Spherical twists, stationary paths and harmonic maps from generalised annuli into spheres

Ali Taheri

Abstract

Let $\mathbf{X} \subset \mathbb{R}^{n}$ be a generalised annulus and consider the Dirichlet energy functional

$$
\mathbb{E}[u ; \mathbf{X}]:=\frac{1}{2} \int_{\mathbf{X}}|\nabla u(x)|^{2} d x
$$

on the space of admissible maps

$$
\mathcal{A}_{\varphi}(\mathbf{X})=\left\{u \in W^{1,2}\left(\mathbf{X}, \mathbb{S}^{n-1}\right):\left.u\right|_{\partial \mathbf{x}}=\varphi\right\} .
$$

Here $\varphi \in \mathbf{C}\left(\partial \mathbf{X}, \mathbb{S}^{n-1}\right)$ is fixed and $\mathcal{A}_{\varphi}(\mathbf{X})$ is non-empty. In this paper we introduce a class of maps referred to as spherical twists and examine them in connection with the Euler-Lagrange equation associated with $\mathbb{E}[, \mathbf{X}]$ on $\mathcal{A}_{\varphi}(\mathbf{X})$ [the so-called harmonic map equation on $\left.\mathbf{X}\right]$. The main result here is an interesting discrepancy between even and odd dimensions. Indeed for even n subject to a compatibility condition on φ the latter system admits infinitely many smooth solutions modulo isometries whereas for odd n this number reduces to one or none. We discuss qualitative features of the solutions in view of their novel and explicit representation through the exponential map of the compact Lie group $\mathbf{S O}(n)$.
Mathematics Subject Classification (2000). 58E20, 22CXX, 35RXX.

1. Introduction

Let $\mathbf{X}=\left\{x \in \mathbb{R}^{n}: a<|x|<b\right\}$ with $0<a<b<\infty$ and consider the Dirichlet energy functional

$$
\begin{equation*}
\mathbb{E}[u ; \mathbf{X}]:=\frac{1}{2} \int_{\mathbf{X}}|\nabla u(x)|^{2} d x \tag{1.1}
\end{equation*}
$$

on the space of admissible maps

$$
\begin{equation*}
\mathcal{A}_{\varphi}(\mathbf{X})=\left\{u \in W^{1,2}\left(\mathbf{X}, \mathbb{S}^{n-1}\right):\left.u\right|_{\partial \mathbf{X}}=\varphi\right\} \tag{1.2}
\end{equation*}
$$

Here \mathbb{S}^{n-1} represent the Euclidean unit sphere and as customary we have set

$$
W^{1,2}\left(\mathbf{X}, \mathbb{S}^{n-1}\right)=\left\{u \in W^{1,2}\left(\mathbf{X}, \mathbb{R}^{n}\right): u(x) \in \mathbb{S}^{n-1} \text { for } \mathcal{L}^{n} \text {-a.e. } x \in \mathbf{X}\right\}
$$

Moreover $\varphi \in \mathbf{C}\left(\partial \mathbf{X}, \mathbb{S}^{n-1}\right)$ is fixed while the space $\mathcal{A}_{\varphi}(\mathbf{X})$ is non-empty. In view of $\partial \mathbf{X}=\partial \mathbf{X}_{a} \cup \partial \mathbf{X}_{b}:=a \mathbb{S}^{n-1} \cup b \mathbb{S}^{n-1}$ it is convenient to set

$$
\left\{\begin{array}{l}
\varphi_{a}=\left.\varphi\right|_{\partial \mathbf{x}_{a}} \circ \delta_{a} \\
\varphi_{b}=\left.\varphi\right|_{\partial \mathbf{x}_{b}} \circ \delta_{b}
\end{array}\right.
$$

where δ_{a}, δ_{b} are space dilatations by factors a and b respectively. As a result we speak of $\varphi_{a}, \varphi_{b} \in \mathbf{C}\left(\mathbb{S}^{n-1}, \mathbb{S}^{n-1}\right)$. The Euler-Lagrange equation associated with $\mathbb{E}[\cdot, \mathbf{X}]$ on $\mathcal{A}_{\varphi}(\mathbf{X})$ takes the form ${ }^{1}$

$$
\begin{cases}\Delta u+|\nabla u|^{2} u=0 & \text { in } \mathbf{X} \\ |u|=1 & \text { in } \mathbf{X} \\ u=\varphi & \text { on } \partial \mathbf{X}\end{cases}
$$

which is the well-known harmonic map equation on \mathbf{X} and into \mathbb{S}^{n-1}. Motivated by the significance of Dehn twists in the study of mapping class groups of surfaces (see, e.g., [2]) and the interesting role played by generalised twists in the multiple solution problems of nonlinear elasticity (cf., e.g., [12]) in this article we introduce their \mathbb{S}^{n-1}-valued counterparts, the spherical twists, and out of pure curiosity examine them in connection with the above system of Euler-Lagrange equations. Indeed a spherical twist by definition is a map $u \in \mathcal{A}_{\varphi}(\mathbf{X})$ in the form

$$
u: x=r \theta \mapsto \mathbf{Q}(r) \theta,
$$

where $x \in \mathbf{X}, r=|x|, \theta=x /|x|$ and $\mathbf{Q} \in W^{1,2}([a, b], \mathbf{S O}(n))$. It is evident that subject to this assumption φ must take the form

$$
\left\{\begin{aligned}
\varphi_{a}(\theta) & =\mathbf{R}_{a} \theta \\
\varphi_{b}(\theta) & =\mathbf{R}_{b} \theta
\end{aligned}\right.
$$

for $\theta \in \mathbb{S}^{n-1}$ where $\mathbf{R}_{a}, \mathbf{R}_{b} \in \mathbf{S O}(n)$ (in fact $\mathbf{Q}(a)=\mathbf{R}_{a}$ and $\mathbf{Q}(b)=\mathbf{R}_{b}$). Now by restricting the energy to the space of spherical twists we have that

$$
\begin{aligned}
\mathbb{E}[\mathbf{Q}(r) \theta, \mathbf{X}] & =\frac{1}{2} \int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left\{\frac{1}{r^{2}}\left[(n-1)+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right]\right\} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r \\
& =\frac{1}{2} \omega_{n} \int_{a}^{b}\left\{n(n-1) \frac{1}{r^{2}}+|\dot{\mathbf{Q}}|^{2}\right\} r^{n-1} d r
\end{aligned}
$$

[^0]As this last expression has no explicit θ dependence a natural starting point is to analyse the resulting Euler-Lagrange equation, a second order differential equation on the compact Lie group $\mathbf{S O}(n)$ and integrate the latter to classify all extremals of this restricted energy. Interestingly with the aid of the exponential map of $\mathbf{S O}(n)$ these take the form (see Theorems 2.1 and 2.2)

$$
\mathbf{Q}:[a, b] \ni r \mapsto e^{\beta(r) \mathbf{A}} \mathbf{Q}_{\circ} \in \mathbf{S O}(n)
$$

with $\mathbf{A} \in \mathbb{M}_{n \times n}$ skew-symmetric, $\mathbf{Q}_{\circ} \in \mathbf{S O}(n)$ and $\beta=\beta(|x|)$ the fundamen$t a l$ solution of $-\Delta$ on \mathbb{R}^{n}. The next step is to extract from within this class those spherical twists that grant solutions to the original harmonic map equation on \mathbf{X} and this requires a careful analysis of the full versus the restricted Euler-Lagrange equations. The result points at a discrepancy between even and odd dimensions. Indeed subject to a compatibility condition between \mathbf{R}_{a} and \mathbf{R}_{b} (cf. (3.1) in Remark 3.1) for even n the latter system of equations admits infinitely many solutions all in the form

$$
u(x)=u(r \theta)=\mathbf{R}_{a} \mathbf{P}_{u} e^{g(r) \mathcal{J}_{n}} \mathbf{P}_{u}^{t} \theta=\mathbf{R}_{a} \mathbf{P}_{u} \mathcal{R}_{n}[g](r) \mathbf{P}_{u}^{t} \theta
$$

where $\mathcal{J}_{n}=\operatorname{diag}(\mathcal{J}, \mathcal{J}, \ldots, \mathcal{J})$ and $\mathcal{R}_{n}[g](r)=\operatorname{diag}(\mathcal{R}[g](r), \mathcal{R}[g](r), \ldots$, $\mathcal{R}[g](r)$) with the 2×2 skew-symmetric matrix \mathcal{J} and the rotation (by angle g) matrix $\mathcal{R}[g]$ as in (4.1) and (4.2) while $\mathbf{P}_{u} \in \mathbf{S O}(n)$ is suitably related to \mathbf{R}_{a} and \mathbf{R}_{b}. Furthermore the rotation angle g is related to $\beta=\beta(|x|)$ and depending on n can be expressed as:
[1] $(n=2)$

$$
g(r)=\frac{\log r / a}{\log b / a}(\eta+2 \pi m)
$$

$[2](n \geq 4)$

$$
g(r)=\frac{(r / a)^{2-n}-1}{(b / a)^{2-n}-1}(\eta+2 \pi m)
$$

Here $\eta \in \mathbb{R}$ is as in Remark 3.1 while $m \in \mathbb{Z}$. In sharp contrast for odd n the number of such solutions severely reduces to one, i.e.,

$$
u(x)=u(r \theta)=\mathbf{R} \theta,
$$

when $\mathbf{R}=\mathbf{R}_{a}=\mathbf{R}_{b}$ and none otherwise (cf. Theorems 3.1 and 3.2). As $\mathbb{E}[\cdot, \mathbf{X}]$ attains its infimum on \mathcal{A}_{ϕ} it follows in particular that here the energy minimizer does not have the rotational symmetry one intuitively expects, i.e., is not a spherical twists (cf. [12] for further results).

Finally it is well-known that $\Delta u+|\nabla u|^{2} u=0$ for liftings $u=e^{i \phi}$ is equivalent to $\Delta \phi=0$. The result here gives a generalisation of this to all even dimensions. This observation seems to have gone unnoticed before.

2. Spherical twists on annuli

Let $\mathbf{X}=\left\{x \in \mathbb{R}^{n}: a<|x|<b\right\}$ and for $x \in \overline{\mathbf{X}}$ put $r=|x|$ and $\theta=x /|x|$. Then a continuous map u on $\overline{\mathbf{X}}$ into \mathbb{S}^{n-1} in the form

$$
u: x \mapsto \mathbf{Q}(r) \theta
$$

with $\mathbf{Q} \in \mathbf{C}([a, b], \mathbf{S O}(n))$ is referred to as a spherical twist on $\mathbf{X} ; \mathbf{Q}$ is the twist path and when $\mathbf{Q}(a)=\mathbf{Q}(b)$ the twist loop. ${ }^{2}$
Proposition 2.1. Suppose that u is a spherical twist on \mathbf{X}. Then $u \in \mathcal{A}_{\varphi}(\mathbf{X})$ provided that the following hold.
[1] $\mathbf{Q}(a)=\mathbf{R}_{a}$,
[2] $\mathbf{Q}(b)=\mathbf{R}_{b}$,
$[\mathbf{3}] \mathbf{Q} \in W^{1,2}([a, b], \mathbf{S O}(n))$.

Proof. Evidently for u as described $u \in \mathcal{A}_{\varphi}(\mathbf{X})$ if and only if the following hold:
[a] $\|u\|_{1,2}<\infty$,
[b] $u=\varphi$ on $\partial \mathbf{X}$.
Now anticipating on [a] a straight-forward differentiation gives

$$
\begin{equation*}
\nabla u=\frac{1}{r}(\mathbf{Q}+(r \dot{\mathbf{Q}}-\mathbf{Q}) \theta \otimes \theta) \tag{2.1}
\end{equation*}
$$

with $x=r \theta \in \mathbf{X}$ and $\dot{\mathbf{Q}}:=d \mathbf{Q} / d r$. Therefore

$$
\begin{align*}
|\nabla u|^{2}=\operatorname{tr}\left\{[\nabla u][\nabla u]^{t}\right\}= & \frac{1}{r^{2}} \operatorname{tr}\left\{\mathbf{I}_{n}+\mathbf{Q} \theta \otimes(r \dot{\mathbf{Q}}-\mathbf{Q}) \theta+(r \dot{\mathbf{Q}}-\mathbf{Q}) \theta \otimes \mathbf{Q} \theta\right. \\
& +[(r \dot{\mathbf{Q}}-\mathbf{Q}) \theta \otimes \theta][\theta \otimes(r \dot{\mathbf{Q}}-\mathbf{Q}) \theta]\} \\
= & \frac{1}{r^{2}} \operatorname{tr}\left\{\mathbf{I}_{n}-\mathbf{Q} \theta \otimes \mathbf{Q} \theta+r^{2} \dot{\mathbf{Q}} \theta \otimes \dot{\mathbf{Q}} \theta\right\} \\
= & \frac{1}{r^{2}}\left[n-\langle\mathbf{Q} \theta, \mathbf{Q} \theta\rangle+r^{2}\langle\dot{\mathbf{Q}} \theta, \dot{\mathbf{Q}} \theta\rangle\right] \\
= & \frac{1}{r^{2}}\left[(n-1)+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right] \tag{2.2}
\end{align*}
$$

where in concluding the last identity we have used $\langle\mathbf{Q} \theta, \mathbf{Q} \theta\rangle=1$ for all $\theta \in$ \mathbb{S}^{n-1}. Thus recalling that $|u|^{2}=1$ in \mathbf{X} we can write

$$
\begin{aligned}
\int_{\mathbf{X}}|u|^{2}+|\nabla u|^{2} & =\int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left(1+\frac{1}{r^{2}}\left[(n-1)+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right]\right) r^{n-1} d \mathcal{H}^{n-1}(\theta) d r \\
& =\int_{a}^{b} \omega_{n}\left[n+\frac{1}{r^{2}} n(n-1)+|\dot{\mathbf{Q}}|^{2}\right] r^{n-1} d r
\end{aligned}
$$

and so $[\mathbf{a}]$ results from $[\mathbf{3}]$. Finally $[\mathbf{b}] \Longleftrightarrow([\mathbf{1}],[\mathbf{2}])$ and the proof is complete.

[^1]Proposition 2.2. Let u be a spherical twist with twist path $\mathbf{Q} \in \mathbf{C}^{2}(] a, b[$, $\mathbf{S O}(n))$. Then

$$
\begin{equation*}
\Delta u=\frac{1}{r^{2}}\left[(n-1)(r \dot{\mathbf{Q}}-\mathbf{Q})+r^{2} \ddot{\mathbf{Q}}\right] \theta \tag{2.3}
\end{equation*}
$$

and subsequently

$$
\begin{equation*}
\Delta u+|\nabla u|^{2} u=\left[\ddot{\mathbf{Q}}+\frac{n-1}{r} \dot{\mathbf{Q}}+|\dot{\mathbf{Q}} \theta|^{2} \mathbf{Q}\right] \theta \tag{2.4}
\end{equation*}
$$

in \mathbf{X}.
Proof. Indeed (2.3) follows by a further differentiation of (2.1) and (2.4) follows upon substitution from (2.2) and (2.3). We abbreviate the details.

It is plain that energy of a spherical twist with the aid of (2.2) in Proposition 2.1 can be described by the integral

$$
\begin{aligned}
\mathbb{E}[u ; \mathbf{X}] & =\frac{1}{2} \int_{a}^{b} \int_{\mathbb{S}^{n-1}}\left\{\frac{1}{r^{2}}\left[(n-1)+r^{2}|\dot{\mathbf{Q}} \theta|^{2}\right]\right\} r^{n-1} d \mathcal{H}^{n-1}(\theta) d r \\
& =\frac{1}{2} \omega_{n} \int_{a}^{b}\left\{n(n-1) \frac{1}{r^{2}}+|\dot{\mathbf{Q}}|^{2}\right\} r^{n-1} d r .
\end{aligned}
$$

Upon denoting the integral on the right by $e[\mathbf{Q}]$ in what follows we proceed by computing the first variation of this energy on the space of admissible paths on the pointed space $\left(\mathbf{S O}(n), \mathbf{I}_{n}\right)$, that is, ${ }^{3}$

$$
\mathcal{E}=\mathcal{E}[a, b]:=\left\{\begin{array}{l}
\mathbf{Q} \in W^{1,2}([a, b], \mathbf{S O}(n)) \\
\mathbf{Q}(a)=\mathbf{I}_{n} \\
\mathbf{Q}(b)=\mathbf{R}
\end{array}\right\}
$$

Proposition 2.3. (Stationary paths) The Euler-Lagrange equation associated with $e[\cdot]$ on \mathcal{E} takes the form

$$
\begin{equation*}
\frac{d}{d r}\left\{\left[r^{n-1} \frac{d}{d r} \mathbf{Q}\right] \mathbf{Q}^{t}\right\}=0 \tag{2.5}
\end{equation*}
$$

on $] a, b[$.
Proof. First fix \mathbf{Q} as described and for $\varepsilon \in \mathbb{R}$ put $\mathbf{Q}_{\varepsilon}=\mathbf{Q}+\varepsilon\left(\mathbf{F}-\mathbf{F}^{t}\right) \mathbf{Q}$ where $\mathbf{F} \in \mathbf{C}_{0}^{\infty}(] a, b\left[, \mathbb{M}_{n \times n}\right)$ is arbitrary. Then

$$
\mathbf{Q}_{\varepsilon} \mathbf{Q}_{\varepsilon}^{t}=\left[\mathbf{Q}+\varepsilon\left(\mathbf{F}-\mathbf{F}^{t}\right) \mathbf{Q}\right]\left[\mathbf{Q}^{t}-\varepsilon \mathbf{Q}^{t}\left(\mathbf{F}-\mathbf{F}^{t}\right)\right]=\mathbf{I}_{n}-\varepsilon^{2}\left(\mathbf{F}-\mathbf{F}^{t}\right)^{2}
$$

[^2]and so to the first order in ε the perturbation \mathbf{Q}_{ε} takes values on $\mathbf{S O}(n)$. Now with a slight abuse of notation we can write
\[

$$
\begin{aligned}
\left.\frac{1}{\omega_{n}} \frac{d}{d \varepsilon} e\left[\mathbf{Q}_{\varepsilon}\right]\right|_{\varepsilon=0} & =\int_{a}^{b}\left\langle\dot{\mathbf{Q}},\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) \mathbf{Q}+\left(\mathbf{F}-\mathbf{F}^{t}\right) \dot{\mathbf{Q}}\right\rangle r^{n-1} d r \\
& =\int_{a}^{b}\left(\left\langle\dot{\mathbf{Q}},\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right) \mathbf{Q}\right\rangle+\left\langle\dot{\mathbf{Q}},\left(\mathbf{F}-\mathbf{F}^{t}\right) \dot{\mathbf{Q}}\right\rangle\right) r^{n-1} d r \\
& =\int_{a}^{b}\left\langle\dot{\mathbf{Q}} \mathbf{Q}^{t},\left(\dot{\mathbf{F}}-\dot{\mathbf{F}}^{t}\right)\right\rangle r^{n-1} d r \\
& =\int_{a}^{b}-\left\langle\frac{d}{d r}\left[r^{n-1} \dot{\mathbf{Q}} \mathbf{Q}^{t}\right],\left(\mathbf{F}-\mathbf{F}^{t}\right)\right\rangle d r=0 .
\end{aligned}
$$
\]

Note that in concluding the last line we have used the integration by parts formula together with the boundary conditions $\mathbf{F}(a)=\mathbf{F}(b)=0$. The conclusion now follows in view of $\dot{\mathbf{Q}} \mathbf{Q}^{t}$ being skew-symmetric.

Remark 2.1. For the sake of convenience in what follows we often assume the orthogonal matrix \mathbf{R} (see the definition of $\mathcal{E}[a . b]$ preceding Proposition 2.3) to have been expressed in block diagonal forms (cf. the Appendix for notation), specifically, [1] $(n=2 k)$

$$
\mathbf{R}=\mathfrak{P}_{\mathbf{R}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{R}}^{t}=\mathfrak{P}_{\mathbf{R}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right]\right) \mathfrak{P}_{\mathbf{R}}^{t}
$$

[2] $(n=2 k+1)$

$$
\mathbf{R}=\mathfrak{P}_{\mathbf{R}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{R}}^{t}=\mathfrak{P}_{\mathbf{R}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right], 1\right) \mathfrak{P}_{\mathbf{R}}^{t}
$$

The sequences $\left(e^{ \pm i \eta_{j}}\right)_{j=1}^{k}$ in [1] and $\left(1, e^{ \pm i \eta_{j}}\right)_{j=1}^{k}$ in [2] consist of eigenvalues of \mathbf{R} (here $\eta_{1}, \ldots, \eta_{k} \in[0, \pi]$) while $\mathfrak{P}_{\mathbf{R}} \in \mathbf{O}(n)$. (Note that there is no uniqueness associated with the choices of $\mathfrak{D}_{\mathbf{R}}$ and $\mathfrak{P}_{\mathbf{R}}$ yet in what follows we pick one such pair and assume them fixed throughout.)

Theorem 2.1. (Stationary paths) The general solution to (2.5) is given by the matrix exponential

$$
\begin{equation*}
\mathbf{Q}(r)=e^{\beta(r) \mathbf{A}} \mathbf{Q}_{\circ} \tag{2.6}
\end{equation*}
$$

Here $\mathbf{Q}_{\circ} \in \mathbf{S O}(n), \mathbf{A}$ is skew-symmetric and

$$
\beta(r)= \begin{cases}\log r & n=2 \\ \frac{1}{2-n} r^{2-n} & n \geq 3\end{cases}
$$

Moreover subject to $\mathbf{Q}(a)=\mathbf{I}_{n}$ and $\mathbf{Q}(b)=\mathbf{R}$, depending on the dimension n being even or odd the following hold.
[a] $(n=2 k)$

$$
\mathbf{A}=\mathfrak{P}_{\mathbf{A}} \mathfrak{D}_{\mathbf{A}} \mathfrak{P}_{\mathbf{A}}^{t}=\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
$$

[b] $(n=2 k+1)$

$$
\mathbf{A}=\mathfrak{P}_{\mathbf{A}} \mathfrak{D}_{\mathbf{A}} \mathfrak{P}_{\mathbf{A}}^{t}=\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}, 0\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
$$

In either of the cases $[\mathbf{a}]$ or $[\mathbf{b}]$ the sequence $\left(\zeta_{j}\right)_{j=1}^{k} \subset \mathbb{R}$ must satisfy the set of conditions

$$
\begin{equation*}
\zeta_{j}=\frac{1}{s}\left[\eta_{j}+2 \pi m_{j}\right], \tag{2.7}
\end{equation*}
$$

for all $1 \leq j \leq k$ where $m_{j} \in \mathbb{Z}, s=\beta(b)-\beta(a)$ and $\mathbf{P} \in \mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right]$ the centraliser of $\mathfrak{D}_{\mathbf{R}}$ in $\mathbf{O}(n)$. Finally for each such \mathbf{A} the choice of \mathbf{Q}_{\circ} is unique; in fact one precisely has $\mathbf{Q}_{\circ}=e^{-\beta(a) \mathbf{A}}{ }^{4}$

Proof. Since \mathbf{Q} is a solution to (2.5), integrating once, there exits a constant and skew-symmetric matrix \mathbf{A} such that

$$
\frac{d}{d r} \mathbf{Q}=\frac{1}{r^{n-1}} \mathbf{A} \mathbf{Q}
$$

Integrating again gives (2.6). Note that here we have absorbed a constant resulting from integrating r^{1-n} into the special orthogonal matrix \mathbf{Q}_{\circ}. Next enforcing the boundary conditions $\mathbf{Q}(a)=\mathbf{I}_{n}$ and $\mathbf{Q}(b)=\mathbf{R}$ we obtain

$$
\mathbf{R}=e^{[\beta(b)-\beta(a)] \mathbf{A}}
$$

Thus with $s=\beta(b)-\beta(a)$ it remains to characterise all skew-symmetric matrices A for which

$$
\begin{equation*}
e^{s \mathbf{A}}=\mathbf{R} \tag{2.8}
\end{equation*}
$$

In order to solve this equation for \mathbf{A} consider expressing \mathbf{A} in block diagonal form as described in Proposition 4.1. Denoting the spectrum of \mathbf{A} by $\sigma(\mathbf{A})=\left(\pm i \zeta_{j}\right)_{j=1}^{k}$ in $[\mathbf{a}]$ and $\sigma(\mathbf{A})=\left(0, \pm i \zeta_{j}\right)_{j=1}^{k}$ in $[\mathbf{b}],(2.8)$ and the spectral mapping theorem (see, e.g., [4]) lead to the identities:
[a] $(n=2 k)$

$$
e^{s \sigma(\mathbf{A})}=\left(e^{ \pm i s \zeta_{j}}\right)_{j=1}^{k}=\left(e^{ \pm i \eta_{j}}\right)_{j=1}^{k}=\sigma(\mathbf{R})
$$

[b] $(n=2 k+1)$

$$
e^{s \sigma(\mathbf{A})}=\left(1, e^{ \pm i s \zeta_{j}}\right)_{j=1}^{k}=\left(1, e^{ \pm i \eta_{j}}\right)_{j=1}^{k}=\sigma(\mathbf{R})
$$

Thus up to re-labeling and a possible re-naming upon sign differences in either of the cases $[\mathbf{a}]$ or $[\mathbf{b}]$ we have

$$
e^{s \mathbf{A}}=\mathbf{R} \Longrightarrow\left\{\begin{array}{l}
e^{i s \zeta_{1}}=e^{i \eta_{1}}, \\
e^{i s \zeta_{2}}=e^{i \eta_{2}} \\
\cdot \\
\cdot \\
\cdot \\
e^{i s \zeta_{k}}=e^{i \eta_{k}}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
s \zeta_{1}=\eta_{1}+2 \pi m_{1} \\
s \zeta_{2}=\eta_{2}+2 \pi m_{2} \\
\cdot \\
\cdot \\
\cdot \\
s \zeta_{k}=\eta_{k}+2 \pi m_{k}
\end{array}\right\}
$$

[^3][a] $(n=2 k)$ Here without loss of generality using the above set of identities we can write
\[

$$
\begin{aligned}
e^{s \mathbf{A}} & =e^{s \mathfrak{P}_{\mathbf{A}} \mathfrak{D}_{\mathbf{A}} \mathfrak{P}_{\mathbf{A}}^{t}} \\
& =e^{s \mathfrak{P}_{\mathbf{A}} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}\right) \mathfrak{P}_{\mathbf{A}}^{t}} \\
& =\mathfrak{P}_{\mathbf{A}} \operatorname{diag}\left(\mathcal{R}\left[s \zeta_{1}\right], \mathcal{R}\left[s \zeta_{2}\right], \ldots, \mathcal{R}\left[s \zeta_{k}\right]\right) \mathfrak{P}_{\mathbf{A}}^{t} \\
& =\mathfrak{P}_{\mathbf{A}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right]\right) \mathfrak{P}_{\mathbf{A}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right]\right) \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathbf{R} .
\end{aligned}
$$
\]

As a result the above chain of equalities enforces the following

$$
\begin{aligned}
\mathfrak{P}_{\mathbf{R}}^{t} \mathfrak{P}_{\mathbf{A}} \in \mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right] & \Longleftrightarrow \mathfrak{D}_{\mathbf{R}}=\left[\mathfrak{P}_{\mathbf{R}}^{t} \mathfrak{P}_{\mathbf{A}}\right] \mathfrak{D}_{\mathbf{R}}\left[\mathfrak{P}_{\mathbf{R}}^{t} \mathfrak{P}_{\mathbf{A}}\right]^{t} \\
& \Longleftrightarrow \mathfrak{P}_{\mathbf{R}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{R}}^{t}=\mathfrak{P}_{\mathbf{A}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{A}}^{t} .
\end{aligned}
$$

[b] $(n=2 k+1)$ Again without loss of generality using (2.7) we can write

$$
\begin{aligned}
e^{s \mathbf{A}} & =e^{s \mathfrak{P}_{\mathbf{A}} \mathfrak{D}_{\mathbf{A}} \mathfrak{P}_{\mathbf{A}}^{t}} \\
& =e^{s \mathfrak{P}_{\mathbf{A}} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}, 0\right) \mathfrak{P}_{\mathbf{A}}^{t}} \\
& =\mathfrak{P}_{\mathbf{A}} \operatorname{diag}\left(\mathcal{R}\left[s \zeta_{1}\right], \mathcal{R}\left[s \zeta_{2}\right], \ldots, \mathcal{R}\left[s \zeta_{k}\right], 1\right) \mathfrak{P}_{\mathbf{A}}^{t} \\
& =\mathfrak{P}_{\mathbf{A}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right], 1\right) \mathfrak{P}_{\mathbf{A}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right], 1\right) \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathbf{R} .
\end{aligned}
$$

Therefore the argument can be completed as in the previous case. Plainly once A has been fixed as described \mathbf{Q}_{\circ} can be uniquely expressed as the value of $e^{-\beta(a) \mathbf{A}}$.

Remark 2.2. Note that apart from a scaling factor the function β is the fundamental solution for the Laplace operator on \mathbb{R}^{n} (see, e.g., [7], p. 51). Indeed, by utilising (2.5) this can be justified since here

$$
\begin{aligned}
{\left[\Delta_{x} \beta\right] \mathbf{A} } & =\frac{1}{r^{n-1}} \frac{d}{d r}\left\{r^{n-1} \frac{d \beta}{d r}\right\} \mathbf{A} \\
& =\frac{1}{r^{n-1}} \frac{d}{d r}\left\{\left[r^{n-1} \frac{d \beta}{d r} \mathbf{A Q}\right] \mathbf{Q}^{t}\right\} \\
& =\frac{1}{r^{n-1}} \frac{d}{d r}\left\{\left[r^{n-1} \frac{d}{d r} \mathbf{Q}\right] \mathbf{Q}^{t}\right\}=0
\end{aligned}
$$

with $\mathbf{Q}(r)=e^{\beta(r) \mathbf{A}} \mathbf{Q}_{\circ}$.
Theorem 2.2. The solution \mathbf{Q} described in Theorem 2.1 can be alternatively expressed in the following form.
[a] $(n=2 k)$

$$
\mathbf{Q}=\mathbf{Q}(r ; a, b, \mathbf{m})=\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[g_{1}\right](r), \mathcal{R}\left[g_{2}\right](r), \ldots, \mathcal{R}\left[g_{k}\right](r)\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
$$

[b] $(n=2 k+1)$

$$
\mathbf{Q}=\mathbf{Q}(r ; a, b, \mathbf{m})=\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[g_{1}\right](r), \mathcal{R}\left[g_{2}\right](r), \ldots, \mathcal{R}\left[g_{k}\right](r), 1\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
$$

In either of the cases $[\mathbf{a}]$ and $[\mathbf{b}]$ above we have $\mathbf{P} \in \mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right]$ and $\mathbf{m}=$ $\left(m_{1}, \ldots, m_{k}\right)$ with $m_{j} \in \mathbb{Z}$ for all $1 \leq j \leq k$ while

$$
g_{j}(r)=\frac{\beta(r)-\beta(a)}{\beta(b)-\beta(a)}\left[\eta_{j}+2 \pi m_{j}\right]
$$

Proof. Let \mathbf{Q} denote the solution as described in Theorem 2.1. Then substituting for \mathbf{Q} 。 we have that

$$
\mathbf{Q}(r)=e^{\beta(r) \mathbf{A}} \mathbf{Q}_{\circ}=e^{\beta(r) \mathbf{A}} e^{-\beta(a) \mathbf{A}}=e^{[\beta(r)-\beta(a)] \mathbf{A}}
$$

Now suppose that $\left(m_{j}\right)_{j=1}^{k}$ is an arbitrary sequence of integers. Then referring to Theorem 2.1 and using the block diagonal form of \mathbf{A} whilst observing the identity

$$
\zeta_{j}=s^{-1}\left(\eta_{j}+2 \pi m_{j}\right)
$$

we obtain the following expressions for the solution \mathbf{Q}. [a] $(n=2 k)$

$$
\begin{aligned}
\mathbf{Q} & =\mathbf{Q}(r ; a, b, \mathbf{m}) \\
& =e^{\beta(r) \mathbf{A}} \mathbf{Q}_{\circ} \\
& =e^{[\beta(r)-\beta(a)] \mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}} \\
& =\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[g_{1}\right](r), \mathcal{R}\left[g_{2}\right](r), \ldots, \mathcal{R}\left[g_{k}\right](r)\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
\end{aligned}
$$

[b] $(n=2 k+1)$

$$
\begin{aligned}
\mathbf{Q} & =\mathbf{Q}(r ; a, b, \mathbf{m}) \\
& =e^{\beta(r) \mathbf{A}} \mathbf{Q}_{\circ} \\
& =e^{[\beta(r)-\beta(a)] \mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}, 0\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}} \\
& =\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[g_{1}\right](r), \mathcal{R}\left[g_{2}\right](r), \ldots, \mathcal{R}\left[g_{k}\right](r), 1\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
\end{aligned}
$$

In either of the cases [1] and [2] above we have set

$$
\begin{aligned}
g_{j}(r) & :=[\beta(r)-\beta(a)] \zeta_{j} \\
& =\frac{\beta(r)-\beta(a)}{\beta(b)-\beta(a)}\left(\eta_{j}+2 \pi m_{j}\right)
\end{aligned}
$$

for all $r \in[a, b]$ and $1 \leq j \leq k$. This completes the proof.
Note that by referring to the definition of the function β given in Theorem 2.1 we can alternatively express the twist angles g_{j} in the following more suggestive form.
[1] $(n=2)$ As $k=1$ setting $g:=g_{1}$ for $m \in \mathbb{Z}$ and $r \in[a, b]$ we have that

$$
\begin{equation*}
g(r)=\frac{\log r / a}{\log b / a}(\eta+2 \pi m) \tag{2.9}
\end{equation*}
$$

[2] $(n \geq 3)$ For the sequence of integers $\left(m_{j}\right)_{j=1}^{k}$ and $r \in[a, b]$ we have that

$$
\begin{equation*}
g_{j}(r)=\frac{(r / a)^{2-n}-1}{(b / a)^{2-n}-1}\left(\eta_{j}+2 \pi m_{j}\right) . \tag{2.10}
\end{equation*}
$$

We end the section by giving explicit expressions for the energies of the solutions to the Euler-Lagrange equation associated with $e[\cdot]$ on \mathcal{E} from Theorem 2.1. To this end we now proceed by considering the cases corresponding to $n=2$ and $n \geq 3$ separately.
[1] $(n=2)$ Here we have that

$$
\begin{equation*}
e[\mathbf{Q}]=\frac{\pi}{2} \int_{a}^{b}\left\{\frac{2}{r^{2}}+|\dot{\mathbf{Q}}(r)|^{2}\right\} r d r=\frac{\pi}{2} \int_{a}^{b}\left(2+|\mathbf{A}|^{2}\right) \frac{d r}{r}=\pi\left(1+\zeta^{2}\right) \log \frac{b}{a} \tag{2.11}
\end{equation*}
$$

where $\pm i \zeta$ denote the eigen-values of the skew-symmetric matrix \mathbf{A}. $[2](n \geq 3)$ Here, again, we have that

$$
\begin{align*}
e[\mathbf{Q}] & =\frac{\omega_{n}}{2} \int_{a}^{b}\left\{n(n-1) \frac{1}{r^{2}}+\frac{1}{r^{2(n-1)}}|\mathbf{A Q}|^{2}\right\} r^{n-1} d r \\
& =n \frac{\omega_{n}}{2}\left[\frac{n-1}{n-2}\left(b^{n-2}-a^{n-2}\right)+\frac{1}{n} \int_{a}^{b} \frac{1}{r^{n-1}}|\mathbf{A}|^{2} d r\right] \\
& =n \frac{\omega_{n}}{2}\left[(n-1)+\frac{2}{n} \frac{1}{(a b)^{n-2}} \sum_{j=1}^{k} \zeta_{j}^{2}\right] \frac{b^{n-2}-a^{n-2}}{n-2} . \tag{2.12}
\end{align*}
$$

where depending on n being even $(n=2 k)$ or odd $(n=2 k+1)$ the quantities $\pm i \zeta_{1}, \ldots, \pm i \zeta_{k}$ or $\pm i \zeta_{1}, \ldots, \pm i \zeta_{k}, 0$ denote the eigen-values of the skewsymmetric matrix \mathbf{A}.

Alternatively using Theorem 2.2 we can re-write the energy $e[\mathbf{Q}]$ in both [1] and [2] above in the forms:
$[\mathbf{1}](n=2)$ with $\mathbf{Q}=\mathbf{Q}(r ; a, b, m)$ we have $e[\mathbf{Q}]=\pi s\left[1+(\eta+2 \pi m)^{2} s^{-2}\right]$ where $s=\beta(b)-\beta(a)=\log b / a$,
$[\mathbf{2}](n \geq 3)$ with $\mathbf{Q}=\mathbf{Q}(r ; a, b, \mathbf{m})$ we have $e[\mathbf{Q}]=\omega_{n} s / 2\left[n(n-1)(a b)^{n-2}+\right.$ $\left.2 \sum_{1 \leq j \leq k}\left(\eta_{j}+2 \pi m_{j}\right)^{2} s^{-2}\right]$ where $s=\beta(b)-\beta(a)=\left(a^{2-n}-b^{2-n}\right) /(n-2)$.

3. Harmonic twists as solutions to the harmonic map equation

We begin this section by introducing the notion of a harmonic twists, that is, a twice continuously differentiable spherical twist that is a harmonic map.

Definition 3.1. (Harmonic twist)
Let $\mathbf{X}=\left\{x \in \mathbb{R}^{n}: a<|x|<b\right\}$. A harmonic twist u on \mathbf{X} is a spherical twist on \mathbf{X} that satisfies the following:
[1] $u \in \mathbf{C}\left(\overline{\mathbf{X}}, \mathbb{S}^{n-1}\right)$,
[2] $u \in \mathbf{C}^{2}\left(\mathbf{X}, \mathbb{S}^{n-1}\right)$,
[3] $\Delta u+|\nabla u|^{2} u=0$ in \mathbf{X}.
Here we aim to extract from amongst solutions in Theorem 2.1 those that constitute the twist path of a harmonic twist. Before confronting this however we find it helpful to discuss a condition on the matrix \mathbf{R} that will indeed turn to be both necessary and sufficient for the existence of such harmonic twists (cf. Remark 3.1 below).

Remark 3.1. As seen the Euler-Lagrange equation (2.5) admits infinitely many solutions (cf. Theorem 2.2). The situation is completely different for harmonic twists. Indeed it will become clear that here solvability and multiplicity depend crucially on a structural property of \mathbf{R}. In fact a necessary and sufficient condition for this can be formulated depending on the dimension being even or odd as follows.
[1] $(n=2 k)$ It must be that $\eta_{1}=\eta_{2}=\cdots=\eta_{k}:=\eta$ (with $\left.\eta \in[0, \pi]\right)$ and hence

$$
\begin{align*}
\mathbf{R} & =\mathfrak{P}_{\mathbf{R}} \mathfrak{D}_{\mathbf{R}} \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right]\right) \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \operatorname{diag}(\mathcal{R}[\eta], \mathcal{R}[\eta], \ldots, \mathcal{R}[\eta]) \mathfrak{P}_{\mathbf{R}}^{t} \tag{3.1}
\end{align*}
$$

[2] $(n=2 k+1)$ It must be that $\eta_{1}=\eta_{2}=\cdots=\eta_{k}=0$ and hence

$$
\begin{equation*}
\mathbf{R}=\mathbf{I}_{n} \tag{3.2}
\end{equation*}
$$

(See Remark 2.1 for notation.)
Theorem 3.1. Let u be the spherical twist on \mathbf{X} with twist path \mathbf{Q} described in Theorem 2.1. Then u is a harmonic twist if and only if the following conditions hold.
[1] $(n=2 k) \mathbf{R}$ must be as in (3.1) while

$$
\begin{align*}
\mathbf{A} & =\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}(\zeta \mathcal{J}, \zeta \mathcal{J}, \ldots, \zeta \mathcal{J}) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t} \tag{3.3}
\end{align*}
$$

Here $\mathbf{P} \in \mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right]$ and the sequence $\left(\zeta_{j}\right)_{j=1}^{k} \subset \mathbb{R}$ is so that $\zeta_{1}=\zeta_{2}=\cdots=$ $\zeta_{k}=: \zeta$ where

$$
\zeta=\frac{1}{s}[\eta+2 \pi m] .
$$

As before, $s=\beta(b)-\beta(a)$ and $m \in \mathbb{Z}$.
[2] $(n=2 k+1) \mathbf{R}$ must be as in (3.2) while

$$
\begin{equation*}
\mathbf{A}=\mathbf{0} \tag{3.4}
\end{equation*}
$$

Proof. Let u be a spherical twist on \mathbf{X} with twist path \mathbf{Q} as in Theorem 2.1. We show in order for u to be a harmonic twist the skew-symmetric matrix \mathbf{A}
has to be further restricted as described in [1] and [2] above. Indeed to begin note that a straight-forward differentiation gives

$$
\begin{aligned}
\dot{\mathbf{Q}} & =\frac{1}{r^{n-1}} \mathbf{A} \mathbf{Q} \\
\ddot{\mathbf{Q}} & =\frac{1-n}{r^{n}} \mathbf{A Q}+\frac{1}{r^{2(n-1)}} \mathbf{A}^{2} \mathbf{Q}
\end{aligned}
$$

Therefore in light of Proposition 2.2 upon substituting for these quantities we can write

$$
\begin{aligned}
\Delta u+|\nabla u|^{2} u & =\left(\ddot{\mathbf{Q}}+\frac{n-1}{r} \dot{\mathbf{Q}}+|\dot{\mathbf{Q}} \theta|^{2} \mathbf{Q}\right) \theta \\
& =\left(\frac{1-n}{r^{n}} \mathbf{A} \mathbf{Q}+\frac{1}{r^{2(n-1)}} \mathbf{A}^{2} \mathbf{Q}+\frac{n-1}{r^{n}} \mathbf{A} \mathbf{Q}+\frac{1}{r^{2(n-1)}}|\mathbf{A Q} \theta|^{2} \mathbf{Q}\right) \theta \\
& =\frac{1}{r^{2(n-1)}}\left(\mathbf{A}^{2}+|\mathbf{A Q} \theta|^{2} \mathbf{I}_{n}\right) \mathbf{Q} \theta=0
\end{aligned}
$$

Setting $\omega=\mathbf{Q} \theta$ it is then evident that the above is equivalent to the identity

$$
\left[\mathbf{A}^{2}+|\mathbf{A} \omega|^{2} \mathbf{I}_{n}\right] \omega=0
$$

for all $\omega \in \mathbb{S}^{n-1}$. Hence an application of Proposition 4.3 to this gives $\mathbf{A}^{2}=$ $-s \mathbf{I}_{n}$ for some $s \geq 0$. Now in order to proceed further we consider the cases of even and odd dimensions separately.
[1] $(n=2 k)$

$$
\begin{align*}
\mathbf{A}^{2}=-s \mathbf{I}_{n} & \Longleftrightarrow\left[\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2}, \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}\right]^{2}=-s \mathbf{I}_{n} \\
& \Longleftrightarrow \mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\zeta_{1}^{2} \mathbf{I}_{2}, \zeta_{2}^{2} \mathbf{I}_{2}, \ldots, \zeta_{k}^{2} \mathbf{I}_{2}\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}=s \mathbf{I}_{n} \\
& \Longleftrightarrow \operatorname{diag}\left(\zeta_{1}^{2} \mathbf{I}_{2}, \zeta_{2}^{2} \mathbf{I}_{2}, \ldots, \zeta_{k}^{2} \mathbf{I}_{2}\right)=s \mathbf{I}_{n} \\
& \Longleftrightarrow \zeta_{1}^{2}=\zeta_{2}^{2}=\cdots=\zeta_{k}^{2}=s \tag{3.5}
\end{align*}
$$

As a result for $1 \leq j, j^{\prime} \leq k$ we have that either $\zeta_{j}=\zeta_{j^{\prime}}$ or $\zeta_{j}=-\zeta_{j^{\prime}}$. We now describe the implication of each of these two identities separately. Indeed using (2.7) we can write

$$
\begin{aligned}
\zeta_{j}=\zeta_{j^{\prime}} & \Longleftrightarrow \eta_{j}+2 \pi m_{j}=\eta_{j^{\prime}}+2 \pi m_{j^{\prime}} \\
& \Longleftrightarrow \eta_{j}-\eta_{j^{\prime}}=-2 \pi\left(m_{j}-m_{j^{\prime}}\right) \\
& \Longleftrightarrow m_{j}=m_{j^{\prime}} \\
& \Longleftrightarrow \eta_{j}=\eta_{j^{\prime}},
\end{aligned}
$$

as $\eta_{j}-\eta_{j^{\prime}} \in[-\pi, \pi]$. On the other hand

$$
\begin{aligned}
\zeta_{j}=-\zeta_{j^{\prime}} & \Longleftrightarrow \eta_{j}+2 \pi m_{j}=-\left(\eta_{j^{\prime}}+2 \pi m_{j^{\prime}}\right) \\
& \Longleftrightarrow \eta_{j}+\eta_{j^{\prime}}=-2 \pi\left(m_{j}+m_{j^{\prime}}\right) \\
& \Longleftrightarrow \eta_{j}=\eta_{j^{\prime}} \in\{0, \pi\},
\end{aligned}
$$

as $\eta_{j}+\eta_{j^{\prime}} \in[0,2 \pi]$ and so

$$
\zeta_{j}=-\zeta_{j^{\prime}} \Longleftrightarrow\left\{\begin{array}{l}
\eta_{j}=\eta_{j^{\prime}}=0 \\
m_{j}=-m_{j^{\prime}} \\
\text { or, } \\
\eta_{j}=\eta_{j^{\prime}}=\pi \\
m_{j}=-\left(m_{j^{\prime}}+1\right)
\end{array}\right.
$$

Hence, summarising, in either of these cases we have that $\eta_{1}=\eta_{2}=$ $\cdots=\eta_{k}:=\eta$ with $\eta \in[0, \pi]$. As a consequence depending on η we have the following three distinct possibilities.
Case 1. $(\eta=0)$
Here $m_{j} \in\{ \pm m\}$ for all $1 \leq j \leq k$ with $m \in \mathbb{Z}$ and so $\left|\zeta_{1}\right|=\left|\zeta_{2}\right|=\cdots=$ $\left|\zeta_{k}\right|=|\zeta|$ with

$$
\zeta=2 \pi s^{-1} m
$$

Evidently $\eta=0 \Longleftrightarrow \mathbf{R}=\mathbf{I}_{n}$. Therefore here $\mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right]=\mathbf{O}(n)$. In particular as $\mathbf{P} \in \mathbf{O}(n)$ in (3.3) is arbitrary we can arrange without any loss of generality that $\zeta_{1}=\zeta_{2}=\cdots=\zeta_{k}=\zeta$.
Case 2. $(\eta \in] 0, \pi[)$
Here $m_{1}=m_{2}=\cdots=m_{k}=: m$ with $m \in \mathbb{Z}$ and so $\zeta_{1}=\zeta_{2}=\cdots=\zeta_{k}=\zeta$ with

$$
\zeta=s^{-1}(\eta+2 \pi m)
$$

Evidently $\eta \in] 0, \pi\left[\Longleftrightarrow \mathbf{R} \notin\left\{ \pm \mathbf{I}_{n}\right\}\right.$ and therefore here $\mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right] \subsetneq \mathbf{O}(n)$. Case 3. $(\eta=\pi)$
Here $m_{j} \in\{m,-(m+1)\}$ for all $1 \leq j \leq k$ with $m \in \mathbb{Z}$ and so $\left|\zeta_{1}\right|=\left|\zeta_{2}\right|=$ $\cdots=\left|\zeta_{k}\right|=|\zeta|$ with

$$
\zeta=s^{-1}(\pi+2 \pi m)
$$

Evidently $\eta=\pi \Longleftrightarrow \mathbf{R}=-\mathbf{I}_{n}$. Therefore as in $[\mathbf{1 a}], \mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right]=\mathbf{O}(n)$. Again as $\mathbf{P} \in \mathbf{O}(n)$ in (3.3) is arbitrary we can arrange without any loss of generality that $\zeta_{1}=\zeta_{2}=\cdots=\zeta_{k}=\zeta$.
[2] $(n=2 k+1)$

$$
\begin{aligned}
\mathbf{A}^{2}=-s \mathbf{I}_{n} & \Longrightarrow 0=(\operatorname{det} \mathbf{A})^{2}=\operatorname{det} \mathbf{A}^{2} \\
& \Longrightarrow s=0 \\
& \Longrightarrow \mathbf{A}=0
\end{aligned}
$$

(Note that in odd dimensions any skew-symmetric matrix has zero determinant.) The proof is thus complete.

Theorem 3.2. Let u be the spherical twist on \mathbf{X} with twist path $\mathbf{Q}=$ $\mathbf{Q}(r ; a . b, \mathbf{m})$ as given in Theorem 2.2. Then u is a harmonic twist if and only if the following conditions hold.
[1] $(n=2 k) \mathbf{R}$ must be as in (3.1) and then

$$
\begin{aligned}
\mathbf{Q}(r) & =\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[g_{1}\right](r), \mathcal{R}\left[g_{2}\right](r), \ldots, \mathcal{R}\left[g_{k}\right](r)\right) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t} \\
& =\mathfrak{P}_{\mathbf{R}} \mathbf{P} \operatorname{diag}(\mathcal{R}[g](r), \mathcal{R}[g](r), \ldots, \mathcal{R}[g](r)) \mathbf{P}^{t} \mathfrak{P}_{\mathbf{R}}^{t}
\end{aligned}
$$

Here $\mathbf{P} \in \mathbf{C}\left[\mathfrak{D}_{\mathbf{R}}\right]$ and the sequence $\left(g_{j}\right)_{j=1}^{k}$ is such that $g_{1}=g_{2}=\cdots=g_{k}=: g$ where depending on $n=2$ or $n \geq 4$ we have that

$$
[\mathbf{1 a}](n=2)
$$

$$
g(r)=\frac{\log r / a}{\log b / a}(\eta+2 \pi m)
$$

[1b] $(n \geq 4)$

$$
g(r)=\frac{(r / a)^{2-n}-1}{(b / a)^{2-n}-1}(\eta+2 \pi m)
$$

[2] $(n=2 k+1) \mathbf{R}$ must be as in (3.2) and then

$$
\mathbf{Q}(r)=\mathbf{I}_{n}
$$

i.e., the twist path \mathbf{Q} is the constant path at \mathbf{I}_{n}.

Proof. This follows at once from Theorem 3.1 by substituting for \mathbf{A} from (3.3) or (3.4) into (2.6) and evaluating the corresponding exponential term as in Theorem 2.2.

4. Appendix

Recall from linear algebra that all eigen-values of a [real] skew-symmetric matrix have zero real parts. Hence they either appear as purely imaginary conjugate pairs or zero. In particular when n is odd there is necessarily a zero eigen-value. Thus distinguishing between the cases when n is even and odd respectively we can bring every skew-symmetric matrix to a block diagonal form. In what follows we set

$$
\mathcal{J}=\left[\begin{array}{cc}
0 & -1 \tag{4.1}\\
1 & 0
\end{array}\right]
$$

Proposition 4.1. Let $\mathbf{A} \in \mathbb{M}_{n \times n}$ be skew-symmetric. There exist $\mathbf{P} \in \mathbf{O}(n)$ and $\left(\zeta_{j}\right)_{j=1}^{k} \subset \mathbb{R}$ such that the following hold.
[1] $(n=2 k)$

$$
\mathbf{A}=\mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}\right) \mathbf{P}^{t}
$$

[2] $(n=2 k+1)$

$$
\mathbf{A}=\mathbf{P} \operatorname{diag}\left(\zeta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \zeta_{k} \mathcal{J}, 0\right) \mathbf{P}^{t}
$$

Proof. Indeed, here, \mathbf{A} is normal (i.e., it commutes with its transpose $\mathbf{A}^{t}=$ -A) and so the conclusion follows from the the well-known spectral theorem. ${ }^{5}$

[^4]With the aid of the above representation evaluating the exponential function for skew-symmetric matrices becomes remarkably convenient. In what follows we set

$$
\mathcal{R}[s]:=\left[\begin{array}{cc}
\cos s & -\sin s \tag{4.2}\\
\sin s & \cos s
\end{array}\right]
$$

Proposition 4.2. Let $\mathbf{A} \in \mathbb{M}_{n \times n}$ be skew-symmetric. Then using the notation in Proposition 4.1 we have that
[1] $(n=2 k)$

$$
e^{s \mathbf{A}}=\mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[s \zeta_{1}\right], \mathcal{R}\left[s \zeta_{2}\right], \ldots, \mathcal{R}\left[s \zeta_{k}\right]\right) \mathbf{P}^{t}
$$

[2] $(n=2 k+1)$

$$
e^{s \mathbf{A}}=\mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[s \zeta_{1}\right], \mathcal{R}\left[s \zeta_{2}\right], \ldots, \mathcal{R}\left[s \zeta_{k}\right], 1\right) \mathbf{P}^{t}
$$

Proof. A straight-forward calculation gives

$$
e^{s \mathcal{J}}=\sum_{n=0}^{\infty} \frac{1}{n!} s^{n} \mathcal{J}^{n}=\mathcal{R}[s] .
$$

The conclusion now follows by noting that for any block diagonal matrix \mathbf{D} (as, e.g., in Proposition 4.1) we can write

$$
e^{\mathbf{A}}=e^{\mathbf{P D P}^{t}}=\mathbf{P} e^{\mathbf{D}} \mathbf{P}^{t}
$$

Proposition 4.3. Let $\mathbf{A} \in \mathbb{M}_{n \times n}$ be skew-symmetric. Then the following are equivalent.
[1] $\mathbf{A}^{2}=-s \mathbf{I}_{n}$ for some $s \geq 0$.
$[2]\left[\mathbf{A}^{2}+|\mathbf{A} \omega|^{2} \mathbf{I}_{n}\right] \omega=0$ for all $\omega \in \mathbb{S}^{n-1}$.
Proof. The implication ($[\mathbf{1}] \Longrightarrow[\mathbf{2}]$) follows by direct verification. Now for the reverse implication consider re-writting [2] in the form

$$
\mathbf{A}^{2} \omega=-|\mathbf{A} \omega|^{2} \omega
$$

Then for any $\omega \in \mathbb{S}^{n-1}$ the quantity $-|\mathbf{A} \omega|^{2}$ is the associated eigen-value. However since \mathbf{A}^{2} has at most n distinct eigen-values it follows from the continuity of $\omega \mapsto|\mathbf{A} \omega|^{2}$ that the latter must be constant (say s) and this gives [1].

Similar to the case of skew-symmetric matrices we can bring any orthogonal matrix to a block diagonal form. Below we specialise to the case of the special orthogonal group. ${ }^{6}$

[^5]Proposition 4.4. Let $\mathbf{R} \in \mathbf{S O}(n)$. There exist $\mathbf{P} \in \mathbf{O}(n)$ and $\left(\eta_{j}\right)_{j=1}^{k} \subset \mathbb{R}$ such that the following hold.
[1] $(n=2 k)$

$$
\begin{aligned}
\mathbf{R} & =\mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right]\right) \mathbf{P}^{t} \\
& =\mathbf{P} e^{\operatorname{diag}\left(\eta_{1} \mathcal{J}, \eta_{2} \mathcal{J}, \ldots, \eta_{k} \mathcal{J}\right)} \mathbf{P}^{t}
\end{aligned}
$$

[2] $(n=2 k+1)$

$$
\begin{aligned}
\mathbf{R} & =\mathbf{P} \operatorname{diag}\left(\mathcal{R}\left[\eta_{1}\right], \mathcal{R}\left[\eta_{2}\right], \ldots, \mathcal{R}\left[\eta_{k}\right], 1\right) \mathbf{P}^{t} \\
& =\mathbf{P} e^{\operatorname{diag}\left(\eta_{1} \mathcal{J}, \zeta_{2} \mathcal{J}, \ldots, \eta_{k} \mathcal{J}, 0\right)} \mathbf{P}^{t} .
\end{aligned}
$$

Proof. Again, R, here, is normal and so the conclusion follows from the spectral theorem.

References

[1] Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337-403 (1977)
[2] Birman, J.S.: Braids, Links and Mapping Class Groups. Annals of Mathematics Studies, Study, vol. 82. Princeton University Press, NJ (1975)
[3] Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. PNLDE, vol. 6. Birkhäuser, Basel (1993)
[4] Dunford, N., Schwartz, J.T.: Linear Operators, vol. I. Wiley Interscience, London (1988)
[5] Eells, J., Lemaire, L.: Two reports on harmonic maps. Bull. Lond. Math. Soc. $10 \& 20,1-68 \& 385-524$ (1978 \& 1988)
[6] Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101-113 (1991)
[7] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)
[8] Helein, F.: Harmonic Maps, Conservation Laws and Moving Frames. CUP, Cambridge (2002)
[9] Lemaire, L.: Applications harmoniques des surfaces Riemanniennes. J. Differ. Geom. 13, 51-87 (1978)
[10] Riviere, T.: Everywhere discontinuous harmonic maps into sphere. Acta Math. 175, 197-226 (1995)
[11] Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Birkhäuser, Basel (1996)
[12] Taheri, A.: Homotopy classes of self-maps of annuli, generalised twists and spin degree. Arch. Ration. Mech. Anal. 197, 239-270 (2010)

Ali Taheri
Department of Mathematics
University of Sussex
Falmer
Brighton BN1 9RF
UK
e-mail: a.taheri@sussex.ac.uk

Received: 4 October 2010.
Accepted: 7 May 2011.

[^0]: ${ }^{1}$ For a comprehensive treatment of harmonic maps and some fundamental results cf. [5]. Also $[6,10,11]$ for regularity, [9] for the role of domain topology and the monographs [3, 8] and the references therein.

[^1]: ${ }^{2}$ In view of $\mathbf{Q}(r) \in \mathbf{S O}(n)$ on $[a, b]$ we have $|u(x)|^{2}=|\mathbf{Q}(r) \theta|^{2}=|\theta|^{2}$ and so u is \mathbb{S}^{n-1}-valued and thus well-defined.

[^2]: ${ }^{3}$ In view of the trivial identity $\Delta(\mathbf{R} u)+|\nabla(\mathbf{R} u)|^{2} \mathbf{R} u=\mathbf{R}\left(\Delta u+|\nabla u|^{2} u\right)$ (here $\mathbf{R} \in \mathbf{O}(n)$ is fixed) in what follows we assume without loss of generality that $\mathbf{R}_{a}=\mathbf{I}_{n}$ while $\mathbf{R}_{b}=\mathbf{R}$.

[^3]: ${ }^{4}$ Recall that in a group \mathbf{G} the centraliser of an element $g \in \mathbf{G}$ denoted $\mathbf{C}[g]$ is the subgroup consisting of all elements in \mathbf{G} commuting with g, i.e., $\mathbf{C}[g]=\left\{h \in \mathbf{G}: g=h g h^{-1}\right\}$.

[^4]: ${ }^{5}$ Note that the choices of \mathbf{P} and $\left(\zeta_{j}\right)_{j=1}^{k}$ are in general non-unique. Indeed it is a trivial matter to see that by suitably adjusting \mathbf{P} one can replace any ζ_{j} with $-\zeta_{j}$.

[^5]: ${ }^{6}$ Note that the exponential map acts between the Lie algebra of skew-symmetric matrices in $\mathbb{M}_{n \times n}$ onto its corresponding Lie group $\mathbf{S O}(n)$.

