” which are, respectively,
the largest integer smaller or equal than 77 /T and the smallest integer greater
or equal to Ty /T). Accordingly, any point belonging to P’ makes at most m’
turns and hence its associated rotation number is less than or equal to m/.
Similarly, each point of the face P performs at least m” turns and has rotation
number greater than or equal to m”. From (5.4) and the choice of T} it follows
that the intervals [m’ + 1,m' + 2], [m” — 2, m” — 1], are disjoint.

Let us consider a system of cylindrical coordinates with reference to the
vertical half-plane

o= {(x1,22,23) 1 21 = B /aly), 22 < oV /aly)}

and denote by ¥(t, go) the angular coordinate of the solution (z1(¢; o), z2(t; qo),
x3) with initial point ¢y € P. By the above properties of the rotation numbers,

H(T1;q0) < 2mm’ + 7, Vqo € P° and 9(Ty;q0) > 2mm’ — 7, Vo € P”.
Therefore the compact sets
Hy:={qeP:IT1;q) € 2n[m' +1,m' + 2]}
and
Hy:={qeP:IT;q) €2rm"” —2,m" — 1]}

are nonempty and disjoint.



Vol. 22 (2015) Horseshoes in 3D equations 891

Our aim now is to prove the stretching property (Hj), where we recall
that f is the Poincaré map associated with (5.3) for the interval [0, 77].
Let ¢ = (¢1, 2, (3) : [to, t1] — P be a path with ((tg) € P" and {(¢;) € P".
Passing to the angular coordinates we consider the function
§: [to, ta] 3 s = I(T1;((s)).

By the above property of the angular function, we know that £(tg) < 2rm/ +
and £(t1) > 2mm” — m. Using elementary continuity arguments we can define
two subintervals [s], s7], [s5, s5] of [to, 1] such that ((s) € Hy for every s €
[s],s7] and ((s) € Hy for every s € [s), s§] and, moreover,
f(C(s)) - (xl(TU C(S))va(TH C(S))»Ca(s)) eP, Vse [8/1’ slll] U [5127 S/QIL
with
F(C(s1)), f(C(s2)) € R and f(((sY)), f(C(s7)) € R™.

This concludes the proof of the second step.
Step 3: Proof of the property (Hy).

First of all we define a set Py C M which will play the role of Ry for
Theorem 3.1. To this purpose, we consider the two-dimensional system in the

1 r3-plane
‘rll = 1’1(06(2) - ag . ) (55)
o = xo(—y® + az(,,l)xg).
In such a system o(?, ag) and a:(fl) are fixed parameters. An elementary ar-
gument as in Step 1 says that there exists 42 such that for each 42 with

¥ > 45 = max{ay (8D /afy) +0), 72} (5.6)
the following property holds: The solutions of (5.5) with initial point at
(ﬁ(l)/aéll) —£/2,8%)) and at (ﬁ(l)/agll) — /2, 34)) leave the rectangle

(80 faz)) — 0,60 fagy) + 4] x [89 /2,369 /2
across the sides

18D faly) — £,80 fay + 0 x {89 /2} and

8D Jaly — 6,80 Jay + € x {369 /2}.

From now on, also assume that the parameter v(?) is fixed, according to (5.6).

For the Hamiltonian system (5.5) we have the energy function
F(z1,x3) := a%)xl —aPlogz; + ai(fl)xg — ~v@og ay (5.7)

and, using F, we can define the set Py as the intersection of the parallelepiped
M with the set

{(z1, 22, 23) : Fu < Flay,23) < F*Y},
where
Fio = F (' /a(l) —0/2,89), Fri= f(ﬂ(l)/aéll) +0/2,3%)
(see also Fig. 6).
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FIGURE 6. A pictorial description of the set Py

We also introduce the times T3 and T4 which are the periods of the orbits
passing through the points (ﬁ(l)/aéll) —£/2,8%) and (M) /a2 +¢/2,9)),
respectively. Again by the monotonicity of the period with respect to the
energy levels we know that

T, >Ty.

We consider now the system
1=

zh = 22(B®) — z,) (5.8)
!/
3= L3

for t € [0, T]. With respect to the pair of variables (1, x3) we are in a situation
analogous to system (5.1). Nevertheless, we have a compression effect toward
the constant 32 in the zp-variable due to the logistic growth.

After these comments we properly concentrate on property (H,). Indeed,
using the second equation in (5.8), we define a time 75 > 0 such that |zo(t) —
B3| < 3 /4 for all t > 15 and any initial point in P. Now we fix

15 >T2*

. 3T/T//
75 > max{T/ ;//7 } . (5.9)

Observe that T = Ty (7?)) because T4 and T3 depend on (%),
Now we can check the stretching property (H,), where we recall that g
is the Poincaré map associated with (5.8) for the interval [0, 7], that is,

9(q) = W1(T259),y2(T2; 9), y3(T2; q)),

where (y1(+;9),y2(-;9),y3(-; ¢)) denotes the solution of (5.8) with initial value
in gq.

where
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Let ¢ = (¢1,(2,(3) : [to,t1] — P be a path with ((ty) € R’ and ((t1) €
R". As Ty > 15 and ((s) € P for each s € [to, t1], we know that |y(To;{(s)) —
B3| < 3 /4. On the other hand, there is a subinterval [t), ;] C [to,t1] such
that

Fi < F(Gu(s),Ga(s)) < F7, Vs € [tg, 1]
with
F(Gi(to), G(to)) = Fu and  F(Gi(t)), G(t))) = F*

Moreover, by the definition of P we also deduce that

(3) (3)
gg(s)e[ﬁQ,%Q ] Vs e [t ],

By introducing a system of polar coordinates in the x; z3-plane and arguing
as in the previous step, we can find a subinterval [s',s"] C [t(,t]] such that,
for every s € [¢', 5],

53 350)
27 2 }

Fo < Flun (To()), s (Tei () < . and  ys(Toin(s)) € [

hold, with

83 333
ys(To;1(s") = == wa(Tasv(s") = =5
Collecting all the information about (y1(7%;q),y2(T%2;q),y3(T2;q)) with ¢ in

the sub-path of , we conclude that
g(C(s)) € Py, Vsels,s"]

with g({(s’)) and g(¢(s”)) belonging to the lower and the upper faces of Py,
respectively. The proof of (Hy) is thus completed.
Step 4: Proof of the property (Hp).

As a last step we prove property (Hp) with P and Py playing the role
of the sets R and Ry of the prototypical model and with & the Poincaré map
associated with system

i =0
zh = 29(6®) — z3) (5.10)
=0

on the time interval [0, T3].
Let (21(59),22(-;9), 23(+;q)) denote the solution of (5.10) with initial
value in ¢ = (q1,¢2,q3). Since z1(t;¢q) and z3(t; q) are constant functions, the

second equation in (5.10) reads as x5, = 2o(3®) — g3). Therefore, ), = —@xg
on the points of the upper face of Py and zf, = @xz on the lower face. Now
it is clear how to determine T4 so that (H},) hods for every T5 > T5.

This concludes the proof of Theorem 4.1. O

To prove Theorem 4.2 it is sufficient to observe that all the results in the
previous steps are stable with respect to small perturbations of the coefficients
in the L'-norm. Then our claim follows by repeating an argument already
described in [34].
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To be more specific, suppose that the parameters in (S) as well as the
constants T > T, Tb > T3 and T3 > Ty are fixed in order to have achieved
the proof of Theorem 4.1 and consider now a system of the form (4.1) where
the coefficients are so that in each interval [0, T3], [Th,T1 + T3] and [Ty + 15, T
they are e-close in the L'-norm to those of the corresponding subsystems of
(S). With this, we mean that (4.6) holds and hence fOTl la(t) — oM dt < e,

f;:ﬁ_n la(t) — aP|dt < ¢, fT7;+T2 |a(t)] dt < € (and so on the for the other
coefficients). Now, if we check the argument in the proof for (S) of Theorem
4.1 it is easy to recognize that the verification of the three steps (Hy), (Hy)
and (Hp) are based on obtaining strict inequalities (either on the rotation
numbers or on some components of the partial Poincaré maps) which are still
true if we consider a sufficiently small perturbation in the coefficients (by the
theorem of continuous dependence of the solutions for Carathéodory systems).
In this manner, we can guarantee that the conclusion of Theorem 4.1 extends
to non-autonomous systems which are sufficiently small perturbations of the
stepwise autonomous system (S). O
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