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Abstract. Generalized semiconcavity results for the value function of a
jump diffusion optimal control problem are established, in the state vari-
able, uniformly in time. Moreover, the semiconcavity modulus of the value
function is expressed rather explicitly in terms of the semiconcavity or
regularity moduli of the data (Lagrangian, terminal cost, and terms com-
prising the controlled SDE), at least under appropriate restrictions ei-
ther on the class of the moduli, or on the SDEs. In particular, if the
moduli of the data are of power type, then the semiconcavity modu-
lus of the value function is also of power type. An immediate corol-
lary are analogous regularity properties for (viscosity) solutions of cer-
tain integro-differential Hamilton-Jacobi-Bellman equations, which may
be represented as value functions of appropriate optimal control problems
for jump diffusion processes.
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1. Introduction

This article should be seen as continuation of work initiated a long time ago—
at least since Krushkov—on obtaining semiconcavity estimates (or one-sided
estimates on second-order difference quotients) for deterministic and/or sto-
chastic optimal control value functions. And since under reasonable assump-
tions, value functions may be interpreted as solutions (at least in some general-
ized sense such as viscosity solutions) of appropriate Hamilton-Jacobi-Bellman
equations, and vice versa, the said estimates are in fact also regularity esti-
mates about solutions of these equations.

Let us try to be more precise taking a PDE-est point of view. Consider
a parabolic partial integro-differential equation (henceforth abbr. PIDE) of
Hamilton-Jacobi-Bellman (abbr. HJB) type
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∂u
∂t + infα∈A

{
b(t, x, α) · ∇u + 1

2 tr
(
σ(t, x, α)σt(t, x, α)D2u

)

+
∫

‖z‖≥δ

(
u(·, · + H(t, x, z, α)) − u − ∇u · H(t, x, z, α)

)
ν(dz)

+
∫

‖z‖<δ

(
u(·, · + K(t, x, z, α)) − u

)
ν(dz)

}
= 0 in [0, T ) × IRd,

u(T, ·) = ψ in IRd;

(1.1)

where data b,H,K,L are IRd-valued maps, σ an IRd×m-valued map, d,m ∈ N,
defined for 0 ≤ t ≤ T , x ∈ IRd, α ∈ A—here A is some fixed metric space
to be interpreted as a control space–whereas H, K depend also on “small
jumps” ‖z‖ ≤ δ, and “big jumps” ‖z‖ > δ, respectively, ν is a Lévy measure
on IRd\{0} and δ > 0 is some fixed parameter; for precise assumptions on data
see Sect. 4 below. Let us first recall the following

Definition 1.1. [16] Given an upper semicontinuous nondecreasing function
ω : IR+ → IR+ such that ω(0+) = limρ→0+ ω(ρ) = 0 (such a function is called
a semiconcavity modulus), we say that a function u : K → IR, where K is
some subset of some normed space (X, ‖ · ‖X), is an ω-semiconcave function if

λu(x1) + (1 − λ)u(x2) − u(λx1 + (1 − λ)x2)
≤ λ(1 − λ)‖x1 − x2‖Xω(‖x1 − x2‖X)

for all x1, x2 ∈ K such that the segment [x1, x2] ⊂ K and 0 ≤ λ ≤ 1. A
function u is called ω-semiconvex if −u is ω-semiconcave. We say that u is
of class C1,ω or C1,ω-regular if it is both ω-semiconcave and ω-semiconvex.1

Finally, a vector-valued map u : K → Y , where Y is another normed space, is
said to be of class C1,ω or C1,ω-regular if each “component of u”, that is, if
〈u, y∗〉 is of class C1,ω for all2 y∗ ∈ Y ∗ (in other words if the inequality above
holds for the left-hand side being replaced by its own Y -norm).

Assume that “vector fields” b, σ, H, K are in order of class C1,ωb , C1,ωσ ,
C1,ωH , C1,ωK , respectively, and that “running cost” L and “terminal cost” ψ
are, respectively, ωL and ωψ-semiconcave, in the state variable, uniformly in
time, control, and—when it occurs—in jump variables, where all the ω’s are
given semiconcavity moduli. Is it possible to conclude that a solution of (1.1)
is also ω-semiconcave in state variable, uniformly in time, for an appropriate
semiconcavity modulus ω? Further, in such a case, is it possible to express the
modulus of the solution in terms of the moduli of the data? We see in this
paper that the answer to these questions is ”Yes” for a large class of PIDEs of
the kind (1.1). As hinted by terminology or, by the very title of the article, the
main idea of the proof consists in interpreting a solution as a value function
of a stochastic optimal control problem for jump diffusion processes, that is,
processes which are solutions of appropriate stochastic differential equations
(abbr. SDE) of jump type, see, e.g., [25] and references therein.

1 In finite-dimensional normed spaces, such a definition is justified, e.g., by [16, Theo-

rem 3.3.7, p. 60]. Certain constants that appear in its proof are universal, that is, inde-

pendent of dimension, and this fact hints to its validity or possibility of extension to a large

class of infinite-dimensional normed spaces.
2 Y ∗—as it is standard nowadays—stands for the topological dual of Y .
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The novelties of the paper are as follows. We pursue great generality on
semiconcavity moduli of the data; part of these regularity results may be new
even for “pure” diffusions (H = K = 0), if not also for the “deterministic”
case (σ = H = K = 0, for this case consult also [16] and references therein).
Further, although applications mentioned in this paper deal only with SDEs
of jump type driven by Lévy noises, results are phrased in a rather abstract
or general fashion which makes them potentially applicable to other classes of
SDEs such as SDEs driven by general semimartingale-valued random measures,
or backward SDEs, provided that one has appropriate moments or Burkholder-
Davis-Gundy type inequalities. Last but not least, no ellipticity assumption of
any kind is made.

In terms of regularity (under mild assumptions) ω-semiconcave functions
stand between locally Lipschitz continuous functions and (classical) semicon-
cave functions. Although less regular than the latter, they share with them a
number of interesting properties as outlined in the book [16]. We believe that
this may justify research on generalized semiconcavity of value functions in
optimal control problems.

Power type moduli and moduli with certain concavity properties (see
Lemmas 2.5 and 3.2) admit a rather general treatment the main tool being
Gronwall’s and moments inequalities. While for general moduli, we use in
addition Kolmogorov’s continuity criterion which may be a new technique in
obtaining regularity results about value functions or solutions of (1.1).

Regularity theory of PIDEs such as (1.1) or, even more general classes
of equations, has of course attracted much attention since a long time. A re-
view of literature would be a quite difficult endeavor and probably beyond the
scope of this article. Nevertheless, we can say the following. Obviously, most
of regularity results hold under some kind of uniform ellipticity assumption.
A first group of results has been obtained assuming nondegenerate diffusions
or elliptic second-order differential (local) terms as in [6,19,21] (just to men-
tion a very few) and references therein. More recently there has been a revival
of interest on the theory of PIDEs which is due to the work on one hand of
Caffareli et al. [10–15], and Barles et al. on the other [3–5]. These authors,
differently from the earlier ones, prove regularity results such as Hölder, Lip-
schitz, C1,α-estimates, working under a kind of ellipticity assumption, which
they have to give appropriate meaning, and which is not any more due to the
second-order local terms (or to the presence of nonsingular diffusions), but
comes either from the nonlocal terms or from the combined effect of both local
and nonlocal terms.

Our semiconcavity results concern only the state or space variable, but
another issue that could or should be tackled is that of joint semiconcavity (or,
more generally, regularity) in time-space variables. There has been recently
considerable progress in this direction in the case of linear moduli of (that is,
classical) semiconcavity. The case of diffusions without jumps (H = K = 0),
that is of second-order PDEs of HJB type is treated in [8] and in [9]. The
case of general PIDE of HJB type is treated in [23] but under the restrictive
assumption that the Lévy measure ν should be finite; the case of a general Lévy
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measure with
∫

IRd min{1, ‖z‖2}ν(dz) < ∞, according to [23], is still open.
Of course, we are not aware of any systematic treatment dedicated to joint
generalized semiconcavity in the sense of Definition 1.1 in both time and space
variables available in literature.

Related to our discussion here is also [7] where convexity preservation
results (in space variable) for HJB PIDEs, and their significance to financial
applications are addressed, however under important restrictions: equations
are linear in the integro-differential part, and the second-order fully nonlinear
local part of the equation is assumed to be strictly elliptic. Finally, for reader’s
benefit let us mention the following references regarding semiconcavity results
in space variable: for semiconcavity results (even in the generalized sense of
Definition 1.1) in deterministic optimal control (or first-order Hamilton-Jacobi
PDEs) see [16], for classical semiconcavity estimates in optimal control of
diffusions (or second-order HJB PDEs) see [17] or [27]; semiconcavity estimates
can also be proved via comparison principles as in [20,22].

The paper is organized as follows. First section is dedicated to C1,ω-
estimates for solutions of “SDE”s, with an application to SDEs of Itô-Skorokhod
type, which complements work of Kunita [24]. In Sect. 3 a quite general finite-
horizon (stochastic) optimal control problem is formulated, and Theorem 3.1,
providing a general result about the semiconcavity of the value function, is
probably the main result of this article. These results are stated in a quite gen-
eral form and may be applicable to larger classes of SDEs, e.g., SDEs driven by
general semimartingale-valued random measures (although this has the draw-
back of requiring the introduction of a rather large amount of notation). Then
as a corollary to this theorem semiconcavity results are derived under suitable
restrictions on either the class of equations or the class of semiconcavity mod-
uli. Last section is dedicated to applications of results to the value function
arising in optimal control of jump diffusions (or Itô-Skorokhod SDEs).

Notation. We stick to the habit of denoting by Lu a Lipschitz constant
of a function or map u, and by ωu its semiconcavity modulus. Throughout the
paper we have done our best to allow readers to keep track of constants and
semiconcavity moduli. A property is said to hold locally in a normed space, if
it holds on bounded subsets of that normed space.

2. C1, ω-estimates for solutions of jump type stochastic
differential equations

Given a stochastic differential equation with C1, ω data, we show that corre-
sponding solutions are C1, ω′

with respect to the initial condition, giving an
explicit expression of ω′ in terms of ω. We prefer to formulate results in a
somewhat abstract fashion, the main benefit here being to shorten notation,
but, they may also be applicable to a wider class of equations than the one con-
sidered here. These results complement work of Kunita [24] who has studied
extensively the continuity and differentiability properties of solutions of (jump
type) stochastic differential equations with respect to the initial condition.
The method of proof is classical, based on Gronwall’s inequality, L2-isometry
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properties of stochastic integrals and on Kunita’s moments inequalities (see
again [24]).

2.1. The general setting

Let s < T , and let B and B′ be normed spaces. Let Σ(s, T ) be a linear space
of maps (or trajectories) x = x(·) : [s, T ] → B. Let

Φ : Σ(s, T ) → Σ(s, T ), (2.1)
f : [s, T ] × B → B′ (2.2)

and assume also that f is pathwise strongly measurable with respect to Σ(s, T ),
which, by definition, means that for all x(·) ∈ Σ(s, T ), the trajectory [s, T ] �
t → f(t, x(t)) ∈ B′ is strongly measurable. Let Bs—to be interpreted as the
space of initial conditions—be a subspace of B, which may depend on s. Given
x0 ∈ Bs, consider the equation

x(·) = x0 + Φ
(
x(·)) in [s, T ], (2.3)

by a solution of which we mean any trajectory x(·) ∈ Σ(s, T ) such that the
map [s, T ] � t → x0 + Φ

(
x(·))(t) belongs also to Σ(s, T ) and coincides with

x(·).
Before dealing with the C1, ω-dependence of solutions on initial condition,

we need (to recall) a result regarding Lipschitz estimates of solutions in terms
of initial conditions, which is useful also in our subsequent applications to
Itô-Skorokhod equations.

Theorem 2.1. (Local Lipschitz estimates) Assume that for all x1(·), x2(·) ∈
Σ(s, T ), and for some fixed 1 ≤ p < ∞,

∥
∥Φ

(
x1(·)

)
(t) − Φ

(
x2(·)

)
(t)

∥
∥p

B
≤

∫ t

s

∥
∥f

(
r, x1(r)

) − f
(
r, x2(r)

)∥
∥p

B′ dr, (2.4)

∥
∥Φ

(
x1(·)

)
(t)

∥
∥p

B
≤

∫ t

s

∥
∥f

(
r, x1(r)

)∥
∥p

B′ dr. (2.5)

Assume that f grows at most linearly and is locally Lipschitz uniformly in
time, that is, for some Cf ≥ 0,

‖f(r, x)‖p
B′ ≤ Cf (1 + ‖x‖p

B) (2.6)

for all s ≤ r ≤ T , x ∈ B. Finally, assume that for any bounded subset K ⊂ B,
there exists Lf,K ≥ 0, such that

‖f(r, x1) − f(r, x2)‖B′ ≤ Lf,K‖x1 − x2‖B (2.7)

for all s ≤ r ≤ T , x1, x2 ∈ K.
Let K be a bounded subset of Bs. Then there exists LΦ,K ≥ 0 (see (2.12)

below for an explicit value of such a constant), such that, for all x0
1, x

0
2 ∈ K,

if xi(·) are solutions to Eq. (2.3) with initial condition x0 = x0
i , i = 1, 2,

respectively, we have

‖x1(t) − x2(t)‖B ≤ LΦ,K‖x0
1 − x0

2‖. (2.8)
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Proof. First of all, solutions, departing from any x0 ∈ K, remain bounded in
B. Indeed, by (2.3), (2.5), (2.6),

‖x(t)‖p
B ≤ 2p−1

(

‖x0‖p
B + Cf (t − s) + Cf

∫ t

s

‖x(r)‖p
Bdr

)

,

and Gronwall’s inequality implies

‖x(t)‖p
B ≤ (

2p−1‖x0‖p
B + 1

)
e2p−1Cf (t−s). (2.9)

Let BR be the the ball of B centered at the origin and radius R an upper
bound of the 1/p-th power of the quantities on the right-hand side of (2.9) for
t = T , as x0 ∈ K, for example, let

R = 21− 1
p (diam(K) + dist(0,K) + 1) e21−1/pCf (T−s). (2.10)

By (2.3), (2.4), (2.7), for all x0
1, x

0
2 ∈ K,

‖x1(t)−x2(t)‖p
B ≤ 2p−1‖x0

1−x0
2‖p

B+2p−1Lp
f,BR

∫ t

s

‖x1(r)−x2(r)‖p
Bdr, (2.11)

which, again by Gronwall’s inequality, yields the desired estimate (2.8) with

LΦ,K = 21−1/pLf,BR
e2p−1Lp

f,BR
(t−s)/p. (2.12)

�
Remark 2.2. (Global Lipschitz estimates) If we wish to obtain global Lipschitz
estimates, then we must assume that f is globally Lipschitz in state variable
uniformly in time, that is, that assumption (2.7) holds for some fixed Lf,K =
Lf independent of K, and for all x0

1, x
0
2 ∈ B, obviously now assumption (2.5)

becomes superfluous. We can conclude that estimate (2.8) holds for all x0
1, x

0
2 ∈

Bs, where LΦ is given by the right-hand side of (2.12) with Lf,BR
= Lf . We

write down LΦ explicitly for future reference

LΦ = 21−1/pLfe2p−1Lp
f (t−s)/p. (2.13)

In order to obtain C1, ω-estimates of solutions with respect to initial con-
dition applicable to stochastic differential equations, we need a further hypoth-
esis on the dynamic Φ in (2.1) and on the map f in (2.2).

Let be given another pair of normed spaces C, C′,

C ↪→ B, C′ ↪→ B′ (2.14)

(with embedding constants equal to one, this is not restrictive for one can
always suitably renormalize norms) which is invariant for the map f , that is,
f(t, C) ⊂ C′ for all s ≤ t ≤ T , so that we can see f as a map

f : [s, T ] × C → C′ (2.15)

by restriction. We assume now that the space of trajectories Σ(s, T ) consists
only of maps x(·) : [s, T ] → C, and moreover that f in (2.15) is pathwise
strongly measurable also with respect to Σ(s, T ) (recall, this means that for
all x(·) ∈ Σ(s, T ), the map [s, T ] � t 
→ f(t, x(t)) ∈ C′ is strongly measurable).

We fix also a subspace Cs ⊂ C, possibly depending on s, which is going
to be the set of initial conditions x0 for which we solve Eq. (2.3).
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Theorem 2.3. (Local C1,ω-estimates) Let 1 ≤ pi < ∞, i = 1, 2. Assume that
for all x1(·), x2(·), x3(·) ∈ Σ(s, T ) and for all 0 ≤ λ ≤ 1, s ≤ t ≤ T

∥
∥λΦ

(
x1(·)

)
(t) +(1 − λ)Φ

(
x2(·)

)
(t) − Φ

(
x3(·)

)
(t)

∥
∥p1

B

≤
∫ t

s

∥
∥λf

(
r, x1(r)

)
+ (1 − λ)f

(
r, x2(r)

) − f
(
r, x3(r)

)∥
∥p1

B′ dr , (2.16)

∥
∥Φ

(
x1(·)

)
(t) − Φ

(
x2(·)

)
(t)

∥
∥p2

C ≤
∫ t

s

∥
∥f

(
r, x1(r)

) − f
(
r, x2(r)

)∥
∥p2

C′ dr,

(2.17)
∥
∥Φ

(
x1(·)

)
(t)

∥
∥p2

C ≤
∫ t

s

∥
∥f

(
r, x1(r)

)∥
∥p2

C′ dr. (2.18)

Assume that f : [s, T ] × C → C′, f : [s, T ] × B → B′ are locally Lipschitz
continuous on C, uniformly in time, that is, for any bounded subset K ⊂ C,
there exists Lf,K ≥ 0, such that

‖f(r, x1) − f(r, x2)‖C′ ≤ Lf,K‖x1 − x2‖C , (2.19)

‖f(r, x1) − f(r, x2)‖B′ ≤ Lf,K‖x1 − x2‖B (2.20)

for all s ≤ r ≤ T , x1, x2 ∈ K. Let also f : [s, T ]×C → C′ grow at most linearly,
that is, for some Cf ≥ 0,

‖f(r, x)‖p2
C′ ≤ Cf (1 + ‖x‖p2

C ) (2.21)

for all s ≤ r ≤ T , x ∈ C.
Fix a bounded subset K of Cs. If f : [s, T ] × C → B′ is of class C1, ωf in

x ∈ C for some modulus ωf , that is, if for all x1, x2 ∈ C, s ≤ r ≤ T and for
all 0 ≤ λ ≤ 1,

∥
∥λf(r, x1) + (1 − λ)f(r, x2) − f

(
r, λx1 + (1 − λ)x2

)∥
∥

B′

≤ λ(1 − λ)‖x1 − x2‖Cωf (‖x1 − x2‖C), (2.22)

then, for all x0
1, x

0
2 ∈ K, 0 ≤ λ ≤ 1, if x0

3 = λx0
1 + (1 − λ)x0

2, and if xi(·) are
solutions of (2.3) with initial conditions x0 = x0

i , i = 1, 2, 3,, respectively, we
have

‖λx1(t)+(1−λ)x2(t)−x3(t)‖B ≤ λ(1−λ)‖x0
1−x0

2‖CωΦ,K(‖x0
1−x0

2‖C) (2.23)

for all s ≤ t ≤ T , where

ωΦ,K(ρ) = cΦ,K,1ωf (cΦ,K,2ρ), ρ ≥ 0, (2.24)

for some constants cΦ,K,1, cΦ,K,2 ≥ 0 that depend only on T − s, p, Cf ,K and
ωf (see (2.26) for an example of explicit values of such constants).

Proof. By our assumptions on Φ and f : [s, T ] × C → C′ Theorem 2.1 implies
that for any bounded subset K of Cs there exists LΦ,K > 0 such that for all
x0

1, x
0
2 ∈ K, if xi(·) are solutions to Eq. (2.3) with initial conditions x0 = x0

i ,
i = 1, 2, respectively, we have

‖x1(t) − x2(t)‖C ≤ LΦ,K‖x1
0 − x2

0‖C ; (2.25)

the constant LΦ,K in this estimate can be taken equal to the right-hand side
of (2.12), where BR is now the ball of C centered at the origin and radius R
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given by (2.10) (of course, now diam(K), dist(0,K) are to be understood in
C-norm).

Moreover, as we saw during the proof of Theorem 2.1 solutions departing
from points of K remain in the ball BR. Therefore, we can use both estimates
(2.19), (2.20) with K = BR.

By applying in order (2.3), (2.16), triangle inequality, (2.22), (2.20), (2.19)
and (2.25), we estimate as follows

‖λx1(t) + (1 − λ)x2(t) − x3(t)‖p1
B

≤2p1−1

∫ t

s

∥
∥λf

(
r, x1(r)

)
+(1−λ)f

(
r, x2(r)

)−f (r, λx1(r)+(1−λ)x2(r))
∥
∥p1

B′ dr

+ 2p1−1

∫ t

s

∥
∥f (r, λx1(r) + (1 − λ)x2(r)) − f

(
r, x3(r)

)∥
∥p1

B′ dr

≤ 2p1−1λp1(1 − λ)p1

∫ t

s

‖x1(r) − x2(r)‖p1
C ωp1

f (‖x1(r) − x2(r)‖C)dr

+ 2p1−1Lp1
f,BR

∫ t

s

‖λx1(t) + (1 − λ)x2(t) − x3(t)‖p1
B dr

≤ 2p1−1λp1(1 − λ)p1Lp1
Φ,K‖x0

1 − x0
2‖p1

C ωp1
f (LΦ,K‖x0

1 − x0
2‖C)

+ 2p1−1Lp1
f,BR

∫ t

s

‖λx1(t) + (1 − λ)x2(t) − x3(t)‖p1
B dr,

where LΦ,K is defined in (2.12). Gronwall’s inequality strikes again and there-
fore (2.23), (2.24) hold with

cΦ,K,1 = 21−1/p1LΦ,Ke2p1−1L
p1
f,BR

(T−s)/p1 , cΦ,K,2 = LΦ,K . (2.26)

Thus, the proof is finished. �

Remark 2.4. (Global C1,ω-estimates) If we wish to obtain global C1,ω-estimates,
we must assume that f is globally Lipschitz in state variable uniformly in time,
that is, that assumptions (2.20), (2.19) hold for some fixed Lf,K = Lf which is
the same for all bounded subsets K of C, and for all x1, x2 ∈ C, Obviously, now
assumption (2.21) is superfluous. We can then conclude that estimate (2.23)
holds for all x0

1, x
0
2 ∈ Cs, 0 ≤ λ ≤ 1, where ωΦ is given by the right-hand side

of (2.24), with constants cΦ,K,1, cΦ,K,2, actually independent of K, given by
(2.26) with Lf,K = Lf and LΦ,K = LΦ given by (2.13). We write down this
ωΦ explicitly for future reference:

ωΦ(ρ) = 21−1/p1LΦe2p1−1L
p1
f (T−s)/p1ωf (LΦρ) (2.27)

for all ρ ≥ 0, where LΦ is given by (2.13) with p = p2.

2.2. Application of results to general stochastic differential equations

In applications we have in mind, spaces B,B′, C, C′ are normed spaces of ran-
dom variables in some fixed probability space. More precisely, let

(
Ω,F ,P

)
be a

probability space, X and Y normed spaces (not necessarily finite-dimensional),
let B, C be normed spaces of X-valued random variables and B′, C′ normed
spaces of Y -valued random variables. In our applications we have to consider
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maps f : B → B′ (such that f(C) ⊂ C′) which arise in a natural way through a
“deterministic” map g : X → Y , by setting3 f(x)(ω) = g(x(ω)) for all x ∈ B,
ω ∈ Ω. Assuming the C1,ωg -regularity of g : X → Y for a given modulus
ωg, we want to prove the C1,ωf -regularity of f : C → B for some modulus ωf ,
possibly expressing ωf in terms of ωg. We do not know whether this is possible
in general, however, we have the following results.

Lemma 2.5. Let g : X → Y be of class C1,ωg for some modulus ωg. Then
f : C → B′ is of class C1,ωf for some modulus ωf under anyone of the following
conditions:
• ωg(ρ) = k ρα for some k ≥ 0, 0 < α(≤ 1), and Lp(Ω;Y ) ↪→ B′, C ↪→

Lp(1+α)(Ω;X) for some 1 ≤ p ≤ ∞;
• γg(ρ) =

(
ρβω2

g(ρ)
)q, where 0 ≤ β ≤ 2, 1 ≤ q ≤ ∞, r−1 + q−1 = 1, is

concave, and L2(Ω;Y ) ↪→ B′, C ↪→ L(2−β)r(Ω;X), C ↪→ L1(Ω;X).
In both cases ωf = ωg.

Proof. The proof of the result under the first set of assumptions is trivial. As
to the second, by Hölder’s and Jensen’s inequalities and assumptions, we can
estimate as follows

‖λf(x1) + (1 − λ)f(x2) − f(λx1 + (1 − λ)x2)‖2
B′

≤ E[‖λg(x1) + (1 − λ)g(x2) − g(λx1 + (1 − λ)x2)‖2
Y ]

≤ λ2(1 − λ)2E[‖x1 − x2‖2
Xω2

g(‖x1 − x2‖X)]

≤ λ2(1 − λ)2
(
E[‖x1 − x2‖r(2−β)

X ]
) 1

r

(E[γ(‖x1 − x2‖X)])
1
q

≤ λ2(1 − λ)2
((

E[‖x1 − x2‖r(2−β)
X ]

) 1
(2−β)r

)2−β

(γ (E[‖x1 − x2‖X ]))
1
q

≤ λ2(1 − λ)2‖x1 − x2‖2−β
C (γ(‖x1 − x2‖C))

1
q

= λ2(1 − λ)2‖x1 − x2‖2
Cω2

g(‖x1 − x2‖C).

Thus, the proof is over. �

For example, in the case of power type moduli (the first instance in the
lemma above), Theorem 2.3 (see also Remark 2.4) has the following corollaries.

Corollary 2.6. (Global C1,ω-estimates, power type moduli) Consider maps
Φ and f as in (2.1), (2.15), respectively, and assume that Φ and f satisfy
conditions (2.16), (2.17) for certain 1 ≤ p1, p2 < ∞. Let X, Y be normed
spaces, (Ω,F ,P) a probability space, and let4 B ↪→ Lp(Ω;X), Lp(Ω;Y ) ↪→ B′,
C ↪→ L(1+α)p(Ω;X), L(1+α)p(Ω;Y ) ↪→ C′, for some 1 ≤ p ≤ ∞, 0 < α(≤ 1),
f(r, x)(ω) = g(r, x(ω)) for all r ∈ [s, T ], x ∈ B, ω ∈ Ω, where g : [s, T ] × X →

3 This is one of the few instances in this paper where ω denotes an element of a probability
space rather than a semiconcavity modulus.
4 One may read these embeddings as equalities at a first reading; this is also sufficient for
our applications to jump diffusions below.
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Y is a given map which is Lipschitz continuous in x ∈ X, uniformly in time
r ∈ [s, T ], that is, for some Lg ≥ 0,

‖g(r, x1) − g(r, x2)‖Y ≤ Lg‖x1 − x2‖X (2.28)

for all s ≤ r ≤ T , and x1, x2 ∈ X. Assume that g is of class C1,ωg on X,
uniformly in time r ∈ [s, T ] for some modulus ωg, that is,

‖λg(r, x1) + (1 − λ)g(r, x2) − g(r, λx1 + (1 − λ)x2)‖Y

≤ λ(1 − λ)‖x1 − x2‖Xωg(‖x1 − x2‖X) (2.29)

for all s ≤ r ≤ T , x1, x2 ∈ X, 0 ≤ λ ≤ 1, and that the modulus ωg is of power
type, that is, ωg(ρ) = kρα for ρ ≥ 0, where k ≥ 0. Then estimate (2.23) holds
for all s ≤ t ≤ T , x0

1, x
0
2 ∈ Cs and 0 ≤ λ ≤ 1 with ωΦ as in (2.27), where LΦ

is as in (2.13) and ωf = ωg.

Corollary 2.7. (Extension to Cartesian product maps) Let the map g (and
consequently f) in Corollary 2.6 above, come up as a Cartesian product. That
is, let Y =

∏	
i=1 Yi, transformed into a normed space via a given norm ‖ ·

‖IR� on IR	 in a canonical way,5 and g =
∏	

i=1 gi, (which means g(r, x) =
(g1(r, x), . . . , g	(r, x)) for all (r, x) ∈ [s, T ] × X), B′ =

∏	
i=1 B′

i, C′ =
∏	

i=1 C′
i,

where each B′
i, C′

i are normed spaces of Yi-valued random variables for i =
1, . . . , 
. Assume that each gi, for i = 1, . . . , 
, is of class C1,ωgi for some power
type modulus ωgi

(ρ) = kiρ
αi , where ki ≥ 0, 0 < αi(≤ 1). If B ↪→ Lp(Ω;X),

Lp(Ω;Yi) ↪→ B′
i, C ↪→ L(1+α)p(Ω;X), L(1+αi)p(Ω;Yi) ↪→ C′

i for i = 1, . . . , 
 for
some 1 ≤ p ≤ ∞, α = max{α : i = 1, . . . , 
}, keeping the rest of assumptions
unchanged in Corollary 2.6, then the conclusion of Corollary 2.6 still holds,
with the only change that we must take now ωg = ‖(ωg1 , . . . , ωg1)‖IR� .

Of course, similar results can be formulated for moduli with suitable
concavity properties (the second set of assumptions in Lemma 2.5). Since this
is rather straightforward we leave the task to the interested reader.

Remark 2.8. (Lipschitz and C1,ω-estimates with conditions only along solu-
tions) For any B0 ⊂ Bs(⊂ B), let

SolΦB(B0) ={x(·) ∈ Σ(s, T ) : ∃x0 ∈ B0 such that (2.3) is satisfied} (2.30)

AccΦ
B(B0; t) = {x(t)(∈ B) : x(·) ∈ SolΦ(C0)}. (2.31)

The conclusion of Theorem 2.1 remains valid for any bounded set K ⊂ B0

if we require that (2.4), (2.5) hold for all x1(·), x2(·) ∈ SolΦB(B0) (instead of
Σ(s, T )), (2.6) holds for any x ∈ AccΦ

B(B0; t), and (2.7) holds for any bounded
subset K of AccΦ

B(B0; t), with constants Cf , Lf,K independent of t ∈ [s, T ].
For the conclusion of Remark 2.2 to remain valid, we must require that the

5 That is, with norm

�∏

i=1

Yi � (y1, . . . , y�) �→ ‖(‖y1‖Y1 , . . . , ‖y�‖Y�
)‖IR� ∈ IR.



Vol. 22 (2015) Generalized semiconcavity of the value 787

Lipschitz condition above hold with constant Lf,K = Lf independent of K.
(Recall that (2.5) and (2.6) are not needed for this remark.)

An analogous observation holds for Theorem 2.3. Let C0 ⊂ Cs(⊂ C). If we
require that (2.16), (2.17), (2.18) hold only for x1(·), x2(·), x3(·) ∈ SolΦC (C0),
0 ≤ λ ≤ 1, (2.19), (2.20) hold only for bounded sets K ⊂ AccΦ

C (C0; t), and
(2.21) holds for any x ∈ AccΦ

C (C0; t) for t ∈ [s, T ] with constants LK,f , Cf

independent of t, then the conclusion of that theorem is still valid for any
bounded set K ⊂ C0. For the conclusion of Remark 2.4 to remain valid it
suffices that in addition the said Lipschitz constant be independent of K.
(Recall that (2.18), (2.21) are unnecessary for the validity of this remark.)

These observations turn useful sometimes, for example, in proving local
results: the fact is that if g : [s, T ] × X → Y is locally Lipschitz in x ∈ X,
uniformly in time (which in turn may follow6 by the C1,ω-regularity of g),
then the map f : [s, T ] × B → B′, defined by f(r, x)(ω) = g(r, x(ω)) for all
r ∈ [s, T ], x ∈ B, ω ∈ Ω, is not necessarily locally Lipschitz continuous in
x ∈ B (or in C). However, if we can prove that for some zero measure subset
N of Ω, and some C0 ⊂ Cs, the set

{x(t)(ω) : x(·) ∈ SolΦC (C0), s ≤ t ≤ T, ω ∈ Ω\N}
is bounded in X, for example, by Kolmogorov’s continuity criterion (Theo-
rem 2.9 below) or some other method, then a locally Lipschitz g, uniformly in
time, gives an f which is locally Lipschitz on each set AccΦ

C (C0; t), uniformly
in t ∈ [s, T ]. Now the formulation of local results (under the assumption that
g is only of class C1,ωg and locally bounded) should be routine.

In the derivation of C1,ω-regularity and ω-semiconcavity estimates in the
sequel via Kolmogorov’s continuity criterion. we are able to prove only this
kind of C1,ω-regularity for the map f :

‖λf
(
r, x(r, x0

1)
)

+ (1 − λ)f
(
r, x(r, x0

1)
) − f

(
r, λx(r, x0

1) + (1 − λ)x(r, x0
2)
)‖B′

≤ λ(1 − λ)‖x(r, x0
1) − x(r, x0

2)‖Cωf (‖x0
1 − x0

2‖C). (2.32)

for all x0
1, x

0
2 ∈ C0, where C0 ⊂ Cs and x(·, x0) denotes the solution of (2.3)

corresponding to the initial condition x0. Yet, this is sufficient to obtain the
conclusion of Theorem 2.3 on bounded subsets of C0 or of Remark 2.4 on C0, if
the rest of their assumptions are unaltered or at most replaced by the weaker
ones discussed at the beginning of this remark.

Assume that Eq. (2.3) has continuous flow in the following sense.

‖x(t, x0
1) − x(t, x0

2)‖X ≤ ωc(‖x0
1 − x0

2‖C) P − a.s. (2.33)

for all x0
1, x

0
2 ∈ C0 for some C0 ⊂ Cs, where ωc : Ω× [0,∞[→ [0,∞[ is a random

modulus.7 Is is then easy to show, by Hölder’s inequality, that estimate (2.32)
holds with

ωf (ρ) =
(
E

[
ωq

g (ωc(ρ))
])1/q ∀ρ ≥ 0, (2.34)

6 See, for example, [16, Theorem 2.1.7, p. 33].
7 That is, for each ω ∈ Ω, the map ωc(ω, ·) : [0, ∞[→ [0, ∞[ is a modulus, and for each
ρ ∈ [0, ∞[, the map ω(·, ρ) : Ω → [0, ∞[ is a random variable.
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if Lp0(Ω;Y ) ↪→ B′ and C ↪→ Lp(Ω;X) for some 1 ≤ p0 ≤ p, q ≤ ∞ such that
1/p0 ≥ 1/p + 1/q. Of course, it is not known a priori whether the right-hand
side of (2.34) is finite or not; however, if ωf (ρ0) < ∞ for some ρ0 > 0, then,
by Lebesgue’s dominated convergence theorem, ωf (0+) = 0. If we assume that
ρ 
→ ωq

g

(
ρ1/q

)
is concave (a requirement which is not very restrictive on these

moduli: for instance, all power type moduli satisfy this requirement) then ωf

can be estimated as follows:

ωf (ρ) ≤ ωg

(
(E [ωq

c (ρ)])1/q
)

∀ρ ≥ 0. (2.35)

One can obtain continuity results about the flow C0 � x0 → x(t, x0) ∈ X
by using Kolmogorov’s continuity criterion, as do, e.g., Fujiwara and Ku-
nita [18,24] or Protter [26]. However, it seems that not much attention is
paid to obtaining explicit expressions for the continuity moduli. In order to
comply with this necessity let us recall Kolmogorov’s criterion in a slightly
more precise form than it is usually stated in literature.

Theorem 2.9. (Kolmogorov’s continuity criterion) Let X ⊂ Cs be a d-dimensio-
nal linear space, where d ∈ N, and assume that for some p > d, q > 0, C0 > 0,

E
[‖x(t, x0

1) − x(t, x0
2)‖q

X

] ≤ C0‖x0
1 − x0

2‖p
C

for all x0
1, x

0
2 ∈ X, s ≤ t ≤ T . Then, for all 0 < β < (p − d)/q, there exists a

random variable k ≥ 0 (that depends on d, p, q, β, C0) with E[kq] < ∞ such
that (a modification of) X � x0 → x(t, x0) ∈ B satisfies (2.33) with

ωc(ρ) = k(ρβ + ρ) ∀ρ ≥ 0, (2.36)

for all x0
1, x

0
2 ∈ X.

Proof. A standard proof uses the Sobolev-Hölder embedding W s,q(K) ↪→
C0,β(K) if sq > d and β = s−d/q where K is, for example, any unit ball in X,
see [1]. (Of course, the embedding constant can be chosen to be the same for
all unit balls in X.) Using this fact one proves (2.33) with ωc given by (2.36)
with k satisfying the claimed properties. �

Using this criterion, Theorem 2.3 (see also Remark 2.4 and estimate (2.32)
with ωf = ωg ◦ ωc) has the following corollary.

Corollary 2.10. (Global C1,ω-estimates on X with general moduli) Consider
maps Φ and f as in (2.1), (2.15), respectively, and assume that Φ and f
satisfy conditions (2.16), (2.17) for some 1 ≤ p1, p2 < ∞. Let X, Y be normed
spaces and assume that X is d-dimensional, where d ∈ N. Let (Ω,F ,P) be a
probability space, and let B ↪→ Lp0(Ω;X), Lp0(Ω;Y ) ↪→ B′, C ↪→ Lp(Ω;X),
Lp(Ω;Y ) ↪→ C′, for certain 1 ≤ p0 ≤ p ≤ ∞, p > d. Let f(r, x)(ω) = g(r, x(ω))
for all r ∈ [s, T ], x ∈ B, ω ∈ Ω, where g : [s, T ]×X → Y is a given map which
is Lipschitz continuous in x ∈ X, uniformly in time r ∈ [s, T ], that is, satisfies
(2.28) for some Lg ≥ 0, and of class C1,ωg in x ∈ X for some modulus ωg,
uniformly in time r ∈ [s, T ], that is, satisfies (2.29).

Then for all 0 < β < 1 − d/p estimate (2.23) holds for all s ≤ t ≤ T ,
x0

1, x
0
2 ∈ X and 0 ≤ λ ≤ 1 with ωΦ as in (2.27) with ωf given by (2.34), where
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q ∈ [1,∞] is such that 1/p0 ≥ 1/p + 1/q, ωc given by (2.36), where k ≥ 0 is a
random variable that depends on T − s, p1, p2, d, p, β, Lg with E[kp] < ∞,
and Lf = Lg.

If in addition ρ 
→ ωq
g

(
ρ1/q

)
is concave, then ωf can be estimated by

ωf (ρ) ≤ ωg

(
(E [kq])1/q (ρβ + ρ)

)
∀ρ ≥ 0, (2.37)

(which is finite if also q ≤ p).

In case of power type moduli ωg, the result given by the corollary above
is of course not as precise as Corollary 2.6. Assumptions are generally stronger,
and the moduli obtained for the C1,ω-dependence of solutions on initial con-
ditions are much “weaker”. However, its advantage stands in the fact that it
allows to deal with quite general moduli.

2.3. Application of results to jump diffusions

As an application of the above “abstract” results we obtain the C1,ω-estimates
for solutions of a large class of jump type stochastic differential equations with
respect to initial conditions.

Let T > 0 be a fixed time horizon, and let
(
Ω,F , (Ft)0≤t≤T ,P

)
be a

complete filtered probability space. For any (s, x0) ∈ [0, T ) × R
d consider a

jump stochastic differential equation (or an Itô-Skorokhod equation as it is
alternatively called in literature)

x(t) = x0 +
∫ t

s

b
(
r, x(r−)

)
dr +

∫ t

s

σ
(
r, x(r−),

)
dW (r)

+
∫ t

s

∫

‖z‖≤δ

H
(
r, x(r−), z

)
Ñ(drdz) +

∫ t

s

∫

‖z‖>δ

K
(
r, x(r−), z

)
N(drdz)

(2.38)

where notation has the following meaning. W = W (·) is a standard m-dimensio-
nal Brownian motion and N an independent Poisson random measure on
IR+ × (IRd\{0}) with associated compensated measure Ñ and intensity mea-
sure ν, which we assume to be a Lévy measure. As usual, we also assume that
W and N have increments W (r) − W (s), N(r) − N(s) independent of Fs for
all s ≤ r ≤ T . The maps

b : [0, T ] × R
d → IRd, σ : [0, T ] × R

d → IRd×m,

H : [0, T ] × R
d × Bδ × A → IRd, K : [0, T ] × R

d × (IRd\Bδ) × A → IRd,

are measurable (here δ > 0 is some fixed parameter and Bδ is the ball of IRd

centered at 0 and of radius δ) and in line with the purpose of this article we
assume that they satisfy the following growth, Lipschitz and C1,ω conditions.
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Let p ≥ p0 ≥ 2. We assume that there exist Lb, Lσ, LH , LK ≥ 0 and
semiconcavity moduli ωb, ωσ, ωH , ωK such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖b(r, x1) − b(r, x2)‖ ≤ Lb‖x1 − x2‖,

‖σ(r, x1) − σ(r, x2)‖ ≤ Lσ‖x1 − x2‖,
∫

‖z‖≤δ

‖H(r, x1, z) − H(r, x2, z)‖pν(dz) ≤ (LH‖x1 − x2‖)p,

∫

‖z‖>δ

‖K(r, x1, z) − K(r, x2, z)‖pν(dz) ≤ (LK‖x1 − x2‖)p

(2.39)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖λb(r, x1) + (1 − λ)b(r, x2) − b
(
r,λx1 + (1 − λ)x2

)‖
≤ λ(1 − λ)‖x1 − x2‖ωb(‖x1 − x2‖)

‖λσ(r, x1) + (1 − λ)σ(r, x2) − σ
(
r,λx1 + (1 − λ)x2

)‖
≤ λ(1 − λ)‖x1 − x2‖ωσ(‖x1 − x2‖)

∫

‖z‖≤δ

‖λH(r, x1, z)+(1 − λ)H(r, x1, z) − H
(
r, λx1 + (1 − λ)x2, z

)‖pν(dz)

≤ λ(1 − λ) (‖x1 − x2‖ωH(‖x1 − x2‖))p

∫

‖z‖>δ

‖λK(r, x1, z)+(1 − λ)K(r, x1, z) − K
(
r, λx1 + (1 − λ)x2, z

)‖pν(dz)

≤ λ(1 − λ) (‖x1 − x2‖ωK(‖x1 − x2‖))p

(2.40)
for all 0 ≤ r ≤ T , x1, x2 ∈ IRd, 0 ≤ λ ≤ 1; if p > 2, we assume that estimates
regarding “small jumps” H above hold also for p = 2.

Our results require that maps b, σ,H,K grow at most linearly8 (see be-
low), and for this purpose the Lipschitz continuity and generalized semicon-
cavity conditions stated above alone are not sufficient. We must assume in
addition that

‖b(r, 0)‖ ≤ C0
b , ‖σ(r, 0)‖ ≤ C0

σ,
∫

‖z‖≤δ

‖H(r, 0, z)‖pν(dz) ≤ (C0
H)p,

∫

‖z‖>δ

‖K(r, 0, z)‖pν(dz) ≤ (C0
K)p

(2.41)
for all 0 ≤ r ≤ T ; if p > 2, condition on H is required to hold also for p = 2.
From (2.39), (2.41) follow immediately the following estimates:

8 Although this is not the case for global results, the definition of maps that we introduce
below requires nevertheless this growth assumption.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖b(r, x)‖p ≤ Cb(1 + ‖x1‖)p,

‖σ(r, x)‖p ≤ Cσ(1 + ‖x1‖)p,
∫

‖z‖≤δ

‖H(r, x, z)‖pν(dz) ≤ CH(1 + ‖x1‖)p,

∫

‖z‖≤δ

‖H(r, x, z)‖2ν(dz) ≤ CH(1 + ‖x1‖)2,
∫

‖z‖>δ

‖K(r, x, z)‖pν(dz) ≤ CK(1 + ‖x1‖)p

(2.42)

for all 0 ≤ r ≤ T , x ∈ IRd, where

Cb = 2p−1
(
max{C0

b , Lb}
)p

, Cσ = 2p−1
(
max{C0

σ, Lσ})p

CH = 2p−1
(
max{C0

H , LH})p
, CK = 2p−1

(
max{C0

K , LK})p
.

Let us point out explicitly that there is decreasing monotonicity in p, of the
generality of our hypotheses (2.39), (2.40), (2.41) which means that the larger
the p is the more restrictive our assumptions are. So we aim at proving results
assuming that our conditions are satisfied for p(≥ 2) as small as possible,
ideally for p = 2. However, for C1,ω (even in L2-norm), or semiconcavity (for
the value function, see Sect. 4) estimates our approach forces us to take always
p > 2, for example, in the simplest case of power type moduli, it suffices to
take p = 4 for C1,ω-estimates in L2-norm. (Notice that this is not the case for
Lipschitz estimates.)

In order to apply Theorem 2.3, or more precisely, Corollarys 2.6, 2.7,
and 2.10 to solutions of Eq. (2.38), we take, for each 0 ≤ s ≤ T , X = IRd,
B = Lp0(Ω,F , P ;Rd), C = Lp(Ω,F , P ;Rd), Cs = Lp(Ω,Fs, P ;Rd). (For the
definition of Y , B′ and C′ see below.)

Let Σ(s, T ) = Σp(s, T ) be the linear space of adapted (as usual, with
respect to the already fixed filtration (Ft)0≤t≤T ) càdlàg processes x(·) such
that

E

[

sup
s≤t≤T

‖x(t)‖p

]

< ∞.

In this application the map Φ in (2.1) is defined by setting, for all x(·) ∈
Σ(s, T ), Φ

(
x(·)) equal to the right hand side of (2.38). The definition of this

map relies of course on the theory of stochastic integration which is exposed
in many works, e.g., in [2,24].

We need some preliminary estimates for p-moments (p ≥ 2) of stochastic
processes, and deal first with the simpler case p = 2. We have

E

[∥
∥
∥
∥

∫ t

s

σ(r)dW (r)
∥
∥
∥
∥

2
]

= E

[∫ t

s

‖σ(r)‖2dr

]

, (2.43)

E

[∥
∥
∥
∥

∫ t

s

∫

E

H(r, z)Ñ(drdz)
∥
∥
∥
∥

2
]

= E

[∫ t

s

∫

E

‖H(r, z)‖2drν(dz)
]

(2.44)
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whenever σ ∈ L2
(
[s, T ] × Ω, dt ⊗ P; IRd×m

)
, H ∈ L2

(
[s, T ] × E × Ω, dt ⊗ ν|E ⊗

P; IRd
)

are predictable processes, where E is a Borel set in IRd; e.g., see [2,
Theorem 4.2.3, p. 224].

The estimation of the L2-norm of an integral corresponding to “big
jumps”, that is of

E

⎡

⎣

∥
∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)N(drdz)

∥
∥
∥
∥
∥

2
⎤

⎦ ,

where K ∈ L2
(
[s, T ] × (IRd\Bδ) × Ω, dt ⊗ ν|IRd\Bδ

⊗ P; IRd
)

is a predictable
process, causes some small problem, of which we take care by first compen-
sating and then applying identities above and Hölder’s inequality as follows.
Since Ñ = N − drν(dr), we have

E

[∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)N(drdz)
∥
∥
∥
∥

2
]

≤2E

⎡

⎣

∥
∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)Ñ(drdz)

∥
∥
∥
∥
∥

2
⎤

⎦+2E

⎡

⎣

∥
∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)drν(dz)

∥
∥
∥
∥
∥

2
⎤

⎦

≤ 2
(
1 + (t − s)ν(IRd\Bδ)

)
E

[∫ t

s

∫

‖z‖>δ

‖K(r, z)‖2drν(dz)

]

.

(2.45)
The fact that ν is a Lévy measure and hence ν(IRd\Bδ) < ∞ is essential for
this last estimate to be useful.

For p > 2 we must replace the L2-isometry identities (2.43), (2.44) by
moments inequalities of Burkholder type. For any p ≥ 2 there exist cp, c

′
p, c

′′
p ≥

1 such that

E

[∥
∥
∥
∥

∫ t

s

σ(r)dW (r)
∥
∥
∥
∥

p
]

≤ cp
pE

[(∫ t

s

‖σ(r)‖2dr

)p/2
]

, (2.46)

and

E

[∥
∥
∥
∥

∫ t

s

∫

E

H(r, z)Ñ(drdz)
∥
∥
∥
∥

p
]

≤ (c′
p)

pE

[(∫ t

s

∫

E

‖H(r, z)‖2drν(dz)
)p/2

]

+ (c′′
p)pE

[∫ t

s

∫

E

‖H(r, z)‖pdrν(dz)
]

(2.47)

for all predictable processes σ ∈ Lp
(
[s, T ]×Ω, dt⊗P; IRd×m

)
, H ∈ Lp

(
[s, T ]×

E×Ω, dt⊗ν|E⊗P; IRd
)
, where E is a Borel set in IRd; see e.g., [2, Theroem 4.4.22,

p. 263 and Theorem 4.4.23, p. 265 ]. As we said, for p = 2, in view of (2.43),
(2.44), the above estimates hold with cp = c′

p = 1, c′′
p = 0.

The integral of “big jumps” still causes some small trouble of which we
take care as above by first compensating, and then using inequality (2.47), and
Hölder’s inequality: we have
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E

[∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)N(drdz)
∥
∥
∥
∥

p
]

≤ 2p−1E

[∥
∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)Ñ(drdz)

∥
∥
∥
∥
∥

p]

+ 2p−1E

[∥
∥
∥
∥
∥

∫ t

s

∫

‖z‖>δ

K(r, z)drν(dz)

∥
∥
∥
∥
∥

p]

≤ 2p−1(c′
p)

pE

⎡

⎣

(∫ t

s

∫

‖z‖>δ

‖K(r, z)‖2drν(dz)

)p/2
⎤

⎦

+ 2p−1(c′
p)

pE

[∫ t

s

∫

‖z‖>δ

‖K(r, z)‖pdrν(dz)

]

+ 2p−1
(
(t − s)ν(IRd \ Bδ)

)p−1
E

[∫ t

s

∫

‖z‖>δ

‖K(r, z)‖pdrν(dz)

]

≤ 2p−1
(
(c′′

p)p + (c′
p)

p
(
(t − s)ν(IRd \ Bδ)

)p/2−1 +
(
(t − s)ν(IRd \ Bδ)

)p−1
)

× E

[∫ t

s

∫

‖z‖>δ

‖K(r, z)‖pdrν(dz)

]

(2.48)
On the other hand for an integral corresponding to small jumps we can only
write

E

[∥
∥
∥
∥
∥

∫ t

s

∫

‖z‖≤δ

H(r, z)Ñ(drdz)

∥
∥
∥
∥
∥

p]

≤ (c′
p)

p(t − s)
p
2 −1E

⎡

⎣

∫ t

s

(∫

‖z‖≤δ

‖H(r, z)‖2ν(dz)

) p
2

dr

⎤

⎦

+(c′′
p)pE

[∫ t

s

∫

‖z‖≤δ

‖H(r, z)‖pdrν(dz)

]

(2.49)

for any predictable process H ∈ Lp
(
[s, T ]×E×Ω, dt⊗ν|E ⊗P; IRd

)
; we cannot

proceed further with majorization as we did for K in (2.48) for we do not know
whether ν(Bδ) < ∞ or not.

Turning to our application of Theorem 2.3 (or better, of its corollaries)
we take Y1 = IRd, Y2 = IRd×m, Y3 = L2(Bδ, ν; IRd), Y4 = Lp(Bδ, ν; IRd),
Y5 = Lp(IRd\Bδ, ν; IRd), Y =

∏5
i=1 Yi in the sense of normed spaces via a

fixed norm9 ‖ · ‖IR5 or IR5, B′
i = Lp0 (Ω,F ,P;Yi), C′

i = Lp (Ω,F ,P;Yi) for
i = 1, . . . , 5, B′ =

∏5
i=1 B′

i, C′ =
∏5

i=1 C′
i again via the same norm ‖ · ‖IR5

or IR5. We define the map g : [s, T ] × X → Y by setting, for all s ≤ t ≤ T ,
x ∈ X(= IRd),

9 See footnote 5.
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g(t, x, α)=41− 1
p

(
(T −s)1− 1

p b(t, x), cp(T −s)
1
2− 1

p σ(t, x), c′
p (T −s)

1
2− 1

p H(t, x, ·),

c′′
pH(t, x, ·),DKK(t, x, ·)

)
,

(2.50)

where

DK = 21− 1
p

(
c′′
p + c′

p

(
(T − s)ν(IRd\Bδ)

) 1
2− 1

p +
(
(t − s)ν(IRd\Bδ)

)1− 1
p

)
.

(2.51)
(It is clear that we can write g =

∏5
i=1 gi, for suitable maps gi : [s, T ]×X → Yi,

i = 1, . . . , 5.) The map g is well defined by the growth estimates (2.42). Finally,
we define the map f : [s, T ]×B → B′ by setting f(r, x)(ω) = g(r, x(ω)) for all
r ∈ [s, T ], x ∈ B and ω ∈ Ω. That the map f is well-defined follows again by
the linear growth estimates (2.42). By (2.43), (2.44), and by (2.45), Φ and f
clearly satisfy the compatibility relation (2.16) with p1 = p0. Further, for all
r ∈ [s, T ], f(r, C) ⊂ C′ as a consequence of growth estimates (2.42). Of course,
f is defined in such a way that the compatibility relation (2.17) with p2 = p
between Φ and f also holds; this is easily seen by using inequalities (2.46),
(2.47), estimates (2.48) and (2.49).

The Lipschitz continuity assumptions (2.39) imply that g : [s, T ]×X → Y
satisfies the Lipschitz continuity condition (2.28) with10

Lg =4
1− 1

p

∥
∥
∥

(
(T−s)

1− 1
p Lb, cp(T − s)

1
2−1

p Lσ, c′
p (T−s)

1
2 − 1

p LH , c′′
pLH ,DKLK

)∥
∥
∥

IR5
.

(2.52)

(and hence, f satisfies the Lipschitz continuity conditions (2.7), (2.20) with
the same Lipschitz constant).

Linear growth estimates (2.42) imply also that f : [0, T ]×C → C′ satisfies
the linear growth condition (2.21) with p2 = p; an explicit value of the constant
Cf can easily be computed but we do not need it here for global results.
Moreover, it is easy to see that g is of class C1,ωg with

ωg = 4
1−1

p

∥
∥
∥

(
(T−s)

1− 1
p ωb, cp(T − s)

1
2−1

p ωσ, c′
p (T − s)

1
2 − 1

p ωH , c′′
pωH , DKωK

)∥
∥
∥

IR5
.

(2.53)

However, this does not necessarily lead to any kind of C1,ω-regularity result for
f in general. Nevertheless, as we noticed, we can handle three cases: (i) power
type moduli, (ii) moduli with suitable concavity properties, (Lemma 2.5), and
(iii) equations with regular flows (last part of Remark 2.8).

For example, we have just verified that we can apply Corollarys 2.7,
and 2.10 with C0 = IRd and deduce the following results.

Theorem 2.11. (Global C1,ω-estimates, power moduli) Let (2.39), (2.40), (2.41)
hold for some p ≥ p0 ≥ 2 (if p > 2 estimates on H are assumed to hold also
for p = 2), some constants Lb, Lσ, LH , LK ≥ 0, and some moduli

ωb(ρ) = k1ρ
α1 , ωσ(ρ) = k2ρ

α2 , ωH(ρ) = k3ρ
α3 , ωK(ρ) = k4ρ

α4 , (2.54)

where ki ≥ 0, 0 < αi(≤ 1), i = 1, . . . , 4. Assume that

10 Because any norm ‖ · ‖IR5 on IR5 is component-wise nondecreasing on vectors with non-

negative components.
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p ≥ p0 (1 + max{α1, α2, α3, α4}) .

Then for all x0
1, x

0
2 ∈ Lp(Ω,Fs,P; IRd), 0 ≤ λ ≤ 1, if xi(·), i = 1, 2, 3, are

solutions of (2.38) with x0 = x0
i , respectively, where x0

3 = λx0
1 + (1 − λ)x0

2,
then

(E [‖λx1(t) + (1 − λ)x2(t) − x3(t)‖p0 ])1/p0

≤ λ(1 − λ)
(
E

[‖x0
1 − x0

2‖p
])1/p

ωΦ

((
E

[‖x0
1 − x0

2‖p
])1/p

) (2.55)

where ωΦ is given by (2.27), with Lf = Lg in (2.52), and ωf = ωg in (2.53),
p1 = p0, p2 = p.

It will suffice to take p0 = 2 above for our applications to the generalized
semiconcavity of the value function in optimal control of jump diffusions in
Sect. 4.

Theorem 2.12. (C1,ω-estimates on IRd, arbitrary moduli) Let b, σ, H, K satisfy
(2.39), (2.40), (2.41) for some p > d, some constants Lb, Lσ, LH , LK ≥ 0, and
some arbitrary semiconcavity moduli ωb, ωσ, ωH , ωK . Let 0 < β < 1−d/p. Then
for all x0

1, x
0
2 ∈ IRd, 0 ≤ λ ≤ 1, if xi(·), i = 1, 2, 3, are solutions of (2.38) with

x0 = x0
i , where x0

3 = λx0
1 + (1 − λ)x0

2, respectively, we have

(E [‖λx1(t) + (1 − λ)x2(t) − x3(t)‖p])1/p

≤ λ(1 − λ)‖x0
1 − x0

2‖ωΦ

(‖x0
1 − x0

2‖
) (2.56)

with ωΦ given by (2.27), with Lf = Lg in (2.52), and ωf = ωg ◦ ωc, where ωg

is given by (2.53), and ωc by (2.36) for some k ≥ 0 that depends only on β,
and p1 = p2 = p.

3. A general (stochastic) optimal control problem

3.1. The general setting

We formulate and study the value function of a rather general finite horizon
(possibly stochastic) optimal control problem.

Fix a finite time horizon [s, T ], where 0 ≤ s < T . Let B,B′, C, C′ be
normed spaces such that embedding conditions (2.14) hold between them,
with embedding constants = 1.

Let Σ(s, T ) be a collection of maps x(·) : [s, T ] → C, playing the role of
admissible trajectories. Given a metric space A–to be interpreted as the set
of controls–let A(s, T ) be a fixed collection of maps α(·) : [s, T ] → A, to be
interpreted as the set of admissible (open loop) controls.

Let
Φ : Σ(s, T ) × A(s, T ) → Σ(s, T ). (3.1)

We consider the following controlled dynamic system

x(·) = x0 + Φ
(
x(·), α(·)) in [s, T ], (3.2)

where x0 ∈ Cs ⊂ C and α(·) ∈ A(s, T ); of course, a map x(·) ∈ Σ(s, T )
satisfying (3.2) is said to be a solution of Eq. (3.2) (or simply of Φ) for the
given initial condition x0 ∈ Cs and control α(·) ∈ A(s, T ).
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We want to study the following finite horizon optimal control problem.
For any x0 ∈ Cs, α(·) ∈ A(s, T ) we introduce the cost functional

J
(
s, x0, α(·)) =

∫ T

s

L
(
t, x(t), α(t)

)
dt + ψ

(
x(T )

)
, (3.3)

where

L : [s, T ] × C × A → IR, ψ : C → IR (3.4)

are given functionals.
Of course, Eq. (3.2) above may admit more than one solution or no

solution at all: however, we assume11 as an hypothesis that (3.2) admits a
unique solution for any fixed initial condition x0 ∈ Cs and admissible control
α(·) ∈ A(s, T ).

We investigate the value function of the following optimal control problem

V (s, x0) = inf
α(·)∈A(s,T )

J
(
s, x0, α(·)). (3.5)

Roughly speaking, the program is to assume that data are ω-semiconcave
in the state variable uniformly in time and control variables, and show that the
value function V is also ω-semiconcave in the state variable. We can do this
but only under suitable restrictions either on the class of the semiconcavity
moduli ω, which includes moduli of power type, or on the class of Eq. (3.2).
The precise assumptions on the optimal control problem are outlined in the
sequel. Let

f : [s, T ] × B × A → B′, (3.6)

be such that f(r, C) ⊂ C′ for all r ∈ [s, T ]. Assume that f seen as a map
f : [s, T ] × C × A → C′ is pathwise strongly measurable with respect to Σ(s, T )
and A(s, T ), which, by definition, means that for all x(·) ∈ Σ(s, T ) and α(·) ∈
A(s, T ), the map [s, T ] � t 
→ f(t, x(t), α(t)) ∈ C′ is strongly measurable
(this, of course, implies that [s, T ] � t 
→ f(t, x(t), α(t)) ∈ B′ is also strongly
measurable). We assume also that for all x(·) ∈ Σ(s, T ) which is a solution to
(3.2) for some x0 ∈ Cs and α(·) ∈ A(s, T ), the map [s, T ] � t 
→ L

(
t, x(t), α(t)

)

is sommable so that the integral in the right-hand side of (3.23) makes sense.
Probably, the main result of this paper is the following

11 This hypothesis is consistent with the following ones.
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Theorem 3.1. (ω-semiconcave value function) Let 1 ≤ p1, p2 < ∞. Let the
following compatibility relations subsist between Φ and f :
∥
∥λΦ

(
x1(·), α(·))(t) +(1 − λ)Φ

(
x2(·), α(·))(t) − Φ

(
x3(·), α(·))(t)∥∥p1

B

≤
∫ t

s

∥
∥λf

(
r, x1(r), α(·))+(1−λ)f

(
r, x2(r), α(·))−f

(
r, x3(r), α(·))∥∥p1

B′ dr ,

(3.7)
∥
∥Φ

(
x1(·), α(·))(t) − Φ

(
x2(·), α(·))(t)∥∥p2

C

≤
∫ t

s

∥
∥f

(
r, x1(r), α(·)) − f

(
r, x2(r), α(·))∥∥p2

C′ dr, (3.8)

∥
∥Φ

(
x1(·), α(·))(t)∥∥p2

C ≤
∫ t

s

∥
∥f

(
r, x1(r), α(·))∥∥p2

C′ dr. (3.9)

for all x1(·), x2(·), x3(·) ∈ Σ(s, T ), 0 ≤ λ ≤ 1, s ≤ t ≤ T and for all
α(·) ∈ A(s, T )

Let the “vector field” f : [s, T ] × C × A → C′ grow at most linearly in the
state variable x ∈ C, uniformly in time and control variables, that is, for some
Cf ≥ 0,

‖f(r, x, α)‖p2
C′ ≤ Cf (1 + ‖x‖p2

C ). (3.10)

for all r ∈ [s, T ], x ∈ C, α ∈ A. Let also maps f : [s, T ] × C × A → C′ ,
f : [s, T ]×B → B′, L : [s, T ]×C ×A → IR and ψ : C → IR be locally Lipschitz
continuous in state variable x ∈ C, uniformly in time and control variables, that
is, for any bounded subset K of C, there exist constants Lf,K , LL,K , Lψ,K ≥ 0
such that

‖f(r, x1, α) − f(r, x2, α)‖B′ ≤ Lf,K‖x1 − x2‖B , (3.11)
‖f(r, x1, α) − f(r, x2, α)‖C′ ≤ Lf,K‖x1 − x2‖C , (3.12)

|L(r, x1, α) − L(r, x2, α)| ≤ LL,K‖x1 − x2‖C , (3.13)

|ψ(x1) − ψ(x2)| ≤ Lψ,K‖x1 − x2‖C (3.14)

for all r ∈ [s, T ], x1, x2 ∈ K, α ∈ A.
Finally, assume that map f : [s, T ] × C × A → B′ is of class C1,ωf ,

functional L is ωL-semiconcave, and functional ψ is ωψ-semiconcave in state
variable, for given semiconcavity moduli ωf , ωL, ωψ uniformly in time and con-
trol variables, that is,

∥
∥λf(r, x1, α) + (1 − λ)f(r, x2, α) − f

(
r, λx1 + (1 − λ)x2, α

)∥
∥

B′

≤ λ(1 − λ)‖x1 − x2‖Cωf (‖x1 − x2‖C); (3.15)

λL(r, x1, α) + (1 − λ)L(r, x2, α) − L
(
r, λx1 + (1 − λ)x2, α

)

≤ λ(1 − λ)‖x1 − x2‖CωL(‖x1 − x2‖C) (3.16)

λψ(x1) + (1 − λ)ψ(x2) − ψ
(
λx1 + (1 − λ)x2

)

≤ λ(1 − λ)‖x1 − x2‖Cωψ(‖x1 − x2‖C) (3.17)

for all r ∈ [s, T ], x1, x2 ∈ C, α ∈ A, 0 ≤ λ ≤ 1.
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Then for any bounded set K ⊂ Cs, the value function V is ωK-semiconcave
in state variable in K, uniformly in time, for a modulus ωK defined below by
(3.19).

If maps f, L, ψ are globally Lipschitz in state variable uniformly in time
and control variables, that is, the Lipschitz estimates above hold with constants
independent of K, so that Lf,K = Lf , LL,K = LL, Lψ,K = Lψ for any bounded
K ⊂ C, then V is globally ω-semiconcave on Cs uniformly in time with ω given
by (3.20) below. In this case assumptions (3.9) and (3.10) are superfluous.

Proof. Fix a control α(·) ∈ A(s, T ). We can apply Theorems 2.1 and 2.3 to
maps Φ

(·, α(·)) and f
(·, ·, α(·)), and to the bounded subset K of Cs. Thus,

there exist LΦ,K ≥ 0 as in (2.12) with p = p2 and a modulus ωΦ,K as in
(2.24), (2.26), independent of α(·) such that for all x0

1, x
0
2 ∈ K, 0 ≤ λ ≤ 1,

if x1(·), x2(·), x3(·) are solutions of (3.2) for initial conditions, respectively,
x0

1, x
0
2, λx0

1 +(1−λ)x0
2, and control α(·), then estimates (2.25) and (2.23) hold

true.
Moreover, as we noted during the proof of Theorem 2.1 solutions depart-

ing from points belonging to a bounded set, remain bounded for all subsequent
times t ∈ [s, T ]. Thus applying this to our set K, there exists R ≥ 0 as in (2.10)
with p = p2 such that for all α(·) ∈ A(s, T ) and x0 ∈ K

‖x(t)‖C ≤ R, (3.18)

where x(·) is the solution of (3.2) for the initial condition x0 and control α(·).
Lf,BR

, LL,BR
, Lψ,BR

≥ 0 are the Lipschitz constants of f, L, ψ on the ball
BR of C centered at the origin and radius R. Applying (3.16), (3.17), Lipschitz
conditions on L, ψ, and (2.25) and (2.23), we obtain for t ∈ [s, T ]

λJ
(
t, x0

1, α(·)) + (1 − λ)J
(
t, x0

2, α(·)) − J
(
t, x0

3, α(·))

=
∫ T

t

(
λL

(
r, x1(r), α(r)

)
+ (1 − λ)L

(
r, x2(r), α(r)

)

− L
(
r, λx1(r) + (1 − λ)x2(r), α(r)

))
dr

+ λψ
(
x1(T )

)
+ (1 − λ)ψ

(
x2(T )

) − ψ
(
λx1(T ) + (1 − λ)x2(T )

)

+
∫ T

t

(
L
(
r, λx1(r) + (1 − λ)x2(r), α(r)

) − L
(
r, x3(r), α(r)

))
dr

+ ψ
(
λx1(T ) + (1 − λ)x2(T )

) − ψ
(
x3(T )

)

≤ λ(1 − λ)
(∫ T

t

‖x1(r) − x2(r)‖CωL(‖x1(r) − x2(r)‖C)dr

+ ‖x1(T ) − x2(T )‖Cωψ(‖x1(T ) − x2(T )‖C)
)

+ LL,BR

∫ T

t

‖λx1(r) + (1 − λ)x2(r) − x3(r)‖Bdr

+ Lψ,BR
‖λx1(T ) + (1 − λ)x2(T ) − x3(T )‖C

≤ λ(1 − λ)‖x0
1 − x0

2‖CωK(‖x0
1 − x0

2‖C),
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with

ωK(ρ)=(T−s)LΦ,KωL (LΦ,Kρ)+LΦ,Kωψ (LΦ,Kρ)+(LL,BR
(T − s) + Lψ,BR

)ωΦ,K(ρ)

(3.19)

for all ρ ≥ 0, where—we recall—LΦ,K is given by (2.12) for p = p2, R by
(2.10) for p = p2, and ωΦ,K by (2.24), (2.26). This concludes the proof of the
first part for α(·) is arbitrary. In the second case of globally Lipschitz f, L, ψ, it
is clear by the same proof above, that, for all t ∈ [s, T ], V (t, · is ω-semiconcave
with ω given by

ωK(ρ) = (T − s)LΦωL (LΦρ) + LΦωψ (LΦρ) + (LL(T − s) + Lψ)ωΦ(ρ) (3.20)

for all ρ ≥ 0, where LΦ is given by (2.13) and ωΦ by (2.27). �
3.2. Applications to stochastic optimal control

We consider the same optimal control problem introduced above, with same
assumptions on Φ, f , L, ψ etc. We continue to specialize further. Let (Ω,F ,P)
be a probability space, X, Y normed spaces, and let B, C be normed spaces
of X-valued normed spaces, and B′, C′ normed spaces of Y -valued random
variables. Let A be a metric space, and A a set of A-valued random variables.
Further, let the cost functionals arise in the following manner

L(t, x, α) = E[L(t, x, α)], (3.21)

ψ(x) = E[ψ(x)] (3.22)
for all x ∈ C, α ∈ A, s ≤ t ≤ T , where

L : [s, T ] × R
d × A → IR, ψ : Rd → R (3.23)

are suitable maps. Assume also that for all r ∈ [s, T ], x ∈ B, α ∈ A, ω ∈ Ω

f(r, x, α)(ω) = g(r, x(ω), α(ω)) (3.24)

for some map
g : [s, T ] × X × A → Y. (3.25)

Let L be ωL-semiconcave, ψ ωψ-semiconcave, and g of class C1,ωg in state
variable, uniformly (in the case of L, g) in time and control variables, where
ωL, ωψ, ωg are given semiconcavity moduli. That is, we have

λL(t, x1, α) + (1 − λ) L(t, x2, α) − L
(
t, λx1 + (1 − λ)x2, α

)

≤ λ(1 − λ)‖x1 − x2‖XωL(‖x1 − x2‖X), (3.26)
λψ(x1) + (1 − λ)ψ (x2) − ψ

(
λx1 + (1 − λ)x2

)

≤ λ(1 − λ)‖x1 − x2‖Xωψ(‖x1 − x2‖X) (3.27)

‖λg(t, x1, α) + (1 − λ) g(t, x2, α) − g
(
t, λx1 + (1 − λ)x2, α

)‖Y

≤ λ(1 − λ)‖x1 − x2‖Xωg(‖x1 − x2‖X), (3.28)

for all x1, x2 ∈ X α ∈ A, s ≤ t ≤ T , 0 ≤ λ ≤ 1.
A delicate issue is that of establishing the semiconcavity of L and ψ

from that of L and ψ. (We already dealt with the very similar problem of
establishing the C1,ω-regularity of f from that of g in Subsect. 2.2.) So we
do not “repeat” proofs here, but just state results. There are as we already
saw three kinds of situations that we can handle: (i) power type moduli, (ii)



800 E. Feleqi NoDEA

moduli with suitable concavity properties, and (iii) dynamics with regular
flows, that is, applying Kolmogorov’s continuity criterion. We collect results
in the following Lemma 3.2 and Lemma 3.4.

Lemma 3.2. For every t ∈ [s, T ], α ∈ A, L(t, ·, α) is ωL-semiconcave with
ωL = ωL if one of the following happens:

• ωL(ρ) = k ρα for k ≥ 0, 0 < α(≤ 1) and C ↪→ L1+α(Ω;X);
• γL(ρ) =

(
ρβωL(ρ)

)q, where 0 ≤ β ≤ 1, 1 ≤ q, r ≤ ∞, q−1 + r−1 = 1, is
concave and C ↪→ L(1−β)r(Ω;X), C ↪→ L1(ω;X).

Similar results hold for ψ.

Now using Lemmas 3.2 and 2.5, Theorem 3.1 has several corollaries. But
before giving examples of such corollaries let us make a comment regarding
the Lipschitz character of maps at hand.

If the state space X is finite-dimensional, (which is the case in applica-
tions to jump diffusions of this paper), assumptions (3.26), (3.27), (3.28) imply
that L, ψ, g are locally Lipschitz, see [16, Theorem 2.1.7, p. 33]. We do not
know whether or not such a result holds in a general normed (Banach) space.
It would be interesting to investigate such a problem even assuming, if need
be, some regularity on the structure of the underlying normed space X (such
as a Hilbert, Asplund, uniformly convex, reflexive etc., structure). However, if
we assume—as we do assume—that L and ψ are locally bounded below, while
g is locally bounded then, by same ideas as in the proof of [16, Theorem 2.1.7,
p. 33], we may prove that these maps are locally Lipschitz (uniformly in time
and control variables in the case of L and g) even on an arbitrary normed
space X.

(But if X is in addition finite-dimensional, then g is actually of class C1,
see [16, Theorem 3.3.7, p. 60].)

A somewhat troublesome fact is that local Lipschitzianity of g, L and
ψ, which may follow form their C1,ω-regularity and ω-semiconcavity, is not
sufficient to guarantee the local Lipschitzianity of f , L, ψ even on the set of
reachable values in C of solutions at a certain time t ∈ [s, T ] for an admissible
control α(·)

AccΦ
C (C0; t;α(·)) = {x(t) ∈ C : x(·) ∈ Σ(s, T ) solution of (3.2) for some

x0 ∈ K, a(·) ∈ A(s, T ), s ≤ t ≤ T}
(3.29)

departing from points of a (even bounded) subset C0 ⊂ Cs of C, with Lipschitz
constants independent of t and α(·), which would be sufficient for proving
Theorem 3.1. In fact, if assumptions (3.11), (3.12), (3.13), (3.14) are required to
hold only on subsets of AccΦ

C (C0; t;α(·)) with Lipschitz constants independent
of t and α(·), then by the same proof as that of Theorem 3.1, we may conclude,
that V is locally or globally (depending on the nature of Lipschitz assumptions
on f , L, ψ) on C0 uniformly in time. One reason is that although solutions
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may remain bounded in C-norm, that is,

AccΦ
C (C0) =

⋃

α(·)∈A(s,T )

⋃

s≤t≤T

AccΦ
C (C0; t;α(·)) (3.30)

be bounded in C, this does not imply that their values in X remain bounded
in X almost surely, that is, whatever the zero measure subset N of Ω is,

AccΦ
X(C0;N) = {x(ω) : x ∈ AccΦ

C (C0), ω ∈ Ω\N} (3.31)

is not necessarily a bounded subset of the state space X. Of course, this is not
a problem if we assume that L, ψ are globally Lipschitz, that is,

|L(r, x1, α) − L(r, x2, α)| ≤ LL‖x1 − x2‖X , (3.32)

|ψ(x1) − ψ(x2)| ≤ Lψ‖x1 − x2‖X , (3.33)

‖g(r, x1, α) − g(r, x2, α)‖Y ≤ Lg‖x1 − x2‖X (3.34)

for all x1, x2 ∈ X, s ≤ t ≤ T , α ∈ A. In that case f , L, ψ are globally Lipschitz
in x ∈ C, uniformly in t ∈ [s, T ], α ∈ A, that is, (3.11), (3.12), (3.13), (3.14)
are satisfied for any bounded K ⊂ C with

LL,K = LL = LL, Lψ,K = Lψ = Lψ (3.35)

independent of K.
While these are reasonable assumptions for obtaining global generalized

semiconcavity results, they are probably too much for local results. Alterna-
tively, in some cases we can show that AccΦ

X(C0;N) is indeed a bounded subset
of C if so is C0, for a suitably chosen zero measure subset N of Ω. In this case we
can conclude that f , L, ψ are indeed locally Lipschitz on bounded (in C-norm)
subsets of AccΦ

C (C0; t;α(·)), with Lipschitz constants independent of t ∈ [s, T ]
and α(·) ∈ A(s, T ) which is sufficient for proving Theorem 3.1 (the local part),
provided we restrict to C0, as we already noticed.

We content ourselves here with the formulation of global generalized semi-
concavity results. The formulation of local results is somewhat trickier, but it
should be simpler now after the considerations made above. Actually, the most
difficult part is keeping track of constants. We leave it to the interested reader.

Corollary 3.3. (Global ω-semiconcavity, power type moduli) Let Φ, f satisfy
assumptions (3.7), (3.8) for certain 1 ≤ p1, p2 < ∞ (and also conditions stated
before Theorem 3.1). Let maps f , g, L, L, ψ, ψ satisfy (3.21), (3.22), (3.24),
and (3.32), (3.33), (3.34) for suitable LL, Lψ, Lg ≥ 0. Let also g come up as
Cartesian product map g =

∏	
i=1 gi for certain maps gi : [s, T ] × X × A → Yi

and normed spaces Yi, for i = 1, . . . , 
, where Y =
∏	

i=1 Yi in the sense of
normed spaces via a fixed norm12 ‖ · ‖IR� on IR	. Assume that each component
gi is of class C1,ωgi , and that L, ψ satisfy (3.26), (3.27), for some moduli

ωgi
(ρ) = kiρ

αi , ωL(ρ) = k	+1ρ
α�+1 , ωψ(ρ) = k	+2ρ

α�+2 , ρ ≥ 0, (3.36)

where ki ≥ 0, 0 < αi ≤ 1 for i = 1, . . . , 
 + 2. Finally, assume that for some
1 ≤ p ≤ ∞, B ↪→ Lp(Ω;X), Lp(Ω;Yi) ↪→ B′, C ↪→ Lp(1+α)(Ω;X), C ↪→

12 See footnote 5.
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L1+α�+1(Ω;X), C ↪→ L1+α�+2(Ω;X), Lp(1+αi)(Ω;Yi) ↪→ C′, for i = 1, . . . , 
,
where B′

i, C′
i are normed spaces such that B′ =

∏	
i=1 B′

i, C′ =
∏	

i=1 C′
i, and

α = max{αi : 1 ≤ i ≤ 
}.
Then, for all t ∈ [s, T ], V (t, ·) is ω-semiconcave on Cs with ω given by

(3.20) with Lf , LL, Lψ given by (3.35) and ωf = ‖(g1, . . . , g	)‖IR� , ωL = ωL,
ωψ = ωψ.

Similar results can be formulated for moduli ωg, ωL, ωψ satisfying suitable
concavity properties as in the second part of Lemma 3.2. Even combinations
can be considered, that is, some of the said moduli being of power type and
the rest of them satisfying concavity properties. To save space and since it is
rather routine we do not present such results here.

Let us assume now that Eq. (3.2) has regular flow in the following sense.
If for all x0 ∈ Cs we indicate by x(·, x0) the solution to (3.2), for some fixed
α(·) ∈ A, in order to emphasize its dependence on initial condition x0, we
assume that (2.33) holds for all x0

1, x
0
2 ∈ C0, where C0 is a subset of Cs and

ωc : Ω × [0,∞[→ [0,∞[ is some random modulus of continuity (which in
principle, may depend also on t and on admissible control α(·) ∈ A(s, T );
however, in order to keep things simple, we assume that ωc(·) and does not
depend on t, α(·)). Under this assumption it is easy to prove that maps f , L,
ψ satisfy the following semiconcavity properties.

Lemma 3.4. If B ↪→ Lp0(Ω;X), Lp0(Ω;Y ) ↪→ B′, C ↪→ Lp(Ω;X), Lp(Ω;Y ) ↪→
C′, for certain 1 ≤ p0 ≤ p ≤ ∞, then

‖λf
(
t, x(t, x0

1), α(t)
)

+ (1 − λ)f
(
t, x(t, x0

2), α(t)
) − f

(
t, λx(t, x0

1)

+(1 − λ)λx(t, x0
2), α(t)

)‖B′ ≤ λ(1 − λ)‖x(t, x0
1) − x(t, x0

2)‖Cωf (‖x0
1 − x0

2‖X)
(3.37)

λL
(
t, x(t, x0

1), α(t)
)

+ (1 − λ)L
(
t, x(t, x0

2), α(t)
) − L

(
t, λx(t, x0

1)

+(1 − λ)λx(t, x0
2), α(t)

) ≤ λ(1 − λ)‖x(t, x0
1) − x(t, x0

2)‖CωL(‖x0
1 − x0

2‖X)
(3.38)

λψ
(
x(T, x0

1)
)

+ (1 − λ)ψ
(
x(T, x0

2)
) − ψ

(
λx(T, x0

1) + (1 − λ)λx(T, x0
2)
)

≤ λ(1 − λ)‖x(t, x0
1) − x(t, x0

2)‖Cωψ(‖x0
1 − x0

2‖X)
(3.39)

for all x0
1, x

0
2 ∈ C0, 0 ≤ λ ≤ 1, t ∈ [s, T ], with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωf (ρ) =
(
E

[
ω

qf
g (ωc(ρ))

])1/qf

ωL(ρ) = (E [ωqL

L (ωc(ρ))])1/qL

ωψ(ρ) =
(
E

[
ω

qψ

ψ (ωc(ρ))
])1/qψ

(3.40)

for all ρ ≥ 0, where pf , pL, pψ, qf , qL, qψ ∈ [1,∞] are such that pf , pL, pψ ≤ p
and 1/p0 ≥ 1/pf + 1/qf , 1 ≥ 1/pL + 1/qL, 1 ≥ 1/pψ + 1/qψ.

Nothing guarantees that the right-hand sides in (3.40) be finite, but if it
happens that ωf , ωL, ωψ are finite for some positive values of their arguments,
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then ωf (0+) = 0, ωL(0+) = 0, ωψ(0+) = 0. If it happens that ρ 
→ ω
qf
g (ρ1/qf ),

ρ 
→ ωqL

L (ρ1/qL), ρ 
→ ω
qψ

ψ (ρ1/qψ ) are concave (a quite not restrictive assump-
tion on regularity moduli; for example, power type moduli clearly satisfy it),
then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωf (ρ) ≤ ωg

((
E

[
ω

qf
c (ρ)

])1/qf
)

ωL(ρ) ≤ ωL

(
(E [ωqL

c (ρ)])1/qL

)

ωψ(ρ) ≤ ωψ

((
E

[
ω

qψ
c (ρ)

])1/qψ
)

(3.41)

for all ρ ≥ 0.
Modifying slightly the proof of Theorem 3.1 we obtain the following re-

sult.

Theorem 3.5. (Global ω-semiconcavity, general moduli) Let Φ, f satisfy as-
sumptions (3.7), (3.8) for certain 1 ≤ p1, p2 < ∞ (and also conditions stated
before Theorem 3.1). Let maps f , g, L, L, ψ, ψ satisfy (3.21), (3.22), (3.24),
and (3.26), (3.27), (3.28), (3.32), (3.33), (3.34) for suitable LL, Lψ, Lg ≥ 0,
and given semiconcavity moduli ωg, ωL, ωψ. Let C0 be a subset of C such
that solutions of (3.2) satisfy (2.33) on C0 with some continuity modulus
ωc. Finally, let also B ↪→ Lp0(Ω;X), Lp0(Ω;Y ) ↪→ B′, C ↪→ Lp(Ω;X),
Lp(Ω;Y ) ↪→ C′, for certain 1 ≤ p0 ≤ p ≤ ∞,

Then for all t ∈ [s, T ], V (t, ·) is ω-semiconcave on C0 with ω given by
(3.20) with Lf , LL, Lψ given by (3.35), and ωf , ωL, ωψ given by (3.40) (pro-
vided that they are finite).

Via Komogorov’s continuity criterion (Theorem 2.9) Theorem 3.5 has the
following corollary.

Corollary 3.6. (Global ω-semiconcavity on X, general moduli) Let X, Y be
normed spaces, X a d-dimensional one for some d ∈ N, and let B ↪→ Lp0(Ω;X),
Lp0(Ω;Y ) ↪→ B′, C ↪→ Lp(Ω;X), Lp(Ω;Y ) ↪→ C′, for given 1 ≤ p0 ≤ p ≤ ∞,
p > d. Let Φ, f satisfy assumptions (3.7), (3.8) for certain 1 ≤ p1, p2 < ∞
(and also conditions stated before Theorem 3.1). Let maps f , g, L, L, ψ, ψ
satisfy (3.21), (3.22), (3.24), and (3.26), (3.27), (3.28), (3.32), (3.33), (3.34)
for suitable LL, Lψ, Lg ≥ 0, and given semiconcavity moduli ωg, ωL, ωψ.

Then, if 0 < β < 1 − d/p, there exists a random k ≥ 0 (depending on β,
T , s, p1, p2, Lf , LL, Lψ) with E[kp] < ∞ such that, for all t ∈ [s, T ], V (t, ·)
is ω-semiconcave on X with ω given by (3.20) where Lf , LL, Lψ are given by
(3.35), ωf , ωL, ωψ by (3.40), and ωc by (2.36).

If in addition maps ρ 
→ ω
qf
g (ρ1/qf ), ρ 
→ ωqL

g (ρ1/qL), ρ 
→ ω
qψ
g (ρ1/qψ ) are

concave we can take

ωf (ρ) = ωg

(
(E[kqf ])1/qf (ρβ + ρ)

)
, ωL(ρ) = ωL

(
(E[kqL ])1/qL (ρβ + ρ)

)
,

ωψ(ρ) = ωψ

(
(E[kqψ ])1/qψ (ρβ + ρ)

)
∀ρ ≥ 0

above (each of which is finite if also qf ≤ p, qL ≤ p, qψ ≤ p, respectively).
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In case of power type moduli of semiconcavity ωL, ωψ the result given by
the preceding corollary is not as precise as that of Corollary 3.3: hypothesis are
generally stronger, and semiconcavity modulus obtained for V is “weaker”. On
the other hand, it allows to deal with general semiconcavity moduli without
any restriction (on them) at all.

4. The case of jump diffusions optimal control

Let T > 0 be fixed time horizon, let A be a metric space—the control space—
and let

(
Ω,F ,P

)
be a complete probability space. For any (s, x0) ∈ [0, T ) ×

R
d consider a controlled jump stochastic differential equation (or an Itô-

Skorokhod equation as it is alternatively called in literature)

x(t) = x0 +
∫ t

s

b
(
r, x(r−), α(r)

)
dr +

∫ t

s

σ
(
r, x(r−), α(r)

)
dW (r)

+
∫ t

s

∫

‖z‖≤δ

H
(
r, x(r−), z, α(r)

)
Ñ(drdz)

+
∫ t

s

∫

‖z‖>δ

K
(
r, x(r−), z, α(r)

)
N(drdz)

(4.1)

where notation has the following meaning. W = W (·) is a standard m-
dimensional Brownian motion and N an independent Poisson random measure
on IR+×(IRd\{0}) with associated compensated measure Ñ and intensity mea-
sure ν, which we assume to be a Lévy measure. As usual, we also assume that
W and N are adapted with respect to some right-continuous complete filtra-
tion (Ft)s≤t≤T of

(
Ω,F ,P

)
which means that W (t), N(t) are Ft-measurable,

and have increments W (t) − W (r), N(t) − N(r) that are independent of Fr

for all s ≤ r ≤ t ≤ T . Fixed a Lévy measure ν on IRd, (that is, we recall a
Borel measure such that ν({0}) = 0 and

∫

IRd min{1, ‖z‖2}ν(dz) < ∞) let us
call a system

R = (Ω,F ,P, (Ft)s≤t≤T ,W,N) (4.2)

that satisfies conditions described above an admissible reference probability
system in time frame [s, T ] (with respect to the Lévy measure ν, which is kept
fixed).

For any s ∈ [0, T ], we define the set of admissible controls A(s, T ) to be
the set of stochastic processes α : [s, T ] → A, for which there exists an admis-
sible reference probability system R as in (4.2) such that α(·) is a predictable
process with respect to the filtration (Ft)s≤t≤T .

The maps

b : [0, T ] × R
d × A → IRd, σ : [0, T ] × R

d × A → IRd×m,

H : [0, T ] × R
d × Bδ × A → IRd, K : [0, T ] × R

d × (IRd\Bδ) × A → IRd,

are measurable, δ > 0 is some fixed parameter, and Bδ is the ball of IRd

centered at 0 and of radius δ.
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Under standard assumptions on b, σ,H,K that are explicitly recalled be-
low, fixed any α(·) ∈ A(s, T ), Eq. (4.1) admits a unique solution x(·) for any
given s,∈ [0, T ], and Fs-measurable IRd-valued random variable x0 with finite
second moment. Then for any such pair (s, x0) and α(·) ∈ A(s, T ) we can
compute the cost

J
(
s, x0, α(·)) = E

[∫ T

s

L
(
t, x(t), α(t)

)
dt + ψ

(
x(T )

)
]

(4.3)

and the corresponding optimal value function as in (3.5); here L, ψ are mea-
surable functions as in (3.23).

We collect in the theorem below some of the results of our analysis about
the generalized semiconcavity of the value function.

Theorem 4.1. (Global ω-semiconcavity) Let for all α ∈ A maps b = b(·, ·, α),
σ = σ(·, ·, α), H = H(·, ·, ·, α) and K = K(·, ·, ·, α) satisfy (2.39), (2.40),
(2.41) for certain p ≥ 2, and maps L = L(t, ·, α), ψ satisfy (3.32), (3.33),
(3.26), (3.27) for given nonnegative constants Lb = L1, Lσ = L2, LH = L3,
LK = L4, LL = L5, Lψ = L6 and semiconcavity moduli ωb = ω1, ωσ = ω2,
ωH = ω3, ωK = ω4, ωL = ω5, ωψ = ω6 (with these data all independent of
α ∈ A).

• (Power type moduli.) If these moduli are all of power type, that is, ωi(ρ) =
kiρ

αi , ρ ≥ 0, for given ki ≥ 0, 0 < αi(≤ 1), for i = 1, . . . , 6, with p ≥ 2(1 +
max{α1, α2, α3, a4}) (p ≥ 1 + max{α5, α6}), then V (s, ·) is ω-semiconcave
on Lp

(
Ω,Fs,P; IRd

)
with

ω(ρ) =
6∑

i=1

k̄iρ
αi ∀ρ ≥ 0,

where k̄i can be chosen to depend only on d, T , ν, p, Li, αi, ki for i =
1, . . . , 6. More precisely, ω can be taken as in (3.20) with Lf = Lg given by
(2.52), ωf = ωg by (2.53), LL = LL, Lψ by (3.35), p1 = 2, p2 = p, and13

s = 0.
• (General moduli.) If p > d, then, for all 0 < β < 1 − d/p, V (s, ·) is ω-
semiconcave on IRd with

ω(ρ) =
6∑

i=1

k′
i

(
E

[
ωi

((
ki(ρβ + ρ)

)qi
)])1/qi ∀ρ ≥ 0,

(provided that it is finite) where qi’s are such that 1/2 ≥ 1/qi + 1/p for
i = 1, 2, 3, 4, and 1 ≥ 1/qi + 1/p for i = 5, 6, constants k′

i ≥ 0 and random
variables ki ≥ 0 with E[kp

i ] < ∞ for i = 1, . . . , 6 depend only on d, T , ν,
p, Li, αi, ki, i = 1, . . . , 6. An example of such an ω can be constructed as
above, by (3.20) with Lf = Lg given by (2.52), ωf , ωL, ωψ given by (3.40)

13 We make ω independent of s by increasing it “slightly”.
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with ωg given by (2.53), LL = LL, Lψ by (3.35), p1 = 2, p2 = p, s = 0. If
in addition maps ρ 
→ ωqi

i

(
ρ1/qi

)
for i = 1, . . . , 6 are concave we can take

ω(ρ) =
6∑

i=1

k′
iωi

(
(E [kqi

i ])1/qi (ρβ + ρ)
)

∀ρ ≥ 0,

which is finite if also qi ≤ p for i = 1, . . . , 6.

Proof. We show that first result is a consequence of Corollary 3.3, and the
second of Corollary 3.6. Indeed, for the given reference probability system
R in (4.2) with respect to the fixed Lévy measure ν, and time frame [s, T ],
where 0 ≤ s ≤ T , we adhere to notations set forth in Subsect. 2.3. So the
reader is referred to that subsection for the definition of X, Yi, Y , B, B′

i with
p0 = 2, C, Cs, Ci, C′

i, i = 1, . . . , 5, Σ(s, T ). Let the set of admissible controls
A(s, T ) be the set of A-valued stochastic processes α(·) that are predictable
with respect to filtration (Ft)s≤t≤T . The map Φ in (3.1) is defined by setting,
for all x(·) ∈ Σ(s, T ), α(·) ∈ A(s, T ), Φ

(
x(·), α(·)) equal to the right hand side

of (4.1). Let

g(t, x, α) = 41− 1
p

(
(T − s)1− 1

p b(t, x, α), cp(T − s)
1
2− 1

p σ(t, x, α),

c′
p (T − s)

1
2− 1

p H(t, x, ·, α), c′′
pH(t, x, ·),DKK(t, x, ·, α)

)
(4.4)

for all t ∈ [s, T ], x ∈ IRd, α ∈ A, where cp, c′
p, c′′

p are constants that appear
in moment inequalities (2.46), (2.47), and Dp is given by (2.51). We can write
g =

∏5
i=1 gi, for certain gi : [s, T ] × X × A → Yi, i = 1, . . . , 5, in an obvious

way.
Finally, we define L, ψ, f by (3.21), (3.22), (3.24), where we may take as

A the set of A-valued random variables. In particular, the cost (4.3) can be
written as in (3.3).

It is now easy to check that all conditions of Corollary 3.3, and Corol-
lary 3.6 with C0 = IRd are satisfied. Therefore, our results follow as a conse-
quence of these corollaries. �

Many other results could be stated, which involve various possible com-
binations of the data moduli types. That is, some of the maps b, σ,H,K,L, ψ
may have moduli of power type, some moduli with suitable concavity proper-
ties, and some even arbitrary moduli (provided a suitable quantity is finite).
If conditions (2.39), (2.41) (as mentioned in Theorem 4.1) hold for p suffi-
ciently large, one can establish generalized semiconcavity results for the value
function.

Remark 4.2. (Removing the global Lipschitz hypotheses on g, L and ψ, local
results) Of course, as noted in Subsect. 3.2, in order to ensure the validity of the
conclusion of Theroem 4.1 about semiconcavity of value function on bounded
subsets of IRd, instead of assuming that L and ψ be globally Lipschitz in
state variable, uniformly in time and control variables, we can assume that
solutions of (4.1) departing from points x0 belonging to any bounded K ⊂ IRd

remain uniformly (as x0 ∈ K) bounded for subsequent times t ∈ [s, T ] almost
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surely. The local Lipschitz continuity of g, L, ψ (which follows by their ω-
semiconcavity or C1,ω-regularity under reasonable assumptions such as local
boundedness), enables us to prove the ω-semiconcavity of V on any bounded
set K ⊂ IRd.

Remark 4.3. (Regularity results for solutions of HJB PIDEs) Under same
assumptions on b, σ,H,K,L, ψ as in Theorem 4.1, or as in following remarks,
it follows by results in [25], that V is the unique viscosity solution of (1.1)
with polynomial growth in x, therefore such viscosity solution of (1.1) enjoys
the regularity properties prescribed by that theorem, or following remarks,
respectively.
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