Annals of Combinatorics

Correction

Correction to: On Semi-finite Hexagons of Order (2, t) Containing a Subhexagon

Anurag Bishnoi and Bart De Bruyn

Correction to: Ann. Comb. 20 (2016) 433-452 https://doi.org/10.1007/s00026-016-0315-z

In Section 4.2 of [1], we showed that there does not exist any infinite near hexagon $\mathcal N$ of order (2,t) that contains an isometrically embedded subgeometry $\mathcal H$ isomorphic to H(2). The proofs of Lemmas 4.6 and 4.7 in [1] have been spoiled by the same error: points of $\mathcal N$ at distance 1 from $\mathcal H$ are not necessarily collinear with a unique point of $\mathcal H$ (see Page 446, Line -8 and Page 447, Line 2). This is true in case $\mathcal N$ is a generalised hexagon, but not if $\mathcal N$ is a general near hexagon. Luckily, these errors can be corrected.

The following proof should replace the proof of Lemma 4.6 in [1].

Lemma 1. There are only finitely many points of type B_1 in \mathcal{N} .

Proof. Let \mathcal{B} denote the set of those points of \mathcal{N} that have type B_i for some $i \in \{2, 3, 4, 5\}$. Then \mathcal{B} is finite by [1, Lemma 4.5]. Let \mathcal{A} denote the set of those points of \mathcal{N} that have type A, i.e., the points of \mathcal{H} . Then the set $\mathcal{A} \cup \mathcal{B}$ is also finite. Let x be a point of type B_1 in \mathcal{N} . Then by [1, Lemma 4.2], x is at distance 1 from \mathcal{H} , and since \mathcal{O}_{f_x} is a singleton, there exists a unique point $\pi(x)$ in \mathcal{H} collinear with x. If x is only collinear with points of type A, B_1 or C, then by the same reasoning as in the proof of [1, Theorem 4.4], we get a contradiction. So, x is collinear with at least one point of \mathcal{B} , and we have already seen that it is collinear with at least one point of \mathcal{A} . Thus x is the common neighbour of two points at distance 2 in the finite set $\mathcal{A} \cup \mathcal{B}$. Since each such pair of points at distance 2 in the near polygon \mathcal{N} has finitely many

The original article can be found online at https://doi.org/10.1007/s00026-016-0315-z.

(at most five) common neighbours, we see that the set of points of type B_1 must be finite; in fact, the cardinality of this set is bounded by five times the number of unordered pairs of points at distance 2 in $A \cup B$.

The following proof should replace the proof of Lemma 4.7 in [1].

Lemma 2. There are only finitely many points of type C in \mathcal{N} .

Proof. Let x be a point of type C in \mathcal{N} . Then the set of points of \mathcal{H} at distance 2 from x is a 1-ovoid of \mathcal{H} and hence it has cardinality 21. Let S_x be the set of common neighbours between x and the elements of \mathcal{O}_{f_x} (the 1-ovoid of \mathcal{H} induced by x). By [1, Lemma 4.2], each element y of S_x has type S_x for some $i \in \{1, 2, \ldots, 5\}$ and hence by [1, Table 3] S_x is collinear with at most nine points of S_x . Therefore, $S_x \geq \frac{21}{9}$, and we get two points of the set S_x distance 2 from each other having S_x as a common neighbour. By [1, Lemma 4.5] and Lemma 1, the set S_x is finite. A similar reasoning as in the proof of Lemma 1 then shows that there are only finitely many points of type S_x in S_x .

The rest of the discussion in Section 4.2 of [1] can remain as it is. In the proof of Lemma 4.3, there is however a typo. The condition $d(x, y_1) = d(x, y_2) = d(x, y_3)$ should be replaced with $d(y, x_1) = d(y, x_2) = d(y, x_3)$.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reference

[1] Bishnoi, A., De Bruyn, B.: On semi-finite hexagons of order (2, t) containing a subhexagon. Ann. Comb. 20(3), 433–452 (2016)

Anurag Bishnoi and Bart De Bruyn Department of Mathematics Ghent University Krijgslaan 281 9000 Gent Belgium e-mail: bart.debruyn@ugent.be

Anurag Bishnoi

e-mail: anurag.2357@gmail.com