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Examples of Minimal G-structures
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Abstract. Let M be an oriented Riemannian manifold and SO(M) its
oriented orthonormal frame bundle. Assume there exists a reduction P ⊂
SO(M) of the structure group SO(dim M) to a subgroup G. We say that
a G-structure M is minimal if P is a minimal submanifold of SO(M),
where we equip SO(M) in the natural Riemannian metric. We give non-
trivial examples of minimal G-structures for G = U(dim M/2) and G =
U((dim M − 1)/2) × 1 having some special features—locally conformally
Kähler and α-Kenmotsu manifolds, respectively.
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1. Introduction

Existence of a geometric structure compatible with a Riemannian metric on
an oriented manifold is equivalent to reduction of the structure group of ori-
ented orthonormal frame bundle SO(M) to certain subgroup G ⊂ SO(n),
n = dim M . For example, almost Hermitian structure is defined by the unitary
group U(m) ⊂ SO(2m), almost contact structure by U(m)×1 ⊂ SO(2m+1) or
an almost quaternion–Hermitian structure by Sp(m)Sp(1) ⊂ SO(4m). Consid-
ering additionally the Levi-Civita connection ∇ we may ask if this connection
is compatible with the given reduction. The failure is measured by the intrinsic
torsion. In particular, if the intrinsic torsion vanishes, the holonomy algebra is
contained in the Lie algebra g of the structure group.

We may classify intrinsic torsion with respect to the action of G obtaining
irreducible components, often called Grey–Hervella classes. Another approach
was initiated by Wood [11,12] and, in general case, by Martin-Cabrera and
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Gonzalez-Davilla [3] by studying harmonicity of induced section of certain ho-
mogeneous associated bundle. Namely, the reduction of the structure group
gives a subbundle P ⊂ SO(M), which defines the unique section σP of the
bundle N = SO(M)/G = SO(M) ×SO(n) (SO(n)/G). If σP is a harmonic
section we call G-structure harmonic. In [8] the author studied properties of
the intrinsic torsion by considering extrinsic geometry of a reduction P inside
SO(M) (The Riemannian metric on SO(M) is induced from Riemannian met-
ric on M and Killing form on SO(n)). If P is a minimal submanifold in SO(M)
we call G-structure minimal. In [8] the author gave necessary and sufficient
condition for minimality of a G-structure (being the condition on the intrinsic
torsion). However, this condition is quite complicated and therefore it is not
easy to give nontrivial examples of minimal G-structures.

This note shows that results developed in [8] are not trivially satisfied,
i.e., we provide non-trivial examples of minimal G-structures. We concentrate
on the cases for G = U(m) and G = U(m) × 1. The dimension of the space
of all possible intrinsic torsions is, in general, quite big. Thus, it is convenient
to restrict attention to certain subclass. Here, we focus on locally conformally
Kähler (for G = U(m)) and α-Kenmotsu manifolds (for G = U(m) × 1). The
advantage of such restriction, is that condition for minimality of a G-structure
takes relatively simple form in each case, since it depends only on a (closed)
one form, called the Lee form, and a single function, respectively. On the other
hand the considered classes of manifolds are still large enough to find non-
trivial examples. These include Hopf manifolds (then the Lee form is parallel)
and Kenmotsu manifolds (then α = 1) of constant sectional curvature.

We begin by recalling basic information about the intrinsic torsion, har-
monicity and minimality of G-structures. Then we compute the minimality
condition for above mentioned structures. We conclude providing appropriate
examples.

2. Minimal G-structures via the Intrinsic Torsion

All the information in this section can be found in [3,8]. Let (M, g) be an ori-
ented Riemannian manifold. Consider an oriented orthonormal frame bundle
SO(M). Let ∇ denote the Levi-Civita connection of g. It induces the horizon-
tal distribution H ⊂ TSO(M). Any vector X ∈ TM has the unique lift Xh

p to
Hp, p ∈ SO(M). Vertical distribution V = kerπ∗, where π : SO(M) → M is
a natural projection, is pointwise, isomorphic to the Lie algebra so(n) of the
structure group SO(n). Denote by A∗ the fundamental vertical vector field
induced by an element A ∈ so(n). The Riemannian metric on SO(M) is given
as follows:

gSO(M)(Xh, Y h) = g(X,Y ),

gSO(M)(Xh, A∗) = 0,
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gSO(M)(A∗, B∗) = −tr(AB),

where X ∈ TM , A ∈ so(n). Define a structure on M by restricting the struc-
ture group SO(n) to a subgroup G such that on the level of Lie algebras, the
following decomposition

so(n) = g ⊕ g⊥ (1)

is ad(G)-invariant (g⊥ denotes the orthogonal complement with respect to the
Killing form).

We say that a G-structure M is minimal if the induced subbundle P with
the structure group G is minimal as a submanifold of SO(M). Let us now define
the intrinsic torsion and formulate the condition of harmonicity and minimality
using this notion. Let ω be the connection form of the horizontal distribution
H (induced by ∇). By the invariance of the splitting (1) the decomposition

ω = ωg + ωg⊥

defines a connection ωg on P . Denote the horizontal distribution induced by
ωg by H′ and the associated horizontal lift of X ∈ TM by Xh′

. Define the
intrinsic torsion by the formula

ξX = −ωg⊥

(
Xh′

p

)
, X ∈ TxM, π(p) = x.

By ad(G)-invariance of ωg⊥ and the horizontal lift, it follows that ξX is defined
up to the adjoint action, thus is an element of the adjoint bundle g⊥

P = P ×ad(G)

g⊥. Thus we may treat ξX as an endomorphism ξX : TM → TM . It follows
by above considerations that

ξX = ∇G
X − ∇X ,

where ∇G is a metric connection on M induced by ωg.
The reduction P ⊂ SO(M) defines the unique section σP of the associ-

ated bundle N = SO(M) ×SO(n) (SO(n)/G),

P � p �→ [[p, eG]] ∈ N,

where e ∈ SO(n) is the identity element. We define a Riemannian metric on N
by inducing from the Riemannian metric g on M and the Killing form restricted
to g⊥. We say that a G-structure M is harmonic if a section σP : M → N
is a harmonic section. Denote by vW the vertical component in TN of a
vector W ∈ TN . Then [3] vσP∗(X) = − ξX , thus harmonicity is coded in the
intrinsic torsion. Moreover, we say that a G-structure is a harmonic map, if the
unique section σP is a harmonic map. Notice that notions of harmonicity and
harmonicity as a map of a G-structure are different. Harmonic section do not
need to be a harmonic map. In the former case we consider variations of the
energy functional of the norm of the differential σ∗ among sections, whereas in
the later case among all maps from M to N (compare Proposition 1 below).
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Let us state results obtained in [3,8] concerning harmonicity and mini-
mality of G-structures. For any endomorphism T : TM → TM let

RT (X) =
∑

j

R(ej , T (ej))X, X ∈ TM. (2)

Proposition 1 ([3]). A G-structure M is harmonic if and only if the following
condition holds ∑

j

(∇ej
ξ)ej

= 0, (3)

where (ej) is a g-orthonormal basis. Moreover, a G-structure M is a harmonic
map if it is a harmonic G-structure and

∑
j

Rξej
(ej) = 0.

Consider a Riemannian metric g̃ on M defined by

g̃(X,Y ) = g(X,Y ) +
∑

j

g(ξXej , ξY ej), X, Y ∈ TM, (4)

where (ej) is any g-orthonormal basis.

Proposition 2 ([8]). A G-structure M is minimal if and only if the following
condition holds ∑

j

(∇ẽj
ξ)ẽj

+ ξRξẽj
(ẽj) = 0, (5)

where (ẽj) is any g̃-orthonormal basis. Alternatively, if and only if the section
σP : M → N is a harmonic map, where we consider the Riemannian metric g̃
instead of g on M .

Remark 1. Recall that condition for harmonicity of a map σP : (M, g̃) → N
is of the following form

∑
j

(∇ẽj
ξ)ẽj

=
∑

j

ξSẽj
ẽj

and
∑

j

Rξẽj
(ẽj) = −

∑
j

Sẽj
ẽj ,

where S is the difference of the Levi-Civita connection ∇̃ of the metric g̃ and
the Levi-Civita connection ∇ of the metric g [8].

Notice that in [8] the author considered intrinsic torsion differing by the
sign form the intrinsic torsion considered in this article and by other authors.

3. Examples of Minimal G-structures

In this section we will compute the condition (5) for G = U(n) and G = U(n)×
1 assuming that considered structures satisfy some additional properties. Let
us begin by explaining our choices.
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In general, the space of all possible intrinsic torsions T ∗M ⊗ g⊥
P (with

the notation from the previous section) is large, so we restrict our approach
to certain submodules. In some cases, the intrinsic torsion is given by concrete
formula depending on a vector field or a function. This happens for locally
conformally Kähler structures in the case G = U(m) and α-Kenmotsu mani-
folds in the case G = U(n)× 1. Then the intrinsic torsion, hence the condition
of minimality, depends on a (closed) one form θ, called the Lee form, or a
single function α, respectively. In these cases it is possible to find appropriate
examples of manifolds satisfying condition of minimality.

3.1. Locally Conformally Kähler Structures

Let (M, g, J) be a Hermitian manifold, i.e., J2 = − idTM , J is integrable and
g-invariant,

g(JX, JY ) = g(X,Y ), X, Y ∈ TM.

Assume that M is locally conformally Kähler (LcK, for short) [7,10]. Then,
there exists closed one-form θ, called the Lee form, such that

dΩ = θ ∧ Ω,

where Ω is the Kähler form, Ω(X,Y ) = g(X,JY ), X,Y ∈ TM . Moreover [7],

(∇XJ)Y =
1
2

(
θ(JY )X − θ(Y )JX − g(X,JY )θ� + g(X,Y )Jθ�

)
. (6)

Structure (M, g, J) induces the subbundle U(M) of oriented orthonormal frame
bundle SO(M) with the structure group G = U(n), n = 1

2 dim M . On the level
of Lie algebras we have the following splitting

so(2n) = u(n) ⊕ u(n)⊥,

where u(n)⊥ is an orthogonal complement of u(n) with respect to the Killing
form on so(2n),

u(n) = {A ∈ so(2n) | AJ = JA},

u(n)⊥ = {A ∈ so(2n) | AJ = −JA},

where J is considered here as a block matrix (
0 −I
I 0 ). The projection pru(n)⊥ :

so(2n) → u(n)⊥ respecting above decomposition is given by

pru(n)⊥(A) =
1
2

(A + JAJ) .

Thus the intrinsic torsion ξX is given by the formula [2]

ξX = −1
2
J(∇XJ).

which, by (6) implies

ξXY = −1
4

(
θ(Y )X + θ(JY )JX − g(X,Y )θ� − g(X,JY )Jθ�

)
.
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In further considerations, we will use the notion of ∗-Ricci tensor, which is
defined as follows

Ric∗(X) =
∑

j

R(JX, Jej)ej , X ∈ TM,

where (ej) is any orthonormal basis.

Remark 2. Our definition of ∗-Ricci tensor differs slightly from the one con-
sidered, for example, in [3]. We have Ric∗(X,Y ) = Ric

∗
(Y,X), where Ric

∗
is

the ∗-Ricci tensor in [3] and here we consider these tensors as (0, 2)-tensors.
Notice that ∗-Ricci is not, in general, symmetric.

We will compute the condition of minimality of a G-structure induced by
LcK manifold. First of all, let us derive the formula for the Riemannian metric
g̃. Denote by (ej) any g-orthonormal basis. Then

g̃(X,Y ) = g(X,Y ) +
∑

j

g(ξXej , ξY ej)

= g(X,Y ) +
1
4

(
g(X,Y )|θ�|2 − θ(X)θ(Y ) − θ(JX)θ(JY )

)

=
(

1 +
1
4
|θ�|2

)
g(X,Y ) − 1

4
(θ(X)θ(Y ) + θ(JX)θ(JY )) .

Denote by D the J-invariant distribution spanned by the vector fields
θ�, Jθ�. Let D⊥ be the orthogonal complement of D in TM with respect
to g. Notice that X ∈ D⊥ if and only if θ(X) = θ(JX) = 0, which implies
that for X ∈ D⊥ we have g̃(X,Y ) =

(
1 + 1

4 |θ�|2) g(X,Y ). Thus by dimensional
reasons, orthogonal complement to D with respect to g̃ is just D⊥. Hence, there
should be no confusion in writing D⊥. Moreover, if X ∈ D, then g̃(X,Y ) =
g(X,Y ). For a g-orthonormal basis (ej) such that e2n−1 = 1

|θ�|θ
� and e2n =

1
|θ�|Jθ�, we define a related g̃-orthonormal basis by

ẽ1 =
1√

1 + 1
4 |θ�|2

e1, . . . , ẽ2n−2 =
1√

1 + 1
4 |θ�|2

e2n−2,

ẽ2n−1 = e2n−1, ẽ2n = e2n.

Before computing minimality condition, let us introduce one useful no-
tation. For a vector X ∈ TM put

X ′ =
∑

j

g(X, ẽj)ẽj .

Let us collect properties of the assignment X �→ X ′ in the Proposition below.

Proposition 3. The following conditions hold:
1. X ′ = 1

1+ 1
4 |θ�|2 X for X ∈ D⊥,

2. X ′ = X for X ∈ D,
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3. in general, X ′ = 1
1+ 1

4 |θ�|2
(
X + 1

4

(
g(X, θ�)θ� + g(X,Jθ�)Jθ�

))
, X ∈ TM ,

4. (JX)′ = JX ′ and θ(X ′) = θ(X) for any X ∈ TM .
5. g(X ′, Y ) = g(X,Y ′) for any X,Y ∈ TM .

After lengthy computations we get
∑

j

g((∇ẽj
ξ)ẽj

Y,Z) = −1
4
((∇Z′θ)Y − (∇Y ′θ)Z − (∇JZ′θ)JY + (∇JY ′θ)JZ

− θ((∇JZ′J)Y ) + θ((∇JY ′J)Z)
+ θ(JY )g(div′J, Z) − θ(JZ)g(div′J, Y )),

where the divergence div′J equals div′J =
∑

j(∇ẽj
J)ẽj . By (6) and Proposi-

tion 3 the assignment

(X,Y ) �→ 2θ((∇JX′J)Y ) = θ(JX)θ(JY ) + θ(X)θ(Y ) − g(X ′, Y )|θ�|2

is symmetric with respect to X and Y . Moreover,

2div′J =
∑

j

(
θ(Jẽj)ẽj − θ(ẽj)Jẽj + |ẽj |2Jθ�

)

= −Jθ� − Jθ� +

⎛
⎝∑

j

|ẽj |2
⎞
⎠ Jθ�

=
2n − 2

1 + 1
4 |θ�|2 Jθ�.

Thus the bilinear map (X,Y ) �→ θ(JX)g(div′J, Y ) is also symmetric.
For any X ∈ TM ,

RξX
(X) =

∑
j

R(ej , ξXej)X = −1
2

(
R(θ�,X)X − R(Jθ�, JX)X)

)
.

Hence
∑

j

Rξẽj
(ẽj) = −1

2
1

1 + 1
4 |θ�|2

(
Ric(θ�) − Ric∗(θ�)

)
. (7)

By (7) we get
∑

j

g(ξRξẽj
(ẽj)Y,Z) =

1
8

1
1 + 1

4 |θ�|2 (θ(Y )g(R, Z) − θ(Z)g(R, Y )

− θ(JY )Ω(R, Z) + θ(JZ)Ω(R, Y )),

where, to simplify notation, we put

R = Ric(θ�) − Ric∗(θ�).

Concluding, by Proposition 2, a U(n)-structure on locally conformally Kähler
manifold (M, g, J) with the Lee form θ is minimal U(n) if and only if the
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following condition holds

0 = (∇Z′θ)Y − (∇Y ′θ)Z − (∇JZ′θ)JY + (∇JY ′θ)JZ

−1
2

1
1 + 1

4 |θ�|2 (θ(Y )g(R, Z) − θ(Z)g(R, Y )

−θ(JY )Ω(R, Z) + θ(JZ)Ω(R, Y )) (8)

for all Y,Z ∈ TM .
To check validity of the condition (8), we may restrict to certain vectors

Y,Z. Indeed, since the right hand side is skew-symmetric with respect to Y
and Z, by linearity, we have the following four possibilities:

(i) Y,Z ∈ D⊥, (ii) Y ∈ D⊥, Z = θ�,

(iii) Y ∈ D⊥, Z = Jθ�, (iv) Y = θ�, Z = Jθ�.

Now we will use the fact that dθ = Alt(∇θ) = 0. In the cases (i) and (iv), (8)
is trivially satisfied. Finally, the cases (ii) and (iii) lead to the same condition

θ(∇Y θ�) + θ(∇JY Jθ�) + 2g(R, Y ) = 0, Y ∈ D⊥. (9)

Thus we have proved the following result.

Theorem 1. A U(n)-structure on a LcK manifold (M, g, J) is minimal if and
only if (9) holds.

Example 1. Let (M, g0) be the Euclidean space R2n with the canonical complex
structure J . Consider the coordinates (x1, y1, . . . , xn, yn) with J ∂

∂xi
= ∂

∂yi
.

Let f be arbitrary smooth function depending only on x1, y1 and consider
the conformal deformation g = e−2fg0. We will compute the condition of
minimality of (M, g, J). The Lee form equals θ = df . Therefore

D⊥ = span
{

∂

∂xi
,

∂

∂yi
| i = 2, 3, . . . , n

}
.

Thus ∇0
Xθ� = ∇0

JXJθ� = 0 for X ∈ D⊥. Hence, by the formula for the Levi-
Civita connections of conformally related metrics we get

∇Xθ� = ∇0
Xθ� + |θ�|2X = |θ�|2X,

∇JXJθ� = ∇0
JXJθ� = 0,

for X ∈ D⊥. Consequently, condition (9) simplifies to

g(R, Y ) = 0, Y ∈ D⊥.

Recall that the curvature tensor R is given by the formula

−g(R(X,Y )Z,W ) = L(X,Z)g(Y,W ) + L(Y,W )g(X,Z)

− L(X,W )g(Y,Z) − L(Y,Z)g(X,W )

+ e4f |df |2(g(X,Z)g(Y,W ) − g(Y,Z)g(X,W )),
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where L(X,Y ) = (∇0
Xdf)Y + df(X)df(Y ) and hessian is computed with re-

spect to the Levi-Civita connection ∇0 of the Euclidean metric g0 [9]. Simple
calculations lead to the equality

g(R, Y ) = (2n − 3)L(θ�, Y ) − L(Jθ�, JY ), Y ∈ D⊥.

Since f depends only on x1 and y1, it follows that both L(θ�, Y ) and L(Jθ�, JY )
vanish. Thus (9) holds.

Theorem 2. Assume (M, g, J) is with parallel Lee form θ. If the U(n)-structure
on locally conformally Kähler manifold (M, g, J) is a harmonic map, then it is
a minimal. In particular, the U(n)-structure on any Hopf manifold is minimal.

Before we will prove the above theorem let us recall the notion of Hopf
manifold [10]. Consider the complex space C

n\{0} without the origin and
denote by Δλ, where λ is nonzero complex number such that |λ| �= 1, the cyclic
group generated by the transformation z �→ λz, z ∈ C

n. The Hopf manifold
is a quotient (Cn\{0})/Δλ equipped with the Hermitian metric induced from
the Hermitian metric

h =
1∑

j zj z̄j

∑
j

dzj ⊗ ¯dzj

on C
n\{0}. It can be shown that Hopf manifold is diffeomorphic to the product

S
1 × S

2n−1.

Proof (of Theorem 2). By (6) and the fact that θ� is parallel we have

∇XJθ� = (∇XJ)θ� =
{− 1

2 |θ�|2JX for X ∈ D⊥

0 for X ∈ D
and ξθ� = ξJθ� = 0. Put, for simplicity, c = 1

1+ 1
4 |θ�|2 . Then

∑
j

(∇ẽj
ξ)ẽj

= c
∑

j

(∇ej
ξ)ej

+
1 − c

|θ�|2 ((∇θ�ξ)θ� + (∇Jθ�ξ)Jθ�) = c
∑

j

(∇ej
ξ)ej

.

Moreover, by (7), we have
∑

j

Rξẽj
(ẽj) = c

∑
j

Rξej
(ej).

Since, by assumption, a U(n)-structure on M is a harmonic map, then (see
Proposition 1)

∑
j(∇ej

ξ)ej
= 0 and

∑
j Rξej

(ej) = 0. Thus, by above consid-
erations,

∑
j(∇ẽj

ξ)ẽj
= 0 and

∑
j Rξẽj

(ẽj) = 0. In particular, by Proposition
2, a U(n)-structure on M is minimal. Thus we have proved the first part of the
theorem. The second part follows by the fact that Hopf manifolds are examples
of LcK manifolds, which define U(n)-structures being harmonic maps [3]. �
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Remark 3. The above theorem can be derived directly from Theorem 1 and the
characterization of U(n)-structures on locally conformally Kähler manifolds
which are harmonic maps [3]. The mentioned condition is g(R,X) = 0 for all
X ∈ TM [3, Theorem 4.11(iii)]. In particular, g(R,X) = 0 for X ∈ D⊥, which
is equivalent to (9) since we assume that θ� is parallel.

3.2. α-Kenmotsu Manifolds

Let (M, g, ϕ, η, ζ) be an almost contact metric structure (of dimension 2n+1),
i.e., the Riemannian metric g, endomorphism ϕ : TM → TM , one-form η and
a vector field ζ satisfy the following conditions

ϕ2 = −IdTM + η ⊗ ζ, η = ζ�,

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) |ζ|2 = 1.

Then ϕ defines almost complex structure on the distribution E orthogonal to
ζ. We call ζ the Reeb field. Such conditions imply reduction of the structure
group of the oriented orthonormal frame bundle to G = U(n)×1 ⊂ SO(2n+1).
On the level of Lie algebras we have

so(2n + 1) = u(n) ⊕ u(n)⊥,

where u(n)⊥ is the orthogonal complement of u(n) in so(2n + 1) with respect
to the Killing form. The projection pru(n)⊥ : so(2n + 1) �→ u(n)⊥ respecting
the above decomposition is given by

prm(A) =
1
2

(A + ϕAϕ + ηA ⊗ ζ + η ⊗ Aζ) .

Thus the intrinsic torsion equals [4]

ξXY =
1
2
(∇Xϕ)ϕY +

1
2
(∇Xη)Y ζ − η(Y )∇Xζ. (10)

Recall the following identities [1]

(∇Xη)Y = g(Y,∇Xζ) = η((∇Xϕ)ϕY ). (11)

We focus on α-Kenmotsu manifolds, i.e., almost contact metric structures
satisfying the following condition [1]

(∇Xϕ)Y = α(g(ϕX, Y )ζ − η(Y )ϕX). (12)

Here α is a smooth function on M . Notice that, originally, α-Kenmotsu mani-
fold was defined for constant α [5] and for α = 1 we obtain Kenmotsu manifold
[6].

Comparing (12) and (10) we have

(∇Xη)Y = α(g(X,Y ) − η(X)η(Y )),

∇Xζ = α(X − η(X)ζ).

Hence, using (11) we get the formula for the intrinsic torsion on α-Kenmotsu
manifold

ξXY = α(g(X,Y )ζ − η(Y )X), X, Y ∈ TM.
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In particular,

ξζ = 0, ξXζ = −αprX.

By a simple computation we get

g̃(X,Y ) = (1 + 2α2)g(X,Y ) − 2α2η(X)η(Y ).

For a g-orthonormal basis (ej) such that e2n+1 = ζ, we define a related g̃-
orthonormal basis (ẽj) by

ẽ1 =
1√

1 + 2α2
e1, . . . , ẽ2n =

1√
1 + 2α2

e2n, ẽ2n+1 = ζ.

Analogously as in the Hermitian case, for a vector X ∈ TM put

X ′ =
∑

j

g(X, ẽj)ẽj .

Then X ′ = 1
1+2α2 X + 2α2

1+2α2 η(X)ζ, which implies

X ′ =
1

1 + 2α2
X for X ∈ E and ζ ′ = ζ.

Now we may turn to computing the condition of minimality of considered
U(n) × 1-structure. We have RξX

(X) = −2αR(ζ,X)X, thus
∑

j

Rξẽj
(ẽj) = − 2α

1 + 2α2
Ric(ζ).

Hence,
∑

j

g(ξRξẽj
(ẽj)Y,Z) =

2α2

1 + 2α2
(η(Y )Ric(ζ, Z) − η(Z)Ric(ζ, Y )).

Moreover,

(∇Xξ)XY = (Xα)(g(X,Y )ζ − η(Y )X) + α(g(X,Y )∇Xζ − (∇Xη)Y · X)

= (Xα)(g(X,Y )ζ − η(Y )X) + α2η(X)(η(Y )X − g(X,Y )ζ),

which implies ∑
j

g((∇ẽj
ξ)ẽj

Y,Z) = η(Z)Y ′α − η(Y )Z ′α.

Thus we have obtained the following observation. A U(n) × 1-structure on α-
Kenmotsu manifold is minimal if and only if for any Y,Z ∈ TM the following
condition holds

0 = η(Z)Y ′α − η(Y )Z ′α +
2α2

1 + 2α2
(η(Y )Ric(ζ, Z) − η(Z)Ric(ζ, Y )). (13)

Let us rewrite the above condition by splitting into following two cases (by
skew-symmetry in Y and Z). For Y,Z ∈ E (13) holds trivially, whereas for
Y ∈ E and Z = ζ we obtain

0 = Y α − 2α2Ric(ζ, Y ).
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Concluding we may state the following result.

Theorem 3. A U(n) × 1-structure on α-Kenmotsu manifold is minimal if and
only if

Y α = 2α2Ric(ζ, Y ), Y ∈ E .

Corollary 1. A U(n) × 1-structures on any α-Kenmotsu manifold with α con-
stant and such that Ric(ζ, Y ) = 0 for Y ∈ E is minimal.

Proof. Follows directly by Theorem 3 and equality Y α = 0. �

Let us finish by giving one example.

Example 2. Consider the hyperbolic space H2n+1 = {(x1, . . . , x2n+1) | x1 >
0}, where the Riemannian metric g is of the form

g =
1

c2x2
1

∑
j

dx2
j

for some non-zero constant c. One can show that H2n+1 is of constant sectional
curvature − c2 and induces α-Kenmotsu structure, with ζ = cx1

∂
∂x1

and α =
− c [1,4]. Since H2n+1 is a space form it follows that Ric(ζ, Y ) = 0 for Y
orthogonal to ζ. Thus by Corollary 1 the described U(n) × 1-structure on
H2n+1 is minimal.
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