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Abstract. We study the electrostatic MEMS-device parabolic equation,

ut − Δu =
λρ(x)

(1 − u)2
with Dirichlet boundary condition and a bounded

domain Ω of R
N . Here λ is positive parameter and ρ is a nonnegative

continuous function. In this paper, we investigate the behavior of solu-
tions for this problem. In particular, we show small initial value yields
quenching behavior of the solutions. While large initial data leads global
existence of the solutions.
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1. Introduction

We consider the parabolic problem
⎧
⎪⎪⎨

⎪⎪⎩

ut − Δu =
λρ(x)

(1 − u)2
, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain, λ > 0, ρ is a continuous nonnegative

function in Ω, u0(x) satisfies

u0 ∈ L1(Ω), 0 ≤ u0 ≤ a < 1, u0(x) = 0 on ∂Ω. (1.2)

The associated stationary equation is
⎧
⎨

⎩

−Δw =
λρ(x)

(1 − w)2
, x ∈ Ω,

w = 0, x ∈ ∂Ω.
(1.3)

Problem (1.1) arises in the study of micro-electromechanical systems (MEMS)
devices consisting of a thin dielectric elastic membrane with boundary sup-
ported at 0 below a rigid plate located at +1. When a voltage-represented
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here by λ-is applied, the membrane deflects towards the ceiling plate and a
snap-through may occur when it exceeds a certain critical value λ∗ (pull-in
voltage). This creates a so-called “pull-in instability” which greatly affects
the design of many devices. (see [13,22,23] for more details). The mathemat-
ical model lends to a nonlinear parabolic problem for the dynamic deflection
of the elastic membrane which has been considered in [10,11]. The relative
researches on the model are also discussed in [2–8,12,16–20,25,26] and the
references therein.

We say the solution w to (1.3) is classical or regular, if ‖w‖∞ < 1. It is
known in [9,10] that for any given ρ, there exists a critical value λ∗ > 0 such
that if λ ∈ (0, λ∗), problem (1.3) has a unique stable classical solution wλ and
the solution to (1.1) is global with u0 = 0. Moreover wλ is the minimal solution
and λ → wλ is increasing. Here the minimal solution means that wλ ≤ v for
any solution v of (1.3). Furthermore from [3,5], we can see 1 ≤ N ≤ 7,

λ∗ := inf{λ̄ > 0 : for any λ ∈ (λ̄, λ∗), (1.3) has exactly two solutions} < λ∗.
(1.4)

In particular, if N = 1, then λ∗ = 0. For λ = λ∗, it follows from [9,27]
that problem (1.3) admits a unique weak solution w∗ := lim

λ→λ∗
wλ, called the

extremal solution, in the sense that

−
∫

Ω

w∗Δψdx = λ

∫

Ω

ρψ

(1 − w∗)2
dx,

for any ψ ∈ C2(Ω) ∩ H1
0 (Ω), where w∗ ∈ L1(Ω) and

ρ(x)dist(x, ∂Ω)
(1 − w∗)2

∈ L1(Ω).

Moreover, w∗ is stable, which means the first eigenvalue μ1,λ∗ of the linearized

operator Lw∗,λ∗ := −Δ − 2λ∗ρ
(1 − w∗)3

is nonnegative. While for λ > λ∗, no

solution of (1.3) exists, and the solution u of (1.1) with u0 ≡ 0 reaches the
value 1 in finite time T ∗, called quenching time, i.e., the so called quenching or
touchdown phenomenon occurs. More precisely ‖u(·, t)‖∞ < 1 for t ∈ [0, T ∗)
and lim

t→(T ∗)−
‖u(·, t)‖∞ = 1. We say the solution u to (1.1) quenches if it reaches

1 in the time T ∗ ≤ +∞ (T ∗ = +∞ means u quenches as t → +∞).
For any given u0(x) satisfying (1.2), we say that u ∈ C2,1(Ω × (0, T )) ∩

C(Ω × (0, T )) is a solution (subsolution, supersolution respectively) of (1.1)
in Ω × (0, T ), if u satisfies (1.1)(≤,≥ respectively) with u(x, t) = 0 (≤,≥
respectively) on ∂Ω × (0, T ),

sup
t∈(0,T ′)

‖u(·, t)‖∞ < 1, ∀ 0 < T ′ < T,

and

lim
t→0

‖u(·, t) − u0‖L1(Ω) = 0.

Define

δ(x) = dist(x, ∂Ω). (1.5)
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By a nonnegative weak solution of (1.1) in Ω × (0, T ) we mean u ≥ 0, u0 < 1,
and there holds

u ∈ L1(Ω × (0, T )),
ρδ

(1 − u)2
∈ L1(Ω × (0, T )), (1.6)

∫ T

0

∫

Ω

ρψ

(1 − u)2
dxdt = −

∫ T

0

∫

Ω

u(ψt + Δψ)dxdt −
∫

Ω

u0ψ(·, 0)dx, (1.7)

for any ψ ∈ C2(Ω × (0, T )) such that ψ(x, T ) = 0 and ψ = 0 on ∂Ω.
It is known in [27] that if there exists a weak H1

0 (Ω) solution S of (1.3)
with λ < λ∗, then the solution u(x, t) of (1.1) is unique, global and

lim
t→+∞ ‖u(·, t) − wλ‖∞ = 0,

where wλ is the minimal steady-state of (1.3), provided that 0 ≤ u0 ≤ a <
1(not necessarily smooth), u0 ≤ S and u0 �= S. While for λ > λ∗, with any u0,
the solution quenches in finite time T ∗.

Let G(x, y, t), x, y ∈ Ω, t > 0, be the Dirichlet Green function of the heat
equation in Ω × (0,+∞). That is for any x, y ∈ Ω,

⎧
⎨

⎩

∂tG = ΔxG, (x, t) ∈ Ω × (0, T ),
G(x, y, t) = 0, x ∈ ∂Ω, t > 0,
lim
t→0

G(x, y, t) = δy,
(1.8)

where δy is the delta mass at y. So G(x, y, t) = G(y, x, t). By the maximum

principle, 0 ≤ G(x, y, t) ≤ 1

(4πt)
N
2

e− |x−y|2
4t . The parabolic MEMS equation

(1.1) with nonzero initial data was addressed earlier in [15]. In [14], Hui also
discussed problem (1.1) with general u0. Some classic results are in the follow-
ing.

Theorem 1.1. [14] Let u0 satisfy (1.2) for some constant 0 < a < 1. Let ρ be a
continuous nonnegative function in Ω. Then for any λ > 0, there exists T > 0
such that (1.1) has a solution which satisfies

u(x, t) =
∫

Ω

G(x, y, t)u0(y)dy

+λ

∫ t

0

∫

Ω

ρ(y)G(x, y, t − s)
(1 − u(y, s))2

dyds, ∀ x ∈ Ω, t ∈ (0, T ). (1.9)

Corollary 1.2. [14] Let ρ be a continuous nonnegative function in Ω and u0

satisfy (1.2) for some constant 0 < a < 1. Suppose u is a bounded solution of
(1.1) in Ω × (0, T ). Then u satisfies (1.9) in Ω × (0, T ).

The main purpose of this paper is to consider the effect of initial value u0

on the quenching phenomenon of problem (1.1). More precisely, we will show
the solution u with sufficiently large initial data must quench in finite time
T ∗, even if λ < λ∗. While u exists globally in time with small initial value, for
λ < λ∗. Throughout this paper, we will use the notation

ρ0 := inf
x∈Ω

ρ(x). (1.10)
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We present our results (Theorems 2.1, 2.2, 3.3, 3.6) in the following sections.

2. The influence of initial data

In this section, we are going to investigate the influence of initial value on the
behavior of the solutions. We first introduce an energy functional

E(t) =
1
2

∫

Ω

|∇u|2dx − λ

∫

Ω

ρu

1 − u
dx

=
1
2

∫

Ω

|∇u|2dx + λ

∫

Ω

ρdx − λ

∫

Ω

ρ

1 − u
dx. (2.1)

Theorem 2.1. Let λ > 0, ρ be a continuous nonnegative function in Ω, such

that
∫

Ω

ρ− 1
p−1 dx < +∞ for some p > 1, and u be a solution of (1.1) with

initial value u0. Suppose that

E(0) ≤ −1
2
λcp

∫

Ω

ρdx,

where

cp := max
0≤u≤1

(
u2p − 2u2 − u

(1 − u)2
)
, (2.2)

or suppose that

E(0) +
1
8
λ‖ρ‖∞|Ω| ≤ −c0

4

for some constant c0 > 0. Then the solution u must quench in finite time T ∗.

Proof. Define G(t) =
∫

Ω

u2dx ≤ |Ω|, and let E(t) be as in (2.1). Then we have

G′(t) = 2
∫

Ω

uutdx = 2
∫

Ω

uΔudx + 2λ

∫

Ω

uρ

(1 − u)2
dx

= −2
∫

Ω

|∇u|2dx + 2λ

∫

Ω

uρ

(1 − u)2
dx

= −4E(t) − 4λ

∫

Ω

uρ

1 − u
dx + 2λ

∫

Ω

uρ

(1 − u)2
dx. (2.3)

Since

d
dt

E(t) =
∫

Ω

∇u∇utdx − λ

∫

Ω

ρut

(1 − u)2
dx

= −
∫

Ω

Δuutdx − λ

∫

Ω

ρut

(1 − u)2
dx

= −
∫

Ω

u2
t dx ≤ 0, (2.4)
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we have E(t) ≤ E(0) =
1
2

∫

Ω

|∇u0|2dx − λ

∫

Ω

ρu0

1 − u0
dx. Then we get

G′(t) ≥ −4E(0) + 2λ

∫

Ω

ρ(2u2 − u)
(1 − u)2

dx

≥ −4E(0) − 1
2
λ

∫

Ω

ρdx ≥ −4E(0) − 1
2
‖ρ‖∞|Ω|, (2.5)

for any t ≥ 0, as long as u < 1. If E(0) +
1
8
λ‖ρ‖∞|Ω| ≤ −c0

4
, then G′(t) ≥ c0

and G(t) ≥ G(0) + c0t → +∞, as t tends to infinity. This is impossible, so
T ∗ < +∞.

On the other hand, if there exists p > 1, such that
∫

Ω

ρ− 1
p−1 dx < +∞,

then we have

G′(t) ≥ −4E(0) + 2λ

∫

Ω

ρu2pdx − 2λcp

∫

Ω

ρdx, (2.6)

where cp is as in (2.2). The above identity and Hölder’s inequality, along with
q :=

p

p − 1
yield

G′(t) ≥ 2λ

(∫

Ω

ρ− q
p dx

)− p
q

Gp(t) − 4
(

E(0) +
1
2
λcp

∫

Ω

ρdx

)

, (2.7)

for any t ≥ 0, as long as u < 1. It follows from E(0) ≤ −1
2
λcp

∫

Ω

ρdx and the

above inequality that

G′(t) ≥ 2λ

(∫

Ω

ρ− q
p

)− p
q

Gp(t), G(0) ∈ (0, |Ω|). (2.8)

We now compare E(t) with the solution F (t) of

F ′(t) = 2λ

(∫

Ω

ρ− q
p

)− p
q

F p(t), F (0) = G(0) ∈ (0, |Ω|). (2.9)

Standard comparison principle yields that E(t) ≥ F (t) on their domains of
existence. Therefore,

|Ω| ≥ G(t) ≥ F (t). (2.10)

It is easy to see from (2.9) that the quenching time T1 for F (t) is finite.
Therefore, the solution u of (1.1) must quench in finite time T ∗ ≤ T1, and the
proof is finished. �

Now let Ω = [−R,R] be a interval in R
1. It is clear that

π

4
cos

π

2
x is the

first normalized eigenfunction of −Δ in C2
c ([−1, 1]) such that

π

4

∫ 1

0

cos
π

2
xdx =

1. The corresponding first eigenvalue is λ0 :=
π2

4
. Hence

λ0

R2
is the first eigen-

value of −Δ in C2
c ([−R,R]) and

π

4R
cos

πx

2R
is the first eigenfunction of −Δ in
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C2
c ([−R,R]) normalized such that

π

4R

∫ R

−R

cos
πx

2R
dx = 1. Then we have the

following theorem.

Theorem 2.2. Let Ω = [−R,R] and λ ∈ (0, λ∗). Assume that ρ is a continuous

positive function in Ω, such that λρ0R
2 >

π

2
(
1 − 2

π

)2. If u0(x) =
μπ

4R
cos

πx

2R
,

where μ ∈ (
2Rs0,

4R

π

)
, s0 ∈ (

1
3
, 1) is the unique root of

π2s0

4R2
=

λρ0

(1 − s0)2
,

then the solution u must quench in finite time T ∗.

Proof. We shall apply some similar ideas in [13] to prove this theorem. Denote
π2

4R2
and

π

4R
cos

πx

2R
by λ1 and ϕ(x), then u0(x) = μϕ(x). Since ‖u0‖∞ < 1,

μ <
1

‖ϕ‖∞
=

4R

π
. Multiply (1.1) by ϕ and integrate over [−R,R] to get

∫ R

−R

ϕutdx =
∫ R

−R

ϕ

(

Δu +
λρ

(1 − u)2

)

dx. (2.11)

Using Green’s theorem, together with the lower bound ρ0 of ρ, we get

∫ R

−R

ϕutdx ≥ −λ1

∫ R

−R

uϕdx + λρ0

∫ R

−R

ϕ

(1 − u)2
dx

≥ −λ1

∫ R

−R

uϕdx +
λρ0

(1 − ıR−Ruϕdx)2
. (2.12)

Here Jensen’s inequality is applied in the second inequality. Next, we de-

fine X(t) :=
∫ R

−R

ϕudx, such that X(t) ≤
∫ R

−R

ϕdx = 1. Moreover X(0)

= μ

∫ R

−R

ϕ2dx. Then we obtain

d
dt

X + λ1X ≥ λρ0

(1 − X)2
, X(0) = μ

∫ R

−R

ϕ2dx. (2.13)

We then compare X(t) with the solution Y (t) of

d
dt

Y + λ1Y =
λρ0

(1 − Y )2
, Y (0) = μ

∫ R

−R

ϕ2dx. (2.14)

Standard comparison principle gives that X(t) ≥ Y (t) on their domains of
existence. Therefore, 1 ≥ X(t) ≥ Y (t). Next, we separate variables in (2.14)

to determine t in terms of F , and it is easy to see from 1 =
∫ R

−R

ϕdx ≤
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(
∫ R

−R

ϕ2dx)
1
2 (2R)

1
2 that the quenching time T2 for F is given by

T2 =
∫ 1

Y (0)

(

−λ1s +
λρ0

(1 − s)2

)−1

ds =
∫ 1

μıR−Rϕ2dx

(

−λ1s +
λρ0

(1 − s)2

)−1

ds

≤
∫ 1

μ
2R

(

−λ1s +
λρ0

(1 − s)2

)−1

ds. (2.15)

Note that T2 is finite whenever the integral in (2.15) converges. Now define

g(s) = −λ1s + λρ0
(1−s)2 . Since λ < λ∗ and it is well known that λ∗ ≤ 4λ1

27ρ0
(see

[9]), a simple calculation shows that there exists two zeros s1, s0, such that

0 < s1 <
1
3

< s0 < 1 and g(s) > 0 in (s0, 1). Then T2 is finite whenever μ >

2Rs0. Hence, if T2 is finite, then X(t) ≥ Y (t) implies that the quenching time
T ∗ of (1.1) must also be finite. This completes the proof of Theorem 2.2. �

3. Sharp threshold behavior of initial value

In this section, we investigate the threshold behavior of solutions of problem
(1.1) with u0(x) = μφ(x), according to the value of μ. It is obvious that

0 < μ <
1

‖φ‖∞
. In this direction we establish the claims in Theorems 3.3 and

3.6 in the following.
We say the solution u of (1.1) is globally bounded, if u exists globally,

sup
t>0

‖u(·, t)‖∞ < 1.

We prove in Sect. 3.1 the global existence and finite-time quenching in the case
λ < λ∗. In Sect. 3.2, we discuss the case λ = λ∗.

We now recall a useful result. Let G(x, y, t) be the Dirichlet Green func-
tion of the heat equation, as in (1.8). Then for any a(x) and f(x, t),∫

Ω

G(x, y, t)a(y)dy is a solution of

⎧
⎨

⎩

ut = Δu in Ω × (0,+∞),
u(x, t) = 0 on ∂Ω,
u(x, 0) = a(x) in Ω,

(3.1)

and
∫ t

0

∫

Ω

G(x, y, t − s)f(y, s)dyds is a solution of

⎧
⎨

⎩

ut − Δu = f(x, t) in Ω × (0, T ),
u(x, t) = 0 on ∂Ω,
u(x, 0) = 0 in Ω,

(3.2)

for any t ∈ [0, T ).
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3.1. The case: λ < λ∗

First, we note the following results.

Lemma 3.1. Assume ρ is a continuous nonnegative function in Ω and u0 sat-
isfies (1.2), ‖u0‖∞ < 1, and λ < λ∗. Suppose that the solution u of (1.1) does
not quench in finite time. Then for any 0 ≤ v0(x) ≤ u0(x), v0(x) �≡ u0(x), the
solution v(x, t) of problem (1.1) with v(x, 0) = v0(x) is global bounded.

Proof. Take now v0 as in the statement of the lemma. Consider the function

V (x, t) := v(x, t) +
∫

Ω

G(x, y, t)(u0(y) − v0(y))dy.

It is a consequence of the maximum principle that V (x, t) ≥ v(x, t). The
difference u(x, t) − V (x, t) then satisfies

(u − V )t − Δ(u − V ) ≥ 2λρ(x)
(1 − V )3

(u − V ) in Ω × (0, T ) (3.3)

with initial data u(x, 0) − V (x, 0) = v0(x) ≥ 0 and zero boundary condition,
where T is the maximal time for existence. The comparison principle and Hopf
lemma yield that u ≥ V and

u(x, t) − v(x, t) ≥
∫

Ω

G(x, y, t)(u0(y) − v0(y))dy ≥ c(t)δ(x), (3.4)

where c(t) is a continuous function of t, and δ(x) is defined in (1.5). Fix now
τ > 0, and let c0 := c(τ). Without loss of generality, take u(x, τ) and v(x, τ)
instead of u0(x) and v0(x). Then

u0(x) ≥ v0(x) + c0δ(x).

Define now

f(u) =
1

(1 − u)2
, h(u) =

∫ u

0

1
f(s)

ds, 0 ≤ u < 1. (3.5)

For any ε ∈ (0, 1), we also define

f̃(u) =
1

(1 − u)2
− Kε, h̃(u) =

∫ u

0

1
f̃(s)

ds, 0 ≤ u < 1, (3.6)

and Φε(u) := h̃−1(h(u)). It is easy to check that Φε(0) = 0 and 0 < Φε(x) ≤ x
for x > 0, and Φε is increasing and concave with

1 ≥ Φ′
ε(x) ≥ (f(Φε(x)) − Kε)+

f(x)
for x ≥ 0,

lim
ε→0

Φ′
ε(x) → 1 uniformly in x.

(3.7)

A direct calculation leads to

lim
s→1

lim
ε→0

u0 − Φε(u0)s
δ(x)

= 0 uniformly in x, (3.8)

which shows there exists s ∈ (0, 1) and ε1 > 0 such that for any 0 < ε < ε1,
we have

sΦε(u0) ≥ u0 − c0δ(x) ≥ v0. (3.9)



Vol. 22 (2015) Dynamical solutions of singular parabolic equations 637

Setting Uε = Φε(u), we have Uε is a super solution of the following
problem

⎧
⎪⎪⎨

⎪⎪⎩

Ut − ΔU = λρ(x)
(

1
(1 − U)2

− Kε

)+

in Ω × (0, T ),

U(x, t) = 0 on ∂Ω,
U(x, 0) = Φε(u0) in Ω,

(3.10)

where T is the maximal time for existence. Since Φε(u) < u for any ε > 0 and
u does not quench at a finite time, we have

0 < Uε(x, t) < u(x, t) ≤ 1.

Thus the solution U of (3.10) is global and 0 < U < 1 by the maximum
principle.

Fix now s, ε1 as in (3.9). Consider the solution z of
⎧
⎪⎪⎨

⎪⎪⎩

zt − Δz = λρ(x)
(

1
(1 − z)2

+
Ksε

1 − s

)

in Ω × (0, T ),

z(x, t) = 0 on ∂Ω,
z(x, 0) = 0 in Ω.

(3.11)

Since λ < λ∗, there exists 0 < ε2 ≤ ε1 such that for any ε ∈ (0, ε2), z is a
global solution and z < 1.

To complete the proof of Lemma 3.1, we set ε ∈ (0, ε2) and

Z(x, t) = sU(x, t) + (1 − s)z(x, t).

Then 0 ≤ Z(x, t) < 1 satisfies

Zt − ΔZ ≥ λsρ(x)
(1 − U)2

+
λ(1 − s)ρ(x)

(1 − z)2
≥ λρ(x)

(1 − Z)2
(3.12)

with initial data Z(x, 0) = sΦε(u0(x)) ≥ v0(x) and zero boundary condition.
Now the maximum principle gives that v(x, t) is global and v(x, t) < 1, which
finishes the proof of Lemma 3.1. �

Lemma 3.2. Assume ρ is a continuous positive function in Ω, and assume u0

satisfies (1.2), ‖u0‖∞ < 1, and λ < λ∗. If u is a global solution of (1.1) with
u(x, 0) = u0(x), then there exists 0 < C < 1 such that ‖u(·, t)ϕ‖L1 ≤ C, for
all t > 0, where ϕ is the first normalized eigenfunction of −Δ in H1

0 (Ω), such

that
∫

Ω

ϕdx = 1, and C is independent of u0 and t.

Proof. We prove it by contradiction. First, observe that lim
s→1

1
(1 − s)2

= +∞,

so that there exists a constant 1 > M > 0 such that
λρ0

(1 − s)2
− λ1s ≥ λρ0

2(1 − s)2
, for s ≥ M, (3.13)

where λ1 is the first eigenvalue of −Δ in H1
0 (Ω). It follows from (1.1) that

d
dt

∫

Ω

uϕdx + λ1

∫

Ω

uϕdx =
∫

Ω

λρϕ

(1 − u)2
dx. (3.14)
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Indeed, applying
∫

Ω

ϕdx = 1 and Jensen’s inequality in (3.14), we find

d
dt

∫

Ω

uϕdx + λ1

∫

Ω

uϕdx ≥ λρ0

(1 − ∫

Ω
uϕdx)2

. (3.15)

If there exists t0 > 0 such that
∫

Ω

u(·, t0)ϕdx > M , where M is as in (3.13),

then it follows from (3.13) and (3.15) that

d
dt

∫

Ω

uϕdx
∣
∣
∣
t=t0

≥ λρ0

2(1 − ∫

Ω
uϕdx)2

∣
∣
∣
t=t0

, (3.16)

which implies that
∫

Ω

uϕdx is increasing with respect to t ≥ t0. Hence for any

t ≥ t0, we have
∫

Ω

uϕdx > M , and then

d
dt

∫

Ω

uϕdx ≥ λρ0

2(1 − ∫

Ω
uϕdx)2

, (3.17)

for t ≥ t0, which is impossible, since
∫ 1

0

(1 − s)2ds =
1
3
. So we have

∫

Ω

uϕdx ≤ M < 1, (3.18)

for all t > 0. �

Indeed from the above proof, we see

λρ0 = 2λ1M(1 − M)2, 0 < M < 1. (3.19)

Let ξ be the first normalized eigenfunction of the following problem:
{−Δξ = λ0ξ in B1(0),

ξ = 0 on ∂B1(0), (3.20)

such that
∫

B1(0)

ξdx = 1.

Define now a cut-off smooth function η(x) = η(|x|) such that

0 ≤ η ≤ 1, ‖η‖∞ = 1, η′(1) < 0, η(1)

= 0, η > 0 in B1(0), and
∫

B1(0)

ξηdx >
1
3
. (3.21)

Let N,λ satisfy
{

N = 1, and λ ∈ (0, λ∗);
or 2 ≤ N ≤ 15, and λ ∈ (λ∗, λ∗), λ∗ is as in (1.4). (3.22)

Then we can introduce the following theorem.
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Theorem 3.3. Let Ω = BR(0) and N,λ satisfy (3.22). Assume that ρ is a
continuous positive function in Ω, and assume that η is as in (3.21), ξ, λ0 are
as in (3.20). Suppose that λ, ρ0, R satisfy

λρ0R
2 > 2λ0

(

1 −
∫

B1(0)

ξηdx

)2 ∫

B1(0)

ξηdx. (3.23)

Then if u0(x) = μη
( x

R

)
, there exists μ∗ ∈ (0, 1) such that we have the follow-

ing:
(1) When 0 ≤ μ < μ∗, the solution u(x, t) of (1.1) is globally bounded and

converges to its unique minimal steady-state wλ.
(2) When μ = μ∗, the weak solution u(x, t) of (1.1) does not quench in finite

time.
(3) When 1 > μ > μ∗, the solution u(x, t) of (1.1) must quench in finite

time.

Proof. Denote η
( x

R

)
by φ(x), and denote the solution of (1.1) with initial

value μφ by uμ for simplicity. It is obvious that ‖φ‖∞ = 1 and μ < 1. This
theorem is in fact a direct consequence of Lemma 3.1 and the following claims:

(i) For μ > 0 small enough, the solution uμ is globally bounded.
(ii) For all μ < μ∗, the solution uμ converges to wλ in L∞(BR(0)).
(iii) When μ = μ∗, (1.1) admits a global weak solution.
(iv) For 1 > μ > μ∗, the solution uμ will quench in a finite time.

Since uμ ∈ C(BR(0) × (0, T )), for any a ∈ (0, 1), there exists μ1 > 0 and
τ1 > 0 such that for μ ∈ (0, μ1) and 0 ≤ t ≤ τ1, u(x, t) ≤ a < 1. Then together
with the regularity of the solution of (3.2) we reach that

λ

∫ t

0

∫

BR(0)

G(x, y, t − s)
ρ(y)

(1 − uμ(y, s))2
dyds

≤ λ∗‖ρ‖∞
(1 − a)2

∫ t

0

∫

BR(0)

G(x, y, t − s)dyds ≤ λ∗‖ρ‖∞A(t)δ(x)
(1 − a)2

, (3.24)

where lim
t→0

A(t) = 0. Note that Hopf lemma indicates that the minimal solution

wλ of (1.3) satisfies wλ(x) ≥ cδ(x), for some c > 0. Therefore we can find a
τ2 ∈ (0, τ1], such that for all t ∈ [0, τ2],

λ

∫ t

0

∫

BR(0)

G(x, y, t − s)
ρ(y)

(1 − uμ(y, s))2
dyds ≤ λ∗‖ρ‖∞A(t)δ(x)

(1 − a)2

≤ 1
2
wλ.

(3.25)

Fix now τ2, then we have
∫

BR(0)

G(x, y, τ2)φ(y)dy ∈ C1(BR(0)), and then

there exists μ0 ∈ (0, μ1], such that

μ0

∫

BR(0)

G(x, y, τ2)φ(y)dy ≤ μ0c(τ2)δ(x) ≤ 1
2
wλ. (3.26)
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Therefore the above two inequalities and Corollary 1.2 give that for all 0 ≤
μ ≤ μ0 and 0 ≤ t ≤ τ2,

uμ(x, t) = μ

∫

BR(0)

G(x, y, t)φ(y)dy

+ λ

∫ t

0

∫

BR(0)

G(x, y, t − s)
ρ(y)

(1 − uμ(y, s))2
dyds

≤ 1
2
wλ +

1
2
wλ ≤ wλ.

(3.27)

The comparison principle leads to uμ(x, t) ≤ wλ(x), for all x ∈ BR(0) and
t ≥ τ2, which yields the claim (i).

From Lemma 3.2 we see that if uμ is a global solution, then ‖uμ(·, t)
ϕ‖L1(BR(0)) ≤ M , for all t ≥ 0. In particular, μ

∫

BR(0)

φϕdx ≤ M . It is clear

that ϕ(x) =
1

RN
ξ
( x

R

)
. Since

∫

BR(0)

φϕdx =
∫

B1(0)

ηξdx >
1
3
, the condition

(3.23) gives
∫

B1(0)

ηξdx > M . Then μ ≤ M
∫

Ω
φϕdx

< 1. This indicates that

μ∗ := inf{μ > 0 : the solution of (1.1) quench in finite time} < 1. (3.28)

Hence the claim (iv) is correct. Furthermore,

μ∗ := sup{μ > 0 : the solution of (1.1) is globally bounded} ≤ μ∗ < 1.

(3.29)

If there exists a μ̃ > μ∗ such that the solution uμ̃ does not quench in a finite
time, then by Lemma 3.1, we get for any μ ∈ (μ∗, μ̃), the solution uμ is globally
bounded, which contradicts to the definition of μ∗. Hence μ∗ = μ∗.

Next we show lim
t→+∞ ‖uμ(·, t)−wλ‖∞ = 0, for all μ < μ∗. Indeed it is suffi-

cient to show there exists a sequence tn, such that tn → +∞, lim
n→+∞ ‖uμ(·, tn)−

wλ‖∞ = 0, since wλ is stable. Assume by contradiction that there exists no
subsequence tn such that uμ(x, tn) converges to wλ(x). Since u is globally
bounded, the ω-limit set of u contains a function w such that there exists a
sequence tk → +∞ and uμ(·, tk;u0) → w in C1(BR(0)). By Proposition 2.2
in [21], we have w is steady state of (1.1). From assumption above, we have
w �≡ wλ, so w > wλ. Then Hopf lemma yields w(x) ≥ wλ(x)+ c0δ(x), for some
c0 > 0. Therefore for large k we have uμ(x, tk) > wλ(x) + c1δ(x), for some
c1 > 0. By possibly taking uμ(x, tk) instead of u0(x), we may suppose that
u0(x) ∈ C1(BR(0)) and u0(x) > wλ(x) + c1δ(x).

Set now v(x, t) = uμ(x, t)−wλ(x), so v(x, 0) ≥ c1δ(x). Hence there exists
c2 > 0 such that ‖v(·, t)‖L∞(BR(0)) ≥ c2, for all t > 0. Using the parabolic
regularity, we see

(∫

BR(0)

G

(

x, y,
1
3

)

δ−1(x)dy

)

≤ C. (3.30)
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Then we obtain

1
R

∫

BR(0)

G(x, y, 1)v(y, t)dy

≤
∣
∣
∣
∣
ıBR(0)G(x, y, 1)v(y, t)dy

δ(x)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

ıBR(0)G(x, y, 1
3 )

(
ıBR(0)G(y, z, 2

3 )v(z, t)dz
)
dy

δ(x)

∣
∣
∣
∣
∣

(3.31)

≤
(∫

BR(0)

G

(

x, y,
1
3

)

δ−1(x)dy

)∥
∥
∥
∥
∥

∫

BR(0)

G

(

y, z,
2
3

)

v(z, t)dz

∥
∥
∥
∥
∥

L∞(BR(0))

≤ C

∥
∥
∥
∥
∥

∫

BR(0)

G

(

y, z,
2
3

)

v(z, t)dz

∥
∥
∥
∥
∥

L∞(BR(0))

.

Using (3.30) again we find
∥
∥
∥
∥
∥

∫

BR(0)

G

(

y, z,
2
3

)

v(z, t)dz

∥
∥
∥
∥
∥

L∞(BR(0))

=

∥
∥
∥
∥
∥

∫

BR(0)

G

(

y, z,
1
3

)(∫

BR(0)

G

(

z, ẑ,
1
3

)

v(ẑ, t)dẑ

)

dz

∥
∥
∥
∥
∥

L∞(BR(0))

≤ C

∫

BR(0)

∫

BR(0)

G

(

z, ẑ,
1
3

)
∣
∣v(ẑ, t)

∣
∣dẑdz (3.32)

= C

∫

BR(0)

∣
∣v(ẑ, t)

∣
∣

(∫

BR(0)

G

(

ẑ, z,
1
3

)

dz

)

dẑ

≤ C

∫

BR(0)

∣
∣v(ẑ, t)

∣
∣δ(ẑ)dẑ

∥
∥
∥
∥
∥

ıBR(0)G
(
ẑ, z, 1

3

)
dz

δ(ẑ)

∥
∥
∥
∥
∥

L∞(BR(0))

≤ C‖v(·, t)δ(·)‖L1(BR(0)).

We conclude

1
R

∫

BR(0)

G(x, y, 1)v(y, t)dy ≤ C‖v(·, t)δ(·)‖L1(BR(0)). (3.33)

By the strong maximum principle, we find v(x, t) > 0, which means uμ > wλ.
Therefore from direct calculations, letting ṽ(x, s) = v(x, s + t), we have

(
e
− 2λ

(1−‖u‖L∞(Ω×(0,T )))
3 s

ṽ
)

s
− Δ

(
e
− 2λ

(1−‖u‖L∞(Ω×(0,T )))
3 s

ṽ
)

≤ 0, (3.34)

with positive initial value v(x, t) and Dirichlet boundary condition. Then the
standard comparison principle gives rise to

∫

Ω

G(x, y, 1)v(y, t)dy ≥ e
− 2λ

(1−‖u‖L∞(Ω×(0,T )))
3
v(x, t + 1), (3.35)
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which together with (3.33) implies ‖v(·, t)δ(·)‖L1(BR(0)) ≥ cv(x, t+1), for some
c > 0. This inequality shows that for all t > 0,

‖v(·, t)δ(·)‖L1(BR(0)) ≥ cc2, (3.36)

due to the arbitrary of x.
Consider the positive solution of

⎧
⎪⎪⎨

⎪⎪⎩

ft − Δf =
2λρ

(1 − uμ)3
f in BR(0) × (0,+∞),

f(x, t) = 0 on ∂BR(0),
f(x, 0) = δ(x) in BR(0),

(3.37)

then by letting g(x, t) = f(x, T − t), for any T ∈ (0,+∞), we get

d
dt

∫

BR(0)

(uμ − wλ)gdx =
∫

BR(0)

(uμ − wλ)gtdx +
∫

BR(0)

gutdx

=
∫

BR(0)

(uμ − wλ)
(

−Δg − 2λρ

(1 − uμ)3
g

)

dx

+
∫

BR(0)

(

Δuμ +
λρ

(1 − uμ)2

)

gdx

=
∫

BR(0)

(−Δuμ + Δwλ)g −
∫

BR(0)

2λρg

(1 − uμ)3
(uμ − wλ)dx (3.38)

+
∫

BR(0)

(

Δuμ +
λρ

(1 − uμ)2

)

gdx

=
∫

BR(0)

λρ

(
1

(1 − uμ)2
− 1

(1 − wλ)2
− 2

(1 − uμ)3
(uμ − wλ)

)

gdx

≤ 0.

Therefore by the regularity of u0 − wλ,
∫

BR(0)

f(x, T )δ(x)dx =
∫

BR(0)

g(x, 0)δ(x)dx

≥ C

∫

BR(0)

g(x, 0)(u0(x) − wλ(x))dx

≥ C

∫

BR(0)

g(x, T )(uμ(x, T ) − wλ(x))dx

= C

∫

BR(0)

g(x, T )v(x, T )dx ≥ C,

(3.39)

where (3.36) is applied in the last inequality.
Choose now μ′ ∈ (μ, μ∗), and let z be the solution of

⎧
⎪⎪⎨

⎪⎪⎩

zt − Δz =
λρ

(1 − z)2
in BR(0) × (0, T ),

z(x, t) = 0 on ∂BR(0),
z(x, 0) = μ′φ in BR(0).

(3.40)
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Since z is globally bounded, there exists a sequence tk → +∞ such that
z(·, tk;u0) → W in C1(BR(0)), where W is a solution of (1.3). The direct
calculations show that z − uμ satisfies
⎧
⎪⎪⎨

⎪⎪⎩

(z − uμ)t − Δ(z − uμ) =
λρ

(1−z)2 − λρ
(1−uμ)2

z − uμ
(z − uμ) in BR(0) × (0, T ),

(z − uμ)(x, t) = 0 on ∂BR(0),
z(x, 0) − uμ(x, 0) = (μ′ − μ)φ > 0 in BR(0).

(3.41)

It follows from (3.21) that (μ′ − μ)φ ≥ cδ(x), for some c > 0. Since the
strong maximum principle yields z > uμ, applying the comparison principle,
we obtain that z − uμ ≥ cf , which implies z ≥ uμ + cf . By (3.39), we now
conclude that W > w > wλ are three solutions of (1.3), which contradicts
to (3.22). This indicates there exists a sequence tn, such that tn → +∞,
lim

n→+∞ ‖uμ(·, tn) − wλ‖∞ = 0. Then Theorem 4.1 and Theorem 4.2 in [24]

imply lim
t→+∞ ‖uμ(·, t) − wλ‖∞ = 0, which yields the claim (ii).

Consider now a nondecreasing sequence μn → μ∗, μn < μ∗. Since uμn

is globally bounded, ‖uμn
(·, t)δ(·)‖L1(BR(0)) ≤ c, by Lemma 3.2. Applying the

similar techniques in [1], we deduce that
∫ T+1

T

∫

BR(0)

uμn
(x, t)δ(x)dxdt ≤ c,

∫ T+1

T

∫

BR(0)

uμn
(x, t)δ(x)dxdt ≤ c.

(3.42)

Define uμ∗ := lim
μn→μ∗ uμn

. Then together with the definition of weak solution

(1.7), we obtain that uμ∗ is a global weak solution of (1.1), by taking μn → μ∗.
This gives the claim (iii). �

3.2. The case: λ = λ∗

We now discuss the threshold behavior of (1.1) at λ = λ∗. For this critical
case, there exists a unique steady-state w∗ of (1.1) obtained as a pointwise
limit of the minimal solution wλ as λ → λ∗. We begin with two lemmas.

Lemma 3.4. Assume ρ is a continuous nonnegative function in Ω and u0 sat-
isfies (1.2), ‖u0‖∞ < 1, and λ = λ∗. Let u be the solution of (1.1). Sup-
pose that u does not quench in finite time. Then for any 0 ≤ v0(x) ≤ u0(x),
v0(x) �= u0(x), the solution v(x, t) of problem (1.1) with v(x, 0) = v0(x) does
not quench in finite time.

Proof. We prove Lemma 3.4 by adapting similar methods in [1]. Set

g(u) =
1

(1 − u)2
, h(u) =

∫ u

0

1
g(s)

ds, 0 ≤ u < 1. (3.43)

For any ε ∈ (0, 1), we also set

g̃(u, t) =
1

(1 − u)2
− ε−2λ1t, h̃(u, t) =

∫ u

0

1
g̃(s)

ds, 0 ≤ u < 1, (3.44)
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and define Φε(u, t) as h̃(Φε(u, t), t) = h(u), where λ1 is the first eigenvalue of
−Δ in H1

0 (Ω). Let u be a solution which does not quench in finite time, and
let Vε(x, t) = Φε(u, t) ≤ u, then Vε is a supersolution of

⎧
⎪⎪⎨

⎪⎪⎩

Vt − ΔV = λ∗ρ
(

1
(1 − V )2

− εe−2λ1t

)

in Ω × (0, T ),

V (x, 0) = Φε(u0, 0) in Ω,
V (x, t) = 0 on ∂Ω.

(3.45)

The comparison principle gives V ≤ Vε, and V does not quench in finite time.
Hence V is a global solution. Take now v0 as in the statement of the lemma.
Similar to (3.4), we then have there exists τ > 0, such that

u(x, τ) − v(x, τ) ≥
∫

Ω

G(x, y, τ)(u0(y) − v0(y))dy ≥ c0δ(x). (3.46)

Taking u(x, τ), v(x, τ) instead of u0, v0, similar to (3.9) we get there exists
ε1 > 0, such that for all ε ∈ (0, ε1),

v0 ≤ u0 − c0δ(x) < Φε(u0, 0) − 1
2
c0δ(x) = V (x, 0) − 1

2
c0δ(x). (3.47)

Considering the first eigenfunction ϕ1 of −Δ in H1
0 (Ω), and a smooth

solution of the following equation
{−Δχ = λ∗ρ in Ω,

χ = 0 on ∂Ω.
(3.48)

Standard regularity theory for elliptic problems and Hopf lemma give ϕ1 ≥ cχ,

for some c > 0. Setting g(x, t) = (
2ϕ1

c
− χ)e−2λ1t ≥ 0, it is easy to observe

that g is a subsolution of
⎧
⎪⎨

⎪⎩

Zt − ΔZ = −λ∗ρe−2λ1t in Ω × (0, T ),

Z(x, 0) =
2ϕ1

c
in Ω,

Z(x, t) = 0 on ∂Ω.

(3.49)

Then one can get Z ≥ g ≥ 0 by the maximum principle.
Set now z(x, t) = V (x, t) − εZ(x, t), for ε small enough, such that

εZ(x, 0) =
2εϕ1

c
≤ c0

2
δ(x)

by the regularity of ϕ1. Some calculations give
⎧
⎪⎪⎨

⎪⎪⎩

zt − Δz =
λ∗ρ

(1 − V )2
≥ λ∗ρ

(1 − z)2
in Ω × (0, T ),

z(x, 0) = V (x, 0) − εZ(x, 0) ≥ V (x, 0) − c0

2
δ(x) ≥ v0 in Ω,

z(x, t) = 0 on ∂Ω.

(3.50)

Applying the comparison principle, we obtain v ≤ z, and v does not quench
in finite time. �
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Lemma 3.5. Let 1 ≤ N ≤ 7, λ = λ∗, and w∗ be the extremal solution of
(1.3). Assume ρ is a continuous positive function in Ω, and u0 satisfies (1.2),
‖u0‖∞ < 1. Suppose that u0 ≥ w∗ and u0 �≡ w∗. Then the solution u of (1.1)
must quench in finite time.

Proof. It is known that ‖w∗‖∞ < 1, since 1 ≤ N ≤ 7. We assume for contra-
diction that u does not quench in finite time. The same calculations as in (3.4)
indicate there exists t0 > 0, such that

u(x, t0) − w∗(x) ≥
∫

Ω

G(x, y, t0)(u0(y) − w∗(y))dy ≥ c0δ(x). (3.51)

Taking u(x, t0) instead of u0, then we get u0 ≥ w∗ + c0δ(x). Consider

ũ(x, t) = u(x, t) − w∗(x),

then ũ satisfies
⎧
⎪⎪⎨

⎪⎪⎩

ũt − Δũ = λ∗ρ
1

(1−u)2 − 1
(1−w∗)2

u − w∗ ũ ≥ 2λ∗ρ
(1 − w∗)3

ũ in Ω × (0, T ),

ũ(x, 0) = u0 − w∗ ≥ c0δ(x) in Ω,
ũ(x, t) = 0 on ∂Ω.

(3.52)

On the other hand, we denote by ψ the first eigenfunction of (−Δ− 2λ∗ρ
(1 − w∗)3

)

in H1
0 (Ω), the corresponding eigenvalue being 0. Choosing ψ such that ‖ψ‖∞ =

1, then there exists C > 0 such that ψ ≤ Cδ(x). We now conclude that
ũ ≥ C1ψ, for some C1, by the maximum principle.

We introduce the function

F (t) =
∫

Ω

uψdx. (3.53)

Then we have

F ′(t) =
∫

Ω

utψdx =
∫

Ω

ψ

(

Δu +
λ∗ρ

(1 − u)2

)

dx

=
∫

Ω

(

uΔψ +
λ∗ρ

(1 − u)2
ψ

)

dx (3.54)

= λ∗
∫

Ω

ρψ

(
1

(1 − u)2
− 2

(1 − w∗)3
u

)

dx.

Since (1.3) gives
∫

Ω

ρψ

(1 − w∗)2
dx =

∫

Ω

2ρw∗ψ
(1 − w∗)3

dx, it follows that

F ′(t) = λ∗
∫

Ω

ρψ

(
1

(1 − u)2
− 2

(1 − w∗)3
ũ − 2

(1 − w∗)3
w∗

)

dx

= λ∗
∫

Ω

ρψ

(
1

(1 − u)2
− 2

(1 − w∗)3
ũ − 1

(1 − w∗)2

)

dx

= λ∗
∫

Ω

ρψ

∫ u

w∗

(
2

(1 − s)3
− 2

(1 − w∗)3

)

dsdx

= λ∗
∫

Ω

ρψ

∫ u

w∗

(∫ s

w∗

6
(1 − σ)4

dσ

)

dsdx ≥ 0. (3.55)
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It is clear that there exists two subsets Ω1 ⊂ Ω2 ⊂ Ω, such that |Ω1|, |Ω2| �= 0,

1 > wλ∗ |Ω2 ≥ K, ψ|Ω2 ≥ C2, and w∗|Ω1 ∈ [K, min{K +
C1C2

2
,
K + 1

2
}]. Then

we derive from ũ ≥ C1ψ that

1 ≥ u|Ω1 = (ũ + w∗)|Ω1 ≥ (C1ψ + w∗)|Ω1 ≥ C1C2 + K, (3.56)

and

F ′(t) ≥ 6λ∗ρ0C2

∫

Ω1

∫ u

w∗

(∫ s

w∗
dσ

)

dsdx

≥ 6λ∗ρ0C2

∫

Ω1

∫ C1C2+K

min{K+
C1C2

2 , K+1
2 }

(∫ s

min{K+
C1C2

2 , K+1
2 }

dσ

)

dsdx

≥ C > 0. (3.57)

Therefore

F (t) ≥ F (0) + Ct → +∞,

as t → +∞, which contradicts to Lemma 3.2, so we are done. �

Now we shall establish the following theorem.

Theorem 3.6. Suppose Ω = BR(0), 1 ≤ N ≤ 7, λ = λ∗ and ρ is a continuous
positive function in Ω. Let u0(x) = μη

( x

R

)
, where η is as in (3.21). Then there

exits μ∗, μ∗ ∈ (0, 1) such that

(i) For 0 ≤ μ < μ∗, the solution u of (1.1) is globally bounded and converges
as t → +∞ to its unique minimal steady-state w∗.

(ii) For μ = μ∗, there exists a global weak solution u∗ of (1.1).
(iii) For μ∗ ≤ μ ≤ μ∗, the solution u of (1.1) is global and

lim
t→+∞

∫

BR(0)

|u∗(x, t) − w∗(x)|δ(x)dx = 0.

(iv) For 1 > μ > μ∗, the solution of (1.1) must quench in finite time.

Proof. Denote η
( x

R

)
by φ(x), and denote the solution of (1.1) with initial

value μφ by uμ for simplicity. It is obvious that ‖φ‖∞ = 1 and μ < 1. We
define μ∗, μ∗ as in the proof of Theorem 3.3. Of course μ∗ ≤ μ∗.

Note that the conclusion of the case where μ > μ∗ can be derived from
the proof of Theorem 3.3 similarly, then we need only to show the statement
(i), (ii), (iii).

For μ < μ∗, we deduce from Lemma 3.4 that the solution uμ is global.
Then by a similar method in the proof of Theorem 3.3, the weak solution u∗

corresponding to μ∗ is obtained as the limit of the solution uμ for μ → μ∗.
It is clear that the extremal solution w∗ of (1.3) is regular, since 1 ≤ N ≤

7. Then a similar proof as in Theorem 3.3, yields uμ is globally bounded and
converges to w∗ as t → +∞, in the case where μ ≤ μ∗. We now show that
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lim
t→+∞

∫

BR(0)

|u∗(x, t) − w∗(x)|δ(x)dx = 0. This result will follow for μ∗ ≤ μ <

μ∗. Let v be the unique classical solution of
⎧
⎪⎪⎨

⎪⎪⎩

vt − Δv =
λ∗ρ

(1 − v)2
in BR(0) × (0, T ),

v(x, 0) = 0 in BR(0),
v(x, t) = 0 on ∂BR(0).

(3.58)

Standard comparison principle gives w∗ ≥ v and u∗ ≥ v. Using Theorem 2.2
in [10], we get

lim
t→+∞ ‖v(·, t) − w∗‖∞ = 0.

Consequently, there exists sn > 0 such that for all t > sn,

0 ≤ w∗(x) − v(x, t) ≤ 1
n

. (3.59)

Suppose for contradiction that there exists C > 0 and tn > sn such that
∫

BR(0)

|u∗(x, tn) − w∗(x)|δ(x)dx > C. (3.60)

Since (u∗ − w∗)− = (w∗ − u∗)+ ≤ w∗ − v,

‖(u∗(x, tn) − w∗(x))−‖∞ ≤ ‖w∗(x) − v(x, tn)‖∞ ≤ 1
n

. (3.61)

Let U(x, t) = u∗(x, t) − w∗(x). Then U satisfies
⎧
⎪⎪⎨

⎪⎪⎩

Ut−ΔU =λ∗ρ
(

1
(1−u∗)2

− 1
(1−w∗)2

)

≥ 2λ∗ρ
(1−w∗)3

U in BR(0) × (0, T ),

U(x, 0) = μ∗φ − w∗ in BR(0),
U(x, t) = 0 on ∂BR(0).

(3.62)

By (3.60) and (3.61),
∫

BR(0)

U−(x, tn)δ(x)dx <
C

2
, (3.63)

∫

BR(0)

U+(x, tn)δ(x)dx ≥ C

2
. (3.64)

This implies U+ ≥ 0 and U+ �≡ 0. Letting c0 := ‖ 2
(1 − w∗)3

‖L∞(BR(0)×(0,+∞)),

we have

Ut − ΔU ≥ −λ∗c0ρU−, in BR(0) × (tn, T ) (3.65)

with U(x, tn) ≥ U+(x, tn) − 1
n

. Fix τ > 0, we now claim that there exists

n > 0 such that U(x, τ + tn) > 0. Indeed, consider z1, z2 the solutions of
⎧
⎪⎨

⎪⎩

(z1)t − Δz1 = λ∗c0ρz1 in BR(0) × (0, T ),

z1(x, 0) =
1
n

in BR(0),

z1(x, t) = 0 on ∂BR(0),

(3.66)
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and
⎧
⎨

⎩

(z2)t − Δz2 = 0 in BR(0) × (0, T ),
z2(x, 0) = U+(x, tn) in BR(0),
z2(x, t) = 0 on ∂BR(0).

(3.67)

Clearly, there exists c1, c2 > 0 such that z1(x, τ) ≤ c1

n
δ(x), z2(x, τ) ≥ c2δ(x).

Then we see for n large enough, there holds z1(x, τ) ≤ z2(x, τ). Applying the
comparison principle, we obtain U(x, τ + tn) > (z2 − z1)(x, τ) > 0, for large n.
That means u∗(x, τ + tn) > w∗(x), and there exists a function w∗ < p(x) ≤
u∗(x, τ + tn). Applying Lemma 3.4, we get the solution of

⎧
⎪⎪⎨

⎪⎪⎩

ũt − Δũ =
λ∗ρ

(1 − ũ)2
in BR(0) × (0, T ),

ũ(x, 0) = p(x) in BR(0),
ũ(x, t) = 0 on ∂BR(0),

(3.68)

must quench in finite time. However, it is easy to see ũ ≤ u∗, which means ũ is

a global solution. So we get a contradiction. Therefore lim
t→+∞

∫

BR(0)

|u∗(x, t)−
w∗(x)|δ(x)dx = 0. This completes the proof of this theorem. �
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