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Abstract
Complex natural systems are affected by multiple anthropogenic stressors, and therefore indirect effects within food webs 
are increasingly investigated. In this context, dead organic matter (OM) or detritus provides a food source sustaining detrital 
food webs that recycle the retained energy through microbial decomposition and invertebrate consumption. In aquatic envi-
ronments, poorly water-soluble contaminants, including nanoparticles (NPs), quickly adsorb onto OM potentially modifying 
OM-associated microbial communities. Since invertebrates often depend on microbial conditioning to enhance OM quality, 
adverse effects on OM-associated microbial communities could potentially affect invertebrate performances. Therefore, this 
study assessed the effect of environmentally relevant concentrations of the model emerging contaminant, silver nanoparticles 
(AgNPs), on OM-associated microorganisms and subsequent indirect effects on growth of the invertebrate Asellus aquaticus. 
At low concentrations (0.8 ug/L), AgNPs inhibited activity and altered metabolic diversity of the OM-associated microbial 
community. This was observed to coincide with a negative effect on the growth of A. aquaticus due to antimicrobial proper-
ties, as a decreased growth was observed when offered AgNP-contaminated OM. When A. aquaticus were offered sterile OM 
in the absence of AgNPs, invertebrate growth was observed to be strongly retarded, illustrating the importance of microorgan-
isms in the diet of this aquatic invertebrate. This outcome thus hints that environmentally relevant concentrations of AgNPs 
can indirectly affect the growth of aquatic invertebrates by affecting OM-associated microbial communities, and hence that 
microorganisms are an essential link in understanding bottom-up directed effects of chemical stressors in food webs.
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Introduction

Dead organic matter (OM) or detritus serves as a major food 
source fueling aquatic detritivorous food webs. The nutri-
ents and energy stored in OM are made available through 
decomposition mediated by microbial activity and inver-
tebrate consumption (Webster and Benfield 1986; Gessner 
et al. 2010). Additionally, OM-associated microbial com-
munities can partly degrade OM through enzymatic activity 
(known as conditioning), and therewith form an essential 
trophic link by stimulating invertebrate feeding (Graça 2001; 
Danger et al. 2012). OM-associated microorganisms posi-
tively affect growth and reproduction of many invertebrates 
relative to unconditioned food sources (Graça et al. 1993a, 
b), a benefit that relies on the provisioning of essential nutri-
ents such as nitrogen, some fatty acids, and vitamins (e.g. 
Vonk et al. 2016).
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An increasing number of aquatic ecosystems are under 
continuous pressure from anthropogenic stressors (Goulson 
et al. 2014), fueling organismal research assessing direct 
lethal effects or molecular target pathways. Recently, efforts 
are increasingly directed towards assessing how contami-
nants can indirectly affect trophic interactions within food 
webs at sublethal, environmentally relevant concentrations 
(Holden et al. 2016; Schrama et al. 2017). Many contami-
nants that enter aquatic environments, including emerging 
compounds such as nanoparticles (NPs), are poorly soluble 
and therefore quickly adsorb to OM (Lu et al. 2014; Holsap-
ple et al. 2005; Pradhan et al. 2016). Increasing evidence 
suggests that many such contaminants can have adverse 
effects on OM-associated microbial communities, with 
consequences for OM decomposition rates (e.g. Flores et al. 
2014; Zubrod et al. 2011; Tlili et al. 2016; Du et al. 2018). 
Additionally, indirect effects on detritivorous food webs are 
possible. Pesticides, for instance, reduce OM consumption 
by several aquatic invertebrate species (e.g. Zubrod et al. 
2015; Hunting et al. 2016), often driven by changes in the 
OM-associated microbial community (e.g. Feckler et al. 
2016). However, while NPs were observed to negatively 
affect growth and diversity of OM-associated microbial 
communities (e.g. Tlili et al. 2016; Du et al. 2018; Prad-
han et al. 2012; Batista et al. 2017a, b), bottom-up directed 
effects on detritivore growth remain unclear.

Many NPs have anti-microbial properties and the ten-
dency to adsorb onto OM, and thus it can be hypothesized 
that NPs indirectly affect invertebrate growth by negatively 
affecting the OM-associated microbial communities (Hol-
sapple et al. 2005; Pradhan et al. 2016; Fabrega et al. 2009; 
Du et al. 2018) or through the uptake of NPs as part of their 
food. We therefore assessed the effects of sub-lethal and 
environmentally relevant concentrations of silver nanoparti-
cles (AgNPs) as a model emerging toxicant on (1) the activ-
ity and metabolic diversity of OM-associated microorgan-
isms, and (2) the growth of the detritivore Asellus aquaticus 
in a well-controlled laboratory setting.

Materials and methods

Study system

Individuals of A. aquaticus were collected from ditches in 
the south-west of Netherlands (52°09′51.4"N 4°27′55.3"E) 
and sustained in a glass aquarium of 40 × 25 × 33 cm filled 
with a mixture of distilled water  (dH2O) and ditch water (2:1 
v/v; aquarium water) and a layer (1–2 cm) of quartz sand 
under continuous aeration.

AgNPs with a nominal particle size of 15  nm were 
purchased from Nanostructured and Amorphous Mate-
rials (Houston, USA). Characterizations of the particle 

morphology of the AgNPs were performed using transmis-
sion electron microscopy (TEM) (JEOL 1010, IEOL Ltd., 
Japan) and dynamic light scattering (DLS) on a zetasizer 
Nano-ZS instrument (Malvern, Instruments Ltd., UK). Their 
physico-chemical characteristics of AgNPs during the early 
stages of the experiment are summarized in Table S1 and S2. 
AgNP’s have a complex mode of toxic action, in which both 
AgNP’s themselves and Ag ions in aquatic environments 
contribute to toxicity, often depending on various environ-
mental conditions (Pradhan et al. 2011; Völker et al. 2013; 
Tlili et la. 2016; Zhai et al. 2016, 2017). Since this is dif-
ficult to disentangle within complex systems (e.g. natural 
OM) and AgNPs were merely used to distort OM-associated 
microbial communities, contributions of AgNPs and ions 
were not assessed here.

DECOTABs were used as a surrogate OM to allow 
manipulation of AgNP concentrations (Kampfraath et al. 
2012; Van der Lee 2018). In short, DECOTABs were 
prepared from 60 g/L powdered organic hay serving as 
particulate OM (POM) and 20 g/L purified agar (Sigma-
Aldrich). An AgNP stock solution (1 g Ag/L) was sonicated 
(38 ± 10 kHz) for 8 min at 4 °C in a water bath to ensure a 
homogeneous dispersion of the particles (Zhai et al. 2016). 
Agar was dissolved in  dH2O and heated up to 100 °C. After 
cooling to below 50 °C, POM was mixed together with 
AgNP with concentrations ranging 0.0, 0.2, 0.4, 0.8, 1.6, 
3.2 and 6.4 µg/L. Subsequently, the mixture was poured into 
the mold. Solidified DECOTABs were stored at − 20 °C. To 
measure the actual AgNP concentrations in the DECOTABs 
and the released  Ag(total) (AgNP and any other speciation 
of Ag) from DECOTABs into the aquatic medium, DECO-
TABs were resuspended and digested in aqua regia  (HNO3: 
HCl = 1:3) at room temperature overnight followed by the 
evaporation of the acid at 70 °C and then resuspended in 
3 mL of 5% aqua regia. Also, water samples were acidi-
fied using 5% aqua regia before measurements. The  Ag(total) 
concentrations in the AgNP-contaminated DECOTABs, as 
well as the  Ag(total) released from the AgNP-contaminated 
DECOTABs into the aquatic medium, were determined 
7 days after test initiation using Graphite Furnace Atomic 
Absorption Spectroscopy (GF-AAS; Perkin Elmer 1100B, 
The Netherlands). Actual  Ag(total) concentrations within 
the AgNP-contaminated DECOTABs were determined in 
triplicate for the several concentrations (Table S3), and the 
percent of  Ag(total) released from the AgNP-contaminated 
DECOTABs into the aquatic test medium was max. 11% 
and increased with increasing AgNP concentration in the 
DECOTABs (Table S3).

Experimental design

To assess microbial metabolic diversity and activity, OM-
associated microorganisms were grown on DECOTABs 
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containing a range of AgNP concentrations (5 DECOTABs 
per concentration) as described above. DECOTABs were 
incubated in Petri-dishes filled with 40 mL aquarium water 
for 21 days. Afterwards the DECOTABs were vortexed for 
30 s in 5 mL  dH2O to separate the developed biofilms from 
the DECOTABs, and the microbial metabolic diversity of 
the biofilms was measured using Ecoplates (Biolog, Hay-
ward, CA, USA, Garland and Mills 1991). Ecoplates are 
microplates that contain 31 ecologically relevant carbon 
substrates, and the utilizations of the substrates reflects 
the metabolic potential of the tested microbial community. 
Although the actual functioning of the biofilm inherent 
microorganisms cannot be directly related to substrate utili-
zation, the differences in the metabolic profiles can indicate 
the distinct effect of stressors (Hunting et al. 2015, 2017; 
Echavarri-Bravo et al. 2015). Therefore, the biofilms were 
diluted 30 times with  dH2O (triplicate per replicate) and 
each well of the Ecoplates was inoculated with 50 µL of the 
dilution at 20 °C for approximately 46 h. After the incuba-
tion, optical density was measured at 600 nm using a BioTek 
microplate reader. Color development of substrates greater 
than 0.25 were included for assay evaluation as proposed by 
Garland and Mills (1991). The biofilms’ Electron Transport 
System Activity (ETSA) as a proxy for bacterial activity 
was measured by determining spectrophotometrically the 
degradation of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl 
tetrazolium chloride to formazan at a wavelength of 490 nm 
according to Hunting et al. (2010).

To assess whether DECOTAB-associated microorgan-
isms provide a nutritional source for the freshwater isopod A. 
aquaticus, DECOTABs without AgNPs were prepared for a 
second incubation. This procedure involved an additional set 
of DECOTABs, which served as a negative control. To this 
end, DECOTABs were kept sterile by placing them for 1 h in 
70% ethanol followed by three times washing with  dH2O and 
resting in  dH2O for another 10 min. Finally, one sterilized or 
conditioned DECOTAB was offered as food to 5 A. aquati-
cus (average 0.17 cm in length) in Petri-dishes filled with 
40 mL aquarium water for 28 days. Both treatments were run 
in duplicate. Sterile DECOTABs were refreshed every other 
day, while conditioned DECOTABs were refreshed every 5 
days. Every seven days, individual A. aquaticus were imaged 
using eScope (v. 1.1.7.17) and body length measured using 
ImageJ (v. 1.51j8).

The third series of incubations assessed direct and indi-
rect (food quality related) effects of AgNPs on the microbial 
metabolic diversity and activity, as well as the growth of the 
freshwater isopod A. aquaticus as described above. DECO-
TABs containing different AgNP concentrations (see above) 
were offered as food to 5 A. aquaticus (average 0.17 cm in 
length) in Petri-dishes filled with 40 mL aquarium water for 
35 days. DECOTABs were refreshed every 5 days. Due to a 
constraint in the number of isopod offspring, the experiment 

was split up into two sequential runs using independent 
juvenile A. aquaticus individuals, in which each treatment 
was run in duplicates. This finally resulted in 4 independ-
ent replicates per treatment. Microbial metabolic diversity 
and activity were assessed after 21 days as described above. 
Every 7 days, individuals of A. aquaticus were imaged using 
eScope (v. 1.1.7.17) and body length was measured using 
ImageJ (v. 1.51j8).

Statistical analysis

Differences in Ecoplate (Biolog) substrate utilization 
between different AgNP treatments were analyzed using a 
Gower-based cluster analysis and a one-way analysis of sim-
ilarities (ANOSIM) using PAST 3.0 to determine the bacte-
rial functional composition (Hammer et al. 2001; Villéger 
et al. 2008). Isopod growth was assessed by measuring the 
mean increase in growth of the 5 pseudo-replicates within 
1 replicate Petri-dish. Microbial activity and isopod growth 
were assessed in relation to increasing concentrations of 
AgNPs by non-linear and linear least square regression, 
respectively.

Results

Metabolic diversity and activity of OM‑associated 
microorganisms

The metabolic diversity of the microbial biofilms that 
developed on the DECOTABs were assessed by substrate 
utilizations under different AgNP treatments (Fig. 1). The 
microbial communities in the control were in general able to 
metabolize 14 of the 31 carbon sources, and the utilization 
of most of the substrates decreased with the increasing con-
centrations of the AgNPs. Cluster analysis showed a clear 
clustering of AgNP treatments; microbial metabolic poten-
tial differed significantly (one-way ANOSIM: R = 0.919, 
p < 0.05) (Fig. 1). Furthermore, metabolic diversity of the 
DECOTAB-associated biofilm is expressed as average 
well colour development (AWCD; Figure S1, Supplemen-
tary Data), indicating a decreased metabolic diversity with 
increasing AgNP concentration.

The effect of AgNPs on the activity of microorganisms 
within biofilms developed on the DECOTABs is provided 
in Fig. 2. Microbial activity decreased exponentially with 
increasing concentrations of AgNPs.

Growth of A. aquaticus

Juveniles fed on sterilized DECOTABs exhibited a signifi-
cantly smaller increase in body length compared to the juve-
niles fed on conditioned DECOTABs  (F(1,8)51,6, P < 0.0001; 
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Fig. 3), with almost no growth over the entire test period in 
the animals feeding on the sterilized DECOTABs (Fig. 3). 
In general, weekly measurements of the juveniles revealed 
an exponential growth during the 28-day period (Figure 
S2, Supplementary Data), but the addition of AgNPs had 
an overall negative effect on A. aquaticus growth over the 
course of the experiment (Fig. 4), where nominal concentra-
tions ≥ 0.8 ug/L were significantly different to the control 
(p < 0.05).

Discussion

This study used AgNPs as a model emerging toxicant to 
illustrate indirect affects on the growth of an aquatic inver-
tebrate via adverse effects on the metabolic activities of OM-
associated microbial communities. The metabolic activity of 
the OM-associated microorganisms was negatively affected 
by AgNP at low and environmentally relevant concentrations 
with a decline in microbial activity and metabolic diversity 
with increasing AgNP concentration. Ag ions and AgNPs 
are known to generate reactive oxygen species causing 
damage to mitochondrial respiratory function, hyperoxida-
tion of lipids, and proteins (Morones et al. 2005; Pal et al. 
2007; Sillen et al. 2015; Dakal et al. 2016), and the observed 
reduction in metabolic activity likely points to a disruption 
in electron transport chains in both cell membranes or extra-
cellular matrix (Trevors 1984; Hunting et al. 2015). OM-
associated AgNP contamination thus constrains metabolic 
diversity and retards microbial respiratory activity, which 
itself may already retard microbial-mediated OM degrada-
tion (Tlili et al. 2016).

Microorganisms are considered an important diet of 
macro-invertebrates (Graça et al. 1993ab; Chung and Suber-
kropp 2009), supporting their growth (Findlay and Tenore 
1982; Findlay et al. 1984). This observation is also supported 
during the present study documenting only low growth rates 
of A. aquaticus when fed with sterile relative to conditioned 

Fig. 1  Cluster analysis of the metabolic diversity of bacterial commu-
nities under increasing AgNP concentrations. Clustering according to 
the Ecoplate (Biolog) substrate utilization patterns by OM-associated 
microbial communities (one-way ANOSIM, Gower-based similarity, 
n = 3, R2 = 0.919, p < 0.05)

Fig. 2  Microbial activity of the DECOTAB-associated biofilm with 
increasing AgNP concentration (measured at abs. 490 nm). Fitted line 
represents an exponential decay function; goodness of fit (adjusted 
R2) is shown in the figure

Fig. 3  Growth of A. aquaticus 
feeding on sterile (dotted line) 
and conditioned (solid line) 
DECOTABs, in which both 
treatments differ significantly 
in their slopes (t-test, p < 0.01). 
Goodness of fits and signifi-
cances are presented for both 
treatments



Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates  

1 3

Page 5 of 7 44

DECOTABs. Traditionally, the potential beneficial role of 
microorganism is attributed to their ability to decompose 
structural polysaccharides in OM such as leaf litter thereby 
reducing its toughness as well as by increasing nutritious 
values by concentrating essential nutrients, amino and fatty 
acids (Graça 2001; Danger et al. 2012). Since agar cannot 
be degraded by most organisms, the degradation of polysac-
charides unlikely played a role, illustrating the importance 
of microorganisms for life history strategy (i.e., growth) 
of A. aquaticus. These observations point towards an even 
higher relevance of OM-associated microbes (here presum-
ably mainly bacteria) for some leaf shredding invertebrates 
than previously anticipated (Chung and Suberkropp 2009).

Here we observed indirect effects of NPs in a simpli-
fied detrital food chain considering interactions between 
two trophic levels. Even at low concentrations, adverse 
effects of AgNPs on microorganisms were observed to 
coincide with a reduced growth of A. aquaticus. Like-
wise, adverse sub-lethal effects of OM-contamination with 
pesticides affected OM consumption for several aquatic 
invertebrate species (e.g. Flores et al. 2014; Zubrod et al. 
2015; Hunting et al. 2016; Feckler et al. 2016). As com-
monly observed with metal NPs (Pradhan et al. 2012), 
we found a 1–11% release of silver ions from the OM 
towards the surrounding water, depending on the con-
centrations of AgNPs in the DECOTABs (Table S3). It 
is likely that waterborne metals adsorb and accumulate 
in leaves and OM, as observed for CuNP (Pradhan et al. 
2012), and therewith fuel the dietary toxicity towards 
invertebrates. Overall, the waterborne concentrations were 
low and typically do not elicit direct effects (Baptista et al. 
2015; Mckee et al. 2016), however, we cannot rule out 
the possibility of waterborne Ag ions contributing to the 
impairments in A. aquaticus growth. Likewise, ingestion 
of OM containing AgNP may have contributed to growth 

impairment. Despite this, results presented here suggest 
that OM-associated AgNPs also can have microbially-
mediated effects on the performances of aquatic inverte-
brates. Since contamination of food items and its inherent 
trophic interactions seem more subtle and sensitive than 
test organisms typically used to assess toxicity, our results 
indicate that contamination of OM with AgNPs is a rel-
evant exposure route to consider when assessing realistic 
effects of NPs in the aquatic environment.

This study shows that AgNPs can inhibit the activity 
and alter metabolic diversity of OM-associated microbial 
communities and that this can coincide with a negative 
effect on the growth of A. aquaticus. Impaired growth 
rates may have wider implications for aquatic food webs as 
less biomass will be available for predatory invertebrates 
and fish (e.g. Rask and Hiisivuori 1985; Krisp and Maier 
2005). While direct toxicity is typically observed at high 
AgNP concentrations (Zhao and Wang 2011; Topuz and 
Van Gestel 2015; Baptista et al. 2015; Mckee et al. 2016), 
we observed low AgNP-concentration effects on microbial 
communities to translate to invertebrate growth effects. 
This calls for further investigations and consideration of 
trophic interactions assessing hazards and risks of NPs 
for the environment. Since effects observed on a realistic 
exposure pathway were caused by an AgNP concentra-
tion in the ng/L range, the observed trophic cascade poses 
concerns provided the effective AgNP concentrations fall 
within existing estimates of current environmental concen-
trations (Gottschalk et al. 2013).
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