
Ann. Henri Poincaré 22, Suppl. 1 (2021) S1–S55
c© 2021 The Author(s)

1424-0637/21/0100S1-55

published online February 5, 2021
https://doi.org/10.1007/s00023-020-01015-y Annales Henri Poincaré

Infrared Problem vs Gauge Choice:
Scattering of Classical Dirac Field

Andrzej Herdegen

Abstract. We consider the Dirac equation for the classical spinor field
placed in an external, time-dependent electromagnetic field of the form
typical for scattering settings: F = F ret + F in = F adv + F out, where the
current producing F ret/adv has past and future asymptotes homogeneous
of degree −3, and the free fields F in/out are radiation fields produced by
currents with similar asymptotic behavior. We show the existence of the
electromagnetic gauges in which the particle has ‘in’ and ‘out’ asymptotic
states approaching free field states, with no long-time corrections of the
free dynamics. Using a special Cauchy foliation of the spacetime, we show
in this context the existence and asymptotic completeness of the wave
operators. Moreover, we define a special ‘evolution picture’ in which the
free evolution operator has well-defined limits for t → ±∞; thus the
scattering wave operators do not need the free evolution counteraction.
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1. Introduction

This article is a further step in a program of investigation of the infrared prob-
lems in electrodynamics. Among them, the long-time asymptotic behavior of
the charged matter fields is one of the key issues. Such questions as under-
standing what is a charged particle, or how to define scattering operator in
quantum electrodynamics, are correlated to this problem.

It is well known that the long-time asymptotics poses problems in theo-
ries with long-range interactions. Standard way to deal with that is to modify
the asymptotic dynamics of charged particles or fields, by Dollard or similar
methods, augmented by some ‘dressing’ of charged particles. The cost is the

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-020-01015-y&domain=pdf
http://orcid.org/0000-0001-5926-6944


S2 A. Herdegen Ann. Henri Poincaré

loss of a clear interpretation of the asymptotic dynamics. Moreover, in physi-
cally realistic quantum field theory models this procedure has not resulted, up
to now, in a non-perturbational understanding of the issue.1

In a series of articles I have put forward the idea, that the long-time
asymptotics problem may be relieved by an appropriate choice of gauge of
the electromagnetic potential. In a recent article [11] a Schrödinger (nonrel-
ativistic) particle was considered in a time-dependent electromagnetic field,
of the form typical for scattering situations. It was found that an appropri-
ate choice of gauge allows the existence of the asymptotic dynamics, with no
need for dressing.2 We also refer the reader to this article for more extensive
description of the context and our motivation.

Here we implement the idea in the case of the classical Dirac field evolving
in the external electromagnetic field. The system is not fully self-interacting,
but the form of the external electromagnetic field mimics the expected prop-
erties of this field in fully interacting system. We consider the evolution of the
Dirac field as a unitary evolution in a Hilbert space. However, similarly as
in the previously considered nonrelativistic case, the evolution does not take
place in standard time, over flat pure space sheets. It turns out, that for our
purpose it is convenient to consider a Cauchy foliation supplied by constant τ
surfaces, where (τ, z) form the coordinate system3 defined by:

x0 = τ(|z|2 + 1)
1
2 , x = (τ2 + 1)

1
2 z . (1)

This poses technical complication even at the free Dirac equation level, as the
unitary evolution is not a unitary one-parameter group (Hamiltonian depends

1For (generalized) Dollard methods, see the monograph [2]. Recent examples of the use of
‘dressing’ in construction of simplified quantum field models include [5,13]. A recent attempt
at a precise implementation of the Dollard idea in general quantum field theory (in the form
proposed much earlier in rather imprecise terms by Kulish and Faddeev) may be found in
[4].
2What remains an open question for this system is the asymptotic completeness. In the
article, we expressed the view that the clash between the symmetry groups of the two parts
of the system: Lorentz for the Maxwell and Galilean for the Schrödinger equations, might
make the issue more problematic. Our present discussion seems to confirm this.
3I have first proposed the use of these coordinates in the present context in 1999, as a
natural extension of the hyperbolic foliation of the inside of the lightcone, to a Cauchy
foliation of the whole spacetime. The evolution of the Dirac field over the hyperbolic foliation,
and its large hyperbolic time asymptotics, was analyzed in [8] in terms of a Fourier-like
transformation, which transformed this evolution to a unitary evolution in the Hilbert space
of spinors on the hyperboloid of four velocities. The existence of the wave operators for
the Dirac field in external electromagnetic field was established (in appropriate gauge, see
below), but no results on asymptotic completeness were obtained. The idea now was to
formulate the evolution over the foliation (1) in similar Fourier terms. Piotr Marecki, my
student at that time, carried out in his MSc Thesis [12] calculations of this program for
the free Dirac field (scattering was only briefly mentioned in this thesis). This method
has its assets, but it is inconvenient for the analysis of many further questions like self-
adjointness of the generators, the analysis of the domain of validity of the Dirac equation in
the differential form, or asymptotic completeness of the interacting case, the questions that
have not been considered. Here we use another method, which could be developed much
further, and enabled the solution of all these questions.
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on τ).4 This is to be contrasted with the nonrelativistic case considered ear-
lier, where the Niederer transformation introducing suitable coordinates leads
from the free particle Hamiltonian to that of the harmonic oscillator (a kind
of beautiful miracle). Nevertheless, the Schrödinger operator case becomes
steeply difficult when the potential with space part is introduced, as then the
term A · p prevents the application of the Dyson series method. To deal with
that case, we have applied the Kato theorem. Here, for the free Dirac equation
we proceed differently, and our method may be of independent interest. The
addition of the interaction with the electromagnetic field may be then treated,
in contrast to the nonrelativistic Schrödinger case, by a variation of the Dyson
method combined with the relativistic causality. For this system we show that
an appropriate choice of gauge removes the asymptotic problem. We show the
existence and asymptotic completeness of the wave operators, with no need
for any modification of the asymptotic free Dirac evolution.5

This result will show that the choice of a gauge A(x) in this classical
field setting has a decisive importance for the asymptotic identification of the
incoming/outgoing charged fields. The main qualitative feature of gauges in
this appropriate class is that the product x·A(x) vanishes in timelike directions,
see remarks in Sect. 8 (a property already identified in [8]). We would like to
stress that the theory is formulated from the outset in such chosen gauge.
Whether such formulation may be carried over to the quantum field theory
is a subject for future research.6 This prospective investigation should also
find contact with the asymptotic algebra of fields in quantum electrodynamics
postulated by the author [9] (see also [10]).

Here let us only mention that the use of a gauge in the class antici-
pated above could lead to some broadening of the scope of external classical,
time-dependent electromagnetic fields for which the scattering operator for
the classical Dirac field may be lifted to the case of the respective quantum
field. As is well known, the mixing of electrons/positrons leads to rather severe

4 One should also mention that the use of more general, than the flat equal time hyper-
surfaces, places our problem as a special case of the problem of hyperbolic equations on
Lorentzian manifolds, a question intensively studied in the past, see a recent monograph [1].
However, our more specific system allows us to apply more specific Hilbert space methods,
and obtain stronger results.
5The Cauchy problem and the asymptotic completeness of the interacting Maxwell–Dirac
system were considered by Flato et al. in [7]. However, their analysis needs strong smoothness
and smallness assumptions, the latter not under well-determined control, and uses methods
rather not well suited for an application in quantum case (‘nonlinear representation of the
Poincaré group’). Also, the authors modify the asymptotic dynamics by a variation of the
Dollard method. Our aims are different, as explained above.
6We postpone to such prospective publication a comparison with the existing discussions of
the relevance of gauge choice in QED. Here counts the idea, originated by Dirac [3], of an a
posteriori transformation to a ‘gauge-independent gauge,’ developed by many authors, most

exhaustively by Steinmann, see his monograph [18], Chapter 12. Also, the expectation (not
shared by everyone) that formulations of QED in differing gauges need not be equivalent
received a recent support from a mathematical analysis of a simplified model [6] (where
literature account may also be found).
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restrictions in this respect7 (see, e.g., the monograph [17], Sections 2.4 and 2.5).
Precisely what gain would be possible is an open question.

The outline of the article is as follows. In Sect. 2 we formulate the Dirac
evolution as a unitary evolution, with time-dependent self-adjoint generators,
over a rather general family of Cauchy surfaces. Section 3 gives the formula-
tion of the external field problem with the Dyson series method, but with the
important use of the relativistic causality. In both free and interacting case
the self-adjointness is achieved with the use of the commutator theorem (see
Appendix B) and the harmonic oscillator Hamiltonian. In Sect. 4 we specify
our choice of coordinates to those mentioned above and transform the evolu-
tion to a new ‘picture.’ In this picture the free Dirac evolution on our foliation
has well-defined limits as unitary operators. Section 5 specifies the general
external problem to the electromagnetic case and discusses the gauge trans-
formation. Section 6 contains our central results formulated for a wide class of
electromagnetic fields: the existence and asymptotic completeness of the wave
operators. Section 7 gives a theorem showing that the electromagnetic fields
typical for scattering contexts described above admit potentials in gauges sat-
isfying the demands of the main theorems of Sect. 6. Section 8 offers some
remarks on the implications of our results and on further physically motivated
restriction in the class of the obtained electromagnetic gauges.

Large parts of the material are shifted to Appendix. In Appendix A we
discuss a spinor transformation needed in Sect. 2. Appendix B describes our
method to deal with a class of time-dependent Hamiltonians. A lemma needed
for the application of this method to the system considered here is discussed in
Appendix C. In Appendix D we gather geometrical facts and relations in our
special coordinate system. Appendices E and F recapitulate some properties
of the solutions of the free Dirac and wave equations, respectively. Appendix G
contains some estimates of the decay of the advanced and retarded solutions of
the inhomogeneous wave equation and their differences (radiation fields). The
results of Appendices E–G are applied next in Appendix H to the case of the
electromagnetic fields typical for scattering contexts. Finally, the necessary
decay properties of the special gauge introduced in Sect. 7 are obtained in
Appendix I.

2. Free Dirac Evolution

Throughout the article we set � = 1, c = 1. We choose a reference point, and
then the flat spacetime is identified with the Minkowski vector space. Let m

7This is a standard example of the fact that classical external interaction problems for
quantum fields create problems of their own, which are not expected to propagate into full
closed quantum theory. An even more restrictive question in the case of the quantum Dirac
field in an external classical field is whether a unitary evolution operator exists for this
system. As shown in [16] (for standard evolution over the flat foliation of the spacetime),
this may be possible only if the magnetic field vanishes. This brings to sharp light a rather
restricted physical relevance of such questions and models (note that this condition is not
even inertial observer-independent; anyway, this problem is not related to infrared questions).



Vol. 22 (2021) Infrared Problem vs Gauge Choice S5

be the mass parameter in the free Dirac equation. To simplify notation, we
rescale Minkowski vectors by multiplying them by m, and denote the resulting
space by M , and its dimensionless vectors by xa. The flat (covariant) derivative
in the rescaled Minkowski space is denoted by ∇a. Also, the electromagnetic
interaction to appear later will be introduced by the interaction term Aaψγaψ,
so to recover the physical units and quantities one should replace A → (e/m)A,
with e the elementary charge.

Let τ : M �→ R be a smooth surjective function such that the hypersur-
faces Στ of constant τ form a Cauchy foliation of the Minkowski spacetime,
with τ increasing into the future. Consider the Dirac equation, which we write
in the form

( 1
2 [γa, i∇a]+ − 1)ψ = 0 (2)

in our dimensionless coordinates, where γa are the Dirac matrices and [., .]+
symbolizes the anticommutator. As is well known, the Cauchy problem for this
equation with the initial data ψ|Στ0

= f is explicitly solved by the formula

ψ(x) = i−1

∫
Στ0

S(x − y)γaf(y) dσa(y) ,

where dσa is the dual integration element on Στ0 and S(x) is the standard
Green function of the free Dirac field, in the dimensionless coordinates

S(x) = (iγ · ∇ + 1)D1(x) , D1(x) =
i

(2π)3

∫
sgn(v0)δ(v2 − 1)e−iv·xdv .

If f is a smooth bi-spinor function on Στ0 , with a compact support, then ψ(x)
is a smooth function in M , with compact support on each Cauchy surface
Στ . Therefore, we obtain a bijective evolution mapping between the spaces
of smooth, compactly supported bi-spinor functions on our family of Cauchy
surfaces. Moreover, if on each Στ one defines the scalar product

(ψ1, ψ2)τ =
∫

Στ

ψ1γ
aψ2 dσa , (3)

then the evolution is isometric.
Let now (ζμ) = (ζ0, ζi) = (τ, zi) ≡ (τ, z) ∈ R

4 (i = 1, 2, 3), with τ
described above, be a smooth curvilinear coordinate system, mapping M dif-
feomorphically onto R

4. Denote by ηab and Ca...
b... the Minkowski spacetime

metric tensor, and any other tensor, respectively. Then the geometrical com-
ponents in the coordinate system (ξμ) will be denoted by

∂μ =
∂

∂ζμ
=

∂xa

∂ζμ
∇a , ∂τ =

∂

∂τ
, ∂i =

∂

∂zi
,

γ̂μ = (∇aζμ)γa , Ĉμ...
ν... = (∇aζμ) . . . Ca...

b...
∂xb

∂ζν
. . . ,

gμν =
∂xa

∂ζμ

∂xb

∂ζν
ηab , g = det(gμν) , g(z) = det[(gij)i,j≤3] ,

(4)
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Coordinates restricted to the indices 1, 2, 3 will be written as γ̂i, gij and Ĉi...
j...,

and the zeroth coordinate will be indicated by τ ; thus, for instance: Aaγa =
Âμγ̂μ = Âτ γ̂τ + Âiγ̂

i.
In these coordinates, the Dirac equation (2) and the product (3) take the

form (
i
2

[
|g| 1

2 γ̂μ, |g|− 1
2 ∂μ

]
+

− 1
)
ψ = 0 , (5)

(ψ1, ψ2)τ =
∫

ψ1γ̂
τψ2 |g| 1

2 d3z . (6)

We now choose a Minkowski reference system (e0, . . . , e3). Let us denote

n = [gττ ]−
1
2 ∇τ (7)

and let K be the Lorentz rotation of Dirac spinors in the hyperplane spanned
by the pair of timelike unit vectors (e0, n), such that

K−1γana K = γ0 , K† = γ0K−1γ0 , (8)

where dagger † denotes the Hermitian conjugation of matrices. The form and
further properties of K are discussed in Appendix A. We define the following
transformation:

ψ = Tτχ , Tτ = (|g|gττ )− 1
4 K = |g(z)|− 1

4 K .

The product (6) then takes the standard C
4 ⊗ L2(R3) form

(ψ1, ψ2)τ =
∫

χ†
1χ2d

3z .

Setting ψ into (5) and applying from the left the transformation (gττ )− 1
2 T−1

τ

we obtain an equivalent form of the Dirac equation(
i
2

[
(gττ )− 1

2 γ̂μ
K , ∂μ

]
+

− (gττ )− 1
2

)
χ

+ i
2 (gττ )− 1

2

[
γ̂μ

K , (K−1∂μK)
]

+ χ = 0 , (9)

where we have introduced notation

γK = K−1γK . (10)

We now make an additional assumption: Στ is rotationally symmetric in the
chosen Minkowski system, that is τ = τ(x0, |x|). We show in Appendix A that
in this case the anticommutator in the second line of (9) vanishes. We also
note that (gττ )− 1

2 γ̂τ
K = γ0 ≡ β. This allows us to write the Dirac equation in

the form
i∂τχ =

(
− i

2

[
(gττ )− 1

2 βγ̂i
K , ∂i

]
+

+ (gττ )− 1
2 β
)
χ .

We summarize the above discussion.

Theorem 1. (i) Let the smooth function on the Minkowski space τ = τ(x0, |x|)
determine its foliation by Cauchy surfaces Στ , with τ increasing into the future.
Denote by C∞

0 (Στ , C4) the space of smooth, compactly supported functions on
Στ with values in C

4.
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Then the free Dirac evolution of initial data in C∞
0 (Σσ, C4) is determined

by a family of bijective linear evolution operators

UΣ
0 (τ, σ) : C∞

0 (Σσ, C4) �→ C∞
0 (Στ , C4)

isometric with respect to the products (3). The size of the support in Στ is
restricted by the size of the support in Σσ and the relativistic causality. By
continuity, UΣ

0 (τ, σ) extend to unitary operators

UΣ
0 (τ, σ) : H(Σσ) �→ H(Στ ) ,

where H(Στ ) is the Hilbert space of spinor functions on Στ with the prod-
uct (3).

(ii) Let (τ, zi) : M �→ R
4 be a smooth diffeomorphism, with notation (4),

such that τ satisfies the assumptions of (i). Denote

H = C
4 ⊗ L2(R3, d3z) ,

H0(τ) = 1
2 [λi(τ), pi]+ + μ(τ) , h0 = 1

2 (p2 + z2) ,

pi = −i∂/∂zi , μ(τ) = (gττ )− 1
2 β , λi(τ) = μ(τ)γ̂i

K . (11)

Then the transformation

Tτ : H �→ H(Στ ) , Tτ = |g(z)|−1/4K ,

with operator K discussed in Appendix A, is a unitary operator and the family

U0(τ, σ) = T−1
τ UΣ

0 (τ, σ)Tσ , U0(τ, σ) : H �→ H (12)

forms a unitary, strongly continuous evolution system, such that the following
holds:
(A) U0(τ, σ)C∞

0 (R3, C4) = C∞
0 (R3, C4) and the relativistic causality is

respected.
(B) For ϕ ∈ C∞

0 (R3, C4) the maps (τ, σ) �→ H0(τ)U0(τ, σ)ϕ and (τ, σ) �→
h0U0(τ, σ)ϕ are strongly continuous, the map (τ, σ) �→ U0(τ, σ)ϕ is in
the class C1 in the strong sense, and the following equations are satisfied

i∂τU0(τ, σ)ϕ = H0(τ)U0(τ, σ)ϕ ,

i∂σU0(τ, σ)ϕ = −U0(τ, σ)H0(σ)ϕ .

(C) The operators H0(τ) are symmetric on C∞
0 (R3, C4).

Proof. The symmetry of H0(τ) follows from the symmetry of the operators
λi(τ), μ(τ) and pi, and invariance of C∞

0 (R3, C4) with respect to them. The
other statements of the theorem follow easily from the discussion preceding
the theorem. �

We now add assumptions which will be satisfied in the context of our
application, and which allow us to significantly extend the domains of validity
of the results in the last theorem. We use the abbreviation

〈z〉 = (|z|2 + 1)
1
2 .

Also, the usual multi-index notation will be used.
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Theorem 2. Let all the assumptions of Theorem 1 be satisfied. Suppose in addi-
tion that the following bounds of matrix norms hold:

|λi(τ, z)| ≤ C(τ)〈z〉 , |∂α
z λi(τ, z)| ≤ C(τ) , 1 ≤ |α| ≤ 3

|∂β
z μ(τ, z)| ≤ C(τ)〈z〉2−|β| , |β| ≤ 2 ,

(13)

where C(τ) is a continuous function. Denote h0 = 1
2 (p2 + z2), the self-adjoint

harmonic oscillator Hamiltonian.
Then the following holds:

(A) H0(τ) are essentially self-adjoint on C∞
0 (R3, C4) and on each core of h0,

and D(h0) ⊆ D(H0(τ)). Moreover, h−1
0 H0(τ) and H(τ)h−1

0 extend to
bounded operators, and as functions of τ are strongly continuous.

(B) The operator h0U0(τ, σ)h−1
0 is bounded, with the norm

‖h0U0(τ, σ)h−1
0 ‖ ≤ exp

[
const

∫ τ

σ

C(ρ)dρ

]
,

so in particular

U0(τ, σ)D(h0) = D(h0) ,

and the map (τ, σ) �→ h0U(τ, σ)h−1
0 is strongly continuous.

(C) For ϕ ∈ D(h0) the vector functions h0U0(τ, σ)ϕ, H0(τ)U0(τ, σ)ϕ and
U0(τ, σ)H0(σ)ϕ are strongly continuous with respect to parameters, the
vector function U0(τ, σ)ϕ is of the class C1 with respect to parameters in
the strong sense and the following equations hold

i∂τU0(τ, σ)ϕ = H0(τ)U0(τ, σ)ϕ ,

i∂σU0(τ, σ)ϕ = −U0(τ, σ)H0(σ)ϕ .

(D) Relativistic causality is respected by U0(τ, σ). Therefore, if we denote

H ⊃ Hc –the subspace of functions with compact essential support ,
Dc(p2) = Hc ∩ D(p2) ,

then

U0(τ, σ)Hc = Hc , U0(τ, σ)Dc(p2) = Dc(p2) .

Proof. It follows from the assumptions on λi and μ that H0(τ) fulfill all the
conditions imposed on the operator h in Lemma 14 in Appendix C. In Theo-
rems 12 and 13 in Appendix B, we now put

D = C∞
0 (R3, C4) , h(τ) = H0(τ) , u(τ, σ) = U0(τ, σ)

and h0 as defined in the present assumptions. Then, by the results of The-
orem 1, all the assumptions of these theorems are satisfied and the present
thesis follows. �
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3. Evolution in External Field

We now consider the Dirac equation in an external field, of the form

( 1
2 [γa, i∇a]+ − 1 − V )ψ = 0 ,

where V (x) is a matrix function satisfying the condition

V (x)† = γ0V (x)γ0 , (14)

which guarantees the reality of the interaction term −ψV ψ in the Lagrangian
and the conservation of the current ψγaψ. The addition of this interaction
term leads to the modification of the free curvilinear version to the equation
of the form

i∂τϕ = (1
2 [λi, pi]+ + μ + W )ϕ , (15)

where
W (τ, z) = μK−1V (x)K = W (τ, z)† ,

Hermicity being equivalent to the property (14) [see (8)].
Using the interaction picture technique, we shall obtain the evolution

operators for which Eq. (15) is satisfied. However, thanks to the relativistic
causality we can extend the applicability of the technique to the following
setting, in which the operators W (τ) do not need to be bounded.

Theorem 3. Let all the assumptions of Theorems 1 and 2 be satisfied. Suppose
in addition that W (τ, z) is a Hermitian matrix function such that the mappings{

R � τ �→ ∂α
z W (τ, z)

} ∈ C0(R, L∞
loc(R

3)) , |α| ≤ 2 , (16)

and
‖〈z〉−2+|α|∂α

z W (τ, z)‖∞ ≤ C(τ) , |α| ≤ 1 , (17)

where C(τ) is a continuous function. Denote

H(τ) = H0(τ) + W (τ) ,

with the initial domain C∞
0 (R3, C4), and define the formal series

U(τ, σ) =
∞∑

n=0

U (n)(τ, σ) , U (0)(τ, σ) = 1 ,

U (n)(τ, σ) = (−i)n

∫

τ≥τn≥...≥τ1≥σ

U0(τ, τn)W (τn)U0(τn, τn−1) . . .

. . . W (τ1)U0(τ1, σ)dτn . . . dτ1

= −i

τ∫

σ

U0(τ, ρ)W (ρ)U (n−1)(ρ, σ)dρ

= −i

τ∫

σ

U (n−1)(τ, ρ)W (ρ)U0(ρ, σ)dρ , n ≥ 1 .

(18)

Then the following is true:
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(A) H(τ) are essentially self-adjoint on C∞
0 (R3, C4) and on each core of h0,

and D(h0) ⊆ D(H(τ)).
(B) Series U(τ, σ) and its conjugation converge strongly on Hc, and the limit

operator extends to a unitary propagator on H, strongly continuous in its
parameters.

(C) U(τ, σ) respects relativistic causality and

U(τ, σ)Dc(p2) = Dc(p2) .

(D) For ϕ ∈ Dc(p2) the vector functions h0U(τ, σ)ϕ, H(τ)U(τ, σ)ϕ and
U(τ, σ)H(σ)ϕ are strongly continuous with respect to parameters, the
function U(τ, σ)ϕ is of the class C1 with respect to parameters in the
strong sense and the following equations hold

i∂τU(τ, σ)ϕ = H(τ)U(τ, σ)ϕ ,

i∂σU(τ, σ)ϕ = −U(τ, σ)H(σ)ϕ .
(19)

(E) Unitary operators satisfying (D), with U(σ, σ) = 1, are unique.

Proof. The proof of (A) is similar as the proof in the free case, statement (A)
in Theorem 2. One has to note that the assumption (17) ensures the validity
of items (i) and (ii) in Lemma 14; the result of item (iii) is not needed.

Consider the series (18). As each of the operators U0(τ, τn), U0(τk, τk−1)
and U0(τ1, σ) in the definition of U (n)(τ, σ) respects causality, and multipli-
cation by W (τk, z) does not enlarge the support of the function, each of the
operators U (n)(τ, σ) respects causality. Let, for chosen T and r,

τ, σ ∈ [−T, T ] , ϕ ∈ H , ess supp ϕ ⊆ {z | |z| ≤ r} ,

which is assumed for the rest of this proof. Then there exists R(T, r) such that
the essential support of all functions U (n)(τ, σ)ϕ is contained in |z| ≤ R(T, r)
(uniformly with respect to τ , σ and ϕ in the assumed range). Let J(z) be a
smooth function such that J(z) = 1 for |z| ≤ R and J(z) = 0 for |z| ≥ R + 1.
Denote by UJ(τ, σ) and U

(n)
J (τ, σ) the series (18) and its terms in which W (ρ, z)

have been replaced by WJ (ρ, z) = J(z)W (ρ, z); note that by assumption (16)
WJ (ρ) is a bounded, strongly continuous operator, with ‖WJ (ρ)‖ ≤ d1 for
some constant d1, uniformly on ρ ∈ [−T, T ]. Using the first of the recursive
relations in (18), it is now easy to see that in the given setting

U (n)(τ, σ)ϕ = U
(n)
J (τ, σ)ϕ .

Arguing as in the proof of the Dyson expansion (see Thm. X.69 in [15]),
one shows that UJ(τ, σ) converges uniformly to a strongly continuous unitary
propagator. As the space Hc is dense in H, the statement (B) is proved. Also,
the causality is respected.

To prove (C) (the invariance of the subspace) and (D), we write

h0WJ(ρ)h−1
0 = [h0,WJ (ρ)]h−1

0 + WJ (ρ)

and note that by Theorem 12 applied to h(τ) = WJ (τ) (with Lemma 14)
the first term on the rhs is a bounded operator, strongly continuous by the
assumption (16). Therefore, the operator h0WJ (ρ)h−1

0 is also bounded and
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strongly continuous, and ‖h0WJ (ρ)h−1
0 ‖ ≤ d2 for some constant d2, uniformly

on ρ ∈ [−T, T ]. Taking also into account statement (B) in Theorem 2, we
conclude that h0U

(n)
J (τ, σ)h−1

0 is bounded, strongly continuous, with the norm
estimated by

‖h0U
(n)
J (τ, σ)h−1

0 ‖ ≤ (n!)−1(d1 + d2)n exp
[
const

∫ τ

σ

C(ρ)dρ

]
,

This implies that the series
∑

n h0U
(n)
J (τ, σ)h−1

0 converges uniformly to the
strongly continuous function h0UJ(τ, σ)h−1

0 . Let us now impose on ϕ a stronger
assumption that ϕ ∈ Dc(p2). Then

h0U(τ, σ)ϕ = h0UJ(τ, σ)ϕ = h0UJ(τ, σ)h−1
0 h0ϕ .

This proves (C), and also the strong continuity of h0U(τ, σ)ϕ in (D). The
strong continuity of H(τ)U(τ, σ)ϕ and U(τ, σ)H(σ)ϕ follows now from the
strong continuity of H(τ)h−1

0 , similarly as in Theorem 2, basing on Theorem 12
and assumptions (16) and (17).

Next, we note that

U0(0, τ)U (n)(τ, σ)ϕ = −i

∫ τ

σ

U0(0, ρ)W (ρ)U (n−1)(ρ, σ)ϕ dρ ,

so this vector function is continuously differentiable in τ in the strong sense
and

i∂τ [U0(0, τ)U (n)(τ, σ)]ϕ = U0(0, τ)W (τ)U (n−1)(τ, σ)ϕ
(remember that on the rhs W may be replaced by WJ ). Again, using the
uniform convergence of UJ(τ, σ) we obtain

i∂τ [U0(0, τ)U(τ, σ)]ϕ = U0(0, τ)W (τ)U(τ, σ)ϕ ,

and the rhs is strongly continuous in (τ, σ). Finally, differentiating

U(τ, σ)ϕ = U0(τ, 0)[U0(0, τ)U(τ, σ)]ϕ

by the Leibnitz rule and using (C) from Theorem 2 we arrive at the first
equation in (19). The uniqueness (E) follows easily from this equation. The
proof of the second equation in (19) is similar, with the use of the second of
the recursive relations in (18); we omit the details. �

The most general matrix field V (x) satisfying condition (14) may be
concisely represented in the form

V =
4∑

k=0

i
1
2k(k−1)Ck

a1...ak
γa1 . . . γak ,

where the tensor fields Ck
a1...ak

are real and antisymmetric. The corresponding
form of the Hermitian matrix function W is

W = μ

4∑
k=0

i
1
2k(k−1)Ĉk

μ1...μk
γ̂μ1

K . . . γ̂μk

K .

This form encompasses the scalar (k = 0) and pseudoscalar (k = 4) potentials,
the electromagnetic vector potential (k = 1) and the pseudovector potential
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(k = 3), the interactions characteristic for anomalous magnetic and electric
moments, as well as the linearized gravitation (k = 2).

4. Special Foliation, New Picture and Free Asymptotics

We now choose the foliation τ and the variables z by

x0 = τ〈z〉 ≡ τ(|z|2 + 1)
1
2 , x = 〈τ〉z ≡ (τ2 + 1)

1
2 z , (20)

and we also denote
〈τ |z〉 = (τ2 + |z|2 + 1)

1
2 .

The idea behind this choice is that for τ tending to ±∞ the Cauchy sur-
faces should tend, for timelike directions in the spacetime, to the hyperboloids
x2 = τ2. All geometrical facts on these curvilinear coordinates needed for our
purposes are gathered in Appendix D.

From now on, we adopt the coordinate system (20). Using the properties
of this system, it is then easy to see that all the conditions of Theorems 1 and 2
are satisfied. Also, a convenient property of these coordinates is that gτi = 0.
Therefore, we find

[γ̂i
K , β]+ = (gττ )− 1

2 K−1[γ̂i, γ̂τ ]+K = 2(gττ )− 1
2 giτ = 0 ,

and then

[λi, β]+ = 0 = [λi, μ]+ , (21)
1
2 [λi, λj ]+ = −gττgij1 ≡ ρij1 ; (22)

the symmetric form ρ is positive definite.
The free evolution U0(τ, σ) may be easily expressed in the coordinate sys-

tem (20). For this purpose, it is sufficient to consider U0(τ, 0). Using the rep-
resentation of the Dirac solution (103) in Appendix E and the definition (12),
for ϕ ∈ S(R3, C4) we obtain

[U0(τ, 0)ϕ](z) =

( 〈τ |z〉
〈τ〉〈z〉

) 1
2

K(τ, z)−1

×
( 〈τ〉

2π

) 3
2
∫ [

e−ix(τ,z)·vP+(v)−eix(τ,z)·vP−(v)
]
[F−1ϕ](v)dμ(v) ,

(23)

where x(τ, z) = (τ〈z〉, 〈τ〉z). We consider the asymptotic form of this evolution
for τ → ±∞. Let ϕ ∈ FC∞

0 (R3, C4) and restrict z to a compact set. Then
both v (the space part of v) and z are restricted to bounded sets and by the
stationary phase method (see, e.g., [19]) the leading asymptotic behavior of
the second line in (23) is given by

∓i
[
e−i(τ± π

4 )P+(z0,±z)+ei(τ± π
4 )P−(z0,±z)

]
[F−1ϕ](z0,±z)+O(〈τ〉−1) , (24)

where z0 = 〈z〉, the upper/lower signs ∓ and ± correspond to the limits
τ→±∞, respectively, and the rest is bounded uniformly for z in the given
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set. The limit of the term on the rhs of (23) in the first line is equal to
〈z〉− 1

2 K(±∞, z)−1, with

K(±∞, z) = 2− 1
2
[
(1 + 〈z〉) 1

2 ± (1 + 〈z〉)− 1
2 γ0z · γ

]
= K(∞,±z) , (25)

and again the rest is bounded by const〈τ〉−1, uniformly in the given set. We
now note two facts:

K(∞,v)−1v · γ K(∞,v) = β ,

e−iσ 1
2 (1 + β) + eiσ 1

2 (1 − β) = e−iσβ .

The first identity is the limit form of the first of relations in (8), but it may
also be checked directly. The second identity is most easily evaluated on the
two complementary eigenspaces of β (with eigenvalues ±1).

Setting the asymptotic forms (24) and (25) into formula (23), and using
the above identities (the second one with σ = τ ± π

4 ), we obtain

[U0(τ, 0)ϕ](z) = ∓ie−i(τ± π
4 )β〈z〉− 1

2 K(∞,±z)−1[F−1ϕ](z0,±z)

+ O(〈τ〉−1) . (26)

The last formula suggests the definition of the following unitary transfor-
mation:

Φ(τ) = exp[−iτβ] ,
and the associated change of the evolution ‘picture’ (also in the interacting
case):

U0Φ(τ, σ) = Φ(τ)∗U0(τ, σ)Φ(σ) , UΦ(τ, σ) = Φ(τ)∗U(τ, σ)Φ(σ) ,

H0Φ(τ) = Φ(τ)∗H0(τ)Φ(τ) − β ,

HΦ(τ) = H0φ(τ) + WΦ(τ) , WΦ(τ) = Φ(τ)∗W (τ)Φ(τ) .

(27)

Remark 4. Under the conditions of Theorem 3, all statements of its thesis
remain valid with the replacements defined by Eqs. (27).

This follows quite trivially, as Φ(τ) acts only on the factor C
4 in the Hilbert

space H = C
4 ⊗ L2(R3).

After that, we go back to the asymptotics of the free evolution, where we
shall need the parity operator

[Pϕ](z) = ϕ(−z) .

Moreover, we observe that the map

[Kϕ](z) = 〈z〉 1
2 K(∞, z)ϕ(z)

is a unitary operator H �→ L2
γ(H) (with the latter space defined in

Appendix E).

Theorem 5. The following strong limits exist as unitary operators in H:

U0Φ(+∞, 0) = s−lim
τ→+∞

U0Φ(τ, 0) = −ie−i π
4 βK−1F−1 ,

U0Φ(−∞, 0) = s−lim
τ→−∞

U0Φ(τ, 0) = ie+i π
4 βPK−1F−1 ,
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U0Φ(0,+∞) = s−lim
τ→+∞

U0Φ(0, τ) = iFKe+i π
4 β ,

U0Φ(0,−∞) = s−lim
τ→−∞

U0Φ(0, τ) = −iFKPe−i π
4 β ,

U0Φ(0,±∞) = U0Φ(±∞, 0)∗ .

Therefore,8

U0Φ(+∞,−∞) = iβP .

Proof. For ψ ∈ C∞
0 (R3, C4) and ϕ ∈ FC∞

0 (R3, C4) formula (26) gives

lim
τ→+∞(ψ,U0Φ(τ, 0)ϕ) = (ψ, (−i)e−i π

4 βK−1F−1ϕ) ,

lim
τ→−∞(ψ,U0Φ(τ, 0)ϕ) = (ψ, ie+i π

4 βPK−1F−1ϕ) .

Both subspaces are dense in H, so the weak operator limits result. But the
limit operators are evidently unitary, so the weak limits imply the strong limits
of U0Φ(τ, 0), as well as its conjugate. �

5. Electromagnetic Interaction and Gauge Transformation

In the rest of this article we are interested in the standard, minimal coupling
electromagnetic interaction. For the electromagnetic field Fab, we reserve nota-
tion Aa for the Lorenz gauge potential (fully specified in what follows). We
write Aa for the potential in a general gauge to be used in the Dirac equa-
tion. Also, we recall our conventions defined in formulas (4) and the following
remarks, so F̂μν , Âμ and Âμ are components of these fields in our coordinate
system, and for μ, ν = i, j, etc. the range is restricted to values 1, 2, 3.

Therefore, in the electromagnetic case the field V and its transformed
version W are

V (x) = Aa(x)γa , W (τ, z) = Âτ (τ, z) + Âi(τ, z)λi(τ, z) , (28)

and we write the Hamiltonian as

H = 1
2 [λi, πi]+ + μ + Âτ , πi = pi + Âi .

Theorem 6. The coordinate system (τ, z) given by (20) is assumed.
(i) Let the electromagnetic potential A(x) have components Âμ(τ, z) such

that for all indices μ = τ, 1, 2, 3 the mappings{
R � τ �→ ∂α

z Âμ(τ, z)
} ∈ C0(R, L∞

loc(R
3)) , |α| ≤ 2 , (29)

and
‖〈z〉−2+|α|∂α

z Âτ (τ, z)‖∞

‖〈z〉−1+|α|∂α
z Âi(τ, z)‖∞

}
≤ C(τ) , |α| ≤ 1 , (30)

where C(τ) is a continuous function. Then the conditions of Theorem 3 are ful-
filled and the unitary propagator U(τ, σ) with the listed properties is obtained.

8Note an analogy with the nonrelativistic case, see Section 2 in [11].
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(ii) Let the potential A(x) and the corresponding propagator U(τ, σ) be
as in (i). Define a new gauge

AG = A − ∇G ,

where G(x) is a gauge function such that for all indices μ = τ, 1, 2, 3 the map-
pings {

R � τ �→ ∂α
z ∂μG(τ, z)

} ∈ C0(R, L∞
loc(R

3)) , |α| ≤ 1 , (31)
and

‖〈z〉−2+|α|∂α
z ∂τG(τ, z)‖∞

‖〈z〉−1+|α|∂α
z ∂iG(τ, z)‖∞

}
≤ C(τ) , |α| ≤ 1 , (32)

where C(τ) is a continuous function. Denote by HG(τ) the interacting Hamil-
tonian with Â replaced by ÂG, and

UG(τ, σ) = eiG(τ)U(τ, σ)e−iG(σ) .

Then for such modified operators the statements (A) and (C)–(E) of Theorem 3
are satisfied.

Proof. (i) The bounds (13) are satisfied in our coordinate system. Together
with the assumed properties of Âμ, this ensures that the interaction term
(28) satisfies the assumptions of Theorem 3, so the thesis follows.

(ii) For (A) we note that the assumption (32) implies that the interaction
term WG = ÂG

τ +ÂG
i λi satisfies assumptions imposed on M in Lemma 14

(i) and (ii) (not necessarily (iii)). This is sufficient for the conclusion on
self-adjointness of HG obtained as in Theorem 3. Moreover, it follows
from (31) that eiG(τ)Dc(p2) = Dc(p2), so (C) is satisfied. Finally, for
ϕ ∈ Dc(p2) we have

i∂τeiG(τ)ϕ = −eiG(τ)∂τG(τ)ϕ ,

eiG(τ)H(τ)e−iG(τ)ϕ = [H(τ) − λi(τ)∂iG(τ)]ϕ ,

so the remaining statements easily follow with the use of (31).
�

6. Scattering

We come here to our main objective in this article, scattering of the Dirac field
in an external time-dependent electromagnetic field. With the assumptions
of Theorem 6, augmented by some decay conditions formulated in the two
assumptions below, we shall obtain the complete description of scattering in
terms of the Cauchy surfaces of constant τ , as to be found in Theorem 7.
The existence of the wave operators needs only a rather simple additional
Assumption I, but their unitarity and completeness are more demanding, and
they follow from Assumption II. It is with regard to this latter question that
we need to discuss some further notation and properties.

It is easy to see that the operators

H̃ = 1
2 [λi, πi]+ = H − μ − Âτ , H̃0 = 1

2 [λi, pi]+ = H0 − μ (33)
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have similar properties as H and H0, in particular they are essentially self-
adjoint on C∞

0 (R3, C4), so Dc(p) = Hc ∩ D(p) is contained in their domains.
Therefore, Dc(p2) is contained in the domains of H̃2 and H̃2

0 [as well as H2

and H2
0 ]. Moreover, we note for later use that

[H̃, β]+ = [H̃0, β]+ = 0 , (34)

which is a consequence of (21).
We shall need a more explicit form of H̃2 below. We calculate (with ρ

defined in (22))

H̃2 = (πiλ
i + i

2∂ · λ)(λjπj − i
2∂ · λ)

= πiρ
ijπj + 1

2πi[λi, λj ]πj + i
2 (∂ · λ)λjπj − i

2πjλ
j(∂ · λ) + 1

4 (∂ · λ)2 . (35)

The second term on the rhs above may be written in two alternative ways:
1
2πi[λi, λj ]πj = − i

2 (∂i[λi, λj ])πj + 1
2 [λi, λj ]πiπj

= i
2πi(∂j [λi, λj ]) + 1

2πiπj [λi, λj ] .
(36)

Taking into account that [λi, λj ] is antisymmetric in the indices, one can
replace the product πiπj by 1

2 [πi, πj ] = − i
2 F̂ij , and then replace [λi, λj ] mul-

tiplying this expression by 2λiλj . Taking now one half of the sum of the two
expressions in (36), we find

1
2πi[λi, λj ]πj = i

4

[
πj , ∂i[λj , λi]

]
+

− i
2λiλjF̂ij . (37)

For the next two terms on the rhs of (35) we note
i
2 (∂ · λ)λjπj − i

2πjλ
j(∂ · λ) = − i

4 [πj , [λj , ∂ · λ]]+ − 1
4∂j [∂ · λ, λj ]+ , (38)

which is shown in a somewhat similar way as the former identity. The sum of
the first terms on the rhs of (37) and (38) gives i

4 [πj , [∂iλ
j , λi]]+. In this way

we obtain

H̃2 = πiρ
ijπj + i

4 [∂iλ
j , λi]πj + i

4πj [∂iλ
j , λi]

− 1
4∂j([λj , ∂ · λ]+) + 1

4 (∂ · λ)2 − i
2λiλjF̂ij .

With the use of further notation

Λj = i
4 (ρ−1)jk[∂iλ

k, λi] , πΛi = πi + Λi , (39)

Q = 1
4∂j([λj , ∂ · λ]+) − 1

4 (∂ · λ)2 , N = Q + Λiρ
ijΛj , (40)

B = i
2λiλjF̂ij ,

we can write
H̃2 = πΛρπΛ − N − B , (41)

where in the first term on the rhs a symbolic notation for summation over
indices is used. A straightforward calculation shows that both Q and N are
positive numerical functions (times the unit matrix; see Appendix D, formula
(96) for Q, and then for N this is obvious). Therefore, if we further denote

s =
√

ρ , (42)
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then for ϕ ∈ Dc(p2) we have

‖H̃ϕ‖ ≤ (‖sπΛϕ‖2 − (ϕ,Bϕ)
) 1

2 ≤ ‖sπΛϕ‖ + |(ϕ,Bϕ)| 1
2 (43)

Next denote

X = 1
2μ−1Âiλ

i = 1
2βaiλ

i , ai = (gττ )
1
2 Âi . (44)

Below we shall need the following identity valid, with our assumptions on Âi,
on Dc(p):

β[X, H̃] = aiρ
ijπΛj − i

2λiλj∂iaj − i
2 (∂iρ

ij)aj . (45)

To show this, we note that [X, H̃] = 1
2β[λiai, H̃]+, write H̃ = λjπj − i

2∂ · λ,
and then the lhs of (45) takes the form

1
2ai[λi, λj ]+πj − i

2λj∂j(λiai) − i
4ai[λi, ∂jλ

j ]+

= aiρ
ijπΛj − i

2λjλi∂jai − i
2ai

(
λj∂jλ

i + 1
2 [λi, ∂jλ

j ]+ + 1
2 [∂jλ

i, λj ]
)
,

where after the equality sign we have added and subtracted the term aiρ
ijΛj .

It is now easy to show that the terms in parentheses multiplying ai sum up to
1
2∂j [λj , λi]+, which ends the proof of (45).

The spreading of the past and future is characterized in our coordinate
system by Lemma 15 in Appendix D. Denote

D(r,p2) = {ψ ∈ D(p2) | ψ(z) = 0 for |z| ≥ r} ,

so that
Dc(p2) =

⋃
r>0

D(r,p2) .

We set τ0 = 0 in this lemma, and replace r0 and r by r and r(τ), respectively,
so that

r(τ) = 〈r〉|τ | + r〈τ〉 .

Then, according to this lemma, and statement (C) of Theorem 3, we have

ψ ∈ D(r,p2) =⇒ U(τ, 0)ψ ∈ D(r(τ),p2) . (46)

For a measurable function f(τ, z) we define a semi-norm function

τ �→ ‖f‖r,τ = ess sup
|z|≤r(τ)

|f(τ, z)| ,

and then for ψ as in (46) we find

‖f(τ, .)U(τ, 0)ψ‖ ≤ ‖f‖r,τ‖ψ‖ . (47)

Note that according to Lemma 15 we have

|z| ≤ r(τ) =⇒ 〈z〉 ≤ 〈r〉〈τ〉 + r|τ | ,
so in that case

|z| ≤ 〈z〉 ≤ 2〈r〉〈τ〉 .

For any measurable function k(z) and r > 0 we shall denote

‖k‖r = ess sup
|z|≤r

|k(z)| .

For a function f(τ, z) we obviously have ‖f(τ, .)‖r ≤ ‖f(τ, .)‖r,τ .
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Our scattering theorem will apply to potentials satisfying the following
conditions of increasing restrictiveness.

Assumption I. Potential Âμ(τ, z) satisfies the assumptions of Theorem 6, and
in addition the mapping τ �→ Âi(τ, z) is in C1(R, L∞

loc(R
3)). For each r > 0 the

following expressions are integrable on R with respect to τ :

‖Âτ‖r , 〈τ〉−2‖Âi‖2
r , 〈τ〉−2‖∂iÂj‖r , 〈τ〉−1‖∂τ Âi‖r .

Assumption II. Potential Âμ(τ, z) satisfies the assumptions of Theorem 6, and

in addition the mapping τ �→ Âi(τ, z) is in C1(R, L∞
loc(R

3)). For each r > 0
the following expressions are integrable on R with respect to τ :

‖Âτ‖r,τ ,

〈τ〉−2
(‖Âi‖2

r,τ + ‖ziÂi‖2
r,τ

)
,

〈τ〉−2
(‖∂iÂj‖r,τ + ‖zi∂iÂj‖r,τ + ‖zj∂iÂj‖r,τ + ‖zizj∂iÂj‖r,τ

)
,

〈τ〉−1
(‖∂τ Âi‖r,τ + ‖zi∂τ Âi‖r,τ

)
.

Moreover, let ξ : [1,∞) �→ R be an appropriately chosen smooth, positive,
nondecreasing function, such that ξ(1) = 1 and

ξ′(u) ≤ κ

u
ξ(u) , κ ∈ (0, 1

2 ) , |ξ′′(u)| ≤ const
u

ξ(u) , (48)

where in the second bound the constant is arbitrary. The following bounds are
satisfied

‖F̂ij‖r,τ + ‖ziF̂ij‖r,τ ≤ const(r)
〈τ〉

ξ(〈τ〉) ,

‖F̂iτ‖r,τ + ‖ziF̂iτ‖r,τ ≤ const(r)
ξ(〈τ〉) ,

and for each r > 0 the following expressions are integrable on R

‖ξ(〈z〉)Âi‖r,τ

〈τ〉ξ(〈τ〉) ,
‖ξ(〈z〉)ziÂi‖r,τ

〈τ〉ξ(〈τ〉) .

Before stating the theorem, we make a comment on the function ξ and
consider some additional consequences of Assumption II.

If one sets ξ(u) = uκξ0(u), then the first bound in (48) is equivalent to
ξ′
0(u) ≤ 0. It follows that

ξ(u) ≤ uκ . (49)

Therefore, ξ is a slowly increasing, non-oscillating function. Examples include:

ξ1(u) = uκ ,

ξ2(u) =
[
1 +

κ

m
log(u)

]m
, m > 0 ,

where κ is as assumed in (48). A particular choice of ξ must guarantee the
validity of the assumptions (if this is possible).
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By the Schwarz inequality, also the following integral is finite:

∫
R

‖Âi‖r,τ

〈τ〉2 dτ ≤ √
π

(∫
R

‖Âi‖2
r,τ

〈τ〉2 dτ

) 1
2

< ∞

and similarly for ziÂi. Moreover, for τ2 ≥ τ1 we have

Âi(τ2, z)
〈τ2〉 − Âi(τ1, z)

〈τ1〉 =
∫ τ2

τ1

(
∂σÂi(σ, z)

〈σ〉 − σÂi(σ, z)
〈σ〉3

)
dσ ,

and similarly for ziÂi. Therefore, by Assumption II the functions

〈τ〉−1‖Âi‖r,τ and 〈τ〉−1‖ziÂi‖r,τ

have limits for τ → ±∞. Limits different from zero would contradict other
assumptions, so

lim
τ→±∞

‖Âi‖r,τ

〈τ〉 = lim
τ→±∞

‖ziÂi‖r,τ

〈τ〉 = 0 .

For the sake of the proof of the coming theorem, we note the following
estimates easily obtained with the use of formula (89):

|λiÂi| ≤ const
〈τ〉

( 〈τ |z〉
〈τ〉 |Âi| + |ziÂi|

)
, (50)

|λiλj∂iÂj | ≤ const
〈τ〉2

[ 〈τ |z〉2
〈τ〉2 |∂iÂj | +

〈τ |z〉
〈τ〉

(|zi∂iÂj | + |zj∂iÂj |
)

+ |zizj∂iÂj |
]
.

(51)

Theorem 7. (i) Let Âμ satisfy Assumption I. Then the following strong lim-
its exist:

s−lim
τ→±∞

U(0, τ)U0(τ, 0) = Ω∓ , (52)

s−lim
τ→±∞

UΦ(0, τ) = UΦ(0,±∞) = Ω∓U0Φ(0,±∞) . (53)

(ii) Let Âμ satisfy Assumption II. Then the operators Ω∓ are unitary and
also the following strong limits exist:

s−lim
τ→±∞

U0(0, τ)U(τ, 0) = Ω∗
∓ , (54)

s−lim
τ→±∞

UΦ(τ, 0) = UΦ(±∞, 0) = U0Φ(±∞, 0)Ω∗
∓ . (55)

Proof. For the sake of the whole proof we assume that ψ ∈ D(r,p2) and
‖ψ‖ = 1.

(i) For τ → ∞, we prove the existence of the limit (53), from which the
limit (52) follows with the use of Theorem 5. The case τ → −∞ is analogous.

We note the identity(
1 − 1

2βH̃
)
β − H

(
1 − 1

2βH̃
)

= (μ − β + Âτ )
(

1
2βH̃ − 1

)− 1
2βH̃2 ,
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where H̃ is as defined in (33) (to show this one eliminates H with the use of
(33) and takes into account the anticommutation relation (34)). Using it, we
obtain the evolution equation

i∂τ

[
U(0, τ)

(
1 − 1

2βH̃
)
Φ(τ)

]
ψ

= U(0, τ)
[− i

2β(∂τ H̃) + (μ − β + Âτ )
(

1
2βH̃ − 1

)− 1
2βH̃2

]
Φ(τ)ψ .

Taking into account the anticommutation relation (34), we can write this in
the form

i∂τ

[
UΦ(0, τ) − 1

2U(0, τ)Φ(τ)∗βH̃
]
ψ

= −U(0, τ)Φ(τ)
[
μ − β + Âτ + 1

2βH̃2
]
ψ

+ 1
2U(0, τ)Φ(τ)∗β

[− i ˙̃H + (μ − β + Âτ )H̃
]
ψ . (56)

We estimate the terms in this equation, starting with the second term in
brackets on the lhs, and then going to the successive terms on the rhs. As
|z| ≤ r on the support of ψ, each λi, ∂iλ

j and ∂i∂jλ
k give a bounding factor

const(r)〈τ〉−1, and each ∂τλi a factor const(r)〈τ〉−2, which leads to an easy
straightforward estimation:

‖H̃ψ‖ ≤ const(r)
〈τ〉

(‖piψ‖ + ‖Âi‖r + 1
)
,

‖(μ − β)ψ‖ ≤ r2

2〈τ〉2 , ‖Âτψ‖ ≤ ‖Âτ‖r ,

‖H̃2ψ‖ ≤ const(r)
〈τ〉2

[
‖pipjψ‖ +

(‖Âi‖r + 1
)(‖Âi‖r + 1 + ‖piψ‖)] ,

‖ ˙̃Hψ‖ ≤ const(r)
〈τ〉2

(‖piψ‖ + ‖Âi‖r + 1
)

+
const(r)

〈τ〉 ‖∂τ Âi‖r ,

‖(μ − β + Âτ )H̃ψ‖ ≤ const(r)
〈τ〉

( r2

〈τ〉2 + ‖Âτ‖r

)(‖piψ‖ + ‖Âi‖r + 1
)
.

Therefore, with the conditions of Assumption I all the terms on the rhs of
(56) are integrable on R, so the strong limit of UΦ(0, τ)ψ− 1

2U(0, τ)Φ(τ)∗βH̃ψ
exists. But the second term vanishes in the limit, so the thesis follows for
ψ ∈ Dc(p2), and then by isometry for all ψ ∈ H. (For the integrability of
〈τ〉−2‖Âi‖r and for vanishing of 〈τ〉−1‖Âi‖r one argues similarly as in the
remarks following Assumption II.)

(ii) We prove the existence of the limit (54) for τ → ∞, from which the
limit (55) follows. Combined with the existence of the limit (52), this also leads
to unitarity and the conjugation relation. The case τ → −∞ is similar.

We note the identity

(1 + X)H − H0(1 + X) = Âτ + WX + [X, H̃] ,

where W and X are defined in (28) and (44), respectively, and we used the
fact that

[X,H − H̃] = [X,μ] = −2μX = −Âiλ
i .
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Thus

i∂τ

[
U0(0, τ)(1 + X)U(τ, 0)

]
ψ

= U0(0, τ)
(
i∂τX + Âτ + WX + [X, H̃]

)
U(τ, 0)ψ . (57)

If we can show that the norm of the rhs of (57) is integrable over [0,+∞),
then the strong limit of U0(0, τ)(1 + X)U(τ, 0)ψ for τ → ∞ exists. But with
the use of formula (47), and taking into account (50) and the value of gττ to
be found in Appendix D, we obtain

‖X(τ)U(τ, 0)ψ‖ ≤ ‖X‖r,τ ≤ const
〈τ〉

(
‖Âi‖r,τ + ‖ziÂi‖r,τ

)
, (58)

so this norm vanishes in the limit, which then implies the desired result.
We estimate the norms of the successive terms on the rhs of (57), again

with the use of (47). Differentiating formula (90) with respect to τ , we find

‖(∂τX)U(τ, 0)ψ‖ ≤ ‖∂τX‖r,τ ≤ const
〈τ〉2

(
‖Âi‖r,τ + ‖ziÂi‖r,τ

)

+
const
〈τ〉

(
‖∂τ Âi‖r,τ + ‖zi∂τ Âi‖r,τ

)
,

which is integrable. The norm of the second term is bounded by ‖Âτ (τ)‖r,τ ,
which is integrable by assumption. Next we note that

βWX = ÂτβX − 1
2 (gττ )

1
2 Âiρ

ijÂj ,

so using the explicit form of (gττ )
1
2 ρij , see (91), we estimate the norm of the

third term on the rhs of (57) by

‖WX‖r,τ ≤ const‖Âτ‖r,τ‖X‖r,τ +
const〈r〉

〈τ〉2
(
‖Âi‖2

r,τ + ‖ziÂi‖2
r,τ

)
,

which ensures integrability.
To estimate the norm of the fourth term, we use (45), (51) and (93) to

find

‖λiλj∂iaj + (∂iρ
ij)aj‖r,τ ≤ const

〈r〉
〈τ〉2 ‖∂iÂj‖r,τ

+
const

〈τ〉2
(
‖Âi‖r,τ +‖ziÂi‖r,τ +‖zi∂iÂj‖r,τ +‖zj∂iÂj‖r,τ +‖zizj∂iÂj‖r,τ

)
,

which again is integrable.
We are now left with the single term aρπΛU(τ, 0)ψ. As it turns out, in

this case the methods applied up to now are insufficient and it is here that we
make use of the function ξ. We write ψτ = U(τ, 0)ψ and note that

‖aρπΛψτ‖ ≤ ‖saξ(〈z〉)‖r,τ‖ξ(〈z〉)−1sπΛψτ‖
≤ 〈τ〉−1

(
‖ξ(〈z〉)Âi‖r,τ + ‖ξ(〈z〉)ziÂi‖r,τ

)
‖ξ(〈z〉)−1sπΛψτ‖ .

Now, the estimation of ‖ξ(〈z〉)−1sπΛψτ‖ is the most difficult part of the proof
and we shift it to the lemma below. Substituting its result in the above estimate
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and using Assumption II, one completes the proof of the existence of the limit
τ → +∞. �

Lemma 8. Under the conditions of Assumption II, for ψ ∈ Dc(p2) the follow-
ing estimate holds

‖ξ(〈z〉)−1sπΛU(τ, 0)ψ‖ ≤ const(ψ)ξ(〈τ〉)−1 .

Proof. We assume again that ψ ∈ D(r,p2) and ‖ψ‖ = 1. We observe that the
lhs of the inequality may be equivalently replaced by ‖sπΛξ(〈z〉)−1U(τ, 0)ψ‖.
Indeed, we have

∥∥[sπΛ, ξ(〈z〉)−1
]∥∥

∞ =
∥∥∥ zξ′(〈z〉)

〈τ〉ξ(〈z〉)2
∥∥∥

∞
≤
∥∥∥ κ z

〈τ〉〈z〉ξ(〈z〉)
∥∥∥

∞
≤ κ

〈τ〉 .

Now we shall estimate the norm squared

‖sπΛξ(〈z〉)−1ψτ‖2 = (πΛξ(〈z〉)−1ψτ , ρπΛξ(〈z〉)−1ψτ )

by first finding a differential inequality, and then integrating. Preparing for
that, we denote

ν = iξ(〈z〉)−1[H, ξ(〈z〉)] =
λi∂iξ(〈z〉)

ξ(〈z〉) =
ξ′(〈z〉)

〈τ〉ξ(〈z〉)ziαi , (59)

with the standard notation αi = βγi, and observe that

ξ(〈z〉)−1H = H̃ξ(〈z〉)−1 + (Âτ + μ − iν)ξ(〈z〉)−1 . (60)

To shorten notation, we shall write ψξ
τ = ξ(〈z〉)−1ψτ . Looking at the explicit

form of Λi (94), we note that

[Λi, μ] = 0 , [Λi, ν]+ = 0 .

Now calculate

∂τ [πΛψξ
τ ] = −iπΛξ(〈z〉)−1Hψτ +(∂τΛ+∂τ Â)ψξ

τ

= −iπΛH̃ψξ
τ +(Λ̇+F̂τ.+∂(iν − μ)+2νΛ)ψξ

τ − (ν+iÂτ +iμ)πΛψξ
τ ,

and

∂τ (πΛψξ
τ , ρπΛψξ

τ ) − (πΛψξ
τ , ρ̇πΛψξ

τ ) = −2(πΛψξ
τ , ρνπΛψξ

τ )

− i(πΛρπΛψξ
τ , H̃ψξ

τ ) + i(H̃ψξ
τ , πΛρπΛψξ

τ )

+ 2Re(πΛψξ
τ , ρ[Λ̇ + F̂τ. + ∂(iν − μ) + 2νΛ]ψξ

τ ) , (61)

where in both identities F̂τ. denotes F̂τi with the index i suppressed (in the
second identity summation over this index is implied). In the first identity we
have used (60) and commuted πΛ with the term (Âτ + μ − iν).

From now on we continue the proof for τ ≥ 0; for τ ≤ 0 the proof is
analogous, but equation (61) has to be multiplied by −1 before continuing.
The first term on the rhs of (61) is bounded in absolute value by

2‖ν‖∞(πΛψξ
τ , ρπΛψξ

τ ) ≤ 2κ〈τ〉−1‖sπΛψξ
τ‖2 ,
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where we used the estimate given in (99). With the use of formula (41), the
second line of equation (61) takes the form 2Re i(H̃ψξ

τ , (N +B)ψξ
τ ), and thanks

to the estimate (43) is bounded in absolute value by

2
(‖sπΛψξ

τ‖ + |(ψξ
τ ,Bψξ

τ )| 1
2
)‖(N + B)ψξ

τ‖ .

The third line in (61) is bounded by

2‖sπΛψξ
τ‖‖s(Λ̇ + F̂τ . + ∂(iν − μ) + 2νΛ)ψξ

τ‖ .

Finally, we observe that for τ > 0 we have [see (92)]

ρ̇ ≤ − 2τ

〈τ〉2 ρ ,

which allows us to use (61) for the following estimate:

∂τ‖sπΛψξ
τ‖2 ≤ −b‖sπΛψξ

τ‖2 + 2c‖sπΛψξ
τ‖ + d , (62)

where

b =
2τ

〈τ〉2 − 2κ

〈τ〉 ,

c = ‖(N + B)ψξ
τ‖ + ‖s(Λ̇ + F̂τ . + ∂(iν − μ) + 2νΛ)ψξ

τ‖ , (63)

d = 2|(ψξ
τ ,Bψξ

τ )| 1
2 ‖(N + B)ψξ

τ‖ .

The second term on the rhs of (62) may be estimated as follows

2c‖sπΛψξ
τ‖ = 2

[1 − 2κ

〈τ〉
] 1

2 ‖sπΛψξ
τ‖
[ 〈τ〉
1 − 2κ

] 1
2
c

≤ 1 − 2κ

〈τ〉 ‖sπΛψξ
τ‖2 +

〈τ〉c2

1 − 2κ
,

which results in the inequality

∂τ‖sπΛψξ
τ‖2 ≤ −b0‖sπΛψξ

τ‖2 + d0 , (64)

where

b0 =
2τ

〈τ〉2 − 1
〈τ〉 , d0 =

〈τ〉c2

1 − 2κ
+ d . (65)

We set

‖sπΛψξ
τ‖2 = exp

(
−
∫ τ

0

b0(σ)dσ
)
f(τ) =

τ + 〈τ〉
〈τ〉2 f(τ)

and then (64) takes the form

∂τf ≤ 〈τ〉2
τ + 〈τ〉d0(τ) ≤ 〈τ〉d0(τ) .

We note that f(0) = ‖[sπΛψξ
τ ]τ=0‖2 and find

‖sπΛψξ
τ‖2 ≤ 2

〈τ〉
[
‖[sπΛψξ

τ ]τ=0‖2 +
∫ τ

0

〈σ〉d0(σ)dσ

]
. (66)
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We have to estimate d0 defined in (65). We start by estimating c. For the
terms depending on the electromagnetic field, we have (we use the form of s
and estimates of λi given in Appendix D)

‖B‖r,τ ≤ const〈r〉2
〈τ〉2

(‖F̂ij‖r,τ + ‖ziF̂ij‖r,τ

) ≤ const(r)
〈τ〉ξ(〈τ〉) , (67)

‖sF̂τ .‖r,τ ≤ const〈r〉
〈τ〉

(‖F̂τi‖r,τ + ‖ziF̂τi‖r,τ

) ≤ const(r)
〈τ〉ξ(〈τ〉) .

For the term sij∂j(iν − μ), using the estimates (98) and (100) in Appendix D
we find9

‖s∂(iν − μ)ψξ
τ‖ ≤

∥∥∥s∂(iν − μ)
ξ(〈z〉)

∥∥∥
r,τ

≤ const
〈τ〉2

∥∥∥ 〈z〉
ξ(〈z〉)

∥∥∥
r,τ

≤ const(r)
〈τ〉ξ(〈τ〉) , (68)

where we used the fact, that both u/ξ(u) as well as ξ(u) are increasing, so

〈z〉
ξ(〈z〉) ≤ 2〈r〉〈τ〉

ξ(2〈r〉〈τ〉) ≤ 2〈r〉 〈τ〉
ξ(〈τ〉) .

The estimation of the other terms in (63) uses the bounds (95), (97) and (99)
and gives

‖Nψξ
τ‖ + ‖sΛ̇ψξ

τ‖ + ‖2νΛψξ
τ‖ ≤ const

〈τ〉2 , (69)

so summing up, we have

c ≤ const(r)
〈τ〉ξ(〈τ〉) , 〈τ〉 c2 ≤ const(r)

〈τ〉ξ(〈τ〉)2 .

The use of (67) and (69) shows that also

d(τ) ≤ const(r)
[〈τ〉ξ(〈τ〉)] 3

2
≤ const(r)

〈τ〉ξ(〈τ〉)2 ,

where we used the bound u
1
2 ≥ ξ(u) ≥ 1, see (49). Summing up, we obtain

d0(τ) ≤ const(r)
〈τ〉ξ(〈τ〉)2 .

Now, it follows from (48) that uκ/ξ(u) is an increasing function. Therefore,∫ τ

0

〈σ〉d0(σ)dσ ≤ const(r)
∫ τ

0

dσ

ξ(〈σ〉)2 ≤ const(r)
〈τ〉2κ

ξ(〈τ〉)2
∫ τ

0

dσ

〈σ〉2κ

≤ const(r)
〈τ〉

ξ(〈τ〉)2 .

This, when used in (66), gives

‖sπΛψξ
τ‖2 ≤ 2‖[sπΛψξ

τ ]τ=0‖2

〈τ〉 +
const(r)
ξ(〈τ〉)2 ≤ const(ψ)

ξ(〈τ〉)2 ,

where for the second inequality we used (49). �

9The problem of estimation of the term sij∂jμ is the ultimate reason for our introduction

of the function ξ. Without it, the bound in (68) would have the form const(r)〈τ〉−1, which
would be insufficient for our application.
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7. Typical Electromagnetic Field and Its Special Gauges

Assumption II, on which our main theorem on scattering 7 is based, is rather
technical and not easy for interpretation. Here we formulate a rather typical
situation met in scattering processes.10 We show that the electromagnetic field
thus identified admits a gauge in which Assumption II is satisfied. Moreover,
there is a class of gauges which need not satisfy this assumption, but still
assure a similar asymptotic structure.

The retarded and advanced potentials are defined in terms of the source
current J in standard way (as ϕret/adv is defined in terms of ρ in (118) in
Appendix G). Also, the radiated field of the current J is defined in standard
way, Arad = Aret − Aadv. The Heaviside step function is denoted by θ.

Assumption III. The Lorenz potential Aa of the electromagnetic field Fab is
given by

A = Aret + Ain = Aadv + Aout ,

where Aret is the retarded potential of a current J satisfying the assumptions
listed below, and Ain is the radiated potential of another current Jin with similar
properties as J . Then also Aadv is the advanced potential of the current J , and
Aout is the radiated potential of the current Jout = J + Jin, which has similar
properties as J and Jin.

The conserved current J(x) is of class C3 and for some 0 < ε < 1
2 satisfies

the following estimates:

|∇αJ(x)| ≤ const
(|x| + 1)3+|α|

[
θ(x2) +

1
(|x| + 1)ε

]
, for |α| ≤ 3, (70)

|∇α(x · ∇ + 3)J(x)| ≤ const
(|x| + 1)3+|α|+ε

, for |α| ≤ 2 . (71)

The same is assumed for Jin, and then the same follows for Jout. The potential
A is then of class C3 on the Minkowski spacetime.

Note that A is a linear combination of retarded and advanced potentials
of currents satisfying (70). Therefore, the last statement of Assumption III is
a consequence of Lemma 20 (i) in Appendix G.

Theorem 9. Let the electromagnetic field F and its Lorenz potential A satisfy
Assumption III. Define a new gauge by

A(x) = A(x) − ∇S(x) . (72)

Then the following holds.
(i) For the choice

S(x) = S(x) ≡ log(〈τ〉〈z〉)x · A(x) , (73)

the potential (72) fulfills Assumption II, so Theorems 6 and 7 are satisfied.

10Possible oscillating terms in the asymptotic behavior of charged currents are not taken
into account. One can expect that fields produced by such terms decay more rapidly than
those considered here; see also Discussion.
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(ii) Let S(x) be another gauge function, such that the difference

G(x) = S(x) − S(x)

satisfies the assumptions of Theorem 6 (ii), so that the thesis of this theorem
is true. Suppose, in addition, that there exist point-wise limits

lim
τ→±∞ G(τ, z) ≡ G±(z) .

Then the potential (72) satisfies the thesis of Theorem 7 (but not necessarily
the assumption of this theorem).
(iii) In particular, the gauges defined by:

(a) Slog(x) = log〈τ〉x · A(x) ,

(b) Str(x) =
∫ τ

0

∂σx(σ, z) · A(σ, z)dσ ,

are in the class defined in (ii). In case (b) one has Âτ = 0 and

Âi(τ, z) = Âi(0, z) −
∫ τ

0

F̂iσ(σ, z)dσ .

Remark 10. Assumption III, and consequently the validity of Theorem 9, is
independent of the choice of the time axis for the definition of the foliation (20).

Proof of Theorem 9. (i) This potential obeys Theorem 23 in Appendix I. As A
is of class C2 on the Minkowski spacetime, so the assumption (29) of Theorem 6
and the assumption on continuous differentiability of the mapping τ �→ Âi(τ, z)
in Assumption II are clearly satisfied. Denote

ξ(u) = uκ , κ < ε < 1
2 .

The estimates of Theorem 23 imply then the following norm bounds:

‖F̂iτ‖∞ , ‖ziF̂iτ‖∞ ≤ const
〈τ〉 ,

‖F̂ij‖∞ , ‖ziF̂ij‖∞ ≤ const ,

‖Âτ‖r,τ ≤ const
(1 + log〈τ〉

〈τ〉1+ε
+

log〈r〉
〈τ〉3

)
,

‖(1 + log〈z〉)−1Âτ‖∞ + ‖∂iÂτ‖∞ + ‖zi∂iÂτ‖∞ ≤ const
1 + log〈τ〉

〈τ〉1+ε
,

‖∂i∂jÂτ‖∞ ≤ const(1 + log〈τ〉) ,

‖Âi‖∞ + ‖ziÂi‖∞ ≤ ‖ξ(〈z〉)Âi‖∞ + ‖ξ(〈z〉)ziÂi‖∞ ≤ const(1 + log〈τ〉) ,

‖∂τ Âi‖∞ + ‖zi∂τ Âi‖∞ ≤ const
〈τ〉 ,

‖∂iÂj‖∞ + ‖zi∂iÂj‖∞ + ‖zj∂iÂj‖∞ + ‖zizj∂iÂj‖∞ ≤ const(1 + log〈τ〉) .

It is now easily checked that the potential satisfies assumption (30) in Theo-
rem 6 and all the remaining bounds in Assumption II, from which the thesis
follows. (Note that in this case all expressions are bounded in L∞-norm, except
for Âτ .)
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(ii) Let the evolution operator U(τ, σ) refer to the potential defined in (i),
and denote the new potential now considered by ÂG . Following further notation
used in Theorem 6, we have

s−lim
τ→±∞

UG
Φ(τ, 0) = s−lim

τ±∞
Φ∗(τ)eiG(τ)U(τ, 0)e−iG(0)

= s−lim
τ→±∞

eiG(τ)UΦ(τ, 0)e−iG(0) = eiG±UΦ(±∞, 0)e−iG(0) ,

so

s−lim
τ→±∞

U0(0, τ)UG(τ, 0) = U0Φ(0,±∞)UG
Φ(±∞, 0)

= U0Φ(0,±∞)eiG±UΦ(±∞, 0)Ω∓e−iG(0) ≡ ΩG
∓ .

Similarly for the limits of the conjugated operators.
(iii) Both gauges are easily seen to satisfy condition (31) of Theorem 6;

we turn to the estimates (32). In the case (a), with C(x) = x · A(x), we have

G(τ, z) = − log〈z〉C(τ, z) ,

and the estimates are easily checked with the use of the results of the proof
of Theorem 23. Also, it follows from the estimate of |∂τC| given there that
C(τ, z) has limits for τ → ±∞.

In the case (b), it is now sufficient to investigate the difference of the
gauge function Str(x) as compared to the gauge function of case (a):

G′(x) = Str(x) − Slog(x) .

Differentiating and using the form of ∂τx given in the proof of Theorem 23,
we find

∂τG′(τ, z) = 〈τ〉−2〈z〉A0 − log〈τ〉∂τC ,

∂i∂τG′(τ, z) =
1

〈τ〉2
[ zi

〈z〉A0 + 〈z〉∂iA0

]
− log〈τ〉∂i∂τC ,

Now noting that ∂iG(0, z) = 0, integrating (the last term by parts) and apply-
ing the derivative ∂j , we obtain (fields in the integrand depend on (σ, z))

∂i∂jG′(τ, z) =

∫ τ

0

[
dij

〈z〉A0 +
1

〈z〉 (zi∂jA0 + zj∂iA0) + 〈z〉∂i∂jA0 + σ∂i∂jC

]
dσ

〈σ〉2
− log〈τ〉∂i∂jC ,

with dij defined in (133). With the use of the estimates listed in the proof of
Theorem 23, one finds

|∂τG′| ≤ const
1 + log〈τ〉

〈τ〉1+ε
, |∂i∂τG′| ≤ const

1 + log〈τ〉
〈τ〉1+ε

,

|∂i∂jG′| ≤ const(1 + log〈τ〉) , |∂iG′| ≤ const ,

the fourth estimate by the integration of the second one. Thus, the estimates
(32) are satisfied. Finally, ∂τG′ is integrable on R, so the thesis follows. �
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8. Discussion

There are three questions we want to address in this section:

(i) How far is the present analysis from a complete treatment of the Maxwell-
Dirac system?

(ii) Is there a further physical selection criterion to choose a gauge from the
class of gauges obtained in Theorem 9?

(iii) Open problems.

With regard to the first of these questions, we note that the form of the
charged currents producing electromagnetic fields in Assumption III mimics
what one should expect in fully interacting theory. A possible shortage of
this assumption rests in the estimates of derivatives of the currents, which
would not be satisfied for oscillating terms in asymptotic behavior. The Dirac
field current does have such asymptotic terms, but it is quite plausible to
predict that oscillations dump the asymptotic behavior of fields produced by
them. What would be needed is an appropriately fast vanishing of the leading
oscillating asymptotic terms in the neighborhood of the lightcone (which is
a quite reasonable prediction). This would presumably lead to similar behavior
of electromagnetic potentials as that following from Assumption III. Moreover,
we note that our Assumption II, on which our analysis is based, leaves much
more room for the types of potentials than Assumption III.

Let us once more at this point recall the work by Flato et al. [7]. These
authors do have a theorem on the evolution of the complete system, but in a
rather restricted setting and with not much control over the range of validity.
The theorem states that in the space of smooth (i.e. C∞) initial data there
exists a neighborhood of zero, which gives rise to the Cauchy evolution and
completeness. Our analysis is not fully developed to the full interacting case,
but gives complete results for the Dirac part of the system, with the electro-
magnetic fields plausibly guessed.

Our main motivation for the present work was the expectation that the
choice of gauge does matter for asymptotic behavior and its interpretation. We
have shown that for a class of gauges the asymptotic behavior of the Dirac field
approaches that of a free field, without the need for any dynamical corrections.

This brings us to the second question mentioned at the beginning. Theo-
rem 9 identifies a class of gauges for which the situation described above takes
place. The concrete gauge defined by (73) was used for technical reasons: this
gauge satisfies Assumption II, and it is the only gauge with that property
among the gauges explicitly mentioned in Theorem 9. However, we want to
argue now, in less precise terms then those of the preceding sections, that
a different choice of gauges in the given class has a definite physical interpre-
tation when an extension, as mentioned above, to fully interacting system is
considered. Such extension, partly based on conjectures, was considered in [8],
and we have to briefly recall a few results of this analysis. It was found that
if one uses inside the lightcone the gauge related to the Lorenz gauge A (of
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similar properties as those of Assumption III) by

Acone(x) = A(x) − ∇Scone(x) , Scone(x) = log
√

x2 x · A(x) ,

or another with similar timelike asymptotic behavior, then the asymptotic
total four-momentum and angular momentum taken away into timelike infinity
have the same functional form as those for the free Dirac field. Moreover, the
energy–momentum radiated into null infinity is fully due to the free outgoing
electromagnetic field. However, the angular momentum going out into the
null infinity, in addition to the free radiated contribution, has mixed adv-
out electromagnetic terms. These latter terms may be incorporated into the
free Dirac field by a change of the asymptotic limit addition to the gauge
function. As a result, both energy–momentum as well as angular momentum
are clearly separated into electromagnetic and Dirac parts.11 Now we would
like to identify in our class of global gauges those for which this separation
may be expected. It is not difficult to show that for points inside the future
lightcone, represented by λv, with λ > 0 and v on the future unit hyperboloid,
we have

lim
λ→∞

[Slog(λv) − Scone(λv)] = 0

for the gauge function Slog defined in Theorem 9 (iii). Therefore, we put for-
ward the selection criterion for the gauge functions S to be used in (72) for
the definition of A:

S(τ, z) = Slog(τ, z) + ΔS(τ, z) ,

where ΔS has the limit

ΔS(∞, z) = lim
τ→∞ ΔS(τ, z)

which satisfies the condition of the separation of angular momentum as
described above (it is easy to see that for ΔS sufficiently regular the rhs is
equal to limλ→∞ ΔS(λ(〈z〉, z))). Similar conditions should be applied for past
infinity.

Gauges in the class thus selected have the property announced in the
introduction: x ·A(x) vanishes asymptotically in timelike directions. This may
be checked easily for Slog, and if ΔS(τ, z) is not oscillating in τ , the same is
true for this part.

The existence and completeness of the wave operators, as indicated in
Remark 10, do not depend on the choice of the time axis for the definition
of our spacetime foliation. On the other hand, and this is the first of open
problems, the precise transformation law from one inertial observer to another
needs further investigation. More generally, one can ask what is a general class
of Cauchy foliations for which the results could be repeated, and how the
results would depend on the choice in the class.

11For explicit expressions and more extensive discussion we refer the reader to [8], Section V.
Here we would only like to reassure the reader that the problems met for angular momentum
in electrodynamics are accounted for in that discussion.



S30 A. Herdegen Ann. Henri Poincaré

Let us end this discussion by expressing the belief that our scheme could
be applied to analogous problems on at least some of the smooth curved space-
time backgrounds. Whether, as inquired by one of the Referees, further exten-
sion to black hole type spacetimes would be possible, is a more speculative
question.
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Appendix A. Transformation K

The operator of the Lorentz rotation of Dirac spinors in the hyperplane
spanned by the timelike, future-pointing unit vectors t and n is given by

K(κ) = exp(κ
2 [γ · n, γ · t]) = cosh(κ sinh ζ) +

sinh(κ sinh ζ)
2 sinh ζ

[γ · n, γ · t] ,

where κ is the parameter of the rotation, ζ > 0 is such that n · t = cosh ζ,
and the rhs is obtained by a simple calculation with the use of the relation
([γ · n, γ · t])2 = 4(sinh ζ)2. Rotation of γ · n gives

K(−κ)γ · nK(κ) =
sinh(ζ − 2κ sinh ζ)γ · n + sinh(2κ sinh ζ)γ · t

sinh ζ
.

Demanding that the coefficient at γ · n vanishes, we find κ0 = ζ/(2 sinh ζ) and
then for K = K(κ0) we have

K =
1+γ · nγ · t√

2(1+n · t)
=γ · w β=K† , w =

t + n√
(t + n)2

, (74)

K−1γ · nK = γ · t .

We now put t = e0, and n as given in (7). With notation introduced in
Sect. 2, we now have:

Proposition 11. If Στ are rotationally symmetric, that is τ = τ(x0, |x|), then

[γ̂μ
K , (K−1∂μK)]+ = 0 . (75)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. The lhs of (75) is coordinate independent, so we can use Minkowski
coordinates. If we use K in the form (74), then we find

β[γa
K , (K−1∇aK)]+β = (γbγaγc − γcγaγb)wb∇awc = 2γbγaγcw[b∇awc] ,

where the second equality follows from the easily seen complete antisymmetry
of the expression in gamma matrices following the first equality sign. Using
the form of w given in (74), we find

w[b∇awc] = [(t + n)2]−1(t[b + n[b)∇anc] . (76)

If the assumption of the proposition holds, then na = (k1, k2x
i), where k1, k2

are functions of x0 and |x|. In consequence, the rhs of (76) vanishes and the
thesis follows. �

Appendix B. An Open System

We discuss here a class of open systems for which the (general) Schrödinger
equation may be defined. The main tool for the discussion of this section is
the commutator theorem, as formulated in Thm. X.37 in [15].12

B.1: Hamiltonians

Theorem 12. Let h0 ≥ 1 be a self-adjoint operator, for which the dense sub-
space D ⊆ D(h0) is a core. Suppose that for τ ∈ R the following holds:
(a) h(τ) is a family of symmetric operators on D,
(b) the commutator [h(τ), h0], defined originally as a quadratic form on D,

extends to an operator on D,
(c) for ψ ∈ D the maps τ �→ h(τ)ψ, τ �→ [h(τ), h0]ψ are strongly continuous

and the following bounds are satisfied:

‖h(τ)ψ‖ ≤ c1(τ)‖h0ψ‖ , (77)

|(ψ, [h(τ), h0]ψ)| ≤ c2(τ)(ψ, h0ψ) , (78)

‖[h(τ), h0]ψ‖ ≤ c3(τ)‖h0ψ‖ , (79)

where ci(τ) are continuous functions.
Denote by the same symbols the closures of the operators h(τ) and [h(τ), h0].

Then the following holds:
(A) D(h0) ⊆ D(h(τ)), D(h0) ⊆ D([h(τ), h0]), and h(τ) are essentially self-

adjoint on D and on each core of h0,
(B) operators h(τ)h−1

0 , h−1
0 h(τ), [h(τ), h0]h−1

0 and h−1
0 [h(τ), h0] extend to

bounded operators, strongly continuous with respect to τ , and

‖h(τ)h−1
0 ‖ = ‖h−1

0 h(τ)‖ ≤ c1(τ) ,

‖[h(τ), h0]h−1
0 ‖ = ‖h−1

0 [h(τ), h0]‖ ≤ c3(τ) ,
(80)

(C) statement (c) remains true for all ψ ∈ D(h0).

12Unlike in [11], here we make no use of the Kato theorem.
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Proof. As D is a core for h0, the domains inclusions in (A) and the extension
of inequalities (77)–(79) to ψ ∈ D(h0) follow immediately, if we denote the
closures of the operators h(τ) and [h(τ), h0] by the same symbols. In addi-
tion, the essential self-adjointness of h(τ) follows from (77) and (78) by the
commutator theorem, Thm. X.37 in [15].

The bounds (80) for the operators h(τ)h−1
0 and [h(τ), h0]h−1

0 follow
now immediately. The operators h−1

0 h(τ) and h−1
0 i[h(τ), h0], initially densely

defined on D(h0), extend to conjugates of h(τ)h−1
0 and i[h(τ), h0]h−1

0 , respec-
tively, so all the bounds (80) are satisfied.

Strong continuity in τ of the operators h−1
0 h(τ) and h−1

0 [h(τ), h0] follows
immediately from the bounds (80) and the assumption (c). For the continuity
of h(τ)h−1

0 , we note what follows. For ψ ∈ H the vector h−1
0 ψ is in D(h0), so

for each ε > 0 there exist ϕ ∈ D (a core for h0) such that ‖ψ − h0ϕ‖ ≤ ε. We
estimate

‖h(τ)h−1
0 ψ − h(σ)h−1

0 ψ‖ ≤ ε[c1(τ) + c1(σ)] + ‖h(τ)ϕ − h(σ)ϕ‖ ,

so the strong continuity follows. The case of [h(τ), h0]h−1
0 is analogous. This

completes the proof of (B), and its consequence is the statement of strong
continuity of maps in (C). �

B.2: Evolution

Theorem 13. Let all the assumptions of Theorem 12 be satisfied. Moreover, let
(τ, σ) �→ u(τ, σ) be a strongly continuous unitary evolution system in H:

u(τ, ρ)u(ρ, σ) = u(τ, σ) , u(τ, τ) = 1 ,

such that u(τ, σ)D = D. Suppose that for ψ ∈ D:
(a) the maps (τ, σ) �→ h(τ)u(τ, σ)ψ and (τ, σ) �→ h0u(τ, σ)ψ are strongly

continuous,
(b) the map (τ, σ) �→ u(τ, σ)ψ is of class C1 in the strong sense and the

following equations hold:

i∂τu(τ, σ)ψ = h(τ)u(τ, σ)ψ , i∂σu(τ, σ)ψ = −u(τ, σ)h(σ)ψ , (81)

Then, the following holds:
(A) the operator h0u(τ, σ)h−1

0 is bounded, with the norm

‖h0u(τ, σ)h−1
0 ‖ ≤ exp

[
const

∫ τ

σ

c3(ρ)dρ

]
,

so in particular
u(τ, σ)D(h0) = D(h0) ;

(B) the map (τ, σ) �→ h0u(τ, σ)h−1
0 is strongly continuous;

(C) all statements of assumptions (a) and (b) remain true for all ψ ∈ D(h0).

Proof. To show (A), we use a standard trick.13 It is easy to see that
[ h2

0

1 + εh2
0

, h(τ)
]

=
h0

1 + εh2
0

[
[h(τ), h0], h−1

0

]
+

h0

1 + εh2
0

,

13See, e.g., Proposition B.3.3 in [2].
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so using the second bound in (80), we have for ψ ∈ D

∂τ

(
u(τ, σ)ψ,

h2
0

1 + εh2
0

u(τ, σ)ψ
)

≤ 2c3(τ)
(
u(τ, σ)ψ,

h2
0

1 + εh2
0

u(τ, σ)ψ
)

,

By Gronwall’s inequality, we obtain∥∥∥ h0

(1 + εh2
0)

1
2
u(τ, σ)ψ

∥∥∥ ≤ e
∫ τ
σ

c3(ρ)dρ
∥∥∥ h0

(1 + εh2
0)

1
2
ψ
∥∥∥ .

As h0 is closed, letting ε ↘ 0 we show that u(τ, σ)ψ ∈ D(h0) for ψ ∈ D, and

‖h0u(τ, σ)ψ‖ ≤ e
∫ τ
σ

c3(ρ)dρ‖h0ψ‖ .

But D is a core for h0, so this inequality extends to D(h0). Setting ψ = h−1
0 χ,

with arbitrary χ ∈ H, we obtain (A).
For statement (B) we note that for ψ ∈ H and ϕ ∈ D such that

‖ψ − h0ϕ‖ ≤ ε (as in the proof of Theorem 12) we have

‖h0[u(τ, σ) − u(τ ′, σ′)]h−1
0 ψ‖

≤ ‖h0[u(τ, σ) − u(τ ′, σ′)]h−1
0 ‖ε + ‖h0u(τ, σ)ϕ − h0u(τ ′, σ′)ϕ‖ ,

so the map (τ, σ) �→ h0u(τ, σ)h−1
0 is strongly continuous.

The extension of (a) to all ψ ∈ D(h0) now follows from the present
statement (B), and the statement (B) of Theorem 12. For the extension of (b),
we write the integral forms of equations (81) for ψ ∈ D

u(τ, σ)ψ − ψ = −i

∫ τ

σ

h(ρ)u(ρ, σ)ψ dρ = −i

∫ τ

σ

u(ρ, σ)h(ρ)ψ dρ .

But we already know that both integrands extend to continuous functions of
ρ for ψ ∈ D(h0), so this extension followed by differentiation leads to the
extended equations (81). �

Appendix C. A Lemma

Here we state a result to be applied in Sects. 2 and 3. The lemma below enables
the application of Theorem 12 to our system.

Lemma 14. Let Li(z), i = 1, 2, 3, and M(z) be four n × n Hermitian matrix
functions on R

3, and denote

h = 1
2 (Lipi + piL

i) + M , h0 = 1
2 (p2 + z2) .

Then for some constants Ci (i = 1, 2, 3) and all ϕ ∈ C∞
0 (R3, Cn) the following

inequalities are satisfied:
(i) if the functions 〈z〉−1Li(z), ∂iL

j(z) and 〈z〉−2M(z) are in L∞(R3), then

‖hϕ‖ ≤ C1‖h0ϕ‖ ; (82)

(ii) if in addition ∂i∂jL
k(z) and 〈z〉−1∂iM(z) are in L∞(R3), then

|(hψ, h0ϕ) − (h0ψ, hϕ)| ≤ C2‖h
1
2
0 ψ‖‖h 1

2
0 ϕ‖ ; (83)
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(iii) if in addition to (i) and (ii) also ∂i∂j∂kLl(z) and ∂i∂jM(z) are in
L∞(R3), then

‖[h, h0]ϕ‖ ≤ C3‖h0ϕ‖ . (84)

Proof. 14 Before starting the proof of (i)–(iii), we note a few simple facts. For
ϕ ∈ C∞

0 (R3, Cn) we note the identity

ϕ†p2ϕ + (p2ϕ)†ϕ + Δ|ϕ|2 = 2|pϕ|2 ,

which multiplied by z2 and integrated (transfer Δ by parts) gives

Re(p2ϕ, z2ϕ) + 3‖ϕ‖2 = ‖|z|pϕ‖2 . (85)

Also, it follows from p2 + z2 ≥ 3 · 1 that

‖ϕ‖ ≤ 1
3‖(p2 + z2)ϕ‖ . (86)

Using (85) and (86), one finds

‖(p2 + z2)ϕ‖2 − ‖p2ϕ‖2 − ‖z2ϕ‖2 = 2Re(p2ϕ, z2ϕ)

≥ −6‖ϕ‖2 ≥ − 2
3‖(p2 + z2)ϕ‖2 ,

which gives the bound:

‖p2ϕ‖2 + ‖z2ϕ‖2 ≤ 5
3 ‖(p2 + z2)ϕ‖2 . (87)

We note that the L- and M -parts of the thesis may be proved sepa-
rately. Consider the L-part first, and assume that Li satisfy the assumptions
in (i). Then Nα,iβ(z) = 〈z〉−1Li

αβ(z) may be treated as a bounded operator
C

3n ⊗ L2(R3) �→ C
n ⊗ L2(R3), whose norm we denote d1. Then,

‖Lipiϕ‖2 ≤ d2
1

∑
i

‖〈z〉piϕ‖2 = d2
1

(‖|z|pϕ‖2 + (ϕ,p2ϕ)
)

≤ d2
1

(‖p2ϕ‖‖z2ϕ‖ + 3‖ϕ‖2 + ‖ϕ‖‖p2ϕ‖)
≤ 1

2
d2
1

(
2‖p2ϕ‖2 + ‖z2ϕ‖2 + 7‖ϕ‖2

)
,

where in the third step we used identity (85) and the Schwarz inequality.
Taking into account that L ·p+p ·L = 2L ·p− i(∂ ·L) and ‖∂ ·L‖∞ ≤ const,
with the use of (86) and (87) one easily arrives at the estimate (82) for the
L-part.

Let now Li satisfy the assumptions in (ii) and let ϕ ∈ C∞
0 (R3, Cn). Then,

using the usual rules for calculation of commutators, one finds[
[Li, pi]+, h0

]
ϕ = −2iziLiϕ + i

2 [pi, pj(∂jL
i) + (∂jL

i)pj ]+ϕ , (88)

which makes sense as a distributional identity (pi, pj treated distributionally).
As Li are twice differentiable, we can transform the second term on the rhs:

i
2 [pi, pj(∂jL

i) + (∂jL
i)pj ]+ϕ = ipi

(
(∂jL

i) + (∂iL
j)
)
pjϕ + i

2 [pi,ΔLi]ϕ .

14It may be remarked that the proof admits some weakening of the assumptions. For
instance, in (i) for the derivatives of Li it would be sufficient that 〈z〉−2∂iL

i be in L∞;
in (ii) for the second derivatives of Li it suffices that 〈z〉ΔLi is in L∞. We shall not need
such more general results.
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Setting this into (88) and taking the product with ψ ∈ C∞
0 (R3, Cn), we obtain

([Li, pi]+ψ, h0ϕ) − (h0ψ, [Li, pi]+ϕ) = i(piψ, (∂iL
j + ∂jL

i)pjϕ)

− 1
2 (ψ, (ΔLi)piϕ) + 1

2 ((ΔLi)piψ,ϕ) − 2i(ziψ,Liϕ) .

We treat Piα,jβ(z) = ∂iL
j
αβ(z) + ∂jL

i
αβ(z) as a bounded operator acting in

C
3n ⊗ L2(R3), whose norm we denote d2. Then

|(piψ, (∂iL
j + ∂jL

i)pjϕ)| ≤ d2

(∑
i

‖piψ‖2
∑

j

‖pjϕ‖2
) 1

2 ≤ 2d2‖h
1
2
0 ψ‖‖h 1

2
0 ϕ‖ .

Similarly, Qα,iβ(z) = ΔLi
αβ(z) is a bounded operator from C

3n ⊗ L2(R3)
into C

n ⊗ L2(R3) with the norm d3, and Riα,β(z) = 〈z〉−1Li
αβ(z) a bounded

operator from C
n ⊗ L2(R3) into C

3n ⊗ L2(R3) with the norm d4. Therefore

|(ψ, (ΔLi)piϕ)| ≤ d3‖ψ‖
(∑

i

‖piϕ‖2
) 1

2 ≤ const‖h
1
2
0 ψ‖‖h 1

2
0 ϕ‖ ,

|(ziψ,Liϕ)| ≤ d4‖〈z〉ϕ‖
(∑

i

‖ziψ‖2
) 1

2 ≤ const‖h
1
2
0 ψ‖‖h 1

2
0 ϕ‖ ,

which ends the proof of (83) for the L-part.
If in addition the assumptions in (iii) are satisfied, then on the rhs of

(88) all operators pi may be commuted to the right, and the commutator is a
differential operator with functional coefficients:

[[Li, pi]+, h0] = 2i(∂iL
j)pipj + (ΔLj + ∂j∂ · L)pj − i

2 (Δ∂ · L) − 2iz · L .

Using similar techniques as above, we find

‖(∂iL
j)pipjϕ‖ ≤ d5

(∑
i,j

‖pipjϕ‖2
) 1

2
= d5‖p2ϕ‖ ,

‖(ΔLj + ∂j∂ · L)pjϕ‖ ≤ d6

(∑
j

‖pjϕ‖2
) 1

2 ≤ const‖h
1
2
0 ϕ‖ ≤ const‖h0ϕ‖ ,

‖(Δ∂ · L)ϕ‖ ≤ const‖ϕ‖ , ‖z · Lϕ‖ ≤ const‖〈z〉2ϕ‖ .

Again using (86) and (87), one obtains (84) for the L-part.
For the M -part, note that

‖Mϕ‖ ≤ const‖〈z〉2ϕ‖ ≤ const‖(p2 + z2)ϕ‖ ,

which proves (82). Consider the commutator

[M,h0] = i
2 [(∂M) · p + p · (∂M)] .

If the assumptions in (ii) are satisfied, then

2|(Mψ,h0ϕ) − (h0ψ,Mϕ)| ≤ |((∂iM)ψ, piϕ)| + |(piψ, (∂iM)ϕ)|
≤ const‖h

1
2
0 ψ‖‖h 1

2
0 ϕ‖ ,

which proves (83). Finally, with the assumption in (iii), (84) for this part is
obtained similarly as (82) for the L-part. �
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Appendix D. Special Variables

Variables (τ, z) are defined by:

x0 = τ〈z〉 , x = 〈τ〉z ,

see (20). Further notation:

〈τ |z〉 = (τ2 + z2 + 1)
1
2 , 〈τ‖z〉 = 〈τ〉〈z〉 + 〈τ |z〉 .

At various points of the calculations in this section, the following identities are
used

τ2|z|2 = 〈τ〉2〈z〉2 − 〈τ |z〉2 = 〈τ‖z〉(〈τ〉〈z〉 − 〈τ |z〉) .

The derivative transformation between these coordinates and the Mink-
owski system is given by

∂(x0,x)

∂(τ, z)
=

⎛
⎜⎝

〈z〉 τzᵀ

〈z〉
τz

〈τ〉 〈τ〉1

⎞
⎟⎠ ,

∂(τ, z)

∂(x0,x)
=

⎛
⎜⎜⎝

〈τ〉2〈z〉
〈τ |z〉2 −τ〈τ〉zᵀ

〈τ |z〉2
− τ〈z〉z

〈τ |z〉2
1

〈τ〉
[
1 +

τ2

〈τ |z〉2 zz
ᵀ
]
⎞
⎟⎟⎠ .

Using these transformations, one finds the new metric tensor matrices

(gμν) =

⎛
⎜⎜⎝

〈τ |z〉2
〈τ〉2 0

0 −〈τ〉21 +
τ2

〈z〉2 zz
ᵀ

⎞
⎟⎟⎠ , g(z) = −〈τ〉4〈τ |z〉2

〈z〉2 ,

(gμν) =

⎛
⎜⎜⎝

〈τ〉2
〈τ |z〉2 0

0 − 1
〈τ〉2

[
1 +

τ2

〈τ |z〉2 zz
ᵀ
]
⎞
⎟⎟⎠

and the new vector components of the gamma matrices

γ̂τ =
〈τ〉

〈τ |z〉2
(〈τ〉〈z〉γ0 − τz · γ

)
,

γ̂i =
1

〈τ〉γi − τ

〈τ〉〈τ |z〉2
(〈τ〉〈z〉γ0 − τz · γ

)
zi .

The operator K defined by (8) and discussed in Appendix A takes the form

K =
1√

2〈τ |z〉
[√

〈τ‖z〉 +
τ√〈τ‖z〉γ0z · γ

]
= K† ,

K−1 = γ0Kγ0 ,

which leads to the following form of the transformed gamma matrices (10) and
λ matrices introduced by (11):
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γ̂i
K =

1
〈τ〉γi

⊥ +
〈z〉

〈τ |z〉γz ẑ
i ,

λi =
〈τ |z〉
〈τ〉2 αi

⊥ +
〈z〉
〈τ〉αz ẑ

i

=
〈τ |z〉
〈τ〉2 αi

⊥ +
1

(〈z〉 + |z|)〈τ〉αz ẑ
i +

1
〈τ〉αzz

i , (89)

where

ẑi =
zi

|z| , γz = ẑ · γ , γi
⊥ = γi − γz ẑ

i ,

αi = γ0γi , αz = ẑ · α , αi
⊥ = αi − αz ẑ

i .

For the estimation of X in (58) it is convenient to have

(gττ )
1
2 λi =

1
〈τ〉αi

⊥ +
1

(〈z〉 + |z|)〈τ |z〉αz ẑ
i +

1
〈τ |z〉αzz

i . (90)

The derivatives of λ matrices are

∂jλ
i =

|z|
〈τ〉2

[
ẑjαi

⊥
〈τ |z〉 +

τ2αj
⊥ẑi

〈τ‖z〉 +
( τ2δji

⊥
〈τ‖z〉 +

〈τ〉ẑj ẑi

〈z〉
)
αz

]
,

∂iλ
i =

1
〈τ〉2

[
2τ2

〈τ‖z〉 +
〈τ〉
〈z〉
]
z · α ,

where

δij
⊥ = δij − ẑiẑj ,

and their estimates are easily obtained:

|λi| ≤ const
〈z〉
〈τ〉 , |∂jλ

i| ≤ const
|z|

〈τ〉〈z〉 , |∂j∂iλ
k| ≤ const

〈τ〉〈z〉 .

The μ matrix introduced in (11), and its derivative, take the form

μ =
〈τ |z〉
〈τ〉 β , ∂iμ =

zi

〈τ〉〈τ |z〉β .

The commutator, and the anti-commutator of matrices λi, the latter defining
the form ρij introduced in (22), yield

[λi, λj ] =
〈τ |z〉2
〈τ〉4 [αi

⊥, αj
⊥] + 2

〈τ |z〉〈z〉
〈τ〉3 αz(ẑiαj

⊥ − ẑjαi
⊥) ,

ρij = 1
2 [λi, λj ]+ = −gττgij =

〈τ |z〉2
〈τ〉4 δij

⊥ +
〈z〉2
〈τ〉2 ẑiẑj

=
1

〈τ〉2
[(

1 +
|z|2
〈τ〉2

)
δij
⊥ + 〈z〉2ẑiẑj

]
. (91)

Using the latter form, we find for the τ -derivative of ρ

ρ̇ij = − 2τ

〈τ〉2 ρij − 2τ |z|2
〈τ〉6 δij

⊥ ,
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from which, in the sense of quadratic forms,

sgn(τ)ρ̇ij ≤ − 2|τ |
〈τ〉2 ρij , (92)

an inequality needed in Lemma 8. The expression first appearing in (45) and
needed in the proof of Theorem 7 takes the form

∂iρ
ij = 2

τ2 + 〈τ〉2
〈τ〉4 zj . (93)

The square root of the form ρ, introduced in (42), is explicitly

sij =
〈τ |z〉
〈τ〉2 δij

⊥ +
〈z〉
〈τ〉 ẑiẑj .

The quantity introduced in (39), and its properties, are:

Λj =
|z|

2〈τ |z〉
( τ2

〈τ‖z〉 − 〈τ〉〈z〉
〈τ |z〉2

)
iαzα

j
⊥ , (94)

sijΛj =
|z|

2〈τ〉2
(

τ2

〈τ‖z〉 − 〈τ〉〈z〉
〈τ |z〉2

)
iαzα

i
⊥ ,

|Λj | ≤ 〈τ〉
〈τ |z〉 , |sijΛj | ≤ 1

〈τ〉 , |Λ̇j | ≤ const
〈τ |z〉 , |sijΛ̇j | ≤ const

〈τ〉2 . (95)

The calculation of Q defined in (40) is more tedious, and we write down two
of the intermediate steps:

1
4∂j

(
[λj , ∂ · λ]+

)
=

τ2

〈τ〉3〈τ‖z〉
(
2〈z〉 +

|z|2
〈z〉

)
+

τ2

〈τ〉2〈τ |z〉〈τ‖z〉 +
3

2〈τ〉2 ,

1
4 (∂ · λ)2 =

τ2〈z〉
〈τ〉3〈τ‖z〉 − τ2〈τ |z〉

〈τ〉4〈τ‖z〉 +
τ2|z|2

〈τ〉3〈z〉〈τ‖z〉 +
|z|2

4〈τ〉2〈z〉2 ,

which substituted in (40) gives

0 < Q = 〈τ〉−2
( τ2

〈τ〉2 +
τ2

〈τ |z〉〈τ‖z〉 +
1

4〈z〉2 +
5
4

)
≤ const

〈τ〉2 , (96)

0 < N ≤ const
〈τ〉2 . (97)

The following estimates are needed in the proof of Lemma 8

sij∂jμ =
zi〈z〉

〈τ〉2〈τ |z〉β , |sij∂jμ| ≤ |z|
〈τ〉2 . (98)

The matrix ν defined by (59), with the use of (48) is shown to satisfy the
estimates

|ν| ≤ κ

〈τ〉 , |sijΛjν| ≤ κ

〈τ〉2 , (99)

which are needed in the proof of Lemma 8. To simplify notation of its deriva-
tive, let us denote χ(u) = ξ(u)−1ξ′(u). Then

∂iν =
1

〈τ〉
[
χ(〈z〉)αi

⊥ +
(
χ(〈z〉) +

|z|2
〈z〉 χ′(〈z〉)

)
αz ẑ

i
]
,
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sij∂jν =
〈τ |z〉
〈τ〉3 χ(〈z〉)αi

⊥ +
1

〈τ〉2
(
〈z〉χ(〈z〉) + |z|2χ′(〈z〉)

)
αz ẑ

i .

It follows from (48) that χ(u) ≤ κ/u and |χ′(u)| ≤ const/u, so

|sij∂jν| ≤ const
|z|

〈τ〉2 . (100)

The spreading of the past and the future in Minkowski space, in the
language of the coordinates (τ, z), is given by the following lemma. This result
is needed for the description of scattering in Sect. 6.

Lemma 15. The past (resp. future) of the set τ = τ0, |z| ≤ r0 consists of the
points (τ, z) such that τ < τ0 (resp. τ > τ0) and |z| ≤ r, where

r = r0[〈τ0〉〈τ〉 − τ0τ ] + 〈r0〉|τ〈τ0〉 − 〈τ〉τ0| ,
〈r〉 = 〈r0〉[〈τ0〉〈τ〉 − τ0τ ] + r0|τ〈τ0〉 − 〈τ〉τ0| . (101)

It follows that

〈r〉 ≤ 〈r0〉
{

(〈τ0〉 − τ0)(〈τ〉 + τ) , τ ≥ τ0 ,
(〈τ0〉 + τ0)(〈τ〉 − τ) , τ ≤ τ0 .

(102)

In particular, for τ0 = 0 and τ ∈ R we have

〈r〉 ≤ 2〈r0〉〈τ〉 .

Proof. Simple geometrical analysis shows that the radius r is given by the
conditions that the vector (τ〈r〉 − τ0〈r0〉, 0, 0, 〈τ〉r − 〈τ0〉r0) is lightlike and
〈τ〉r − 〈τ0〉r0 > 0, that is

ε(τ〈r〉 − τ0〈r0〉) = 〈τ〉r − 〈τ0〉r0 > 0 ,

where ε = −1 (resp. ε = +1) for past (resp. future). We set τ0 = sinh(T0),
r0 = sinh(R0), τ = sinh(T ), r = sinh(R), where R0 > 0, R > 0. Then the
equality above is easily transformed to sinh(R − εT ) = sinh(R0 − εT0), so
R − R0 = ε(T − T0). Treating R0, T and (T − T0) as independent, we put
R = R0 + ε(T − T0) and T0 = T − (T − T0) in the inequality, which is then
transformed to ε sinh(T − T0) cosh(R0 + εT ) > 0. Thus ε = sgn(T − T0) and
R = R0 + |T − T0|. Substituting this in r = sinh(R) and 〈r〉 = cosh(R), one
obtains (101). Moreover,

〈r〉 ≤ cosh(R0) exp |T − T0| =

{
〈r0〉 exp(T ) exp(−T0) , T ≥ T0 ,

〈r0〉 exp(T0) exp(−T ) , T ≤ T0 ,

which gives (102). �

Finally, we state the following inequalities needed for the estimation of
electromagnetic fields, discussed in Appendix H.

Lemma 16. For x = (τ〈z〉, 〈τ〉z) the following holds:

|x0| + |x| + 1 ≥ 〈τ〉〈z〉 ,

∣∣|x0| − |x|∣∣+ 1 ≥ 〈τ〉2 + 〈z〉2
2〈τ〉〈z〉 .
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Proof. The first inequality follows from

(|τ |〈z〉 + 〈τ〉|z| + 1)2 ≥ |τ |2〈z〉2 + 〈τ〉2|z|2 + 1 ≥ 〈τ〉2〈z〉2 ,

and the second from
∣∣|τ |〈z〉 − 〈τ〉|z|∣∣+ 1 =

|τ2〈z〉2 − 〈τ〉2|z|2|
|τ |〈z〉 + 〈τ〉|z| + 1 ≥ |〈τ〉2 − 〈z〉2| + 2〈τ〉〈z〉

2〈τ〉〈z〉

≥ [(〈τ〉2 − 〈z〉2)2 + 4〈τ〉2〈z〉2] 1
2

2〈τ〉〈z〉 =
〈τ〉2 + 〈z〉2

2〈τ〉〈z〉 .

�

Appendix E. Free Dirac Equation: The Fourier Representation

Here, mainly to fix notation, we write down the integral Fourier form of the
solution of the free Dirac equation for a given initial condition.

Let H denote the unit hyperboloid v2 = 1, v0 > 0, with the Lorentz-
invariant measure dμ(v) = d3v/v0. Moreover, introduce the projection opera-
tors in C

4 defined by P±(v) = 1
2 (1 ± v · γ). For f ∈ S(H, C4) the function

ψ(x) = (2π)− 3
2

∫ [
e−ix·vP+(v) − eix·vP−(v)

]
f(v)dμ(v)

is a smooth solution of the Dirac equation with the initial condition

ψ(0,x) = (2π)− 3
2

∫ [
eix·vP+(v) − e−ix·vP−(v)

]
f(v)dμ(v)

in the space S(R3, C4) (where x ·v is the Euclidean product of the space parts
of x and v). The transformation

S(H, C4) � f �→ Ff = ψ(0, .) ∈ S(R3, C4)

extends to an isometric transformation from the Hilbert space L2
γ(H) of four-

spinor functions with the scalar product (f1, f2) =
∫

f1(v)γ · vf2(v)dμ(v) into
H = C

4 ⊗ L2(R3). For ψ(0,x) ∈ S(R3, C4) the inverse transformation is given
by

f(v) = (2π)− 3
2

∫ [
e−iv·xP+(v) + eiv·xP−(v)

]
γ0ψ(0,x)d3x ,

which again extends to an isometric transformation on C
4⊗L2(R3). Therefore,

F : L2
γ(H) �→ H

is a unitary transformation, and again F−1 : S(R3, C4) �→ S(H, C4). Thus, for
ϕ ∈ S(R3, C4) the solution of the free Dirac equation with the initial condition
ψ(0,x) = ϕ(x) is represented by

ψ(x) = (2π)− 3
2

∫ [
e−ix·vP+(v) − eix·vP−(v)

]
[F−1ϕ](v)dμ(v) . (103)
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Appendix F. Solutions of the Wave Equation

In this and the following two sections we shall use the language more exten-
sively explained in [10], where also bibliographic sources are indicated. More-
over, we shall repeatedly make use of the following estimates, which we write
down here for the convenience of the reader, and whose proof may be found
in [8], Appendix B.

Lemma 17. Let a > 0, b ≥ 0, c > 0 and α > 0. Then
∫ c

0

(a + bu)−αdu <

{ α
α−1

c
aα−1(a+bc) , α > 1 ,

1
1−α

c
(a+bc)α , α < 1 .

(104)

A large class of the solutions of the homogeneous wave equation may be
represented in the following form

ϕ(x) = − 1
2π

∫
Ḟ (x · l, l)d2l , (105)

where Ḟ (s, l) = ∂sF (s, l), with F (s, l) a homogeneous of degree −1 function of
a real variable s and null (light-like), future-pointing vectors l. Consequently,
Ḟ (s, l) is homogeneous of degree −2, and at this stage this function is all one
needs for the above representation, but later the function F will play a role.
For Ḟ in the class C0 the field ϕ is in C0 and satisfies the wave equation in
the distributional sense. For F in the class C3, the field is in the class C2

and the wave equation is satisfied in the direct sense. The measure d2l is the
Lorentz invariant measure on the set of null directions, applicable to functions
of l, homogeneous of degree −2. If f(l) is such function, and (e0, . . . , e3) is any
Minkowski basis, then ∫

f(l)d2l =
∫

f(k)dΩ(k) ,

where k = l/l0, dΩ(k) is the spherical angle measure in this coordinate sys-
tem, and the value of this integral does not depend on the choice of basis.
The operators of intrinsic differentiation in the cone are given by
Lab = la(∂/∂lb) − lb(∂/∂la), and satisfy∫

Labf(l)d2l = 0.

Let Za(l) be a vector function, such that l · Z(l) = 0. If one extends Z(l) to
the neighborhood of the cone with the preservation of this property, then

L0a[Za(l)/l0] = ∂ · Z(l) ,

independently of any particular extension, and where after differentiation the
rhs is restricted to the cone. Therefore, the rhs is well defined and independent
of the choice of basis. Moreover, let in addition Z(l) be homogeneous of degree
−1, then ∫

∂ · Z(l) d2l = 0 . (106)
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We shall use the coordinates (u, φ) defined by

l = l0k , k = e0 + e3u +
√

1 − u2R(φ) , R(φ) = e1 cos φ + e2 sin φ . (107)

We note for later use that

R̈(φ) ≡ ∂2
φR(φ) = −R(φ) . (108)

We choose e3 = x/|x|, and then

ϕ(x) = − 1
2π

∫
F (x0 − |x|u, k(u, φ))du dφ . (109)

The following theorem gives the properties of decay in spacetime of the
solutions (105). In the estimates (110), (112), (113) below, and other of similar
type to appear later, one should understand that vectors l are scaled to l0 = 1.
The form of such estimates does not depend on the choice of a basis, only the
bounding constants change. Recall that θ is the Heaviside step function.

Theorem 18. Let ϕ(x) be represented by formula (105), with Ḟ (s, l) and F (s, l)
as described there, and let ε ∈ (0, 1).

(i) If Ḟ (s, l) is of class C0, and for some n ∈ {0, 1, . . .} is bounded by

|Ḟ (s, l)| ≤ const
(|s| + 1)n+ε

, (110)

then ϕ(x) is a C0 field and the following estimates are satisfied

|ϕ(x)| ≤ const

⎧⎪⎪⎨
⎪⎪⎩

1
(|x| + 1)ε

, n = 0 ,

1
|x| + 1

[
θ(x2)

(|x0| − |x| + 1)n−1+ε
+ θ(−x2)

]
, n ≥ 1 .

(111)

(ii) If F (s, l) is of class C1, and for some n ∈ {1, 2, . . .} is bounded by

|LαF (s, l)| ≤ const
(|s| + 1)n−1+ε

, |α| ≤ 1 , (112)

then ϕ(x) is a C0 field and the following stronger estimates hold

|ϕ(x)| ≤ const
(|x| + 1)(||x0| − |x|| + 1)ε

, ε < 1
2 , n = 1 ,

|ϕ(x)| ≤ const
|x| + 1

[
1

(||x0| − |x|| + 1)n−1+ε
+

θ(−x2)
(|x| + 1)

1
2 (|x| − |x0| + 1)

1
2

]
,

n ≥ 2 .

(iii) If F (s, l) is of class C2, and for some n ∈ {1, 2, . . .} is bounded by

|LαF (s, l)| ≤ const
(|s| + 1)n−1+ε

, |α| ≤ 2 , (113)
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then ϕ(x) is a C1 field and the following stronger estimates hold

|ϕ(x)| ≤

⎧⎪⎪⎨
⎪⎪⎩

const
(|x| + 1)(||x0| − |x|| + 1)ε

, n = 1 ,

const
|x| + 1

[
1

(||x0| − |x|| + 1)n−1+ε
+

θ(−x2)
|x| + 1

]
, n ≥ 2 .

Note that due to the properties of homogeneity of Ḟ and F , the bound
(110) is satisfied in all three cases (with n ≥ 2 in (ii) and n ≥ 1 in (iii)). Case
(ii) for n = 1 could also be treated, but the result is more involved, and we do
not need it anyway.

Proof. (i) Using the bound (110) and the integral (109), after the change of
variables σ = sgn(x0)(x0 − |x|u), we obtain

|ϕ(x)| ≤ const
|x|

|x0|+|x|∫

|x0|−|x|

dσ

(|σ| + 1)n+ε

≤ const
|x|

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 2|x|

0

dξ

(ξ + |x0| − |x| + 1)n+ε
, x2 ≥ 0 ,

∫ |x0|+|x|

0

dσ

(σ + 1)n+ε
, x2 ≤ 0 .

Lemma 17 gives now the bounds (111).
(ii) and (iii) These cases give more restrictive bounds only in the region

x2 ≤ 0, |x| ≥ 1, in which |x| ≥ const(|x| + 1). We use the equalities (114) and
(115), respectively, of Lemma 19 below. To shorten notation, we denote the
exponent in (112) and (113) by q = n − 1 + ε. For x2 ≤ 0 we then have

|ϕ(x)| ≤ const
|x|

[
1

(|x| − |x0| + 1)q
+

1∫

−1

{
(1 − u2)− 1

2

1

}
du

(||x0| + |x|u| + 1)q

]
,

where (1−u2)− 1
2 applies in case (ii) and 1 in case (iii). Integration in case (iii)

is done as in case (i) and the thesis of this case follows. The integral in case
(ii), after the substitution 1 − u = t, is bounded by 2 times the integral

∫ 1

0

dt

f(a, b, t)
, f(a, b, t) = t

1
2 (|bt − a| + 1)q ,

0 ≤ a = |x| − |x0| ≤ |x| = b ≥ const(|x| + 1) .

For t ∈ [0, a/(2b)] we have f(a, b, t) ≥ const t
1
2 (a + 1)q, so

∫ a
2b

0

dt

f(a, b, t)
≤ const b− 1

2 (a + 1)
1
2−q

For t ∈ [a/(2b), 2a/b] we have f(a, b, t) ≥ const a
1
2 b− 1

2 (|bt − a| + 1)q. The
integral is now split into intervals [a/(2b), a/b] and [a/b, 2a/b] and evaluated
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with the use of Lemma 17. This gives∫ 2a
b

a
2b

dt

f(a, b, t)
≤ const b− 1

2 ×
{

(a + 1)
1
2−q , q < 1

(a + 1)− 1
2 , q > 1 .

Finally, if 2a/b ≤ 1, then for t ∈ [2a/b, 1] we have f(a, b, 2a/b + s) ≥
const s

1
2 (a + 1 + bs)q, and by changing further the integration variable to

r = b(a + 1)−1s one finds
∫ 1

2a
b

dt

f(a, b, t)
≤ const ×

{
b−q , q < 1

2 ,

b− 1
2 (a + 1)

1
2−q , q > 1

2 .

Substituting the values of a and b and noting that b− 1
2 (a + 1)

1
2−q ≤ const b−q

for q < 1
2 , b ≥ 1, one obtains the thesis. �

Lemma 19. Let F (s, l) be homogeneous of degree −1 and choose e3 in (107)
as e3 = x/|x|. Then the following identities hold

1
2π

∫
Ḟ (x · l, l)d2l +

1
|x|
[
F (x0 − |x|, (1,x/|x|)) − F (x0 + |x|, (1,−x/|x|))]

=
1

2π|x|
∫

(l0)−1
[
L′

03 − u√
1 − u2

RiL′
0i

]
F (x · l, l)d2l (114)

=
1

2π|x|
∫

(l0)−1
[
L′

03 − uṘiṘjL′
0iL

′
0j

]
F (x · l, l)d2l , (115)

where prime at L′
ab indicates that these operators act only on the second argu-

ment in F (x · l, l). The equalities (114) and (115) hold for F of class C1 and
C2, respectively.

Proof. Using the form (107), we find

∂u =
1
l0

∂la

∂u
L0a = L03 − u√

1 − u2
RiL0i .

We apply this identity to F (s, l), then set s = x · l and divide by l0. As l0 does
not depend on u, the result may be written as

∂u

[
(l0)−1F (x · l, l)

]
+ |x|Ḟ (x · l, l) = (l0)−1

[
L′

03 − u√
1 − u2

RiL′
0i

]
F (x · l, l) ,

(primes at L′ as in the thesis). We integrate this identity over l’s. The first
term on the lhs gives∫

∂uF
(
x0 − |x|u, k(u, φ)

)
du dφ

= 2π
[
F
(
x0 − |x|, (1,x/|x|))− F

(
x0 + |x|, (1,−x/|x|))] .

Dividing by 2π|x| and rearranging the terms, we obtain equality (114). Next,
using (108) we transform the second term of the integrand as

− u

l0
√

1 − u2
RiL′

0iF (x · l, l) = ∂φ

[ u

l0
√

1 − u2
ṘiL′

0iF (x · l, l)
]

− u

l0
√

1 − u2
Ṙi∂′

φ

[
L′

0iF (x · l, l)
]
,



Vol. 22 (2021) Infrared Problem vs Gauge Choice S45

where we have taken into account that l0 and x · l do not depend on φ. The
first term on the rhs vanishes when integrated, while in the second term we
use another differential identity:

∂φ =
1
l0

∂la

∂φ
L0a =

√
1 − u2ṘaL0a .

Substituting the result into the integral, we obtain (115). �

Appendix G. Sources

Let ρ(x) be a continuous field on Minkowski space. We formulate two decay
conditions, with some fixed numbers ω > 0 and ε ∈ (0, 1):

(A) |ρ(x)| ≤ const
(|x| + 1)ω

, (116)

(B) |ρ(x)| ≤ const
(|x| + 1)3

[
θ(x2) +

1
(|x| + 1)ε

]
. (117)

We want to consider the existence and decay properties of the advanced and
retarded solutions

ϕret/adv(x) = 4π
∫

Dret/adv(x − y)ρ(y)dy (118)

of the equation
�ϕ = 4πρ ,

and of their difference, the radiation field

ϕrad(x) = ϕret(x) − ϕadv(x) = 4π
∫

D(x − y)ρ(y)dy = − 1
2π

∫
dV (x · l, l)d2l ,

where (see [10])

V (s, l) =
∫

δ(s − x · l)ρ(x)dx .

We use the standard notation

Dret/adv(x) =
1
2π

θ(±x0)δ(x2) ,

D(x) = Dret(x) − Dadv(x) =
1
2π

sgn(x0)δ(x2) .

Lemma 20. (i) If ρ(x) satisfies condition (A) for ω > 2, then ϕadv/ret(x) are
well defined and continuous, and the following bound is satisfied:

|ϕadv(x)| ≤ const
(|x| + 1)ω−2

for x0 ≥ 0 ;

similarly for the retarded solution in the half-space x0 ≤ 0.
(ii) If in addition to (i) ρ(x) is of class C1, and ∇ρ(x) and x · ∇ρ(x) satisfy

condition (A) for ω > 2, then ϕadv/ret(x) are of class C1 and

x · ∇ϕadv/ret(x) =
∫

Dadv/ret(x − y)(y · ∇ + 2)ρ(y) dy . (119)
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(iii) If ρ(x) satisfies condition (A) for ω > 3, or condition (B), then V (s, l)
is well defined and continuous and satisfies the bound

|V (s, l)| ≤ const
(|s| + 1)ω−3

, (120)

where ω = 3 in case of condition (B).
(iv) If in addition to (iii) ρ(x) is of class C1, and ∇ρ(x) and x ·∇ρ(x) satisfy

condition (A) for ω > 3 or condition (B), then V (s, l) is of class C1 and

s∂s

∫
δ(s − x · l)ρ(x) dx =

∫
δ(s − x · l)(x · ∇ + 3)ρ(x) dx . (121)

Proof. (i) The use of the integral formula (118) and the bound (116) gives

|ϕadv(x)| =
∣∣∣∣
∫

ρ(x0 + |z|,x + z)
|z| d3z

∣∣∣∣ ≤ const
∫ ∞

0

I(x0, |x|, r)dr , (122)

where we have denoted r = |z|, and

I(x0, |x|, r) =
∫ 2

0

r du

[1 + (r + x0)2 + (r − |x|)2 + 2|x|ru]
ω
2

with u = cos[�(z,x)] + 1. Using the estimate (104), we find

I(x0, |x|, r) ≤ const r

[1 + (r + x0)2 + (r + |x|)2][1 + (r + x0)2 + (r − |x|)2]ω
2 −1

,

so the integral on the rhs of (122) is well defined, and the continuity of ϕadv(x)
easily follows. Moreover, for x0 ≥ 0 it follows

I(x0, |x|, r) ≤ const r

[1 + x0 + |x| + r]2[1 + r + x0 + |r − |x||]ω−2
,

and then∫ |x|

0

I(x0, |x|, r)dr ≤ const
[1 + x0 + |x|]ω

∫ |x|

0

rdr ≤ const
(|x| + 1)ω−2

,

and (with σ = r − |x|)∫ ∞

|x|
I(x0, |x|, r)dr ≤ const

∫ ∞

0

dσ

(σ + x0 + |x| + 1)ω−1
≤ const

(|x| + 1)ω−2
,

which ends the proof of (i).
(ii) We integrate the identity

x · ∇xρ(x0 + |z|,x + z)
|z| =

(y · ∇y + 2)ρ(y)|y=(x0+|z|,x+z)

|z|
− ∂

∂zi

(ziρ(x0 + |z|,x + z)
|z|

)

over |z| ≤ R and transform the integral of the second term on the rhs to a
surface integral. This surface contribution is bounded by RI(x0, |x|, R), so it
vanishes in the limit R → ∞. Formula (119) follows.
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(iii) We choose the space basis in which e3 = l, introduce new variables
α = x0 −x3, β = x0 +x3, and denote x⊥ = x1e1 +x2e2. Conditions (116) and
(117) may be then written as

(A) |ρ(x)| ≤ const
(1 + α2 + β2 + |x⊥|2)ω

2
,

(B) |ρ(x)| ≤ const θ(αβ − |x⊥|2)
(1 + α2 + β2 + |x⊥|2) 3

2
+

const

(1 + α2 + β2 + |x⊥|2) 3+ε
2

,

and V takes the form V (s, l) = 1
2

∫
ρ(α = s, β,x⊥)dβd2x⊥. For the case (A)

with ω > 3 we then have

|V (s, l)| ≤ const
∫

dβd2x⊥
(1 + s2 + β2 + |x⊥|2)ω

2

≤ const
∫ ∞

0

r2dr

(1 + |s| + r)ω
=

const
(1 + |s|)ω−3

.

For the case (B) it is now sufficient to restrict integral to the region x2 ≥ 0,
which leads to the estimation of the integral

∫
K(β)dβ, with

K(β) =
∫

θ(sβ − |x⊥|2)d2x⊥
(1 + s2 + β2 + |x⊥|2) 3

2
= const θ(sβ)

∫ sβ

0

dξ

(1 + s2 + β2 + ξ)
3
2

≤ const
θ(sβ)sβ

(1 + s2 + β2)
3
2

≤ const
θ(sβ)|s|

(1 + |s| + |β|)2 .

This leads to ∫
K(β)dβ ≤ const |s|

∫ ∞

0

dσ

(1 + |s| + σ)2
≤ const .

(iv) We integrate the identity

s∂sρ(s, β,x⊥) = (x · ∇ + 3)ρ(x)|α=s

− ∂β

(
βρ(s, β,x⊥)

)−
2∑

i=1

∂xi

(
xiρ(s, β,x⊥)

)

over the region |x⊥| ≤ R, |β| ≤ B. The contribution of the surface terms is
bounded by

∑
ε=±

B

∫
R2

|ρ(s,±B,x⊥)|d2x⊥ + R2

∫
R×S1

|ρ(s, β,Rn)|dβdΩ(n) , (123)

where dΩ(n) is the angle measure on the unit circle S1. Condition (A) with
ω > 3 is stronger than condition (B), so it is sufficient to consider the latter,
in the form given in the proof of (iii) above. Then, the first contribution in
(123) is bounded by

const
[ ∫ |s|B

0

Bdζ

(1 + s2 + B2 + ζ)
3
2

+
∫ ∞

0

Bdζ

(1 + s2 + B2 + ζ)
3+ε
2

]

≤ const |s|B2

(1 + |s| + B)3
+

const B

(1 + |s| + B)1+ε
,
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where we have substituted |x⊥|2 = ζ. The second term in (123) is bounded by

const
[ ∫ ∞

R2/|s|

R2dβ

(1 + |s| + R + β)3
+
∫ ∞

0

R2dβ

(1 + |s| + R + β)3+ε

]

≤ const R2

(1 + |s| + R + R2/|s|)2 +
const R2

(1 + |s| + R)2+ε
.

All these bounds vanish in the limit B,R → ∞, which leads to the iden-
tity (121). �

Appendix H. Electromagnetic Fields and Lorenz Potentials

We apply now the results of the discussion of the last two sections to the case
of electromagnetic fields. We start with the Lorenz potentials of free fields,
which we assume to have been produced as radiation fields by some conserved
currents.

Theorem 21. Let J(x) satisfy Assumption III in Sect. 7. Then, the Lorenz
potential Arad(x) of the radiated field of this current and the scalar field
Crad(x) = x · Arad(x) satisfy the following decay estimates:

|Arad(x)|
|∇Crad(x)|

}
≤ const

|x| + 1

[ 1
(||x0| − |x|| + 1)ε

+ θ(−x2)
]
, (124)

|∇Arad(x)| ≤ const
|x| + 1

[ 1
(||x0| − |x|| + 1)1+ε

+
θ(−x2)
|x| + 1

]
, (125)

|∇∇Crad(x)| ≤ const
|x| + 1

[
1

(||x0| − |x|| + 1)1+ε
+

θ(−x2)
(|x| + 1)

1
2 (|x| − |x0| + 1)

1
2

]
,

(126)

|∇∇Arad(x)| ≤ const
|x| + 1

, (127)

|(x · ∇ + 1)Arad(x)|
|∇(x · ∇Crad)(x)|

}
≤ const

(|x| + 1)(||x0| − |x|| + 1)ε
, (128)

|(x · ∇)kCrad(x)| ≤ const
(|x| + 1)ε

, k = 1, 2 . (129)

The estimate (127) could be refined, but this is not needed for our purposes.

Proof. It follows from the assumption (70) and Lemma 20 (iii) that the func-
tion

V (s, l) =
∫

δ(s − x · l)J(x)dx =
∫

J
(s + x · l

l0
,x
)d3x

l0

is of class C3. The use of estimate (71), relation (121) and the estimates of the
form (120) shows that

|∂k
s LαV̇ (s, l)| ≤ const

(|s| + 1)k+1+ε
, k + |α| ≤ 2 .
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From the representation

Arad(x) = − 1
2π

∫
V̇ (x · l, l)d2l ,

by the use of the calculation

∂ · V (x · l, l) = x · V̇ (x · l, l) + ∂′ · V (x · l, l)

and the integral identity (106), we also find

Crad(x) =
1
2π

∫
∂′ · V (x · l, l)d2l ,

∇aCrad(x) =
1
2π

∫
la∂′ · V̇ (x · l, l)d2l .

(Similarly as L′
ab in Lemma 19 in Appendix F, ∂′ acts only on the second

argument.) All estimates now follow from the appropriate statements of The-
orem 18: estimates (124) from (i) with n = 1, estimate (125) from (iii) for
n = 2, estimate (126) from (ii) for n = 2, estimate (127) from (i) with n = 1.
Next, with W (s, l) = sV̇ (s, l), we have

(x · ∇ + 1)Arad(x) = − 1
2π

∫
Ẇ (x · l, l)d2l ,

∇a(x · ∇Crad(x)) =
1
2π

∫
la∂′ · Ẇ (x · l, l)d2l ,

so the estimates (128) follow from Theorem 18 (ii) with n = 1. Finally, with
U(s, l) = sẆ (s, l), we have

x · ∇Crad(x) =
1
2π

∫
∂′ · W (x · l, l)d2l ,

(x · ∇)2Crad(x) =
1
2π

∫
∂′ · U(x · l, l)d2l ,

so the estimates (129) follow from Theorem 18 (i) for n = 0. �

Free in/out fields of the type discussed above are now augmented by
ret/adv fields to produce the total electromagnetic field.

Theorem 22. Let the electromagnetic potential A satisfy Assumption III in
Sect. 7. Then, the following estimates are satisfied:

|∇αA(x)|
|∇C(x)|

}
≤ const

|x| + 1
≤ const

〈τ〉〈z〉 , |α| = 0, 2 ,

|∇A(x)| ≤ const

|x| + 1

[ 1

(||x0| − |x|| + 1)1+ε
+

1

|x| + 1

]

≤ const

〈τ〉〈z〉
[

1

〈τ〉〈z〉 +
( 〈τ〉〈z〉

〈τ〉2 + 〈z〉2
)1+ε

]
, (130)

|∇∇C(x)| ≤ const

|x| + 1

[ 1

(||x0| − |x|| + 1)1+ε
+

1

(|x| + 1)
1
2 (||x0| − |x|| + 1)

1
2

]

≤ const

〈τ〉〈z〉
[

1

〈τ〉 1
2 〈z〉 1

2

( 〈τ〉〈z〉
〈τ〉2 + 〈z〉2

) 1
2

+
( 〈τ〉〈z〉

〈τ〉2 + 〈z〉2
)1+ε

]
,

(131)
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|(x · ∇ + 1)A(x)|
|∇(x · ∇C(x))|

}
≤ const

(|x| + 1)(||x0| − |x|| + 1)ε

≤ const

〈τ〉〈z〉
( 〈τ〉〈z〉

〈τ〉2 + 〈z〉2
)ε

, (132)

|(x · ∇)kC(x)| ≤ const

(|x| + 1)ε
≤ const

〈τ〉ε〈z〉ε
, k = 1, 2 ,

|xaFab(x)| ≤ const

|x| + 1
≤ const

〈τ〉〈z〉 .

Proof. To prove the estimates on A and C in the half-space x0 ≥ 0 it is
sufficient to add the estimates of Aout and Cout, as given by Theorem 21,
to the estimates of Aadv and Cadv following from the assumptions on J and
Lemma 20 (i) and (ii). For x0 ≥ 0 one has

|∇αAadv(x)| ≤ const
(|x| + 1)|α|+1

, |α| ≤ 3 ,

|∇α(x · ∇ + 1)Aadv(x)| =
∣∣∣∣
∫

Dadv(x − y)(y · ∇ + 3 + |α|)∇αJ(y)dy

∣∣∣∣
≤ const

(|x| + 1)1+|α|+ε
, |α| ≤ 1 .

Moreover,

x · ∇Cadv(x) = xc(x · ∇ + 1)Aadv c(x) ,

(x · ∇)2Cadv(x) = x · ∇Cadv(x) + xcxd∇d(x · ∇ + 1)Aadv c(x) ,

xaFab(x) = (x · ∇ + 1)Ab(x) − ∇bC(x) .

and all the estimates in the x-form now easily follow. Similarly for x0 ≤ 0 with
the use of Ain and Aret. The (τ, z)-form of the estimates is the consequence of
Lemma 16. �

Appendix I. Special Gauge in Special Variables

We consider now our field in the special gauge (73), which we write in the form

A = A − ∇S , S = log(〈τ〉〈z〉)C , C(x) = x · A .

We need the components of this potential, and various expressions involving
them, in our special coordinates system. For the sake of this section we intro-
duce the abbreviation

�τz = log(〈τ〉〈z〉) .

Theorem 23. The special gauge potential Âμ(τ, z) is a C2 field, and the fol-
lowing estimates are satisfied:

|F̂iτ | ≤ const
〈τ〉〈z〉 , |ziF̂iτ | ≤ const

〈τ〉 , |F̂ij | ≤ const , |ziF̂ij | ≤ const
〈z〉 ,

|Âτ | ≤ const
[
1 + log〈τ〉

〈τ〉1+ε
+

log〈z〉
〈τ〉3

]
,
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|Âi| ≤ const
1 + log(〈τ〉〈z〉)

〈z〉 , |ziÂi| ≤ const
1 + log(〈τ〉〈z〉)

〈z〉ε
,

|∂iÂτ | + |zi∂iÂτ | ≤ const
1 + log〈τ〉

〈τ〉1+ε
,

|∂τ Âi| + |zi∂τ Âi| ≤ const
〈τ〉 ,

|∂iÂj | ≤ const(1 + log〈τ〉) ,

|zi∂iÂj | + |zi∂jÂi| ≤ const
1 + log(〈τ〉〈z〉)

〈z〉 ,

|zizj∂iÂj | ≤ const
1 + log(〈τ〉〈z〉)

〈z〉ε
.

The proof below allows formulation of more restrictive, but at the same
time more sophisticated and less transparent estimates. These given above are
sufficient for our purposes.

Proof. According to Assumption III the potential A is of class C3, so A is of
class C2. For the calculation of the components and derivatives of A and C,
we use the following form of the coordinates change:

∂τx =
τ

〈τ〉2 x +
〈z〉
〈τ〉2 (1, 0) , ∂ix =

(
τ

zi

〈z〉 , 〈τ〉δi,.
)

,

which leads further to additional identities

zi∂ix = x − τ

〈z〉 (1, 0) ,

∂i∂τx =
τ

〈τ〉2 ∂ix +
zi

〈τ〉2〈z〉 (1, 0) , ∂i∂jx =
τ

〈z〉dij(1, 0) ,

where dij is given by

dij = δij − zizj

〈z〉2 , (133)

and some of its properties are

∂i

( zj

〈z〉
)

=
dij

〈z〉 , zidij =
zj

〈z〉2 ,

∂kdij =
−1
〈z〉2 (zidjk + zjdik) , zi∂id

jk = −2
zjzk

〈z〉4 .

A straightforward calculation now gives

F̂iτ = (∂ix
a)(∂τxb)Fab = (∂ix

a)
( τ

〈τ〉2 Fabx
b +

〈z〉
〈τ〉2 Fa0

)
,

ziF̂iτ =
( 〈z〉

〈τ〉2 +
τ2

〈τ〉2〈z〉
)
xaFa0 ,

F̂ij = (∂ix
a)(∂jx

b)Fab ,

ziF̂ij =
(
xaFab − τ

〈z〉F0b

)
(∂jx

b) .
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Âτ =
〈z〉
〈τ〉2 A0 − �τz∂τC ,

Âi = 〈τ〉 dijAj − �τz∂iC ,

ziÂi =
〈τ〉
〈z〉2 ziAi − �τzz

i∂iC

∂iÂτ =
zi

〈τ〉2〈z〉A0 +
〈z〉
〈τ〉2 ∂iA0 − zi

〈z〉2 ∂τC − �τz∂i∂τC ,

zi∂iÂτ =
z2

〈τ〉2〈z〉A0 +
〈z〉
〈τ〉2 zi∂iA0 − |z|2

〈z〉2 ∂τC − �τzz
i∂i∂τC ,

∂iÂj = 〈τ〉[(∂id
jk)Ak + djk∂iAk

]− zi

〈z〉2 ∂jC − �τz∂i∂jC ,

zi∂iÂj = 〈τ〉
[

− 2
zjzk

〈z〉4 Ak + djkzi∂iAk

]
− |z|2

〈z〉2 ∂jC − �τzz
i∂i∂jC ,

zizj∂iÂj =
〈τ〉
〈z〉2

[
− 2

|z|2
〈z〉2 zkAk + zizk∂iAk

]
− |z|2

〈z〉2 zj∂jC − �τzz
izj∂i∂jC ,

For the estimation of all these field and potential expressions, we use
Theorem 22. We note that

|∂ix| ≤ const〈τ〉 , |∂τx| ≤ const〈z〉 , |∂α
z dij | ≤ const

〈z〉|α| , |α| ≤ 2 .

Moreover, when using the estimates (130), (131) and (132) we shall make use
of the obvious inequalities

〈τ〉〈z〉
〈τ〉2 + 〈z〉2 ≤ min

{
1
2
,
〈τ〉
〈z〉 ,

〈z〉
〈τ〉
}

≤
⎧⎨
⎩

〈τ〉〈z〉−1 ,
〈τ〉−1〈z〉 ,
2−1

(the choice of one of them will be dictated by a particular need). In this way
we find

|F̂iτ | ≤ const
(
|Fabx

b| +
〈z〉
〈τ〉 |Fa0|

)
≤ const

〈τ〉〈z〉 ,

|ziF̂iτ | ≤ const
( 〈z〉

〈τ〉2 +
1

〈z〉
)
|xaFa0| ≤ const

〈τ〉
(

1
〈τ〉2 +

1
〈z〉2

)
,

|F̂ij | ≤ const〈τ〉2|Fab| ≤ const ,

|ziF̂ij | ≤ const
(
〈τ〉|xaFab| +

〈τ〉2
〈z〉 |F0b|

)
≤ const

〈z〉 ,

which exhausts the claims on the field F .
The estimation of the potential expressions is more tedious, and we con-

sider it in steps. In the first step we estimate the τ - and z-dependent coeffi-
cients, which gives

|Âτ | ≤ 〈z〉
〈τ〉2 |A0| + �τz|∂τC| ,
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|Âi| ≤ const〈τ〉|Aj | + �τz|∂iC| , |ziÂi| ≤ const
〈τ〉
〈z〉 |Ai| + �τz|zi∂iC|

|∂iÂτ | ≤ 1
〈τ〉2

(|A0| + 〈z〉|∂iA0|
)

+
1

〈z〉 |∂τC| + �τz|∂i∂τC| ,

|zi∂iÂτ | ≤ 〈z〉
〈τ〉2

(|A0| + |zi∂iA0|
)

+ |∂τC| + �τz|zi∂i∂τC| ,

|∂iÂj | ≤ const〈τ〉
( 1

〈z〉 |Ak| + |∂iAk|
)

+
1

〈z〉 |∂jC| + �τz|∂i∂jC| ,

|zi∂iÂj | ≤ const〈τ〉
( 1

〈z〉2 |Ak| + |zi∂iAk|
)

+ |∂jC| + �τz|zi∂i∂jC| ,

|zizj∂iÂj | ≤ const
〈τ〉
〈z〉 (|Ak| + |zi∂iAk|) + |zj∂jC| + �τz|zizj∂i∂jC| ,

Next, we evaluate the A- and C-terms:

∂iAb = (∂ix
a)∇aAb , zi∂iAb = x · ∇Ab − τ

〈z〉∇0Ab ,

∂i∂jAc = (∂ix
a)(∂jx

b)∇a∇bAc +
τ

〈z〉dij∇0Ac

(the latter term is not needed for the present proof, but its estimate given
below is used in the proof of Theorem 9 (iii) (b)),

∂τC =
τ

〈τ〉2 x · ∇C +
〈z〉
〈τ〉2 ∇0C ,

∂iC = (∂ix
a)∇aC , zi∂iC = x · ∇C − τ

〈z〉∇0C ,

∂i∂τC = (∂ix
a)
[ τ

〈τ〉2 ∇a(x · ∇C) +
〈z〉
〈τ〉2 ∇a∇0C

]
+

zi

〈τ〉2〈z〉∇0C ,

zi∂i∂τC =
τ

〈τ〉2
[
(x · ∇)2C − ∇2

0C
]

+
[ 〈z〉
〈τ〉2 − τ2

〈τ〉2〈z〉
]
∇0(x · ∇C)

− 1
〈τ〉2〈z〉∇0C ,

∂i∂jC = (∂ix
a)(∂jx

b)∇a∇bC +
τ

〈z〉dij∇0C ,

zi∂i∂jC = (∂jx
a)
[
∇a(x · ∇ − 1)C − τ

〈z〉∇a∇0C
]

+
τzj

〈z〉3 ∇0C ,

zizj∂i∂jC = (x · ∇ − 1)x · ∇C − 2
τ

〈z〉∇0(x · ∇C) +
τ2

〈z〉2 ∇2
0C

+
τ

〈z〉
(
2 +

|z|2
〈z〉2

)
∇0C .

Now we can estimate the A- and C-terms:

|Aa| ≤ const
〈τ〉〈z〉 , |∂iAb| ≤ const min

{
1

〈z〉 ,
1

〈τ〉
}

,
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|zi∂iAb| ≤ const
〈τ〉〈z〉 , |∂i∂jAb| ≤ const

〈τ〉
〈z〉 ,

|∂τC| ≤ const
( 1

〈τ〉1+ε〈z〉ε
+

1
〈τ〉3

)
,

|∂iC| ≤ const
〈z〉 , |zi∂iC| ≤ const

〈z〉ε
,

|∂i∂τC| ≤ const
〈τ〉1+ε〈z〉1−ε

, |zi∂i∂τC| ≤ const
〈τ〉1+ε〈z〉ε

,

|∂i∂jC| ≤ const min
{

1,
〈τ〉
〈z〉
}

,

|zi∂i∂jC| ≤ const
〈z〉 , |zizj∂i∂jC| ≤ const

〈z〉ε
.

Substituting these estimates in the bounds on the potential expressions
obtained earlier in the proof, one arrives at the estimates given for them in
the thesis. The only less obvious estimation on the way is that of the term

log(〈τ〉〈z〉)min
{

1,
〈τ〉
〈z〉
}

appearing in |∂iÂj |. For 〈z〉 ≤ 〈τ〉 this is bounded by 2 log〈τ〉, while for 〈z〉 ≥
〈τ〉 we write log(〈τ〉〈z〉) = 2 log〈τ〉 + log(〈z〉/〈τ〉) and estimate the term by

2 log〈τ〉 +
( 〈z〉

〈τ〉
)−1

log
( 〈z〉

〈τ〉
)

≤ const(1 + log〈τ〉) .

Finally, we write

|∂τ Âi| ≤ |∂iÂτ | + |F̂iτ | , |zi∂τ Âi| ≤ |zi∂iÂτ | + |ziF̂iτ |
|zj∂iÂj | ≤ |zj∂jÂi| + |zjF̂ij |

to obtain the last missing estimates. �
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