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Ideal simplices and double-simplices, their
non-orientable hyperbolic manifolds, cone
manifolds and orbifolds with Dehn type
surgeries and graphic analysis

E. Molnár, I. Prok, and J. Szirmai

To Memory of Professor Gyula (Julius) Strommer on the 100th Anniversary of His Birth

Abstract. In connection with our works in Molnár (On isometries of space
forms. Colloquia Math Soc János Bolyai 56 (1989). Differential geome-
try and its applications, Eger (Hungary), North-Holland Co., Amster-
dam, 1992), Molnár (Acta Math Hung 59(1–2):175–216, 1992), Molnár
(Beiträge zur Algebra und Geometrie 38/2:261–288, 1997) and Molnár
et al. (in: Prékopa, Molnár (eds) Non-Euclidean geometries, János Bolyai
memorial volume mathematics and its applications, Springer, Berlin,
2006), Molnár et al. (Symmetry Cult Sci 22(3–4):435–459, 2011) our
computer program (Prok in Period Polytech Ser Mech Eng 36(3–4):299–
316, 1992) found 5079 equivariance classes for combinatorial face pair-
ings of the double-simplex. From this list we have chosen those 7 classes
which can form charts for hyperbolic manifolds by double-simplices with
ideal vertices. In such a way we have obtained the orientable manifold
of Thurston (The geometry and topology of 3-manifolds (Lecture notes),
Princeton University, Princeton, 1978), that of Fomenko–Matveev–Weeks
(Fomenko and Matveev in Uspehi Mat Nauk 43:5–22, 1988; Weeks in
Hyperbolic structures on three-manifolds. Ph.D. dissertation, Princeton,

1985) and a nonorientable manifold Mc2 with double simplex ˜D1, seem-
ingly known by Adams (J Lond Math Soc (2) 38:555–565, 1988), Adams
and Sherman (Discret Comput Geom 6:135–153, 1991), Francis (Three-
manifolds obtainable from two and three tetrahedra. Master Thesis,
William College, 1987) as a 2-cusped one. This last one is represented
for us in 5 non-equivariant double-simplex pairings. In this paper we are
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going to determine the possible Dehn type surgeries of Mc2 = ˜D1, lead-
ing to compact hyperbolic cone manifolds and multiple tilings, especially

orbifolds (simple tilings) with new fundamental domain to ˜D1. Except
the starting regular ideal double simplex, we do not get further surgery
manifold. We compute volumes for starting examples and limit cases by
Lobachevsky method. Our procedure will be illustrated by surgeries of
the simpler analogue, the Gieseking manifold (1912) on the base of our
previous work (Molnár et al. in Publ Math Debr, 2020), leading to new
compact cone manifolds and orbifolds as well. Our new graphic analysis
and tables inform you about more details. This paper is partly a survey
discussing as new results on Gieseking manifold and on Mc2 as well, their
cone manifolds and orbifolds which were partly published in Molnár et
al. (Novi Sad J Math 29(3):187–197, 1999) and Molnár et al. (in: Karáné,
Sachs, Schipp (eds) Proceedings of “Internationale Tagung über geome-
trie, algebra und analysis”, Strommer Gyula Nemzeti Emlékkonferencia,
Balatonfüred-Budapest, Hungary, 1999), updated now to Memory of Pro-
fessor Gyula Strommer. Our intention is to illustrate interactions of Alge-
bra, Analysis and Geometry via algorithmic and computational methods
in a classical field of Geometry and of Mathematics, in general.

Mathematics Subject Classification. Primary 57M50; Secondary 57N10.

Keywords. Hyperbolic manifold and cone manifold by fundamental poly-
hedron, Gieseking manifold and its analogue, Dehn type surgery, volume
by Lobachevsky function.

1. Introduction

By pairing and logical gluing the side (d − 1)-faces (i.e. facets) of an affine
d-polytope P, we can obtain a piecewise linear d-manifolds M, where the
fundamental group G of M will be finitely generated by the affine mappings
I(g1, g−1

1 , g2, g−1
2 , . . . ) of paired facets. Thus, the G(I)-equivalence classes

of (d − 2)-faces, called edges, will be induced, and for each edge class e a
(combinatorial) rotational order ν(e) can be prescribed by so-called Poincaré
algorithm [12]. Roughly speaking, we go round any edge e from the edge class
e in a transversal 2-plane of the combinatorial tiling T :=

(

P, G(I)
)

, where
we meet all image edge-domains of the edges in class e, glued together. The
repetition order ν(e) will sign, when we turn back into the original identity
domain of P.

The collection
(

P, G(I, ν(e))
)

will define the universal covering space tiling T
and the fundamental group G up to a presentation. In [12] we characterized
in more details whether the tiling T is realizable in a simply connected homo-
geneous Riemann space. There occur some difficulties already in dimensions
d = 3, see also [13,14].

These will be just illustrated by the Gieseking manifold and its related tiling in
H

3, furthermore by the 3 possible double-simplex manifolds and their exactly
7 nonequivariant tilings in H

3. If the building simplex is regular with ideal
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a b

Figure 1 The Gieseking ideal simplex manifold: a with its
symbolic Schlegel diagram; b the Poincaré half space model
of hyperbolic space H

3

vertices, then we obtain noncompact Riemann manifold M = P̃ = H
3/G with

isometry group G acting in H
3 without fixed point. The orbit space will be

isometric to the identified starting simplex or double-simplex, respectively,
as indicated above. The so-called Dehn-surgery, introduced by Thurston [23],
deforms the ideal simplices to have special angles different from π/3, such that
a starting polyhedron P̃ will be no more fundamental domain of the induced
group G(I) in the original sense. However, H3/G can be compact cone manifold,
especially an orbifold with rotational axis for singular points.

Of course, this cone manifold can also be presented by a compact polyhedron,
then with the same volume as the starting P̃ having ideal vertices. We shall
compute these angular parameters and the volume of P̃ by the classical method
of N. I. Lobachevsky (see e.g. in [24]). All computations are carried out by
Maple 5.0 on the base of the half-space model of the Bolyai–Lobachevsky
hyperbolic space H

3, where the ideal points at infinity are described by C ∪
{∞} =: C∞ as complex projective line [5,11,18,23]. The interior point (w, ζ)
of H3 over w ∈ z1z2 ⊂ C∞ (in a half circle) has the third coordinate ζ > 0
with |z1 − w||w − z2| = ζ2 (see Fig. 1b).

We do not discuss here the important connections with knot theory, e.g. [4,10,
23,25] and other algorithmic, computational method, e.g. [1–3,6,8,20–22,26].

2. Gieseking manifold and its surgeries

We start with the ideal simplex of H3 in the half-space model (Fig. 1), where
its ideal vertices at infinity are represented by

0, 1, z,∞ ∈ C ∪ {∞} =: C∞ (2.1)
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of the complex projective line. This will be an identified ideal simplex S̃ with
face pairing mappings z1 and z2 as “horospherical glide reflections”

z1 : ∞z1 =: [z−1
1 ] → ∞10 =: [z1], i.e.

z1 : u �→ u − 1
z − 1

or (u, 1) �→
(

u, 1
)

(

1 0
−1 z − 1

)

,

z2 : 0z∞ =: [z−1
2 ] → 01z =: [z2], i.e.

z2 : u �→ uz

u − z(1 − z)
or (u, 1) �→ (u, 1)

(

z 1
0 −z(1 − z)

)

.

(2.2)

As usual (e.g. in [24]), we extend the actions of the transformations into the
upper half space by half-circles and half spheres orthogonally to the boundary
plane, represented by C∞. Circles and spheres through the infinity ∞ will
be orthogonal half lines and half planes, respectively. Thus we can describe
the lines and the planes of the model space of H

3, moreover its congruence
transformations.

Going round e.g. the edge −→∞z from the starting identity 1 simplex, we meet
first the face z−1

1 , then follows, on the other side, the image face [z1]z
−1
1

(= z−1
1 ) at the edge (∞1)z

−1
1 in the z−1

1 -image simplex. Then the image
face [z1]z

−1
1 and, on the other side, the face [z1]z

−1
1 z−1

1 (= [z−1
1 ]z

−1
1 ) come

at edge (∞0)z
−1
1 in the z−1

1 z−1
1 -image simplex. Then we meet the image face

[z−1
2 ]z

−1
1 z−1

1 and, on the other side, the image simplex z−1
2 z−1

1 z−1
1 by the con-

jugate mapping z1z1z−1
2 z−1

1 z−1
1 of z−1

2 . Thus [12], we obtain the cycle trans-
formation z2z1z−1

2 z−1
2 z−1

1 z−1
1 and we prescribe the trivial rotation order ν = 1

for the unique edge class containing 6 edges. Finally we get the defining cycle
relation

z1z1z2z2z−1
1 z−1

2 = 1 (2.3)

for the fundamental group of the Gieseking manifold in equivalent form. All
these are in conformity with the fact that the dihedral angles of a regular
ideal simplex are π/3, 6 · (π/3) = 2π will guarantee ball-like neighbourhood of
any point at simplex edges. However, the relation (2.3) with (2.2)—by careful
computations—leads to equivalent equation

|z − 1|2 = |z| (2.4)

with more general ideal simplex, not necessarily the regular one.

Now, we turn to the ideal vertex class forming a cusp (Figs. 1, 2). This will
be represented by gluing; corresponding to images of the 4 vertex domains
to that of ∞. The side face pairing of S̃ induces the pairing of the sides of
a 2-dimensional polygon, denoted by s̃ in Figs. 1 and 2, say, on a horosphere
centred in ∞. This is represented in our half-space model by a Euclidean plane
parallel to the absolute, and it can also be described on the absolute by C∞.

Topologically, the polygon s̃ is a Klein-bottle with fundamental group equi-
variant to the Euclidean crystallographic plane group 4. pg. This group, as the
stabilizer G∞ of ∞, is determined by the starting group G(z1, z2) in formulae
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(2.2). Figure 2 exactly (for k = 3 and k = 2, respectively) shows the more
general situation that G∞ is generated by pairing of s:

z1 :
[

z−1
1

]

→ [z1] “glide reflection” as before; then

p :
[

z−1
1

]∗
:=

[

z−1
1

]z−1
2 → [z1]

∗ := [z1]
z−1
2 z−1

2

i.e. p = z2z1z−1
2 z−1

2 = z1z1 : u → (u − z)/|z|
a “translation” as a central similarity in C∞,

z∗
2 :

[

z−1
2

]∗
:=

[

z−1
2

]z−1
1 z−1

2 z−1
2 → [z2]

∗ := [z2]
z−1
1 z−1

2 z−1
2 ,

i.e. z∗
2 = z2z2z1z2z−1

1 z−1
2 z−1

2 a “glide reflection”

(2.5)

again, it is conjugated to z2. We see that p is a “translation”, it is z−1
2 -

conjugated to z1z−1
2 . This group G∞ is 4. pg itself (on the Euclidean plane

represented by C∞) if z = 1
2 + i

√
3
2 . We have obtained the Gieseking manifold

with one cusp. Other z, as a complex parameter, makes the stabilizer G∞ to a
conformal group with fixed points

∞ and v :=
z

1 − |z| .

This line v∞ will not be covered by the G∞-images of the simplex S̃ in H
3. In

the model half-space the translations of G∞ in (2.5) by (2.2) will be similarities
of C∞ with fixed points v, ∞. E.g. z1 in (2.2) and z2 in (2.5) are similarity-
reflections indicated in Figs. 2, 3, 4 and 5. The simple ratio on 01 is u :=
1/(1 + |z − 1|). For z∗

2 in (2.5) we can write by (2.2)

z∗
2 : (u, 1) → (u, 1)

(

1 1
0 |1 − z|2

)(

1 0
−1 z − 1

)

·
(

z 1
0 −z(1 − z)

)(

z − 1 0
1 1

) (

|1 − z|2 −1
0 1

)

(2.4)
= (u, 1)

(

z(1 − z)2 0
|z|2{|z|(z − 1) − (|z| + 1)} −z(1 − z)

)

.

(2.6)

Now, we turn to the critical, so-called surgery transform z1z∗
2. By the tricky

use of (2.4), as

|z| = |z − 1|2 = (z − 1)(z − 1) = |z|2 − z − z + 1,

we obtain

z1z∗
2 : (u, 1) → (u, 1)

(

z (1 − z)2 0
{|z| + 1}

[

|z|2 − z2
]

z(1 − z)2

)

, (2.7)

fixing ∞ and v, of course. We see by (2.4) that z1z∗
2 describes a rotation of

the model half-space about the line ∞v with angle

φ := arg
[

z(1 − z)2

z(1 − z)2

]

= 2arg z − 4 arg(1 − z) (mod 2π) , (2.8)

i.e. φ = 2 · α1 + 4 · α3 (mod 2π).
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Figure 2 a The topological Klein bottle group 4. pg in ∞
of C∞ glued by fundamental domain S; z1z∗

2 is a rotation
through −2π/k = 2π(k − 1)/k (mod 2π) for k = 3; b The
orbifold for k = 2

Figure 3 Klein bottle solids for the later manifold or cone
manifold (orbifold if the cone angle is 2π/k)

If we require the stabilizer G∞ to act discontinuously on the model half-space,
then this angle necessarily will be ±2π/k (mod 2π), through the unit root
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parameter κ = e±i2π/k i.e.
z

(1 − z)2
= ± e±iπ/k = ±

√
κ,with

1 < |z − 1| < |z|, or |z| < |z − 1| < 1; and Imz > 0, k = 2, 3, . . .

(2.9)

can be assumed. Then k is the periodicity of the rotation z1z∗
2 and we get 4

root series for the fundamental simplices, called Gies.1–Gies.4. The first one is
chosen

z = 1 +
1
2
eiπ/k

(

1 +
√

1 + 4e−iπ/k
)

, k = 2, 3, . . . . (2.10)

Remark 2.1. In more general, we can write ±2π · l/k, l = 1, 2, . . . , k − 1 over
(2.9) and later ±π·l/k, respectively by parameter κ = e±i2π·l/k, in the following
4 root series for z. Then we obtain multiple tiling as well, and the tile itself
realizes so-called cone manifold as Fig. 3a shows this phenomenon for k =
3, l = 2, surprisingly a little bit. See our further Figs. 5, 6, and imagine the
other cases for (k, l).

All data can be computed from (2.10), especially the face angles of S̃, equal
at the opposite edges (Figs. 1a, 2b)

{

∞0
z1

}

: α1 = arg z;
{

∞z
10

}

: α2 = arg
z − 1

z
;

{

∞1
z0

}

: α3 = arg
1

1 − z
.

(2.11)

However, the computer gives more guarantees. In Tables 1 and 2 we have
computed by Maple the volume of S̃ as well for some values of k. We know
[24] that the Lobachevsky function

Λ(x) = −
x

∫

0

ln |2 sin ξ|dξ with VolS̃ = Λ (α1) + Λ (α2) + Λ (α3) (2.12)

provides the volume of the ideal simplex with the above angles. The formal
monodromy group G(z1, z2, k) above has a unified “presentation”

G(k) =
(

z1, z2—1 = z1z1z2z2z−1
1 z−1

2 =
(

z1z2z2z1z2z−1
1 z−2

2

)k

k−1

)

.

(2.13)

For k = 2, 3, . . . we sketchily indicate by Figs. 1b, 2, 3 and 4 how to construct
a compact fundamental domain F̃G(k) (in Fig. 4) by deforming an ideal vertex
domain to a compact one. We introduce an edge (e) on the line ∞v and its
z1-image with

(e) = (EE′), ez1 = ez
∗−1
2 = (E′E′′), (EE′) ∩ (E′E′′) = ∅.



11 Page 8 of 40 E. Molnár et al. J. Geom.

Figure 4 A sketchy combinatorial (PL, i.e. piecewise linear)
compact fundamental domain for G(k)

Figure 5 Gies.1 series a (k, l) = (2, 1); b (k, l) = (5, 2)

Then we choose a point Z1 (e.g. the centre of the inscribed ball) in the simplex
S̃ = ∞01z and consider the segments

(EZ1), (EZ1)z1 = (E′Z ′
1), (EZ1)z1z1 = (E′′Z ′′

1 ).

Similarly take Z2, as the z−1
1 z−1

2 z−1
2 -image of Z1 at the cusp gluing

(EZ2) , (EZ2)
z∗−1
2 = (E′Z ′

2) , (EZ2)
z∗−1
2 z∗−1

2 = (E′′Z ′′
2 ) .

Then the corresponding curved (bent) surfaces [q−1] and its z−1
1 z−1

2 z−1
2 -image

[q] will be constructed, transversally to the edges of S̃ (see Figs. 1b, 2, 3, 4
and also [12]).

Finally, in Fig. 4 we get a sketchy compact fundamental domain F̃ , with piece-
wise linear bent faces, equipped by a pairing I(z1, z∗

2,p,q) and (symbolic)
defining relations to the corresponding edge classes:

z1z1p−1 = z∗
2z

∗
2p = qz∗−1

2 q−1pq−1p−1 = z1qqp−1q−1

= (z1z∗
2)

k
l=k−1 = 1. (2.14)
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Figure 6 Gies.1 series a (k, l) = (7, 2); b (k, l) = (7, 3)

Figure 7 Gies.2 series to Tables 3 and 4 by cone manifold
for k = 3, l = 1 and multiple tiling of C∞

Of course, (2.14) equivalent to (2.13) if

p = z21, z∗
2 = (z22z1)z2(z

−1
1 z−2

2 ), q = z−1
1 z−2

2 . (2.15)

Remark 2.2. Observe that our compactification procedure works for more gen-
eral (k, l) as Figs. 3 and 4 indicates. The cusp of our ideal simplex S̃ as a
Klein-bottle can be glued by a “solid Klein-bottle” K. Then the splitting ef-
fect also occurs. The cusp of S̃ will be cut along a Klein-bottle surface to get
a boundary. Then we glue to this boundary the boundary of K.

2.1. The second variant of our cone manifold series

The requirements in (2.9) provide the second root series

z = 1 +
1
2
e−iπ/k

(

1 −
√

1 + 4eiπ/k
)

, k = 2, 3, . . . (2.16)
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Figure 8 Gies.2 series a (k, l) = (2, 1); b (k, l) = (5, 2)

Figure 9 Gies.2 series a (k, l) = (7, 2); b (k, l) = (7, 3)

and the cone manifold series Gies.2 for k > 2. Our Figs. 7, 8 and 9 and Tables 3
and 4 show these, surprisingly a little bit.

This will be geometrically equivalent to Gies.1 by the half-turn symmetry of
ideal simplex: 0 ↔ ∞, 1 ↔ z.

2.2. Gies.3-4 tend to the regular ideal simplex manifold

The requirements in (2.9) provide the third root series

z =1 − 1
2
e−iπ·l/k

(

1 +
√

1 − 4eiπ·l/k
)

, k = 2, 3, . . . , l = 1, . . . , �k/2,

(i.e. the lower integer part of k/2) . (2.16)

and the cone manifold (orbifold) series Gies.3. Our Fig. 10 show the case k = 3
and 9. Table 5 gives computer results. See also Figs. 11 and 12.

The fourth root series will be

z = 1 − 1
2
eiπ·l/k

(

1 −
√

1 − 4e−iπ·l/k
)

, k = 2, 3, . . . , l = 1, . . . , �k/2

(2.17)
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Figure 10 Gies.3 series is represended by orbifolds a k = 3;
b k = 9
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Figure 11 Gies.3 series a (k, l) = (2, 1); b (k, l) = (5, 2)

Figure 12 Gies.3 series a (k, l) = (7, 2); b (k, l) = (7, 3); c.
(k, l) = (∞, 3)

and the cone manifold (orbifold) series Gies.4. Both last series tend to the
Gieseking regular ideal simplex manifold, as J. R. Weeks predicted for us in
our discussions.

We do not give here illustration to Gies.4 series, equivalent to the previous one
by half-turn symmetry again.
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As we look at our Tables 1, 2, 4, 5 and 6, and we can prove for orbifolds, k = 2
provides the minimal volume V = 0.6967 . . . .

Marshall and Martin [9] determined the exact lower bound ≈ 0.0390, the next
is ≈ 0.0408 for orientable orbifolds in dimension three. Compare that with
the half of the Coxeter orthoscheme (5, 3, 5) ≈ 0.0467 and (3, 5, 3) ≈ 0.01953,
two-times less than the optimal one, but this orthoscheme has also reflection,
as the authors noticed as well. In higher dimensions the problem is open, in
general.

2.3. Summary

Now we summarize our results to Gieseking manifold.

Theorem 2.3. The surgery procedure of Gieseking manifold leads essentially
to two different series for (k, l), l = 1, 2, . . . , k − 1. For rotation parameter
k = 2 we get an orbifold. For k > 2 the surgery yields compact nonorientable
hyperbolic cone manifolds and multiple tilings in the first case Gies.1-2, with
underlying Gieseking manifold before, where a closed geodesic line exists with
cone angle 2π(k− l)/k. This can be realized by a deformed ideal simplex S(k, l)
with complex parameter z(k, l) by Sect. 2.1 that uniquely determines all metric
data in our figures and tables. The volume of S(k, l) tends to 0 if k → ∞ for
fixed l.

Theorem 2.4. The second series in cases Gies.3-4 (Sect. 2.1) leads to orbifolds
also for k ≥ 2, l = 1 tending to the original Gieseking manifold if k goes to
infinity. Moreover we obtain cone manifolds and multiple tilings for other fixed
l.

Remark 2.5. The orientable double cover of Gieseking manifold, known as
Thurston manifold (or the complement of the figure-eight-knot) has a “man-
ifold surgery” of volume 0.9813688289 . . . , which is known as second minimal
one. But the above construction leads to cone manifold surgeries whose vol-
umes tend to zero at the first series; and tend to the original manifold at the
second series, respectively.

The minimal volume orientable compact manifold of Fomenko–Matveev–Weeks
(with volume 0.94270736 . . . ) can also be obtained by manifold surgery, see also
[4,11]. The occasionally possible (?) orbifold surgery is not examined yet (?).

We found in [16] the third non-orientable double-ideal-regular-simplex-mani-
fold by computer. This has only cone manifold (and orbifold) surgery phenom-
ena, i.e. with multiple (simple) tilings, respectively, that will be discussed and
updated in the next Sect. 3.
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Figure 13 The non-orientable ideal double-simplex manifold
˜D1 with 2 cusps, each with Euclidean plane group 4.pg. In
lower right it is described after reciprocity transform u → 1/u,
(A(∞) → 0, B(0) → ∞, C(1) → 1, etc.)

3. Double-simplex tilings; manifolds, cone mainfolds and

orbifolds to non-orientable manifold ˜D1 in H
3

As we mentioned in the Abstract, a computer program tells us the possible
combinatorial face pairings of the ideal double simplex D up to equivariance.
The I-paired double simplex D(I) will be denoted simply by ˜D.

Two face pairings I1 and I2 of D are called equivariant if there is a face-to-face
incidence preserving combinatorial bijection α of AutD, for which it holds

I2 = α−1I1α, α ∈ AutD = (+, 0, [ ]; {(2, 2, 3)}) . (3.1)

AutD is equivariant to the finite spherical isometry group, with the above Mac-
beth signature (or ∗2, 2, 3 in J Conway’s notation), it is of order 12, generated
by 3 (plane) reflections.

Figures 14, 15, 16 and 17 list us the 7 nonequivariant possibly hyperbolic
ideal double-simplices whose pairings allow us hyperbolic manifold structure.
Namely, the two regular simplex components, each with face angles π/3, allow
fixed point free actions by G(I). The two edge classes with rotation orders
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Figure 14 Double-simplex ˜D1, as above, and ˜D2

Figure 15 Double-simplex ˜D3 and ˜D4

ν(e1) = 1 = ν(e2) also involve cusps: 1 torus in the 2 orientable cases, 2 Klein-
bottles in the 5 nonorientable cases. These last ones will be represented only
by ˜D1, see Figs. 13, 14, 15 and 16 and [16] for details of equivalences.

˜D5 will be the orientable Fomenko–Matveev–Weeks manifold [5,25], whose
manifold surgery led to the smallest known hyperbolic compact manifold with
volume

Vol (FMW) ≈ 0.94270736277692772092 if A(∞), B(0), C(1),
D (z = 0.64039779245343025886 + i · 0.03695058574550892994)
E (w = 0.10601097928435957689 − i · 0.47247912412050095790) , (3.2)

see also [11] for interpretation similar to that of this paper. Here we intended
for great accuracy.
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Figure 16 ˜D5 as the Fomenko–Matveev–Weeks manifold. ˜D6

is equvalent to ˜D1

Figure 17 ˜D7 as the Thurston manifold

˜D7 is the Thurston manifold [23] whose manifold surgery yields a second vol-
ume known compact hyperbolic manifold with

Vol(T) ≈ 0.98136882889223208809 if A(∞), B(0), C(1),
D (z = 0.19043000620505709723 + i · 0.06928167463733572676) ,

E (w = 0.97056464193309968264 − i · 0.41592639156274576397) . (3.3)

The double-simplices ˜D1, ˜D2, ˜D3, ˜D4, ˜D6, having 2 cusp Klein-bottles will
serve the same nonorientable manifold Mc2 , as we shall briefly indicate only
by figures, but their pairings are not equivariant (see [16] for details).

In Fig. 13 we choose ˜D1 = Mc2 and carry out the analogous procedure as in
Sect. 2 for the Gieseking simplex S̃. Take the ideal vertices in the half-space
model of H3, namely,

A = ∞, B = 0, C = 1, D = z, E = w in C∞. (3.4)
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The face pairing generators will be

z1 : ∞z0 → ∞0w =⇒u 	→ ūw − wz̄

−z̄
,

z1 : (u, 1) 	→ (u, 1)

(

w 0

−wz̄ −z̄

)

, z
−1
1 : (u, 1) 	→ (u, 1)

( −z 0

w̄z w̄

)

;

z2 : ∞w1 → ∞1z =⇒u 	→ ū(z − 1) + 1 − w̄z

1 − w̄
,

z2 : (u, 1) 	→ (u, 1)

(

z − 1 0

1 − w̄z 1 − w̄

)

, z
−1
2 : (u, 1) 	→ (u, 1)

(

1 − w 0

wz̄ − 1 z̄ − 1

)

;

s : z10 → 10w =⇒u 	→ uzw − zw

u(wz − w + 1) − z
,

s : (u, 1) 	→ (u, 1)

(

zw wz − w + 1

−zw −z

)

, s
−1

: (u, 1) 	→ (u, 1)

( −z −wz + w − 1

zw zw

)

;

s
2
: (u, 1) 	→ (u, 1)

(

w w(z − 1) + 1

−zw −w(z − 1) − z

)

;

(3.5)

as mappings of the complex projective line C∞, z1 and z2 reverse the orienta-
tion, s preserves it. The cycle relations to the edge classes

−→: 1 = z21z
2
2, =⇒: s2z−1

1 sz2 = 1 imply |z||1 − w| = |w||1 − z| = 1 (3.6)

equivalently by (3.5) and straightforward computations, with care on matrix
conjugation. We can treat the cusps, indicated by ◦ and •, respectively, by
gluing the vertex domains to a fundamental polygon on C∞ for each cusp.
Our gluing algorithm led to a fundamental domain of the Euclidean plane
group 4.pg in each case. The two generating glide reflections can be read off
the unglued paired sides.

For the cusp ◦ we have only one vertex domain of A = ∞, with the group pg,
generated by z1 and z2 in (3.5). The surgery condition requires a finite order
for the oriented “rotation” z1z2 about an axis v∞ in the model:

z1z2 = z1s−1z1s−2 : (u, 1) �→ (u, 1)
(

w̄ 0
−w̄z −z

) (

z − 1 0
1 − w̄z 1 − w̄

)

= (u, 1)
(

w̄(z − 1) 0
(w̄ − 1)z z(w̄ − 1)

)

.

(3.7)

Denote by ε = e±i2πp̄/p the “signed rotational parameter” by (3.6), for the
above situation, indicated also in upper right Fig. 13 (analogous to κ =
e±i2π·l/k in Sect. 2, Remark 2.1). Then (z1z2)p = 1 and we get the first
equation for z, w:

w̄

w̄ − 1
· z − 1

z
= ε := e±i2πp̄/p for p = 1, 2, 3, . . . and p̄ = 0, . . . �p/2.

(3.8)

More geometrically, arg(z − 1)/z = α2 = argε + arg(w̄ − 1)/w̄ (see also (2.11),
Table 7 and Figs. 22, 23 and 24.
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We select the above ε and the next φ by the obvious freedom, first for simple
tiling:

Im z > 0, Im w < 0. (3.9)

For the cusp • we glue the 4 vertex domains to B = 0. The images E� := Es−1
,

C� := Cs and D� = Dss (Fig. 13) show us the generating glide reflections: g1

and g2:

g1 : [z−1
1 ] �→ [z1]s

−1 ⇒ g1 = z1s−1,

or [z−1
2 ]s

−1 �→ [zs2 ⇒ g1 = sz2s,

g2 : [z2]ss �→ [z−1
2 ]s ⇒ g2 = s−1s−1z−1

2 s,

or [z1] �→ [z−1
1 ]ss ⇒ g2 = z−1

1 s2.

(3.10)

We need also a “signed rotation parameter” φ = e±i2πq̄/q for g1g−1
2

= z1s−2z2s2 = z1s−3z1 and by (3.5) we get:

g1g−1
2 : (u, 1) �→ (u, 1)

(

w(1 − z̄) (w̄ − z̄)[1 − w(1 − z)]
0 z(1 − w̄)

)

. (3.11)

Hence (g1g−1
2 )q = 1 yields the second equation for z, w:

w

1 − w̄
· 1 − z̄

z
= φ := e±i2πq̄/q for q = 1, 2, 3, 4, . . . ,

and q̄ = 0, . . . , �q/2, (3.12)

since |z(1 − w̄)| = 1 = |w(1 − z̄)| holds by (3.6). That means, we do not get
further manifold surgery here. We can express, say w from (3.8) and carefully
reduce the (implicite, left to computer) equations for w and z:

w =
ε̄z̄

(ε̄ − 1)z̄ + 1
,

z(1 − z)
(ε − 1)z + 1

= ±
√

ε̄φ̄, Im z > 0 > Im w, first.(3.13)

If ε = 1, p = 1 in (3.8), i.e. w = z̄, the transform z1z2 will be a translation
u → u+1 by (3.7) with the only fixed point ∞ of C∞. Then the cusp ◦ remains
for the double-simplex.

Else we get the rotation axis, connecting

v :=
1

1 − ε
=

z(w̄ − 1)
w̄ − z

, ∞, (3.14)

that has to be out of the vertex domain of A(∞) in upper right Fig. 13

A(∞) = [B(0), E(w), C(1),D(z)] . (3.15)

For an axis point λz at z1 we get the equation [λz−v]/[(1−λ)w−v] = |z|/|w|,
or for translation z1z2 we get now λ = 1/2 and parallel axes to the translation.

Similarly, φ = 1, q = 1 leads to a parabolic transform g1g−1
2 in (3.10) with

only fixed point 0 yielding a cusp in it.
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The other cases of φ involve corresponding rotation axes connecting the ends
0, y ∈ C∞ in the half-space model where

y :=
w(1 − z̄) − z(1 − w̄)
(w̄ − z̄)[1 − w(1 − z)]

(3.16)

is the fixed point, by (3.10–3.11) depending on ε and φ, that has to be out of
the vertex domain of B(0), as follows

B(0) =
[

E(w), A(∞),D(z), As−1
(

z

wz − w + 1

)

, C(1), As

(

zw

wz − w + 1

)

,

Es = Bss

(

wz

wz − w + 1

)

, Ass

(

w

wz − w + 1

)]

. (3.17)

A reciprocity transform u �→ 1
u , 0 �→ ∞ will help us in deciding this criterion in

lower right Fig. 13. Indeed we have convenient y → 1/y for ε and φ, furthermore
for z and w and analogous transforms ḡ1 and ḡ2.

The axis point for ḡ1 on ADAs−1
and for ḡ2 on AEAss, respectively, can be

obtained analogously as before (easy by computer, formulas are not easy).

Now, the logical symmetries D ↔ E and (independently) B ↔ C of the
double-simplex ˜D1 in Fig. 13 allow us to consider only some essentially different
cases, say, with simplified conventions, now for p̄ = 1 and q̄ = 1 to the possible
orbifold cases and simple tilings, first:

ε = ei2π/p, 0 < −p ∈ N, −p �= 2; φ = ei2π/q, 0 < q ∈ N. (3.18)

Formulas (3.8) and (3.12–3.13) yield second degree equation for z, then we get
unique w of z. The discussion is easier with computer, indeed.

Some results are collected in our Table 7 in the above sense. See also our
Figs. 19, 20, 21, 22, 23 and 24, the last one for multiple tilings, i.e. cone
manifolds in Table 8 as well.

Remark 3.1. As at the Gieseking manifold in the previous section, we can glue
the 2 cusps of Mc2 with 2 solid Klein-bottles. Then we obtain a (nongeometriz-
able!) compact nonorientable manifold M whose fundamental group GM has
a short presentation by two generators z1 =: z and s

GM =
(

z, s—1 = z2s−1zs−3zs−2
)

. (3.19)

This can be obtained if we take the two relations from (3.6), and eliminate z2.
Geometrically see Fig. 18a.

The surgery conditions of the two cusps ◦ and • yield formally, by (3.8) and
(3.12)

(

zs−1zs−2
)p

p̄
= 1 =

(

zs−3z
)q

q̄
, (3.20)

respectively. �

Remark 3.2. For fixed (p, p̄), if q → ∞, our double simplex and its tilings tend
to cases with q = ±1. For fixed (q, q̄), if p → −∞, our limit cases will be with
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Figure 18 A combinatorial (PL=piecewise linear) funda-
mental domain by Schlegel diagram a. for manifold ˜D1 b. and
that for its specific orbifolds and cone manifolds

p = ±1. Both statements follow from (3.8), (3.12) and (3.13). Consequently,
p → −∞, q → ∞ leads to the regular case (±1,±1). �

Again, we summarize our results in

Theorem 3.3. The surgery of our hyperbolic nonorientable double simplex man-
ifold ˜D1 with 2 cusps by two solid Klein-bottles leads to a nongeometrizable
compact manifold M described in Fig. 18a with fundamental group by (3.19).
We do not get any compact hyperbolic manifold.

With special surgery parameters z(p, q), w(p, q) in Table 7 and formula (3.18),
we get compact orbifolds with hyperbolic crystallographic group

G1(p, q) =
(

z1, z2, s—1 = z21z
2
2 = s2z−1

1 sz2 = (z1z2)
p =

(

z1s−2z2s2
)q

)

.

(3.21)

This ˜D1(p, q) will have 2 closed geodesic lines with singularity points of order
p, q, respectively (see Fig. 18b).

A lot of parameter pairs (p, p̄), (q, q̄) by (3.8), (3.12) and computer solution
of (3.13) for z and w provide us with cone manifolds and multiple tilings with
formal minimal group presentation by (3.19–3.20), Fig. 18b:

G1 [(p, p̄), (q, q̄)] =
(

z, s—1 = z2s−1zs−3zs−2 =
(

zs−1zs−2
)p

p̄
=

(

zs−3z
)q

q̄

)

.

(3.22)

The cases p = ±1 or q = ±1 above, lead to one remaining cusp.

For this combinatorial (PL) graphic presentation see also [12,17,20]. We did
not obtain zero limit volumes at surgeries of ˜D1. For its orbifolds (“crystallo-
graphic groups” or “lattices”) we get the minimal volume V = 0.7177 . . . at
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Figure 19 (p, q) = (−1,−2) and (p, q) = (−1, 2) are equiva-
lent (congruent)

(p, q) = (±3,±2) (Table 7, Fig. 22), that we can prove by careful computer
analysis. Multiple tilings, i.e. cone manifolds produce smaller volume, e.g. at
(−7, 3), (3,1) (Fig. 24 in Table 8).
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Figure 20 (p, q) = (−1, 3), α1 = argz, α2 = arg(z − 1)/z,
α3 = arg1/(1 − z) (see Table 7)

Figure 21 (p, q) = (−1, 7)
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Figure 22 Nice orbifolds
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Figure 23 Orbifolds (p, q) = (−4, 20) → (p, q) = (−4, 1)
indicates the limit case q → ∞
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Figure 24 Multiple tilings, i.e. cone manifolds
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Figure 25 Extra cases
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Budapest, Hungary, pp. 293–315 (1999)

[17] Molnár, E., Prok, I., Szirmai, J.: Classification of tile-transitive 3-simplex tilings
and their realizations in homogeneous spaces. In: Prékopa, A., Molnár, E. (eds.)
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