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On an Equation of Sophie Germain
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Abstract. We deal with the following functional equation

f(x)2 + 4f(y)2 =
(
f(x + y) + f(y)

)(
f(x− y) + f(y)

)

which is motivated by the well known Sophie Germain identity. Some
connections as well as some differences between this equation and the
quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

are exhibited. In particular, the solutions of the quadratic functional equa-
tion are expressed in the language of biadditive and symmetric functions,
while the solutions of the Sophie Germain functional equation are of the
form: the square of an additive function multiplied by some constant. Our
main theorem is valid for functions taking values in a unique factorization
domain. We present also an example which shows that our main result
does not hold in each integral domain.
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1. Introduction

We deal with a functional equation motivated by the identity

a4 + 4b4 =
(
(a + b)2 + b2

)(
(a − b)2 + b2

)
(1)

which is attributed to Sophie Germain. In fact, she mentioned only the iden-
tities

p2 + 4 = (p2 − 2)2 + 4p2
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(which, in view of Fermat’s two squares theorem, implies that no number of
the form p2 + 4 is prime) and

p4 + q4 = (p2 − q2)2 + 2p2q2 = (p2 + q2)2 − 2p2q2,

for details see [4,6]. Although (1) is very easy to check, it is extremely useful in
solving number theory problems. It is also a common tool for contests problems
like: show that the number 5444 +4555 is not prime or calculate the sum of the
series

∑∞
n=1

k
4k4+1 , for details see for example [7].

Inspired by the identity (1), we consider the following functional equation

f(x)2 + 4f(y)2 =
(
f(x + y) + f(y)

)(
f(x − y) + f(y)

)
. (2)

It is immediately seen that the function f(x) = cx2 is a solution of (2). We
ask if there are any solutions of (2) other than f(x) = cx2. Since we do not
want to assume any regularity conditions of the functions in question, the first
guess is that (2) may be equivalent to the equation of a quadratic function

f(x + y) + f(x − y) = 2f(x) + 2f(y). (3)

Surprisingly, it will turn out that only some solutions of the quadratic func-
tional equation (3) satisfy (2). It is a rare behavior in the world of functional
equations. Dealing with functional equations it is more common that either an
equation preserves all solutions of the linear equation it is connected with or
it forces the continuity of its solutions (like Aczél equation

F (y) − F (x) = (y − x)f
(

x + y

2

)

does, see [1]).

2. Main Results

Assume that (G,+) is an abelian group, R is an integral domain.

Lemma 1. Let char R �= 2. If f : G → R satisfies (2) for all x, y ∈ G then it is
even.

Proof. It is easy to see that f(0) = 0. Put x := 0 into (2) in order to obtain

4f(y)2 = 2f(y)
(
f(−y) + f(y)

)
, y ∈ G,

2f(y)
(
f(−y) − f(y)

)
= 0, y ∈ G,

whence

f(y)2 = f(y)f(−y), y ∈ G. (4)

Surely, we also have f(−y)2 = f(y)f(−y) for all y ∈ G. Consequently, f(y)2 =
f(−y)2 for all y ∈ G and f(y) = 0 if and only if f(−y) = 0. Therefore, if
f(y) �= 0 then by (4), f(y) = f(−y), and finally, f is even. �
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The following example shows that the assumption that R is an integral
domain is essential.

Example 1. Let f : Z4 → Z4 is given by

f(x) =
{

x if x �= 0
2 if x = 0.

Then f satisfies (2) and it is not even.

Lemma 2. If f : G → R satisfies (2) for all x, y ∈ G then f(2x) = 4f(x) for
all x ∈ G.

Proof. Observe first that if f(x) = 0 for some x ∈ G then f(2x) = 0. Indeed,
assume f(x0) = 0. It is enough to put x := 2x0 and y := x0 into (2) in order
to get the assertion.

Put now y := x in (2). Then 5f(x)2 =
(
f(2x) + f(x)

)
f(x) for all x ∈ G,

which gives

f(x)
(
f(2x) − 4f(x)

)
= 0, x ∈ G,

and completes the proof. �

Theorem 1. Let char R �= 2. If f : G → R satisfies (2) for all x, y ∈ G then it
is quadratic, i.e., it satisfies equation f(x + y) + f(x − y) = 2f(x) + 2f(y) for
all x, y ∈ G.

Proof. By (2), we have

f(x)2 + 3f(y)2 = f(x + y)f(x − y) + f(y)
(
f(x + y) + f(x − y)

)
, x, y ∈ G.

(5)

Interchanging the roles of x and y and using Lemma 1 (the evenness of f) we
obtain

f(y)2 + 3f(x)2 = f(x + y)f(x − y) + f(x)
(
f(x + y) + f(x − y)

)
, x, y ∈ G.

(6)

After subtracting Eq. (5) from (6) side by side we get

2f(x)2 − 2f(y)2 =
(
f(x) − f(y)

)(
f(x + y) + f(x − y)

)
, x, y ∈ G,

that is,
(
f(x) − f(y)

)(
2f(x) + 2f(y) − f(x + y) − f(x − y)

)
= 0, x, y ∈ G. (7)

Substitute now x + y and x − y in the place of x and y, respectively, first
in (2) and then in (7). By Lemma 2, we have

f(x + y)2 + 4f(x − y)2 =
(
4f(x) + f(x − y)

)(
4f(y) + f(x − y)

)
, x, y ∈ G

(8)
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and
(
f(x + y) − f(x − y)

)(
f(x + y) + f(x − y) − 2f(x) − 2f(y)

)
= 0, x, y ∈ G.

(9)

Suppose that for some x, y ∈ R we have f(x) = f(y) and f(x + y) =
f(x − y). Then by (2),

5f(x)2 =
(
f(x + y) + f(x)

)2
, (10)

and by (8),

5f(x + y)2 =
(
4f(x) + f(x + y)

)2
. (11)

From (10) and (11), it follows that 4f(x)f(x + y) = 0 which in turn gives
f(x) = f(x + y) = 0, and consequently, f(x + y) + f(x − y) = 2f(x) + 2f(y).

Our assertion is now derived from (7) and (9). �

Remark 1. It is enough to consider the function f : Z9 → Z9 given by f(x) =
3, x ∈ Z9, to see that the assumption that R is an integral domain is essential
in Theorem 1.

Theorem 2. Let char R �= 2, f : G → R. Then f satisfies (2) if and only if
there exists a unique biadditive and symmetric function A : G2 → R satisfying

A(x, x)A(y, y) = A(x, y)2, x, y ∈ G (12)

and such that 4f(x) = A(x, x) for all x ∈ G.

Proof. Assume that 4f(x) = A(x, x) for all x ∈ G, where A : G2 → R is a
biadditive and symmetric function satisfying (12). Then we have

16
(
f(x + y) + f(y)

)(
f(x − y) + f(y)

)

=
(
A(x + y, x + y) + A(y, y)

)(
A(x − y, x − y) + A(y, y)

)

=
(
A(x, x) + 2A(y, y) + 2A(x, y)

)(
A(x, x) + 2A(y, y) − 2A(x, y)

)

=
(
A(x, x) + 2A(y, y)

)2 − 4A(x, y)2

= A(x, x)2 + 4A(y, y)2 + 4A(x, x)A(y, y) − 4A(x, y)2

= 16f(x)2 + 64f(y)2, x, y ∈ G,

which shows Eq. (2).
For the converse, by Theorem 1, function f is quadratic and by [3]

(see also [2]) there exists a biadditive and symmetric function A : G2 → R
such that 4f(x) = A(x, x) for all x ∈ G (it is enough to define A(x, y) :=
f(x + y) − f(x − y) for all x, y ∈ G and to prove (see [3]) its symmetry, addi-
tivity with respect to the first variable and the uniqueness). Substituting the
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form of f into (2) we obtain

0 = 16
(
f(x + y) + f(y)

)(
f(x − y) + f(y)

) − 16f(x)2 − 64f(y)2

=
(
A(x + y, x + y) + A(y, y)

)(
A(x − y, x − y) + A(y, y)

)

− A(x, x)2 − 4A(y, y)2

=
(
A(x, x) + 2A(y, y) + 2A(x, y)

)(
A(x, x) + 2A(y, y) − 2A(x, y)

)

− A(x, x)2 − 4A(y, y)2

=
(
A(x, x) + 2A(y, y)

)2 − 4A(x, y)2 − A(x, x)2 − 4A(y, y)2

= 4A(x, x)A(y, y) − 4A(x, y)2, x, y ∈ G,

which shows condition (12). �

Theorem 3. Let R be a unique factorization domain with char R �= 2. Function
f : G → R satisfies (2) if and only if there exist an additive function a : G → R
and a constant γ ∈ R such that f = γa2.

Proof. Assume that f satisfies (2). In view of Theorem 2 there exists a bi-
additive and symmetric function A : G2 → R satisfying (12). If A(z, z) = 0
for all z ∈ G, then f = 0. Assume that A(z0, z0) �= 0 for some z0 ∈ G.
Since A(z0, z0) = 4f(z0), then there exist pairwise different prime elements
p1, . . . , pk, q1, . . . , ql of R, n1, . . . , nk,m1, . . . ,ml ∈ N, and a unit u ∈ R such
that

A(z0, z0) = 4u · p2n1
1 · . . . · p2nk

k · q2m1−1
1 · . . . · q2ml−1

l .

Let γ = u−1 · q1 · . . . · ql, α = 4pn1
1 · . . . · pnk

k · qm1
1 · . . . · qml

l . For every x ∈ G
there exist prime elements d1, . . . , dj of R different from p1, . . . , pk, q1, . . . , ql,
numbers s1, . . . , sk, t1, . . . , tl ∈ N ∪ {0} and a unit v ∈ R such that

A(x, x) = 4v · ps1
1 · . . . · psk

k · qt1
1 · . . . · qtl

l · d1 · . . . · dj .

Using (12) we obtain

A(x, z0)2 = 16uv · p2n1+s1
1 · . . . · p2nk+sk

k · q2m1−1+t1
1 · . . . · q2ml−1+tl

l · d1 · . . . · dj .

Hence, s1, . . . , sk are even, t1, . . . , tl are odd and

A(x, z0) = 4w · p
n1+

s1
2

1 · . . . · p
nk+

sk
2

k · q
m1+

t1−1
2

1 · . . . · q
ml+

tl−1
2

l · r1 · . . . · ri

for some prime elements r1, . . . , ri of R different from p1, . . . , pk, q1, . . . , ql and
a unit w ∈ R. Now we have

A(x, z0)
α

= w · p
s1
2

1 · . . . · p
sk
2

k · q
t1−1

2
1 · . . . · q

tl−1
2

l · r1 · . . . · ri ∈ R.

Define a : G → R by the formula a(x) = A(x,z0)
α for x ∈ G. It is obvious that

a is additive. We have also

4α2f(x) = α2A(x, x) = 4γA(z0, z0)A(x, x) = 4γA(x, z0)2 = 4γα2a(x)2,

for all x ∈ G, which shows that f = γa2.
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Now assume that f = γa2 for some additive function a : G → R and a
constant γ ∈ R. Then we define A : G2 → R by the formula

A(x, y) = 4γa(x)a(y), x, y ∈ G.

It is obvious that A is biadditive, symmetric and A(x, x) = 4f(x) for x ∈ G.
We have also

A(x, y)2 = 16γa(x)2a(y)2 = A(x, x)A(y, y), x, y ∈ G,

so A satisfies (12) and in view of Theorem 2, f satisfies (2). �

Corollary 1. Let f : Z → Z. Then f satisfies (2) if and only if there exists
γ ∈ Z such that f(x) = γx2 for all x ∈ Z.

Proof. In view of Theorem 3, f satisfies (2) if and only if there exist β ∈ Z

and an additive function a : Z → Z such that f = βa2. Since for the additive
map a we have a(m) = ma(1) for m ∈ Z then taking γ = βa(1)2 we derive
that f satisfies (2) if and only if there exists γ ∈ Z such that f(x) = γx2. �

The following example shows that Theorem 3 may not hold in integral
domains that are not unique factorization domains.

Example 2. Let R = 〈1,X3,X4,X5, . . .〉 be a subring of Q[X]. Define A : R2 →
R by

A
(
a0 + a3X

3 + · · · + anXn, b0 + b3X
3 + · · · + bmXm

)

= a0b0X
3 +

(
a0b3 + a3b0

)
X4 + a3b3X

5

for all a0, a3, . . . , an, b0, b3, . . . , bm ∈ Q, m,n ≥ 3. It is easy to see that A is
biadditive and symmetric. We have also

A(a0+a3X
3 + · · · + anXn, b0 + b3X

3 + · · · + bmXm)2

=
(
a0b0X

3 +
(
a0b3 + a3b0

)
X4 + a3b3X

5
)2

= a2
0b

2
0X

6 + 2
(
a2
0b0b3 + a0a3b

2
0

)
X7 + (4a0a3b0b3 + a2

0b
2
3 + a2

3b
2
0)X

8

+ 2
(
a0a3b

2
3 + a2

3b0b3

)
X9 + a2

3b
2
3X

10

=
(
a2
0X

3 + 2a0a3X
4 + a2

3X
5
)(

b2
0X

3 + 2b0b3X
4 + b2

3X
5
)

= A
(
a0 + a3X

3 + · · · + anXn, a0 + a3X
3 + · · · + anXn

)
A

(
b0 + b3X

3

+ bmXm, b0 + b3X
3 + · · · + bmXm

)
,

so, A satisfies (12).
Suppose that there exist an additive map a : R → R and γ ∈ R such that

A(x, x) = γa(x)2 for x ∈ R. We have γa(1)2 = A(1, 1) = X3, so a(1) = q for
some 0 �= q ∈ Q and γ = 1

q2 X3. We observe that γa(X3)2 = A(X3,X3) = X5,
whence, a(X3)2 = q2X2 /∈ R, which is a contradiction.
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