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Abstract. We prove various inequalities between the number of partitions
with the bound on the largest part and some restrictions on occurrences
of parts. We explore many interesting consequences of these partition in-
equalities. In particular, we show that for L ≥ 1, the number of partitions
with l − s ≤ L and s = 1 is greater than the number of partitions with
l − s ≤ L and s > 1. Here l and s are the largest part and the smallest
part of the partition, respectively.
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1. Introduction

Let π = (1f1 , 2f2 , . . . ) be a sequence, where all exponents fi ∈ Z≥0 and all
but finitely many of them are zero. We call π a partition (shown in frequency
representation [2]), where the exponents fi are the number of occurrences of
i. The numbers i with non-zero frequencies in π are called parts of π. Since
there are only finitely many non-zero frequencies in a partition π, the sum

|π| :=
∑

i≥1

i · fi

is finite. This sum, |π|, is called the norm of the partition π. To shorten the
notation, one can ignore the zero frequencies; we keep the option of writing any
zero frequencies that need emphasizing. As an example π = (14, 32, 40, 101) is
a partition of 20 (meaning |π| = 20), where 1 appears as a part with frequency
4, 3 appears twice, 4 is not a part, and part 10 only appears once in π. The
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partition where all the frequencies are equal to zero is a conventional and
unique partition of 0.

Let δi,j be the standard Kronecker delta function yielding 1 for i = j,
and vanishing otherwise. We define sets AL,1 and AL,2 for integers L ≥ 1.

(i) Let AL,1 be the set of partitions with the smallest part being 1, where
all the parts ≤ L + 1 and fL = δL,1,

(ii) and let AL,2 be the set of non-empty partitions where the parts are in
the domain {2, 3, . . . , L + 1}.

These sets satisfy the following relation.

Theorem 1.1. For any L ≥ 2 and N ≥ 1,

|{π : π ∈ AL,1, |π| = N}| ≥ |{π : π ∈ AL,2, |π| = N}|. (1.1)

Elementary combinatorial inequalities, such as (1.1), have interesting im-
plications for q-series and the theory of partitions. This simple observation
about the magnitude of sets, in this case, implies non-negativity results for a
refinement of an earlier discussed-weighted partition identity result [10]. We
introduce that result and its refinement here.

Let U be the set of partitions with positive norm. We define some natural
partition statistics. Let

(i) s(π) denote the smallest part of the partition π,
(ii) l(π) denote the largest part of π,
(iii) ν(π) :=

∑
i≥1 fi denote the total number of parts in π,

(iv) r(π) := l(π) − ν(π), rank of π.

In [10], we introduced a new partition statistic t(π) to be the number
defined by the properties

(i) fi ≡ 1 mod 2, for 1 ≤ i ≤ t(π),
(ii) ft(π)+1 ≡ 0 mod 2.

Note that for any π ∈ U with an even frequency of 1 (where f1 might be 0) we
have t(π) = 0. We will refer to t(π) as the length of the initial odd-frequency
chain. With this new statistic, the authors have proven a new combinatorial
identity of partitions.

Theorem 1.2. We have
∑

π∈U
(−1)s(π)+1q|π| =

∑

π∈U
t(π)q|π|. (1.2)

This generating function identity can be articulated easily as a combina-
torial correspondence as follows:

The total count of partitions of a positive integer N , counted with
the weight 1 if the smallest part is odd, and −1 if the smallest part
is even, is the same as the total of all odd-frequency chain lengths
of partitions of N .
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Table 1. Example of Theorem 1.2 with |π| = 6

π ∈ U (−1)s(π)+1 t(π)

(16) 1 0
(14, 21) 1 0
(13, 31) 1 1
(12, 22) 1 0
(12, 41) 1 0
(11, 21, 31) 1 3
(11, 51) 1 1
(23) −1 0
(21, 41) −1 0
(32) 1 0
(61) −1 0
Total 5 5

One example of Theorem 1.2 is given in Table 1.
We define non-negativity of a series

S =
∑

n≥0

anqn,

if for all n, an ≥ 0, where q is a formal summation variable. We denote the
non-negativity by the notation

S � 0.

One important observation about Theorem 1.2 is that the statistic t(π) is
non-negative for any partition π. It is clear that

∑

π∈U
t(π)q|π| =

∑

n≥1

pt(n)qn � 0,

where pt(n) is the total weighted count of partitions with the t statistic. This
implies that the series in (1.2) is non-negative. Written in analytic form, the
identity (1.2) is equivalent to

∑

n≥1

qn

1 + qn

1
(q; q)n−1

=
∑

n≥1

qn(n+1)/2

(q2; q2)n(qn+1; q)∞
, (1.3)

where

(a; q)L :=
L−1∏

i=0

(1 − aqi) and (a; q)∞ := lim
n→∞(a; q)L for |q| < 1.

The left side of (1.3) is not manifestly non-negative due to the 1/(1 + qn)
factors appearing in the summands, but the series on the right side (which is
related to the t(π) statistic) shows the non-negativity, as expected.
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In this work, we introduce a refinement of Theorem 1.2 where we put a
bound on the difference between the largest and the smallest parts of parti-
tions. We prove that

Theorem 1.3. for L ≥ 1,
∑

π∈U,
l(π)−s(π)≤L

(−1)s(π)+1q|π| =
∑

s≥1

(−1)s+1qs

(qs; q)L+1
� 0. (1.4)

We remark that for L = 0, the right-hand side becomes
∑

s≥1

(−1)s+1qs

1 − qs
.

Although Theorem 1.3 does not apply for this case, it is easy to conclude that
∑

π∈U,
l(π)=s(π),

|π|=N

(−1)s(π)+1q|π| ≥ 0, if 4 � N.

Interested readers are invited to examine [4,12], and [11] for other studies
on bounded differences between largest and smallest parts.

Section 2 has a short repertoire of basic hypergeometric identities that
will be referred to later. In Sect. 3, we are going to prove two inequalities
between sets of partitions (Theorem 1.1 and an analogue) using only injections
between sets, and later state some related open questions. We will state the
analytic versions of some of the theorems of Sect. 3 and their implications
in Sect. 4. We later will use the complements of the range of the injective
maps of Sect. 3 to get new q-series summation formulas. Theorem 1.3 will be
proven in Sect. 5. Section 6 has an excursion in different representations and
an observably non-negative expression for the analytic expression of (1.4) of
Theorem 1.3. An outlook section finishes the paper with a summary of open
questions that arise from this study.

2. Some q-Hypergeometric Identities

Some q-hypergeometric functions and some of their related formulas that
will be used later are stated here. Let r and s be non-negative integers and
a1, a2, . . . , ar, b1, b2, . . . , bs, q, and z be variables. Then

rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

)
:=

∞∑

n=0

(a1; q)n(a2; q)n. . .(ar; q)n

(q; q)n(b1; q)n . . . (bs; q)n

[
(−1)nq(

n
2)

]1−r+s

zn.

Let a, b, c, q, and z be variables. The q-binomial theorem [13, II.3, P. 236] is

1φ0

(
a

− ; q, z
)

=
(az; q)∞
(z; q)∞

. (2.1)

All three Heine transformations [13, III.1–3, P. 241] are

2φ1

(
a, b

c
; q, z

)
=

(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2φ1

(
c/b, z

az
; q, b

)
(2.2)
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=
(c/b; q)∞(bz; q)∞

(c; q)∞(z; q)∞
2φ1

(
abz/c, b

bz
; q, c/b

)
(2.3)

=
(abz/c; q)∞

(z; q)∞
2φ1

(
c/a, c/b

c
; q, abz/c

)
. (2.4)

The Jackson transformation [13, III.4, P. 236] is

2φ1

(
a, b

c
; q, z

)
=

(az; q)∞
(z; q)∞

2φ2

(
a, c/b

c, az
; q, bz

)
. (2.5)

3. Two New Partition Inequalities

We start our discussion with a proof of Theorem 1.1. Recall
Theorem 1.1 For any L ≥ 2 and N ≥ 1,

|{π : π ∈ AL,1, |π| = N}| ≥ |{π : π ∈ AL,2, |π| = N}|.
Note that the claimed inequality of Theorem 1.1 is not true for L = 1 as

the set A1,1 only has partitions of type (11, 2f2) and A1,2 only has partitions
of type (21+f2). Hence, A1,1 has a single partition for every odd norm and
A1,2 has a single partition for every even norm and nothing else, making the
inequality claim of (1.1) impossible for this case.

For L ≥ 2, we prove the inequality (1.1) in an injective manner.

Proof of Theorem 1.1. First, we handle the L = 2 case with the injection
γ∗ : A2,2 → A2,1. Let π =

(
2f2 , 3f3

) ∈ A2,2, then

(i) if f2 > 0, then γ∗(π) =
(
12f2 , 20, 3f3

)
,

(ii) if f2 = 0 and f3 > 0, then γ∗(π) =
(
13, 20, 3f3−1

)
.

The parity of the frequency of 1 in the image clearly determines the case.
Hence, γ∗ is an injection demonstrating (1.1) for L = 2.

For L ≥ 3, let

π =
(
10, 2f2 , . . . , LfL , (L + 1)fL+1

)

be a partition from the set AL,2. Define

γ : AL,2 → AL,1

by the following cases:
(i) if 2 < s(π) < L + 1, then

γ(π) =
(
1[(fL−δL,s(π))·L+1], (s(π) − 1)1, s(π)fs(π)−1, . . . , L0, (L + 1)fL+1

)
,

(ii) if s(π) = L + 1, then γ(π) =
(
1L+1, (L + 1)fL+1−1

)
,

(iii) if s(π) = 2, then γ(π) =
(
1(fL·L+2), 2f2−1, . . . , L0, (L + 1)fL+1

)
.

The image of a partition π ∈ AL,2 is uniquely defined. The remainder of
the frequency f1 divided by L in the image is either 1 or 2. The remainder
2 comes from a unique case. In the remainder being 1 case, one can uniquely
identify the pre-image by looking at the smallest part size that is greater than
1. This proves that γ is an injection and it is enough to show (1.1). �
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Table 2. Example of Theorem 1.1 with L = 3 and N = 12,
where the images of the map γ are also indicated

π ∈ A3,2 γ π ∈ A3,1

(112)
(34) → (110, 2)
(2, 32, 4) → (18, 4)
(23, 32) → (18, 22)

(16, 23)
(16, 2, 4)

(43) → (14, 42)
(14, 22, 4)
(14, 24)

(22, 42) → (12, 2, 42)
(24, 4) → (12, 23, 4)
(26) → (12, 25)

The interested reader is invited to examine [3,6–9] and [14] for other
examples of injective combinatorial arguments and inequalities between the
sizes of sets of partitions.

We exemplify Theorem 1.1 with Table 2 by writing out the related par-
titions.

We can shift the permissible parts of the sets AL,i up by one and also
get a similar result to Theorem 1.1. Let L ≥ 1 be an integer and define

(i) BL,1 to be the set of partitions such that the smallest part is 2, all the
parts are ≤ L + 2 and fL+1 = δL,1,

(ii) BL,2 to be the set of non-empty partitions where the parts are in the
domain {3, 4, . . . , L + 2}.

Then we have

Theorem 3.1. For any L ≥ 3 and N ≥ 1,

|{π : π ∈ BL,1, |π| = N}| + δN,3 + δN,9δL,4 ≥ |{π : π ∈ BL,2, |π| = N}| .
(3.1)

Before the proof of Theorem 3.1, we examine the excluded initial cases of
L. In the case L = 1, B1,1 is the set of partitions of type

(
21, 3f3

)
. Hence, all

partitions of B1,1 have norm 2 modulo 3. The set B1,2 contains partitions only
of the type

(
31+f3

)
, which 0 modulo 3 norm. Therefore, the inequality (3.1)

cannot hold for all N . The sets B2,1 and B2,2 contain partitions exclusively of
the type

(
21+f2 , 4f4

)
and

(
3f3 , 4f4

)
with f3 + f4 > 0, respectively. It is easy to

see that all the partitions in B2,1 have even norms, but for any k ≥ 0, there
are partitions of odd norm 4k + 3 in B2,2. Therefore, for L = 2, the inequality
(3.1) does not hold for all N either.
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Proof of Theorem 3.1. We begin our proof with the L = 3 case. Let π =(
3f3 , 4f4 , 5f5

)
be a partition in B3,2, with norm > 3. Let Γ∗

1 be the map from
B3,2 to B3,1 as follows:

(i) if f4 > 0, then π �→ (
22f4 , 3f3 , 5f5

)
,

(ii) if f3 = f4 = 0, then f5 > 0 and define π �→ (
21, 31, 5f5−1

)
,

(iii) if f4 = 0 and f3 > 1, then π �→ (
23, 3f3−2, 5f5

)
,

(iv) if f4 = 0 and f3 = 1, since |π| > 3, f5 > 0, then π �→ (
21, 32, 5f5−1

)
.

This case by case map Γ∗
1 can easily be seen to be an injection. In Cases (i)

and (iii), the frequency of 2 as a part in the image is the signature, and in the
other cases, the frequency of 3 becomes our signature. This distinguishes all
the cases from each other. Finally, we note that BL,1 does not have a partition
with norm N = 3 whereas (3) is a partition of BL,2 for all L ≥ 3. This single
discrepancy is corrected with the term δN,3 in the inequality (3.1).

Let π =
(
3f3 , . . . , (L+2)fL+2

)
be a partition in BL,2, with norm > 3. For

L = 2m − 1 ≥ 5, we define the injective map Γ1 as follows:
(i) If fL+1 = f2m > 0, then π �→ (

2f2m·m, 3f3 , . . . , (L + 1)0, (L + 2)fL+2
)
,

(ii) if ∃i ∈ {2, . . . , m − 1} such that f2i > 0 and f2j = 0, ∀j > i, then

π �→ (
2i, 3f3 , . . . , (2i)f2i−1,

(2i + 1)f2i+1 , (2i + 2)0, . . . , (L + 1)0, (L + 2)fL+2
)
,

(iii) if ∀i ∈ {2, . . . , m}, f2i = 0 and s(π) is odd > 3, then

π �→ (
21, (s(π) − 2)1, (s(π) − 1)0, s(π)fs(π)−1, . . .

)
,

(iv) if ∀i ∈ {2, . . . , m}, f2i = 0 and f3 ≥ 2, then π �→ (
21, 3f3−2, 41, 5f5 , . . .

)
,

(v) if ∀i ∈ {2, . . . , m}, f2i = 0 and f3 = 1, then since |π| > 3 there is a
smallest positive j > 1 such that f2j+1 > 0, then π �→ (

21, (j + 1)2, (2j +
1)f2j+1−1, . . .

)
.

The map Γ1 for odd L ≥ 5 is injective as the number of occurrences of
2, if larger than 1, specifies the case and if 2 appears only once in the image
then the following smallest parts specify the case.

One can also view Γ∗
1 for L = 3 as a derivation of Γ1. We use the Cases (i),

(iii) and (v) of Γ1 as they are and modify the Case (iv) as π �→ (
23, 3f3−2, 5f5

)
.

The Case (ii) of Γ1 does not apply for L = 3.
Now we define the map Γ∗

2 for L = 4. Let π =
(
3f3 , 4f4 , 5f5 , 6f6

)
with

|π| 
= 3. Then the map Γ∗
2 sends π to the following images depending on the

following cases:
(i) if f5 is positive even, then π �→ (

2(f5/2)5, 3f3 , 4f4 , 50, 6f6
)
,

(ii) if f5 is positive odd and if f3 > 0, then π �→ (
2((f5−1)/2)5+4, 3f3−1, 4f4 , 50,

6f6
)
,

(iii) if f5 is positive odd and if f3=0, then π �→ (
2((f5−1)/2)5+1, 31, 4f4 , 50, 6f6

)
,

(iv) if f5 = 0,
(1) and f6 > 0, then π �→ (

23, 31, 4f4 , 50, 6f6−1
)
,

(2) or f6 = 0 and f4 > 0, then π �→ (
22, 31, 4f4−1, 50, 60

)
,

(v) if f4 = f5 = f6 = 0, since |π| 
= 3,
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(1) either f3 = 2, then π �→ (
21, 30, 41, 50, 60

)
,

(2) or f3 ≥ 3, then π �→ (
21, 3f3−2, 41, 50, 60

)
.

The partitions (4, 5) and (33) in B4,2 both get mapped to (2, 3, 4), which is
a source of the extra correction term of size 1, for N = 9. Other than this
explained issue, all the images of Γ∗

2 can easily be classified and the inverse
images can be found by looking at the frequency of 2 modulo 5. If the frequency
of 2 is exactly one, then the frequency of 3 determines the case and sub-case
the image is coming from. This injective map can be generalized for larger
even L. We define Γ2 for all even L = 2m ≥ 6. Let π =

(
3f3 , . . . , (L + 2)fL+2

)

be a partition in BL,2, with norm > 3:

(i) if fL+1 = f2m+1 is positive even, then

π �→ (
2(f2m+1/2)(2m+1), 3f3 , . . . , (L + 1)0, (L + 2)fL+2

)
,

(ii) if f2m+1 is positive odd and if ∃k ∈ {2, . . . , m} with f2k−1 > 0, where
∀k < j < m + 1, f2j−1 = 0, then

π �→ (
2[(f2m+1−1)/2](2m+1)+(m+k), . . . ,

(2k − 1)f2k−1−1, . . . , (L + 1)0, (L + 2)fL+2
)
,

(iii) if f2m+1 is positive odd and ∀k ∈ {2, . . . , m}, f2k−1 = 0, then

π �→ (
2[(f2m+1−1)/2](2m+1)+1, . . . ,

(2m − 1)1, (2m)f2m , (L + 1)0, (L + 2)fL+2
)
,

(iv) if f2m+1 = 0, and there exists the largest integer k ∈ {2, . . . , m + 1} such
that f2k > 0, then π �→ (

2k, 3f3 , . . . , (2k)f2k−1, . . .
)
,

(v) if f2m+1 = 0, and ∀k ∈ {2, . . . , m + 1}, f2k = 0 and if f3 = 1, then
since |π| > 3 there exists the smallest positive integer i > 1 such that
f2i+1 > 0, then π �→ (21, (i + 1)2, (2i + 1)f2i+1−1, . . . ),

(vi) if f2m+1 = 0, and ∀k ∈ {2, . . . , m + 1} such that f2k = 0 and if f3 > 1,
then π �→ (

21, 3f3−2, 41, . . .
)
,

(vii) if f2m+1 = 0, and ∀k ∈ {2, . . . , m + 1} such that f2k = 0 and if f3 = 0
then there exists the smallest integer m > i > 1 such that f2i+1 > 0,
then π �→ (

21, (2i − 1)1, (2i + 1)f2i+1−1, . . .
)
.

The injection Γ2, just like Γ1, has no problem in separating the cases
when f2 
= 1 in the image of partitions. The f2 = 1 cases in the image can be
identified uniquely by the second and third smallest parts and their frequencies.
The condition L ≥ 6 or equivalently m ≥ 3 is used implicitly as it is necessary
for Case (vii) to be defined.

For the L = 4 case, our injection Γ∗
2 for partitions |π| with norm not

equal to 3 or 9 can be related with Γ2, where we use Cases (i)–(iv) and (vi)
with m = 2, where Case (vi) comes with the extra assertion that f3 − 2 
= 1.

�
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Table 3. Example of Theorem 3.1 with L = 5 and N = 12,
where the images of the map Γ1 are also indicated

π ∈ B5,2 Γ1 π ∈ B5,1

(62) → (26)
(32, 6) → (23, 32)
(34) → (2, 32, 4)
(3, 4, 5) → (22, 3, 5)
(5, 7) → (2, 3, 7)

(24, 4)
(43) → (22, 42)

(2, 52)

An example of Theorem 3.1 is given in Table 3.
Theorems 1.1 and 3.1 are intriguing and can also be viewed as the initial

stages of a more general conjecture. Define the following sets:

(i) CL,s,1 denotes the set of partitions where the smallest part is s, all the
parts are ≤ L + s and L + s − 1 does not appear as a part,

(ii) CL,s,2 denotes the set of non-empty partitions where the parts are in the
domain {s + 1, . . . , L + s}.

Conjecture 3.2. For given positive integers L ≥ 3 and s, there exists M , which
only depends on s, such that

|{π : π ∈ CL,s,1, |π| = N}| ≥ |{π : π ∈ CL,s,2, |π| = N}|,
for all N ≥ M .

The first two initial families of cases for s = 1 and 2 are Theorems 1.1
and 3.1 with M = 1 and M = 10. It should be noted that in a case when L
tends to ∞, this conjecture is nothing but a tautology.

In the definition of BL,i, we shifted the permissible part sizes of AL,i

up by one. Another route to take would be shifting the sets, but keeping the
impermissible part L of AL,i the same. For L ≥ s + 1, let C∗

L,s,1 be the set of
partitions where the smallest part is s, all the parts are ≤ L + s and L does
not appear as a part.

Similar to Conjecture 3.2, we also claim that

Conjecture 3.3. For given positive integers L ≥ 3 and s, there exists M , which
only depends on s, such that

|{π : π ∈ C∗
L,s,1, |π| = N}| ≥ |{π : π ∈ CL,s,2, |π| = N}|,

for all N ≥ M .

In Sect. 7, we will be reiterating these conjectures and state their analytic
versions.
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4. Some Analytic Non-negativity Results

Theorems 1.1 and 3.1 lead to new non-negativity results and some new sum-
mation formulas. The analytic analogue of Theorem 1.1 is the following:

Theorem 4.1. For L ≥ 2,

HL,1(q) :=
q

(q; q)L−1(1 − qL+1)
−

(
1

(q2; q)L
− 1

)
� 0. (4.1)

We can, and will, extend the definition of HL,1(q) for L = 1 case, but in
this case, the expression simplifies to q/(1 + q) and is not non-negative.

Proof of Theorem 4.1. All we need to point out is that
q

(q; q)L−1(1 − qL+1)

is the generating function for the number of partitions from the set AL,1 and
that

1
(q2; q)L

− 1

is the generating function for the number of partitions from the set AL,2.
Theorem 1.1 proves the non-negativity assertion for HL,1(q), where L ≥ 2.

�

We note that any expression of the following form is non-negative
∏

i∈I

1
(1 − qi)

− 1 � 0 (4.2)

for any I ⊂ N. The first term can be thought as the generating function for
the partitions with parts in the set I and the −1 term can be interpreted as
taking away the empty partition from the calculations. This type of “reciprocal
product take away one” expressions of the form (4.2) will appear in our future
calculations, and they are always going to be non-negative by this observation.

The coefficients of H1,1(q) = q/(1 + q) are consistent with our earlier
observations about the A1,1 and A1,2, which came immediately before the
proof of Theorem 1.1. In general, we can write HL,1(q) abstractly, as the
difference of generating functions. For any non-negative integer L,

HL,1(q) =
∑

π∈AL,1

q|π| −
∑

π∈AL,2

q|π|.

Now that we know the relation between the injections γ∗, and γ defined
in the proof of Theorem 1.1 and HL,1(q), we can find an alternative expression
for HL,1(q) by considering the elements of AL,1 that are not an image of these
injections. For L = 2, it is clear that the partitions of type

(i)
(
11, 20, 3f3

)
, where f3 is a non-negative integer,

(ii)
(
12j+5, 20, 3f3

)
for j and f3 non-negative integers
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are the elements of A2,1, which are not in the range of γ∗. The generating
functions of such partitions can be easily written as

q

1 − q3
+

q5

(1 − q2)(1 − q3)
. (4.3)

Let L ≥ 3, given a partition π ∈ AL,1\γ(AL,2), π can have one of the
following three forms:

(i) for 2 < s < L + 1,
(
1tL+1, (s − 1)k+2, . . . , L0, (L + 1)fL+1

)
, where t and k

are non-negative integers,
(ii)

(
1kL+1, L0, (L + 1)fL+1

)
, where k ≥ 2 or 0,

(iii)
(
1kL+r, . . . , L0, (L+1)fL+1

)
, where r ∈ {3, . . . , L} and k is a non-negative

integer.
The generating functions for these cases are given by the first term, the

following two, and the last term in the following expression for L ≥ 3, respec-
tively,
L−1∑

s=2

q2s+1

(qs; q)L+2−s
+

q2L+1

(1 − qL)(1 − qL+1)
+

q

1 − qL+1
+

q3(1 + q + · · · + qL−3)
(q2; q)L

.

(4.4)

This alternative formula (4.4) can be shortened a little by combining the
first two terms and rewriting the last:

HL,1(q) =
L∑

s=2

q2s+1

(qs; q)L+2−s
+

q

1 − qL+1
+

q3(1 − qL−2)
(q; q)L+1

. (4.5)

One important note about (4.5) is that it is written with manifestly non-
negative terms. In fact, this formula can be checked to be valid for L = 1 and 2
(consistent with (4.3)) as well, even though the γ map is not defined for these
cases.

Equating (4.1) and (4.5) yields the formula using combinatorial means
only.

Theorem 4.2. For a positive integer L,
L∑

s=1

q2s+1

(qs; q)L+2−s
= 1 − q

1 − qL+1
+

2q − 1
(q; q)L+1

. (4.6)

A direct proof can also be given.

Proof of Theorem 4.2. We start by noting
L∑

s=1

q2s+1

(qs; q)L+2−s
=

q3

(q; q)L+1

L−1∑

s=0

q2s(q; q)s.

Observe that
L−1∑

i=0

qi+1(q; q)i = 1 − (q; q)L.
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This is because the left-hand side sum is the generating function for the number
of non-zero partitions π into distinct parts ≤ L with weights (−1)ν(π)−1 written
with respect to the largest part of the partitions. Now, it is easy to justify

q2
L−1∑

i=0

q2i(q; q)i = 1 − (1 − q)
L−1∑

i=0

qi(q; q)i − qL(q; q)L.

By dividing both sides by q/(q; q)L+1, and doing the necessary simplifi-
cations, one can finish the proof. �

Taking the limit L → ∞ in (4.6), it is easy to get:

Corollary 4.3.

∑

s≥1

q2s+1

(qs; q)∞
= 1 − q +

2q − 1
(q; q)∞

. (4.7)

One can also give a direct q-hypergeometric proof of Corollary 4.3. This
proof amounts to using the second Heine transformation (2.3) followed by the
q-binomial theorem (2.1).

Similar to Theorems 1.1, 3.1 also has a q-theoretic equivalent.

Theorem 4.4. For L ≥ 3,

HL,2(q) := q3 + δL,4 q9 +
q2(1 − qL+1)
(q2; q)L+1

−
(

1
(q3; q)L

− 1
)

� 0. (4.8)

Proof. For L ≥ 3, the generating functions for the number of partitions coming
from the sets BL,1 and BL,2 are

q2(1 − qL+1)
(q2; q)L+1

and
1

(q3; q)L
− 1,

respectively. The correction terms for norm 3 and the one time correction term
for norm 9 cases are also added analogous to (3.1). Theorem 3.1 proves the
claimed non-negativity. �

The HL,2(q) can be extended to the positive integers and, in general, can
be written as a difference of generating functions with two extra factors as

HL,2(q) = q3 + δL,4q
9 +

∑

π∈BL,1

q|π| −
∑

π∈BL,2

q|π|.

The initial cases of HL,2 are as follows

H1,2(q) = q3 +
q2

1 − q3
− q3

1 − q3
= q2 + q5 − q6 + · · · ,

H2,2(q) = q3 +
q2

(1 − q2)(1 − q4)
−

(
1

(1 − q3)(1 − q4)
− 1

)
= q2+q6−q7+ · · · ,

which clearly show that Theorem 4.4 fails for L = 1 and 2.
Similar to the treatment of the injection γ after Theorem 4.1, one can

look for the partitions that are outside of the image of Γ∗
1, Γ1, etc. and write
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the (4.8) expression with manifestly non-negative terms. Yet, the increase in
the number of cases are making this study not necessarily harder, but messier.

Considering partitions outside of the image of Γ∗
1, defined in the proof of

Theorem 3.1, for L = 3 case implies the summation formula:

H3,2(q) =
q10

(q3; q)3
+

q11

(q3; q2)2
+

q2

(1 − q5)
, (4.9)

where the partitions in B3,1\Γ∗
1(B3,2) are of the form

(i)
(
22j+5, 3f3 , 5f5

)
, where j is a non-negative integer,

(ii) or
(
21, 3f3 , 5f5

)
, where f3 ≥ 3,

(iii) or
(
21, 5f5

)
,

according to the three summation terms on the right-hand side of (4.9). Recall
that fi is non-negative for any i. For larger odd L values that fall under the
injective map Γ1, we can repeat this process and write HL,2 as a sum of
manifestly non-negative terms. Needless to say, fL+1 = 0 in these cases. The
partitions in BL,1\Γ1(BL,2), for odd L > 3, are ones of the form:

(i)
(
2i+k(L+1)/2, 3f3 , . . . , (L + 1)0, (L + 2)fL+2

)
, where (L−1)/2 ≥ i ≥ 2 and

k +
∑(L−1)/2

j=i+1 f2j > 0,
(ii)

(
21+k(L+1)/2, (L + 2)fL+2

)
, where k is a non-negative integer,

(iii)
(
21+k(L+1)/2, s3+fs , . . . , (L + 1)0, (L + 2)fL+2

)
, where L ≥ s ≥ 4,

(iv)
(
21+k(L+1)/2, s2, . . . , (L + 1)0, (L + 2)fL+2

)
, where L ≥ s ≥ (L + 5)/2,

(v)
(
21+k(L+1)/2, s2, . . . , (L + 1)0, (L + 2)fL+2

)
, where (L+3)/2 ≥ s ≥ 4 and

k +
2s−2∑

j=s+1

fj +
(L−1)/2∑

j=s

f2j > 0,

(vi)
(
21+k(L+1)/2, s1, . . . , (L + 1)0, (L + 2)fL+2

)
, where s is odd and L≥s≥ 5,

k +
(L−1)/2∑

j=(s+1)/2

fj > 0,

(vii)
(
21+k(L+1)/2, s1, . . . , (L + 1)0, (L + 2)fL+2

)
, where (L − 1)/2 ≥ s > 4

even,
(viii)

(
21+k(L+1)/2, 41, . . . , (L + 1)0, (L + 2)fL+2

)
, where k +

∑(L−1)/2
j=3 f2j > 0,

(ix)
(
21+k(L+1)/2, 31+f3 , 42+f4 , . . . , (L + 1)0, (L + 2)fL+2

)
,

(x)
(
21+k(L+1)/2, 31+f3 , 4α, . . . , (L+1)0, (L+2)fL+2

)
, where k+

∑(L−1)/2
j=3 f2j>

0 and α = 0 or 1,
(xi)

(
21, 33+f3 , . . .

)
, where

∑(L−1)/2
i=2 f2i = 0.

Using these cases, one can rewrite HL,2(q) for odd L > 3 analytically
with manifestly non-negative generating functions (recall (4.2)):
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q3 +
q2(1 − qL+1)
(q2; q)L+1

−
(

1
(q3; q)L

− 1
)

=
(L−1)/2∑

j=2

q2j

(q3; q2)(L+1)/2(q4; q2)j−1

(
1

(q2j+2; q2)(L+1)/2−j
− 1

)
+

q2

(qL+1, q)2

+
L∑

j=4

q3j+2

(qj , q)L+3−j
+

L∑

j=(L+5)/2

q2j+2

(qj+1, q)L+2−j

+
(L+3)/2∑

j=4

q2j+2

(q2j−1; q2)(L+5)/2−j

(
1

(qj+1; q)j−2(q2j ; q2)(L+3)/2−j
− 1

)

+
(L−1)/2∑

j=2

q2j+3

(q2j+3; q2)(L+1)/2−j

(
1

(q2j+2; q2)(L+1)/2−j
− 1

)

+
(L−1)/2∑

j=3

q2j+2

(q2j+1; q)L+2−2j

+
q6

(q5; q2)(L−1)/2

(
1

(q6; q2)(L−3)/2
− 1

)

+
q13

(q3; q)L
+

q5 + q9

(q3; q2)(L+1)/2

(
1

(q6; q2)(L−3)/2
− 1

)

+
q11

(q3; q2)(L+1)/2
. (4.10)

On the right-hand side of (4.10), the kth term is the generating function for
the number of partitions from the kth Γ1 unmapped case described above,
where k ∈ {1, 2, . . . , 11}. Also note that as L tends to infinity (4.10) simplifies
significantly, and can be reduced to (4.7) after some labor.

The interested reader can also write HL,2(q) with only non-negative terms
for even choices of L with the same type of argument for Γ∗

2 and Γ2 injections.

5. An Alternative Proof of Theorems 1.2 and 1.3

We start this section by recalling Theorem 1.2:

Theorem 1.2 We have
∑

π∈U
(−1)s(π)+1q|π| =

∑

π∈U
t(π)q|π|.

Theorem 1.2—though proven by Jackson’s transformation in [10]—can
also be proven using the analytic generating functions for the partitions into
distinct parts counted with ±1 weights depending on the parity of their ranks.
Observe that
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∑

π∈D
(−1)r(π)q|π| =

∑

n≥0

(−1)n(q; q)nqn+1 =
∑

n≥1

qn(n+1)/2

(−q; q)n
, (5.1)

where D is the set of all partitions into distinct parts (where in a partition
every frequency is either 0 or 1) with positive norm. Dividing both sides of the
latter equality of (5.1) with the q-factorial (q; q)∞, the right-hand side series
of (5.1) becomes the right-hand side of (1.3). Also recall that

∑

π∈U
(−1)s(π)+1q|π| =

∑

n≥1

(−1)n+1 qn

(qn; q)∞
=

∑

n≥1

qn

1 + qn

1
(q; q)n−1

. (5.2)

The middle-term of (5.1) after the division with (q; q)∞ is the same as the
middle term of (5.2). These observations together yield (1.3) and prove the
Theorem 1.2. The far right series in (5.1) first arose in Ramanujan’s lost note-
book and has been discussed in detail in [1,5].

We would also like to remind the reader of the non-negativity question:

Theorem 1.3 For L ≥ 1,
∑

π∈U,
l−s≤L

(−1)s+1q|π| =
∑

s≥1

(−1)s+1qs

(qs; q)L+1
� 0.

We define the following difference of generating functions:

GL,1(q) :=
∑

π∈U,
s=1,

l−s≤L

q|π| −
∑

π∈U,
s≥2,

l−s≤L

q|π|. (5.3)

The closed analytic formulations of the two generating functions on the right-
hand side of (5.3) can be easily explained. All the partitions counted by the
first generating function,

∑

π∈U,
s=1,

l−s≤L

q|π|,

in (5.3) has 1 as their smallest part and the largest part of these partitions
can be at most L + 1 due to the difference condition between the largest and
the smallest parts. Therefore, we have

∑

π∈U,
s=1,

l−s≤L

q|π| =
q

(q; q)L+1
. (5.4)

For the second generating function of (5.3), we formulate the generating func-
tion as a sum over the number of parts. Let π be a partition into n parts where
the smallest part ≥ 2. We can clearly understand that |π| ≥ 2n since there are
n parts and all the parts are ≥ 2. The whole column over the smallest part of
the partition π is generated by the q-factor

q2n

1 − qn
.
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Stripping the column of the smallest part from the far left of the Ferrers
diagram of π, we are left with a new partition with ≤ n − 1 parts, where the
largest part is ≤ L. These partitions are generated by the q-binomial coefficient

[
L + (n − 1)

n − 1

]

q

:=
(q; q)L+(n−1)

(q; q)L(q; q)n−1
.

Hence, putting these together, the analytic formula of the second sum in (5.3)
is

∑

π∈U,
s≥2,

l−s≤L

q|π| =
∑

n≥1

q2n

1 − qn

[
L + (n − 1)

n − 1

]

q

. (5.5)

Putting (5.4) and (5.5) into (5.3), we get the following formula:

GL,1(q) =
q

(q; q)L+1
−

∑

n≥1

q2n

1 − qn

[
L + (n − 1)

(n − 1)

]

q

. (5.6)

We can relate the GL,1(q) function with the HL,1(q) and also talk about
its non-negativity.

Theorem 5.1. For L ≥ 1,

GL,1(q) =
HL,1(q)
1 − qL

� 0. (5.7)

Proof. We start by showing the functional relation between GL,1(q) and
HL,1(q). Comparing the right-hand sides of (4.1) and (5.6), it is obvious that
the first terms satisfy the claimed relation. Then the problem reduces to jus-
tifying

∑

n≥1

q2n

1 − qn

[
L + (n − 1)

(n − 1)

]

q

=
1

1 − qL

(
1

(q2; q)L
− 1

)
.

Observe that
1

1 − qn

[
L + (n − 1)

(n − 1)

]

q

=
1

1 − qL

[
(L − 1) + n

n

]

q

. (5.8)

Applying (5.8) and the q-binomial theorem (2.1), we can verify the formula of
GL,1(q):

∑

n≥1

q2n

1 − qn

[
L + (n − 1)

(n − 1)

]

q

=
1

1 − qL

∑

n≥1

q2n

[
(L − 1) + n

n

]

q

=
1

1 − qL

⎛

⎝−1 +
∑

n≥0

q2n (qL; q)n

(q; q)n

⎞

⎠

=
1

1 − qL

(
−1 +

1
(q2; q)L

)
.
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The positivity claim on GL,1(q), for L ≥ 2 follows from Theorem 4.1 as 1/(1−
qL) and HL,1(q) both have non-negative series, their multiplication has non-
negative series. The L = 1 case can be directly/algebraically checked from
(5.6). For L = 1, the expression (5.6) reduces to q/(1 − q2) and hence, is
represented by a power series with non-negative coefficients. �

Theorem 5.1 implies Theorem 1.3.

Proof of Theorem 1.3. Observe that
∑

π∈U,
l−s≤L

(−1)s+1q|π| = GL,1(q) + 2 ·
∑

π∈U,
s>1,

s≡1(mod 2),
l−s≤L

q|π|, (5.9)

by the original definition of GL,1(q) in equation (5.3). For L ≥ 1, we have
GL,1(q) � 0 from Theorem 5.1. It is also clear that the second sum of (5.9),

∑

π∈U,
s>1,

s≡1(mod 2),
l−s≤L

q|π|,

is also non-negative. Hence, we get our claim
∑

π∈U,
l−s≤L

(−1)s+1q|π| � 0. (1.4)

�

One can also define the analogous function

GL,2(q) :=
∑

π∈U,
s=2,

l−s≤L

q|π| −
∑

π∈U,
s≥3,

l−s≤L

q|π|,

which can be written analytically as

GL,2(q) =
q2

(q2; q)L+1
−

∑

n≥1

q3n

1 − qn

[
L + (n − 1)

(n − 1)

]

q

.

Keeping in mind the identity (5.8) as it is used in the proof of Theorem 5.1,
it is easy to prove the following theorem:

Theorem 5.2. For L ≥ 3,

GL,2(q) =
H∗

L,2(q)
1 − qL

,

where

H∗
L,2(q) :=

q2(1 − qL)
(q2; q)L+1

−
(

1
(q3; q)L

− 1
)

.

With this definition, we can make a similar claim to Conjecture 3.3 about
GL,2(q).
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Conjecture 5.3. For L = 3 and 4,

GL,2(q) + q3 + q9 � 0,

and for L ≥ 5

GL,2(q) + q3 � 0.

A more general analytic conjecture, which contains Conjecture 5.3, is
discussed in Sect. 7.

6. Transformations of the Analytic Refined Weighted Identity

We now shift our focus to the analytic version of Theorem 1.3. The sum in the
statement (1.4) can be written in an equivalent analytical form:

∑

π∈U,
l−s≤L

(−1)s+1q|π| =
∑

n≥1

qn

1 + qn

[
L + (n − 1)

(n − 1)

]

q

, (6.1)

similar to the discussion of (5.5). The connection between expressions (1.4)
and (6.1) is the first Heine transformation (2.2), which will be more openly
discussed after the following theorem.

One can also write the last term of the right-hand side of (5.9) by focusing
on the smallest parts

∑

π∈U,
s>1,

s≡1(mod 2),
l−s≤L

q|π| =
∑

n≥1

q2n+1

(q2n+1; q)L+1
. (6.2)

Rewriting the terms analytically in (5.9) by plugging the expression (4.5) in
(5.7), and copying (6.1) and (6.2) in their respective places yields:

Theorem 6.1. For any positive integer L, We have

∑

n≥1

qn

1 + qn

[
L + (n − 1)

(n − 1)

]

q

=
L∑

s=2

q2s+1

(1 − qL)(qs; q)L+2−s
+

q

(1 − qL)(1 − qL+1)

+
q3(1 − qL−2)

(1 − qL)(q; q)L+1
+ 2

∑

n≥1

q2n+1

(q2n+1; q)L+1
.

Moreover, one can write the expression
∑

n≥1

qn

1 + qn

[
L + (n − 1)

(n − 1)

]

q

q-hypergeometrically. Note that

1 + q

1 + qn
=

(−q; q)n−1

(−q2; q)n−1
.
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Now it is easy to see that
∑

n≥1

qn

1 + qn

[
L + (n − 1)

(n − 1)

]

q

=
q

1 + q
2φ1

(
qL+1, −q

−q2
; q, q

)
. (6.3)

Applying the first Heine transformation (2.2) to this 2φ1, we get the q-series
of (1.4).

Applying the Jackson transformation (2.5) to (6.3) gives the identity

q

1 + q
2φ1

(
qL+1, −q

−q2
; q, q

)
=

q

1 + q

(qL+2; q)∞
(q; q)∞

2φ2

(
qL+1, q

−q2, qL+2
; q, −q2

)
.

(6.4)

After elementry simplifications and shifting the summation variable n �→ n−1,
we arrive at the identity

∑

n≥1

qn

1 + qn

[
L + (n − 1)

(n − 1)

]

q

=
1

(q; q)L

∑

n≥1

q(
n+1
2 )

(−q; q)n(1 − qL+n)
. (6.5)

The right-hand side expression in (6.5), similar to (6.1), is not manifestly
positive at first sight, but Theorem 1.3 carries over and proves the positivity.

Theorem 6.2. For L ≥ 1,

1
(q; q)L

∑

n≥1

q(
n+1
2 )

(−q; q)n(1 − qL+n)
� 0.

One more interesting equivalent expression to the ones of (6.5)—still not
manifestly positive—is the outcome of the third Heine transformation (2.4)
of the left side of (6.4). After the necessary simplifications and a shift in
summation, the Heine transformation (2.4) gives

1
(q; q)L

∑

n≥1

(−q1−L; q)n−1

(−q; q)n
qL(n−1)+n, (6.6)

as an equal summation to that of (6.5). The expression (6.6) is interesting
in its own right. It is clear that it has different summands than either side
of (6.5). Yet, when L = 0, it matches term-by-term with the left-hand side
expression

∑

n≥1

qn

1 + qn

[
L + (n − 1)

(n − 1)

]

q

,

evaluated at L = 0, and when L → ∞, it matches term-by-term the right-hand
side

1
(q; q)L

∑

n≥1

q(
n+1
2 )

(−q; q)n(1 − qL+n)
,

as L → ∞ in the identity (6.5). Therefore, to this extent, (6.6) is the interme-
diate term in (6.5).
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7. Outlook

One project to pursue is to identify the statistics tL(π) for partitions, which
would be the refined statistics of t(π) of Theorem 1.2 for partitions with the
difference between the largest and the smallest parts bounded by L. As it
stands, going from Theorems 1.2 to 1.3 we lose grasp of the non-negative
statistic t(π).

Another question is related to the HL,1(q) and HL,2(q) functions of
Sect. 4. Recall that a series

∑
n≥0 anqn is called eventually positive if there

is some k such that an > 0 for all n > k. Theorems 4.1 and 4.4 seem to be the
initial steps of a eventually positive family of q-products. Let

HL,s,k(q) =
qs(1 − qk)
(qs; q)L+1

−
(

1
(qs+1; q)L

− 1
)

.

Then we have the following claim:

Conjecture 7.1. For positive integers L ≥ 3, s and k ≥ s + 1, HL,s,k(q) is
eventually positive.

We have already proven the conjecture for the (L, s, k) = (L, 1, L) and
(L, 2, L+1) families in Theorems 4.1 and 4.4. The particular branch HL,s,L+s−1

(q) is a natural generalization of the functions HL,1 and HL,2 mentioned in
Sect. 4, and the non-negativity claim related to Conjecture 3.2. All other
triplets with L = k ≥ s + 1 are related to the Conjectures 3.3 and 5.3. There-
fore, one can view Conjecture 7.1 with the above relations as natural extension
of these observations. For all other triplets (L, s, k) are experimental.

The number of exceptional cases increases with s, making it less feasible
to combinatorially study these functions for larger starting values s. More
interestingly, the presence of a one-time exception at q9 for the (L, s, k) =
(4, 2, 5) case (HL,2(q)), which was handled in Theorem 3.1, also hints a higher
degree of underlying complexity.
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