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Nonlinear Differential Equations
and Applications NoDEA

Spherical twists, stationary paths
and harmonic maps from generalised
annuli into spheres

Ali Taheri

Abstract. Let X ⊂ R
n be a generalised annulus and consider the Dirichlet

energy functional

E[u;X] :=
1

2

∫
X

|∇u(x)|2 dx,

on the space of admissible maps

Aϕ(X) =

{
u ∈ W 1,2(X, Sn−1) : u|∂X = ϕ

}
.

Here ϕ ∈ C(∂X, Sn−1) is fixed and Aϕ(X) is non-empty. In this paper
we introduce a class of maps referred to as spherical twists and examine
them in connection with the Euler–Lagrange equation associated with
E[·,X] on Aϕ(X) [the so-called harmonic map equation on X]. The main
result here is an interesting discrepancy between even and odd dimensions.
Indeed for even n subject to a compatibility condition on ϕ the latter sys-
tem admits infinitely many smooth solutions modulo isometries whereas
for odd n this number reduces to one or none. We discuss qualitative
features of the solutions in view of their novel and explicit representation
through the exponential map of the compact Lie group SO(n).

Mathematics Subject Classification (2000). 58E20, 22CXX, 35RXX.

1. Introduction

Let X = {x ∈ R
n : a < |x| < b} with 0 < a < b < ∞ and consider the

Dirichlet energy functional

E[u;X] :=
1
2

∫
X

|∇u(x)|2 dx, (1.1)
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on the space of admissible maps

Aϕ(X) =
{

u ∈ W 1,2(X, Sn−1) : u|∂X = ϕ

}
. (1.2)

Here S
n−1 represent the Euclidean unit sphere and as customary we have set

W 1,2(X, Sn−1) =
{

u ∈ W 1,2(X, Rn) : u(x) ∈ S
n−1 for Ln-a.e. x ∈ X

}
.

Moreover ϕ ∈ C(∂X, Sn−1) is fixed while the space Aϕ(X) is non-empty. In
view of ∂X = ∂Xa ∪ ∂Xb := aS

n−1 ∪ bSn−1 it is convenient to set{
ϕa = ϕ|∂Xa

◦ δa,
ϕb = ϕ|∂Xb

◦ δb,

where δa, δb are space dilatations by factors a and b respectively. As a result
we speak of ϕa, ϕb ∈ C(Sn−1, Sn−1). The Euler–Lagrange equation associated
with E[·,X] on Aϕ(X) takes the form1

⎧⎨
⎩

Δu + |∇u|2u = 0 in X,
|u| = 1 in X,
u = ϕ on ∂X,

which is the well-known harmonic map equation on X and into S
n−1. Moti-

vated by the significance of Dehn twists in the study of mapping class groups
of surfaces (see, e.g., [2]) and the interesting role played by generalised twists
in the multiple solution problems of nonlinear elasticity (cf., e.g., [12]) in this
article we introduce their S

n−1-valued counterparts, the spherical twists, and
out of pure curiosity examine them in connection with the above system of
Euler–Lagrange equations. Indeed a spherical twist by definition is a map
u ∈ Aϕ(X) in the form

u : x = rθ �→ Q(r)θ,

where x ∈ X, r = |x|, θ = x/|x| and Q ∈ W 1,2([a, b],SO(n)). It is evident that
subject to this assumption ϕ must take the form{

ϕa(θ) = Raθ,
ϕb(θ) = Rbθ,

for θ ∈ S
n−1 where Ra,Rb ∈ SO(n) (in fact Q(a) = Ra and Q(b) = Rb). Now

by restricting the energy to the space of spherical twists we have that

E[Q(r)θ,X] =
1
2

∫ b

a

∫
Sn−1

{
1
r2

[
(n − 1) + r2|Q̇θ|2

]}
rn−1 dHn−1(θ)dr

=
1
2
ωn

∫ b

a

{
n(n − 1)

1
r2

+ |Q̇|2
}

rn−1 dr.

1For a comprehensive treatment of harmonic maps and some fundamental results cf. [5].
Also [6,10,11] for regularity, [9] for the role of domain topology and the monographs [3,8]
and the references therein.
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As this last expression has no explicit θ dependence a natural starting
point is to analyse the resulting Euler–Lagrange equation, a second order dif-
ferential equation on the compact Lie group SO(n) and integrate the latter to
classify all extremals of this restricted energy. Interestingly with the aid of the
exponential map of SO(n) these take the form (see Theorems 2.1 and 2.2)

Q : [a, b] 	 r �→ eβ(r)AQ◦ ∈ SO(n)

with A ∈ Mn×n skew-symmetric, Q◦ ∈ SO(n) and β = β(|x|) the fundamen-
tal solution of −Δ on R

n. The next step is to extract from within this class
those spherical twists that grant solutions to the original harmonic map equa-
tion on X and this requires a careful analysis of the full versus the restricted
Euler–Lagrange equations. The result points at a discrepancy between even
and odd dimensions. Indeed subject to a compatibility condition between Ra

and Rb (cf. (3.1) in Remark 3.1) for even n the latter system of equations
admits infinitely many solutions all in the form

u(x) = u(rθ) = RaPueg(r)JnPt
uθ = RaPuRn[g](r)Pt

uθ,

where Jn = diag(J ,J , . . . ,J ) and Rn[g](r) = diag(R[g](r),R[g](r), . . . ,
R[g](r)) with the 2 × 2 skew-symmetric matrix J and the rotation (by angle
g) matrix R[g] as in (4.1) and (4.2) while Pu ∈ SO(n) is suitably related to
Ra and Rb. Furthermore the rotation angle g is related to β = β(|x|) and
depending on n can be expressed as:
[1] (n = 2)

g(r) =
log r/a

log b/a
(η + 2πm).

[2] (n ≥ 4)

g(r) =
(r/a)2−n − 1
(b/a)2−n − 1

(η + 2πm).

Here η ∈ R is as in Remark 3.1 while m ∈ Z. In sharp contrast for odd n
the number of such solutions severely reduces to one, i.e.,

u(x) = u(rθ) = Rθ,

when R = Ra = Rb and none otherwise (cf. Theorems 3.1 and 3.2). As E[·,X]
attains its infimum on Aφ it follows in particular that here the energy min-
imizer does not have the rotational symmetry one intuitively expects, i.e., is
not a spherical twists (cf. [12] for further results).

Finally it is well-known that Δu + |∇u|2u = 0 for liftings u = eiφ is
equivalent to Δφ = 0. The result here gives a generalisation of this to all even
dimensions. This observation seems to have gone unnoticed before.

2. Spherical twists on annuli

Let X = {x ∈ R
n : a < |x| < b} and for x ∈ X put r = |x| and θ = x/|x|.

Then a continuous map u on X into S
n−1 in the form

u : x �→ Q(r)θ,
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with Q ∈ C([a, b],SO(n)) is referred to as a spherical twist on X; Q is the
twist path and when Q(a) = Q(b) the twist loop.2

Proposition 2.1. Suppose that u is a spherical twist on X. Then u ∈ Aϕ(X)
provided that the following hold.

[1] Q(a) = Ra,

[2] Q(b) = Rb,

[3] Q ∈ W 1,2([a, b],SO(n)).

Proof. Evidently for u as described u ∈ Aϕ(X) if and only if the following hold:

[a] ||u||1,2 < ∞,

[b] u = ϕ on ∂X.

Now anticipating on [a] a straight-forward differentiation gives

∇u =
1
r

(
Q + (rQ̇ − Q)θ ⊗ θ

)
(2.1)

with x = rθ ∈ X and Q̇ := dQ/dr. Therefore

|∇u|2 = tr

{
[∇u][∇u]t

}
=

1
r2

tr

{
In + Qθ ⊗ (rQ̇ − Q)θ + (rQ̇ − Q)θ ⊗ Qθ

+
[
(rQ̇ − Q)θ ⊗ θ

][
θ ⊗ (rQ̇ − Q)θ

]}

=
1
r2

tr

{
In − Qθ ⊗ Qθ + r2Q̇θ ⊗ Q̇θ

}

=
1
r2

[n − 〈Qθ,Qθ〉 + r2〈Q̇θ, Q̇θ〉]

=
1
r2

[(n − 1) + r2|Q̇θ|2] (2.2)

where in concluding the last identity we have used 〈Qθ,Qθ〉 = 1 for all θ ∈
S

n−1. Thus recalling that |u|2 = 1 in X we can write∫
X

|u|2 + |∇u|2 =
∫ b

a

∫
Sn−1

(
1 +

1
r2

[
(n − 1) + r2|Q̇θ|2

])
rn−1 dHn−1(θ)dr

=
∫ b

a

ωn

[
n +

1
r2

n(n − 1) + |Q̇|2
]

rn−1 dr

and so [a] results from [3]. Finally [b] ⇐⇒ ([1], [2]) and the proof is com-
plete. �

2In view of Q(r) ∈ SO(n) on [a, b] we have |u(x)|2 = |Q(r)θ|2 = |θ|2 and so u is S
n−1-valued

and thus well-defined.
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Proposition 2.2. Let u be a spherical twist with twist path Q ∈ C2(]a, b[,
SO(n)). Then

Δu =
1
r2

[(n − 1)(rQ̇ − Q) + r2Q̈]θ (2.3)

and subsequently

Δu + |∇u|2u =
[
Q̈ +

n − 1
r

Q̇ + |Q̇θ|2Q
]

θ (2.4)

in X.

Proof. Indeed (2.3) follows by a further differentiation of (2.1) and (2.4) follows
upon substitution from (2.2) and (2.3). We abbreviate the details. �

It is plain that energy of a spherical twist with the aid of (2.2) in Prop-
osition 2.1 can be described by the integral

E[u;X] =
1
2

∫ b

a

∫
Sn−1

{
1
r2

[
(n − 1) + r2|Q̇θ|2

]}
rn−1 dHn−1(θ)dr

=
1
2
ωn

∫ b

a

{
n(n − 1)

1
r2

+ |Q̇|2
}

rn−1 dr.

Upon denoting the integral on the right by e[Q] in what follows we pro-
ceed by computing the first variation of this energy on the space of admissible
paths on the pointed space (SO(n), In), that is,3

E = E [a, b] :=

⎧⎨
⎩

Q ∈ W 1,2([a, b],SO(n))
Q(a) = In

Q(b) = R

⎫⎬
⎭ .

Proposition 2.3. (Stationary paths) The Euler–Lagrange equation associated
with e[·] on E takes the form

d

dr

{[
rn−1 d

dr
Q

]
Qt

}
= 0 (2.5)

on ]a, b[.

Proof. First fix Q as described and for ε ∈ R put Qε = Q+ ε(F−Ft)Q where
F ∈ C∞

0 (]a, b[, Mn×n) is arbitrary. Then

QεQt
ε = [Q + ε(F − Ft)Q][Qt − εQt(F − Ft)] = In − ε2(F − Ft)2

3In view of the trivial identity Δ(Ru) + |∇(Ru)|2Ru = R(Δu + |∇u|2u) (here R ∈ O(n) is
fixed) in what follows we assume without loss of generality that Ra = In while Rb = R.
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and so to the first order in ε the perturbation Qε takes values on SO(n). Now
with a slight abuse of notation we can write

1
ωn

d

dε
e[Qε]

∣∣∣∣
ε=0

=
∫ b

a

〈Q̇, (Ḟ − Ḟt)Q + (F − Ft)Q̇〉rn−1 dr

=
∫ b

a

(〈Q̇, (Ḟ − Ḟt)Q〉 + 〈Q̇, (F − Ft)Q̇〉)rn−1 dr

=
∫ b

a

〈Q̇Qt, (Ḟ − Ḟt)〉rn−1 dr

=
∫ b

a

−〈 d

dr
[rn−1Q̇Qt], (F − Ft)〉 dr = 0.

Note that in concluding the last line we have used the integration by
parts formula together with the boundary conditions F(a) = F(b) = 0. The
conclusion now follows in view of Q̇Qt being skew-symmetric. �

Remark 2.1. For the sake of convenience in what follows we often assume the
orthogonal matrix R (see the definition of E [a.b] preceding Proposition 2.3) to
have been expressed in block diagonal forms (cf. the Appendix for notation),
specifically,
[1] (n = 2k)

R = PRDRPt
R = PRdiag(R[η1],R[η2], . . . ,R[ηk])Pt

R.

[2] (n = 2k + 1)

R = PRDRPt
R = PRdiag(R[η1],R[η2], . . . ,R[ηk], 1)Pt

R.

The sequences (e±iηj )k
j=1 in [1] and (1, e±iηj )k

j=1 in [2] consist of eigen-
values of R (here η1, . . . , ηk ∈ [0, π]) while PR ∈ O(n). (Note that there is no
uniqueness associated with the choices of DR and PR yet in what follows we
pick one such pair and assume them fixed throughout.)

Theorem 2.1. (Stationary paths) The general solution to (2.5) is given by the
matrix exponential

Q(r) = eβ(r)A Q◦. (2.6)

Here Q◦ ∈ SO(n),A is skew-symmetric and

β(r) =

⎧⎨
⎩

log r n = 2,

1
2−nr2−n n ≥ 3.

Moreover subject to Q(a) = In and Q(b) = R, depending on the dimen-
sion n being even or odd the following hold.
[a] (n = 2k)

A = PADAPt
A = PRPdiag(ζ1J , ζ2J , . . . , ζkJ )PtPt

R,

[b] (n = 2k + 1)

A = PADAPt
A = PRPdiag(ζ1J , ζ2J , . . . , ζkJ , 0)PtPt

R.



Vol. 19 (2012) Spherical twists, stationary paths and harmonic maps 85

In either of the cases [a] or [b] the sequence (ζj)k
j=1 ⊂ R must satisfy the set

of conditions

ζj =
1
s

[
ηj + 2πmj

]
, (2.7)

for all 1 ≤ j ≤ k where mj ∈ Z, s = β(b)−β(a) and P ∈ C[DR] the centraliser
of DR in O(n). Finally for each such A the choice of Q◦ is unique; in fact
one precisely has Q◦ = e−β(a)A.4

Proof. Since Q is a solution to (2.5), integrating once, there exits a constant
and skew-symmetric matrix A such that

d

dr
Q =

1
rn−1

AQ.

Integrating again gives (2.6). Note that here we have absorbed a constant
resulting from integrating r1−n into the special orthogonal matrix Q◦. Next
enforcing the boundary conditions Q(a) = In and Q(b) = R we obtain

R = e[β(b)−β(a)]A.

Thus with s = β(b)−β(a) it remains to characterise all skew-symmetric matri-
ces A for which

esA = R. (2.8)

In order to solve this equation for A consider expressing A in block diag-
onal form as described in Proposition 4.1. Denoting the spectrum of A by
σ(A) = (±iζj)k

j=1 in [a] and σ(A) = (0,±iζj)k
j=1 in [b], (2.8) and the spectral

mapping theorem (see, e.g., [4]) lead to the identities:
[a] (n = 2k)

esσ(A) = (e±isζj )k
j=1 = (e±iηj )k

j=1 = σ(R).

[b] (n = 2k + 1)

esσ(A) = (1, e±isζj )k
j=1 = (1, e±iηj )k

j=1 = σ(R).

Thus up to re-labeling and a possible re-naming upon sign differences in
either of the cases [a] or [b] we have

esA = R =⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eisζ1 = eiη1 ,
eisζ2 = eiη2 ,
·
·
·
eisζk = eiηk ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sζ1 = η1 + 2πm1,
sζ2 = η2 + 2πm2,
·
·
·
sζk = ηk + 2πmk.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4Recall that in a group G the centraliser of an element g ∈ G denoted C[g] is the subgroup
consisting of all elements in G commuting with g, i.e., C[g] = {h ∈ G : g = hgh−1}.
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[a] (n = 2k) Here without loss of generality using the above set of identities
we can write

esA = esPADAPt
A

= esPAdiag(ζ1J ,ζ2J ,...,ζkJ )Pt
A

= PAdiag(R[sζ1],R[sζ2], . . . ,R[sζk])Pt
A

= PAdiag(R[η1],R[η2], . . . ,R[ηk])Pt
A

= PRdiag(R[η1],R[η2], . . . ,R[ηk])Pt
R

= PRDRPt
R

= R.

As a result the above chain of equalities enforces the following

Pt
RPA ∈ C[DR] ⇐⇒ DR = [Pt

RPA]DR[Pt
RPA]t

⇐⇒ PRDRPt
R = PADRPt

A.

[b] (n = 2k + 1) Again without loss of generality using (2.7) we can write

esA = esPADAPt
A

= esPAdiag(ζ1J ,ζ2J ,...,ζkJ ,0)Pt
A

= PAdiag(R[sζ1],R[sζ2], . . . ,R[sζk], 1)Pt
A

= PAdiag(R[η1],R[η2], . . . ,R[ηk], 1)Pt
A

= PRdiag(R[η1],R[η2], . . . ,R[ηk], 1)Pt
R

= PRDRPt
R

= R.

Therefore the argument can be completed as in the previous case. Plainly once
A has been fixed as described Q◦ can be uniquely expressed as the value of
e−β(a)A. �

Remark 2.2. Note that apart from a scaling factor the function β is the funda-
mental solution for the Laplace operator on R

n (see, e.g., [7], p. 51). Indeed,
by utilising (2.5) this can be justified since here

[Δxβ]A =
1

rn−1

d

dr

{
rn−1 dβ

dr

}
A

=
1

rn−1

d

dr

{[
rn−1 dβ

dr
AQ

]
Qt

}

=
1

rn−1

d

dr

{[
rn−1 d

dr
Q

]
Qt

}
= 0

with Q(r) = eβ(r)AQ◦.

Theorem 2.2. The solution Q described in Theorem 2.1 can be alternatively
expressed in the following form.
[a] (n = 2k)

Q = Q(r; a, b,m) = PRPdiag(R[g1](r),R[g2](r), . . . ,R[gk](r))PtPt
R,
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[b] (n = 2k + 1)

Q = Q(r; a, b,m) = PRPdiag(R[g1](r),R[g2](r), . . . ,R[gk](r), 1)PtPt
R.

In either of the cases [a] and [b] above we have P ∈ C[DR] and m =
(m1, . . . ,mk) with mj ∈ Z for all 1 ≤ j ≤ k while

gj(r) =
β(r) − β(a)
β(b) − β(a)

[
ηj + 2πmj

]
.

Proof. Let Q denote the solution as described in Theorem 2.1. Then substi-
tuting for Q◦ we have that

Q(r) = eβ(r)A Q◦ = eβ(r)Ae−β(a)A = e[β(r)−β(a)]A.

Now suppose that (mj)k
j=1 is an arbitrary sequence of integers. Then referring

to Theorem 2.1 and using the block diagonal form of A whilst observing the
identity

ζj = s−1(ηj + 2πmj)

we obtain the following expressions for the solution Q.
[a] (n = 2k)

Q = Q(r; a, b,m)

= eβ(r)A Q◦
= e[β(r)−β(a)]PRPdiag(ζ1J ,ζ2J ,...,ζkJ )PtPt

R

= PRPdiag(R[g1](r),R[g2](r), . . . ,R[gk](r))PtPt
R,

[b] (n = 2k + 1)

Q = Q(r; a, b,m)

= eβ(r)A Q◦
= e[β(r)−β(a)]PRPdiag(ζ1J ,ζ2J ,...,ζkJ ,0)PtPt

R

= PRPdiag(R[g1](r),R[g2](r), . . . ,R[gk](r), 1)PtPt
R.

In either of the cases [1] and [2] above we have set

gj(r) := [β(r) − β(a)]ζj

=
β(r) − β(a)
β(b) − β(a)

(ηj + 2πmj)

for all r ∈ [a, b] and 1 ≤ j ≤ k. This completes the proof. �

Note that by referring to the definition of the function β given in Theo-
rem 2.1 we can alternatively express the twist angles gj in the following more
suggestive form.
[1] (n = 2) As k = 1 setting g := g1 for m ∈ Z and r ∈ [a, b] we have that

g(r) =
log r/a

log b/a
(η + 2πm). (2.9)
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[2] (n ≥ 3) For the sequence of integers (mj)k
j=1 and r ∈ [a, b] we have that

gj(r) =
(r/a)2−n − 1
(b/a)2−n − 1

(ηj + 2πmj). (2.10)

We end the section by giving explicit expressions for the energies of the
solutions to the Euler–Lagrange equation associated with e[·] on E from The-
orem 2.1. To this end we now proceed by considering the cases corresponding
to n = 2 and n ≥ 3 separately.
[1] (n = 2) Here we have that

e[Q] =
π

2

∫ b

a

{
2
r2

+ |Q̇(r)|2
}

r dr =
π

2

∫ b

a

(2 + |A|2)dr

r
= π(1 + ζ2) log

b

a
.

(2.11)

where ±iζ denote the eigen-values of the skew-symmetric matrix A.
[2] (n ≥ 3) Here, again, we have that

e[Q] =
ωn

2

∫ b

a

{
n(n − 1)

1
r2

+
1

r2(n−1)
|AQ|2

}
rn−1 dr

= n
ωn

2

[
n − 1
n − 2

(bn−2 − an−2) +
1
n

∫ b

a

1
rn−1

|A|2 dr

]

= n
ωn

2

[
(n − 1) +

2
n

1
(ab)n−2

k∑
j=1

ζ2
j

]
bn−2 − an−2

n − 2
. (2.12)

where depending on n being even (n = 2k) or odd (n = 2k + 1) the quan-
tities ±iζ1, . . . ,±iζk or ±iζ1, . . . ,±iζk, 0 denote the eigen-values of the skew-
symmetric matrix A.

Alternatively using Theorem 2.2 we can re-write the energy e[Q] in both
[1] and [2] above in the forms:
[1] (n = 2) with Q = Q(r; a, b,m) we have e[Q] = πs[1+(η+2πm)2s−2] where
s = β(b) − β(a) = log b/a,
[2] (n ≥ 3) with Q = Q(r; a, b,m) we have e[Q] = ωns/2[n(n − 1)(ab)n−2 +
2
∑

1≤j≤k(ηj + 2πmj)2s−2] where s = β(b) − β(a) = (a2−n − b2−n)/(n − 2).

3. Harmonic twists as solutions to the harmonic map equation

We begin this section by introducing the notion of a harmonic twists, that is,
a twice continuously differentiable spherical twist that is a harmonic map.

Definition 3.1. (Harmonic twist)
Let X = {x ∈ R

n : a < |x| < b}. A harmonic twist u on X is a spherical twist
on X that satisfies the following:
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[1] u ∈ C(X, Sn−1),
[2] u ∈ C2(X, Sn−1),
[3] Δu + |∇u|2u = 0 in X.

Here we aim to extract from amongst solutions in Theorem 2.1 those that
constitute the twist path of a harmonic twist. Before confronting this however
we find it helpful to discuss a condition on the matrix R that will indeed turn
to be both necessary and sufficient for the existence of such harmonic twists
(cf. Remark 3.1 below).

Remark 3.1. As seen the Euler–Lagrange equation (2.5) admits infinitely many
solutions (cf. Theorem 2.2). The situation is completely different for harmonic
twists. Indeed it will become clear that here solvability and multiplicity depend
crucially on a structural property of R. In fact a necessary and sufficient con-
dition for this can be formulated depending on the dimension being even or
odd as follows.
[1] (n = 2k) It must be that η1 = η2 = · · · = ηk := η (with η ∈ [0, π]) and
hence

R = PRDRPt
R

= PRdiag(R[η1],R[η2], . . . ,R[ηk])Pt
R

= PRdiag(R[η],R[η], . . . ,R[η])Pt
R. (3.1)

[2] (n = 2k + 1) It must be that η1 = η2 = · · · = ηk = 0 and hence

R = In (3.2)

(See Remark 2.1 for notation.)

Theorem 3.1. Let u be the spherical twist on X with twist path Q described in
Theorem 2.1. Then u is a harmonic twist if and only if the following conditions
hold.
[1] (n = 2k) R must be as in (3.1) while

A = PRPdiag(ζ1J , ζ2J , . . . , ζkJ )PtPt
R

= PRPdiag(ζJ , ζJ , . . . , ζJ )PtPt
R. (3.3)

Here P ∈ C[DR] and the sequence (ζj)k
j=1 ⊂ R is so that ζ1 = ζ2 = · · · =

ζk =: ζ where

ζ =
1
s

[
η + 2πm

]
.

As before, s = β(b) − β(a) and m ∈ Z.
[2] (n = 2k + 1) R must be as in (3.2) while

A = 0. (3.4)

Proof. Let u be a spherical twist on X with twist path Q as in Theorem 2.1.
We show in order for u to be a harmonic twist the skew-symmetric matrix A
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has to be further restricted as described in [1] and [2] above. Indeed to begin
note that a straight-forward differentiation gives

Q̇ =
1

rn−1
AQ

Q̈ =
1 − n

rn
AQ +

1
r2(n−1)

A2Q.

Therefore in light of Proposition 2.2 upon substituting for these quantities we
can write

Δu + |∇u|2u =
(
Q̈ +

n − 1
r

Q̇ + |Q̇θ|2Q
)

θ

=
(

1 − n

rn
AQ+

1
r2(n−1)

A2Q+
n − 1
rn

AQ+
1

r2(n−1)
|AQθ|2Q

)
θ

=
1

r2(n−1)
(A2 + |AQθ|2In)Qθ = 0.

Setting ω = Qθ it is then evident that the above is equivalent to the identity

[A2 + |Aω|2In]ω = 0,

for all ω ∈ S
n−1. Hence an application of Proposition 4.3 to this gives A2 =

−sIn for some s ≥ 0. Now in order to proceed further we consider the cases of
even and odd dimensions separately.
[1] (n = 2k)

A2 = −sIn ⇐⇒ [PRPdiag(ζ1J , ζ2,J , . . . , ζkJ )PtPt
R]2 = −sIn

⇐⇒ PRPdiag(ζ2
1I2, ζ

2
2I2, . . . , ζ

2
kI2)PtPt

R = sIn

⇐⇒ diag(ζ2
1I2, ζ

2
2I2, . . . , ζ

2
kI2) = sIn

⇐⇒ ζ2
1 = ζ2

2 = · · · = ζ2
k = s. (3.5)

As a result for 1 ≤ j, j′ ≤ k we have that either ζj = ζj′ or ζj = −ζj′ . We
now describe the implication of each of these two identities separately. Indeed
using (2.7) we can write

ζj = ζj′ ⇐⇒ ηj + 2πmj = ηj′ + 2πmj′

⇐⇒ ηj − ηj′ = −2π(mj − mj′)
⇐⇒ mj = mj′

⇐⇒ ηj = ηj′ ,

as ηj − ηj′ ∈ [−π, π]. On the other hand

ζj = −ζj′ ⇐⇒ ηj + 2πmj = −(ηj′ + 2πmj′)
⇐⇒ ηj + ηj′ = −2π(mj + mj′)
⇐⇒ ηj = ηj′ ∈ {0, π},
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as ηj + ηj′ ∈ [0, 2π] and so

ζj = −ζj′ ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηj = ηj′ = 0,
mj = −mj′ ,
or,
ηj = ηj′ = π,
mj = −(mj′ + 1).

Hence, summarising, in either of these cases we have that η1 = η2 =
· · · = ηk := η with η ∈ [0, π]. As a consequence depending on η we have the
following three distinct possibilities.
Case 1. (η = 0)
Here mj ∈ {±m} for all 1 ≤ j ≤ k with m ∈ Z and so |ζ1| = |ζ2| = · · · =
|ζk| = |ζ| with

ζ = 2πs−1m.

Evidently η = 0 ⇐⇒ R = In. Therefore here C[DR] = O(n). In par-
ticular as P ∈ O(n) in (3.3) is arbitrary we can arrange without any loss of
generality that ζ1 = ζ2 = · · · = ζk = ζ.
Case 2. (η ∈]0, π[)
Here m1 = m2 = · · · = mk =: m with m ∈ Z and so ζ1 = ζ2 = · · · = ζk = ζ
with

ζ = s−1(η + 2πm).

Evidently η ∈]0, π[ ⇐⇒ R /∈ {±In} and therefore here C[DR] � O(n).
Case 3. (η = π)
Here mj ∈ {m,−(m + 1)} for all 1 ≤ j ≤ k with m ∈ Z and so |ζ1| = |ζ2| =
· · · = |ζk| = |ζ| with

ζ = s−1(π + 2πm).

Evidently η = π ⇐⇒ R = −In. Therefore as in [1a],C[DR] = O(n).
Again as P ∈ O(n) in (3.3) is arbitrary we can arrange without any loss of
generality that ζ1 = ζ2 = · · · = ζk = ζ.
[2] (n = 2k + 1)

A2 = −sIn =⇒ 0 = (detA)2 = detA2

=⇒ s = 0
=⇒ A = 0.

(Note that in odd dimensions any skew-symmetric matrix has zero determi-
nant.) The proof is thus complete. �

Theorem 3.2. Let u be the spherical twist on X with twist path Q =
Q(r; a.b,m) as given in Theorem 2.2. Then u is a harmonic twist if and only
if the following conditions hold.
[1] (n = 2k) R must be as in (3.1) and then

Q(r) = PRPdiag(R[g1](r),R[g2](r), . . . ,R[gk](r))PtPt
R

= PRPdiag(R[g](r),R[g](r), . . . ,R[g](r))PtPt
R.
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Here P ∈ C[DR] and the sequence (gj)k
j=1 is such that g1 = g2 = · · · = gk =: g

where depending on n = 2 or n ≥ 4 we have that
[1a] (n = 2)

g(r) =
log r/a

log b/a
(η + 2πm).

[1b] (n ≥ 4)

g(r) =
(r/a)2−n − 1
(b/a)2−n − 1

(η + 2πm).

[2] (n = 2k + 1) R must be as in (3.2) and then

Q(r) = In,

i.e., the twist path Q is the constant path at In.

Proof. This follows at once from Theorem 3.1 by substituting for A from (3.3)
or (3.4) into (2.6) and evaluating the corresponding exponential term as in
Theorem 2.2. �

4. Appendix

Recall from linear algebra that all eigen-values of a [real] skew-symmetric
matrix have zero real parts. Hence they either appear as purely imaginary
conjugate pairs or zero. In particular when n is odd there is necessarily a zero
eigen-value. Thus distinguishing between the cases when n is even and odd
respectively we can bring every skew-symmetric matrix to a block diagonal
form. In what follows we set

J =
[

0 −1
1 0

]
. (4.1)

Proposition 4.1. Let A ∈ Mn×n be skew-symmetric. There exist P ∈ O(n) and
(ζj)k

j=1 ⊂ R such that the following hold.
[1] (n = 2k)

A = Pdiag(ζ1J , ζ2J , . . . , ζkJ )Pt,

[2] (n = 2k + 1)

A = Pdiag(ζ1J , ζ2J , . . . , ζkJ , 0)Pt.

Proof. Indeed, here, A is normal (i.e., it commutes with its transpose At =
−A) and so the conclusion follows from the the well-known spectral theo-
rem.5 �

5Note that the choices of P and (ζj)
k
j=1 are in general non-unique. Indeed it is a trivial

matter to see that by suitably adjusting P one can replace any ζj with −ζj .
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With the aid of the above representation evaluating the exponential func-
tion for skew-symmetric matrices becomes remarkably convenient. In what
follows we set

R[s] :=
[

cos s − sin s
sin s cos s

]
. (4.2)

Proposition 4.2. Let A ∈ Mn×n be skew-symmetric. Then using the notation
in Proposition 4.1 we have that
[1] (n = 2k)

esA = Pdiag(R[sζ1],R[sζ2], . . . ,R[sζk])Pt,

[2] (n = 2k + 1)

esA = Pdiag(R[sζ1],R[sζ2], . . . ,R[sζk], 1)Pt.

Proof. A straight-forward calculation gives

esJ =
∞∑

n=0

1
n!

snJ n = R[s].

The conclusion now follows by noting that for any block diagonal matrix D
(as, e.g., in Proposition 4.1) we can write

eA = ePDPt

= PeDPt.

�

Proposition 4.3. Let A ∈ Mn×n be skew-symmetric. Then the following are
equivalent.
[1] A2 = −sIn for some s ≥ 0.
[2] [A2 + |Aω|2In]ω = 0 for all ω ∈ S

n−1.

Proof. The implication ([1] =⇒ [2]) follows by direct verification. Now for
the reverse implication consider re-writting [2] in the form

A2ω = −|Aω|2ω.

Then for any ω ∈ S
n−1 the quantity −|Aω|2 is the associated eigen-value.

However since A2 has at most n distinct eigen-values it follows from the con-
tinuity of ω �→ |Aω|2 that the latter must be constant (say s) and this gives
[1]. �

Similar to the case of skew-symmetric matrices we can bring any orthog-
onal matrix to a block diagonal form. Below we specialise to the case of the
special orthogonal group.6

6Note that the exponential map acts between the Lie algebra of skew-symmetric matrices
in Mn×n onto its corresponding Lie group SO(n).
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Proposition 4.4. Let R ∈ SO(n). There exist P ∈ O(n) and (ηj)k
j=1 ⊂ R such

that the following hold.
[1] (n = 2k)

R = Pdiag(R[η1],R[η2], . . . ,R[ηk])Pt

= Pediag(η1J ,η2J ,...,ηkJ )Pt

[2] (n = 2k + 1)

R = Pdiag(R[η1],R[η2], . . . ,R[ηk], 1)Pt

= Pediag(η1J ,ζ2J ,...,ηkJ ,0)Pt.

Proof. Again, R, here, is normal and so the conclusion follows from the spectral
theorem. �
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