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In this erratum we revise the hypothesis and statement of [1, Theorem 2.3] to prove local in time exis-
tence of analytic, rather than Gevrey class solutions. As a consequence, we also revise the results in [1,
Theorem 2.5] for the convergence of analytic solutions as ν goes to zero.

To begin with, we first recall that the abstract active scalar equations which are given by{
∂tθ

ν + uν · ∇θν = S,
uν

j = ∂xi
T ν

ij [θ
ν ], θν(x, 0) = θ0(x) (1.1)

where T
d × (0,∞) = [0, 2π]d × (0,∞) with d ≥ 2. We assume that∫

Td

θν(x, t)dx =
∫
Td

S(x) = 0 for all t ≥ 0.

The symbols {T ν
ij}ν≥0 refer to a sequence of operators which satisfy:

A1 ∂i∂jT
ν
ijf = 0 for any smooth functions f for all ν ≥ 0.

A2 T ν
ij : L∞(Td) → BMO(Td) are bounded for all ν ≥ 0.

A3 For each ν > 0, there exists a constant Cν > 0 such that for all 1 ≤ i, j ≤ d,

|T̂ ν
ij(k)| ≤ Cν |k|−3,∀k ∈ Z

d.

A4 For each 1 ≤ i, j ≤ d,

lim
ν→0

∑
k∈Zd

|T̂ ν
ij(k) − T̂ 0

ij(k)|2|ĝ(k)|2 = 0

for all g ∈ L2.

Moreover, we further assume that {T ν
ij}ν≥0 satisfy either one of the following assumptions:

A51 There exists a constant C0 > 0 independent of ν, such that for all 1 ≤ i, j ≤ d,

sup
ν∈(0,1]

sup
{k∈Zd}

|T̂ ν
ij(k)| ≤ C0;

sup
{k∈Zd}

|T̂ 0
ij(k)| ≤ C0. (1.2)

The original article can be found online at https://doi.org/10.1007/s00021-019-0454-1.
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A52 There exists a constant C0 > 0 independent of ν, such that for all 1 ≤ i, j ≤ d,

sup
ν∈(0,1]

sup
{k∈Zd}

|kiT̂
ν
ij(k)| ≤ C0;

sup
{k∈Zd}

|kiT̂
0
ij(k)| ≤ C0. (1.3)

We now give the revised statement for Theorem 2.3 given in [1]:

Theorem 2.3. (Analytic local wellposedness in the case ν = 0). Fix r > d
2 + 3

2 and K0 > 0. Let θ0(·, 0) = θ0

and S be analytic functions with radius of convergence τ0 > 0 and satisfy

‖Λreτ0Λθ0(·, 0)‖L2 ≤ K0, ‖Λreτ0ΛS‖L2 ≤ K0. (2.4)

For ν = 0, under the assumptions A1–A2 and A51, there exists T̄ , τ̄ > 0 and a unique analytic solution θ0

to (1.1) defined on T
d × [0, T̄ ] with radius of convergence at least τ̄ . In particular, there exists a constant

C = C(K0) > 0 such that for all t ∈ [0, T̄ ],

‖Λreτ̄Λθ0(·, t)‖L2 ≤ C. (2.5)

Moreover, if the assumption A3 holds as well, then we have

‖Λreτ̄Λθν(·, t)‖L2 ≤ C, ∀ν > 0, (2.6)

where θν are analytic solutions to (1.1) for ν > 0 as described in [1, Theorem 2.2].

Proof of Theorem 2.3. The results follow by the similar argument given by Friedlander and Vicol [2] for
the unforced system with S ≡ 0 in (1.1). �

We also revise the statement of [1, Theorem 2.5] for the convergence of analytic solutions to (1.1).

Theorem 2.5. (Convergence of solutions as ν → 0). Depending on the assumptions A51 and A52, we have
the following cases:

• Assume that the hypotheses and notations of Theorem 2.3 are in force. Under the assumptions A3–
A4, if θν and θ0 are analytic solutions to (1.1) for ν > 0 and ν = 0 respectively with initial datum
θ0 on T

d × [0, T̄ ] with radius of convergence at least τ̄ as described in Theorem 2.3, then there exists
T < T̄ and τ = τ(t) < τ̄ such that, for t ∈ [0, T ], we have

lim
ν→0

‖(ΛreτΛθν − ΛreτΛθ0)(·, t)‖L2 = 0. (2.7)

• Assume that the hypotheses and notations of [1, Theorem 2.4] are in force. Under the assumptions
A3–A4, for d ≥ 2 and s > d

2 + 1 and t ∈ [0, T ], we have

lim
ν→0

‖(θν − θ0)(·, t)‖Hs−1 = 0. (2.8)

Remark 2.6. The proof for the convergence result (2.7) follows by the same argument given in [1, pp. 16–
18] by taking s = 1.

Remark 2.7. The applications to the magnetostrophic equations given in [1, Sect. 6] now hold under the
revised statements of Theorems 2.3 and 2.5.
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