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Abstract. We provide the existence and asymptotic description of solitary wave solutions to a class of modified Green–Naghdi
systems, modeling the propagation of long surface or internal waves. This class was recently proposed by Duchêne et al.
(Stud Appl Math 137:356–415, 2016) in order to improve the frequency dispersion of the original Green–Naghdi system
while maintaining the same precision. The solitary waves are constructed from the solutions of a constrained minimization
problem. The main difficulties stem from the fact that the functional at stake involves low order non-local operators,
intertwining multiplications and convolutions through Fourier multipliers.

1. Introduction

1.1. Motivation

In this work, we study solitary traveling waves for a class of long-wave models for the propagation of
surface and internal waves. Starting with the serendipitous discovery and experimental investigation by
John Scott Russell, the study of solitary waves at the surface of a thin layer of water in a canal has a rich
history [20]. In particular, it is well-known that the most widely used nonlinear and dispersive models
for the propagation of surface gravity waves, such as the Korteweg–de Vries equation or the Boussinesq
and Green–Naghdi systems, admit explicit families of solitary waves [7,14,31,41,42]. These equations
can be derived as asymptotic models for the so-called water waves system, describing the motion of a
two-dimensional layer of ideal, incompressible, homogeneous, irrotational fluid with a free surface and a
flat impermeable bottom; we let the reader refer to [32] and references therein for a detailed account of
the rigorous justification of these models. Among them, the Green–Naghdi model is the most precise,
in the sense that it does not assume that the surface deformation is small. However, the validity of all
these models relies on the hypothesis that the depth of the layer is thin compared with the horizontal
wavelength of the flow and, as expected, the models do not describe accurately the behavior of medium
or short waves. In order to tackle this issue, one of the authors has recently proposed in [23] a new family
of models:

⎧
⎪⎨

⎪⎩

∂tζ + ∂xw = 0,

∂t

(
h−1w + QF[h](h−1w)

)
+ g∂xζ +

1
2
∂x

(
(h−1w)2

)
= ∂x

(RF[h, h−1w]
)
,

(1.1)

where

QF[h]u def= −1
3
h−1∂xF

{
h3∂xF{u}},

RF[h, u] def=
1
3
uh−1∂xF

{
h3∂xF{u}}+

1
2
(
h∂xF{u})2.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-017-0355-0&domain=pdf
http://orcid.org/0000-0002-9495-0642
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Fig. 1. Sketch of the domain and notations in the one-layer and bilayer situations

Here, ζ is the surface deformation, h = d + ζ the total depth (where d is the depth of the layer at
rest), u the layer-averaged horizontal velocity, w = hu the horizontal momentum and g the gravitational
acceleration; see Fig. 1. Finally, F def= F(D) is a Fourier multiplier, i.e.

̂F{ϕ}(k) = F(k)ϕ̂(k).

The original Green–Naghdi model is recovered when setting F(k) ≡ 1. Any other choice satisfying
F(k) = 1 + O(k2) enjoys the same precision (in the sense of consistency) in the shallow-water regime
and the specific choice of F(k) =

√
3

d|k| tanh(d|k|) − 3
d2|k|2 allows to obtain a model whose linearization

around constant states fits exactly with the one of the water waves system. Hence system (1.1) with the
aforementioned choice of Fourier multipliers participates to the recent effort in providing long wave mod-
els with the full dispersion property; see [1,11,28,30,39]. However, notice that contrarily to the so-called
Boussinesq-Whitham equations, the validity of (1.1) does not rely on any small-amplitude assumption.
The systems also preserve the Hamiltonian structure of the Green–Naghdi model, which turns out to
play a key role in our analysis since the existence of solitary waves will be deduced from a variational
principle.

The study of [23] is not restricted to surface propagation, but is rather dedicated to the propagation
of internal waves at the interface between two immiscible fluids, confined above and below by rigid,
impermeable and flat boundaries. Such a configuration appears naturally as a model for the ocean,
as salinity and temperature may induce sharp density stratification, so that internal solitary waves are
observed in many places [27,29,40]. Due to the weak density contrast, the observed solitary waves typically
have much larger amplitude than their surface counterpart, hence the bilayer extension of the Green–
Naghdi system introduced by [17,35,38], often called Miyata–Choi–Camassa model, is a very natural
choice. It however suffers from strong Kelvin–Helmholtz instabilities—in fact stronger than the ones of
the bilayer extension of the water waves system for large frequencies—and the work in [23] was motivated
by taming these instabilities. The modified bilayer system reads

⎧
⎪⎪⎨

⎪⎪⎩

∂tζ + ∂xw = 0,

∂t

(
h1 + γh2

h1h2
w + QF

γ,δ[ζ]w
)

+ (γ + δ)∂xζ +
1
2
∂x

(h2
1 − γh2

2

(h1h2)2
w2

)
= ∂x

(RF
γ,δ[ζ, w]

)
,

(1.2)

where we denote h1 = 1− ζ, h2 = δ−1 + ζ, QF
γ,δ[ζ]w def= QF

2[h2](h−1
2 w)+γQF

1[h1](h−1
1 w) and RF

γ,δ[ζ, w] def=
RF

2[h2, h
−1
2 w] − γRF

1[h1, h
−1
1 w], with

QF
i [hi]ui

def= −1
3
h−1

i ∂xFi

{
h3

i ∂xFi{ui}
}
,

RF
i [hi, ui]

def=
1
3
uih

−1
i ∂xFi

{
h3

i ∂xFi{ui}
}

+
1
2
(
hi∂xFi{ui}

)2
.

Here, ζ represents the deformation of the interface, h1 (resp. h2) is the depth of the upper (resp. lower)
layer, u1 (resp. u2) is the layer-averaged horizontal velocity of the upper (resp. lower) layer and finally
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w = h1h2(u2 − γu1)/(h1 + γh2) is the shear momentum. In this formulation we have used dimensionless
variables, so that the depth at rest of the upper layer is scaled to 1, whereas the one of the lower layer is
δ−1, in which δ is the ratio of the depth at rest of the upper layer to the depth at rest of the lower layer
(see Fig. 1). Similarly, γ is the ratio of the upper layer over the lower layer densities. As a consequence
of our scaling, the celerity of infinitesimally small and long waves is c0 = 1. Once again, Fi (i = 1, 2)
are Fourier multipliers. The choice Fid

i (k) ≡ 1 yields the Miyata–Choi–Camassa model while the system
with

Fimp
i (k) =

√
3

δ−1
i |k| tanh(δ−1

i |k|) − 3
δ−2
i |k|2 ,

with convention δ1 = 1, δ2 = δ, has the full dispersion property, namely its linearization around constant
states fits exactly the one of the bilayer extension of the water waves system. Note that compared to
equations (7)–(9) in [23] we have scaled the variables so that the shallowness parameter μ and amplitude
parameter ε do not appear in the equations. This is for notational convenience since the parameters do
not play a direct role in our results. On the other hand, we only expect the above model to be relevant
for describing water waves in the regime μ � 1 and the solutions that we construct in the end are found
in the long-wave regime ε, μ � 1.

In the following, we study solitary waves for the bilayer system (1.2), noting that setting γ = 0 imme-
diately yields the corresponding result for the one-layer situation, namely system (1.1). Our results are
valid for a large class of parameters γ, δ and Fourier multipliers F1,F2, described hereafter. Our results
are twofold:

(i) We prove the existence of a family of solitary wave solutions for system (1.2);
(ii) We provide an asymptotic description for this family in the long-wave regime.

These solitary waves are constructed from the Euler–Lagrange equation associated with a constrained
minimization problem, as made possible by the Hamiltonian structure of system (1.2). There are however
several difficulties compared with standard works in the literature following a similar strategy (see e.g. [2]
and references therein). Our functional cannot be written as the sum of the linear dispersive contribution
and the nonlinear pointwise contribution: Fourier multipliers and nonlinearities are entangled. What is
more, the operators involved are typically of low order (F is a smoothing operator). In order to deal
with this situation, we follow a strategy based on penalization and concentration-compactness used in
a number of recent papers on the water waves problem (see e.g. [8,9,25] and references therein) and in
particular, in a recent work by one of the authors on nonlocal model equations with weak dispersion [24].
Thus we show that the strategy therein may be favorably applied to bidirectional systems of equations
in addition to unidirectional scalar equations such as the Whitham equation. Roughly speaking, the
strategy in [24] is the following. The minimization problem is first solved in periodic domains using a
penalization argument do deal with the fact that the energy functional is not coercive. This allows to
construct a special minimizing sequence for the real line problem by letting the period tend to infinity,
which is essential to rule-out the dichotomy scenario in Lions’ concentration-compactness principle. The
long-wave description follows from precise asymptotic estimates and standard properties of the limiting
(Korteweg–de Vries) model. We follow closely this strategy, yet some additional difficulties arise in our
situation. Firstly, the necessary estimates require more involved calculations, and in particular rely on
(well-known) composition and product estimates in Sobolev spaces. Moreover, contrarily to the setting
in [24], the operators involved in our functionals are of low but positive order (1 − θ ∈ (0, 1]). As a
consequence, a specific care is necessary to show the existence of a minimizer at the critical regularity,
and we employ an approach based on [3]. However, the situation is simpler when the Fourier multipliers
Fi have sufficiently high order (−θ ∈ (−1/2, 0]) as we can in fact avoid the penalization argument and
consider the minimization problem on the real line directly, since any minimizing sequence is then also
a special minimizing sequence. In particular, this is the case for the original Miyata–Choi–Camassa
model (and of course also the Green–Naghdi system). Finally, in order to ensure the smoothness of the
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constructed solitary waves, we need elliptic estimates on the Euler–Lagrange equation, which turns out
to require tools from paradifferential calculus in the bilayer situation.

Our existence proof unfortunately gives no information about stability, since our variational formula-
tion does not involve conserved functionals; see the discussion in Sect. 1.2. If sufficiently strong surface
tension is included in the model, we expect that a different variational formulation could be used which
also yields a conditional stability result (see [8,9,25]). A similar situation appears e.g. in the study of
Boussinesq systems [15,16].

1.2. The Minimization Problem

We now set up the minimization problem which allows to obtain solitary waves of system (1.2). We seek
traveling waves of (1.2), namely solutions of the form (abusing notation) ζ(t, x) = ζ(x − ct), w(t, x) =
w(x − ct); from which we deduce

−c∂xζ + ∂xw = 0; −c∂x

(AF
γ,δ[ζ]w

)
+ (γ + δ)∂xζ +

1
2
∂x

(
h2
1 − γh2

2

h2
1h

2
2

w2

)

− ∂x

(RF
γ,δ[ζ, w]

)
= 0,

where we denote

AF
γ,δ[ζ]w def= AF

2[h2](h−1
2 w) + γAF

1[h1](h−1
1 w), AF

i [hi]ui
def= ui + QF

i [hi]ui.

Integrating these equations and using the assumption (since we restrict ourselves to solitary waves)
lim|x|→∞ ζ(x) = lim|x|→∞ w(x) = 0 yields the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

−cζ + w = 0,

−cAF
γ,δ[ζ]w + (γ + δ)ζ +

1
2

h2
1 − γh2

2

(h1h2)2
w2 − RF

γ,δ[ζ, w] = 0.
(1.3)

We now observe that system (1.2) enjoys a Hamiltonian structure. Indeed, define the functional

H(ζ, w) def=
1
2

∫ ∞

−∞
(γ + δ)ζ2 + wAF

γ,δ[ζ]w dx.

Under reasonable assumptions on F1,F2, and for sufficiently regular ζ, AF
γ,δ[ζ] defines a well-defined,

symmetric, positive definite operator [23]. We may thus introduce the variable

v
def= AF

γ,δ[ζ]w, (1.4)

and write

H(ζ, v) def=
1
2

∫ ∞

−∞
(γ + δ)ζ2 + v(AF

γ,δ[ζ])−1v dx.

It is now straightforward to check that (1.2) can be written in terms of functional derivatives of H:

∂tζ = −∂x (dvH) ; ∂tv = −∂x (dζH) . (1.5)

Hence traveling waves are critical points of the functional H − cI where

H(ζ, v) =
1
2

∫ ∞

−∞
(γ + δ)ζ2 + vAF

γ,δ[ζ]−1v dx and I(ζ, v) def=
∫ ∞

−∞
ζv dx.

However, as noticed (for the Green–Naghdi system) in [33], critical points are neither minimizers nor
maximizers. We shall obtain solutions to (1.3) from a constrained minimization problem depending solely
on the variable ζ. Notice that for each fixed c and ζ, the functional v �→ H(ζ, v) − cI(ζ, v) has a unique
critical point, vc,ζ = cAF

γ,δ[ζ]ζ . Substituting vc,ζ into H(ζ, v) − cI(ζ, v), we obtain

H(ζ, vc,ζ) − cI(ζ, vc,ζ) =
γ + δ

2

∥
∥ζ
∥
∥2

L2 − c2

2
I(ζ,AF

γ,δ[ζ]ζ).
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Observe now that (ζ, v) is a critical point of H(ζ, v) − cI(ζ, v) if and only if ζ is a critical point of
H(ζ, vc,ζ) − cI(ζ, vc,ζ) and v = vc,ζ . We thus define

E(ζ) def= I(ζ,AF
γ,δ[ζ]ζ) = γE(ζ) + E(ζ), (1.6)

where

E(ζ) =
∫ ∞

−∞

ζ2

1 − ζ
+

1
3
(1 − ζ)3

(
∂xF1{ ζ

1 − ζ
})2dx,

E(ζ) =
∫ ∞

−∞

ζ2

δ−1 + ζ
+

1
3
(δ−1 + ζ)3

(
∂xF2{ ζ

δ−1 + ζ
})2dx,

and look for critical points of H(ζ, vc,ζ) − cI(ζ, vc,ζ) by considering the minimization problem

arg min
{

E(ζ), (γ + δ)
∥
∥ζ
∥
∥2

L2 = q
}

, (1.7)

with c−2 acting as a Lagrange multiplier. Indeed, the corresponding Euler–Lagrange equation reads

2(γ + δ)ζ = c2 dE(ζ) = 2c2AF
γ,δ[ζ]ζ − c2

h2
1 − γh2

2

h2
1h

2
2

ζ2 + 2c2RF
γ,δ[ζ, ζ], (1.8)

which is obviously equivalent to (1.3), with w = cζ.

1.3. Statement of the Results

For the sake of readability, we postpone to Sect. 2 the definition and (standard) notations of the functional
spaces used herein. The class of Fourier multipliers for which our main result is valid is the following.

Definition 1.1. (Admissible class of Fourier multipliers)

(i) F(k) = F(|k|) and 0 < F ≤ 1;
(ii) F ∈ C2(R), F(0) = 1 and F′(0) = 0;
(iii) There exists an integer j ≥ 2 such that

∂j
k(kF(k)) ∈ L2(R);

(iv) There exists θ ∈ [0, 1) and CF
± > 0 such that

CF
−(1 + |k|)−θ ≤ F(k) ≤ CF

+(1 + |k|)−θ.

We also introduce a second class of strongly admissible Fourier multipliers which is used in our second
result.

Definition 1.2. (Strongly admissible class of Fourier multipliers) An admissible Fourier multipler F in the
sense of Definition 1.1 is strongly admissible if F ∈ C∞(R) and for each j ∈ N there exists a constant Cj

such that

|∂j
kF(k)| ≤ Cj(1 + |k|)−θ−j .

Notice the following.

Proposition 1.3. The two aforementioned examples, namely Fid
i and Fimp

i are strongly admissible, and
satisfy Definition 1.1(iv) with (respectively) θ = 0, 1/2.

Assumption 1.4. (Admissible parameters) In the following, we fix γ ≥ 0, δ ∈ (0,∞) such that δ2 −γ 
= 0.
We also fix a positive number ν such that ν ≥ 1 − θ and ν > 1/2 (the second condition is automatically
satisfied if θ < 1/2). Finally, fix R an arbitrary positive constant.
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Remark 1.5. Our results hold for any values of the parameters (γ, δ) ∈ [0,∞) × (0,∞) such that δ2 
= γ,
although admissible values for q0 depend on the choice of the parameters. However, not all parameters are
physically relevant in the oceanographic context. When γ > 1, the upper fluid is heavier than the lower
fluid, and the system suffers from strong Rayleigh–Taylor instabilities [12]. In the bilayer setting, the use of
the rigid-lid assumption is well-grounded only when the density contrast, 1−γ, is small. In this situation,
one may use the Boussinesq approximation, that is set γ = 1; see [22] in the dispersionless setting. Notice
however that system (1.2) exhibits unstable modes that are reminiscent of Kelvin–Helmholtz instabilities
when the Fourier multipliers Fi satisfy Definition 1.1(iv) with θ ∈ [0, 1); see [23]. It is therefore noteworthy
that internal solitary waves in the ocean and in laboratory experiments are remarkably stable and fit
very well with the Miyata–Choi–Camassa predictions [27]. The sign of the parameter δ2 − γ is known to
determine whether long solitary waves are of elevation or depression type, as corroborated by Theorem 1.7.
At the critical value δ2 = γ, the first-order model would be the modified (cubic) KdV equation, predicting
that no solitary wave exists [21].

We study the constrained minimization problem

arg minζ∈Vq,R
E(ζ), (1.9)

with

Vq,R = {ζ ∈ Hν(R) :
∥
∥ζ
∥
∥

Hν(R)
< R, (γ + δ)

∥
∥ζ
∥
∥2

L2(R)
= q},

and q ∈ (0, q0), with q0 sufficiently small. Notice in particular that as soon as q is sufficiently small∥
∥ζ
∥
∥

L∞ < min(1, δ−1) (by Lemma 2.1 thereafter and since ν > 1/2) and E(ζ) is well-defined (by Lem-
mas 2.3 and 2.4 and since ν ≥ 1 − θ) for any ζ ∈ Vq,R. Any solution will satisfy the Euler–Lagrange
equation

dE(ζ) + 2α(γ + δ)ζ = 0, (1.10)

where α is a Lagrange multiplier. Equation (1.10) is exactly (1.8) with (−α)−1 = c2, and therefore
provides a traveling-wave solution to (1.2).

Our goal is to prove the following theorems.

Theorem 1.6. Let γ, δ, ν,R satisfying Assumption 1.4 and Fi, i = 1, 2 be admissible in the sense of
Definition 1.1. Let Dq,R be the set of minimizers of E over Vq,R. Then there exists q0 > 0 such that for
all q ∈ (0, q0), the following statements hold:

• The set Dq,R is nonempty and each element in Dq,R solves the traveling wave equation (1.8), with
c2 = (−α)−1 > 1. Thus for any ζ ∈ Dq,R,

(
ζ(x ± ct), w± = ±cζ(x ± ct)

)
is a supercritical solitary

wave solution to (1.2).
• For any minimizing sequence {ζn}n∈N for E in Vq,R such that supn∈N

∥
∥ζn

∥
∥

Hν(R)
< R, there exists a

sequence {xn}n∈N of real numbers such that a subsequence of {ζn(·+xn)}n∈N converges (strongly in
Hν(R) if ν = 1 − θ > 1/2; weakly in Hν(R) and strongly in Hs(R) for s ∈ [0, ν) otherwise) to an
element in Dq,R.

• There exist two constants m,M > 0 such that
∥
∥ζ
∥
∥2

Hν(R)
≤ Mq and c−2 = −α ≤ 1 − mq

2
3 ,

uniformly over q ∈ (0, q0) and ζ ∈ Dq,R.

Theorem 1.7. In addition to the hypotheses of Theorem 1.6, assume that Fi, i = 1, 2, are strongly admis-
sible in the sense of Definition 1.2. Then there exists q0 > 0 such that for any q ∈ (0, q0), each ζ ∈ Dq,R

belongs to Hs(R) for any s ≥ 0 and

sup
ζ∈Dq,R

inf
x0∈R

∥
∥q− 2

3 ζ(q−1/3·) − ξKdV(· − x0)
∥
∥

H1(R)
= O(q

1
6 )
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where

ξKdV(x) =
α0(γ + δ)

δ2 − γ
sech2

(
1
2

√

3α0(γ + δ)
γ + δ−1

x

)

is the unique (up to translation) solution of the KdV equation (5.2) and

α0 =
3
4

(
(δ2 − γ)4

(γ + δ)4(γ + δ−1)

) 1
3

.

In addition, the number α, defined in Theorem 1.6, satisfies

α + 1 = q
2
3 α0 + O(q

5
6 ),

uniformly over q ∈ (0, q0) and ζ ∈ Dq,R.

2. Technical Results

In the following, we denote C(λ1, λ2, . . . ) a positive constant depending non-decreasingly on the param-
eters λ1, λ2, . . . . We write A � B when A ≤ CB with C a nonnegative constant whose value is of no
importance. We do not display the dependence with respect to the parameters γ, δ, CFi± and regularity
indexes.

2.1. Functional Setting on the Real Line

Here and thereafter, we denote L2(R) the standard Lebesgue space of square-integrable functions, endowed
with the norm

∥
∥f
∥
∥

L2 = (
∫∞

−∞|f(x)|2 dx)1/2. The real inner product of f1, f2 ∈ L2(R) is denoted by
〈f1, f2〉 =

∫

R
f1(x)f2(x)dx. We use the same notation for duality pairings which are clear from the

context. The space L∞(R) consists of all essentially bounded, Lebesgue-measurable functions f , endowed
with the norm

∥
∥f
∥
∥

L∞ = ess supx∈R
|f(x)|. For any real constant s ∈ R, Hs(R) denotes the Sobolev space

of all tempered distributions f with finite norm
∥
∥f
∥
∥

Hs =
∥
∥Λsf

∥
∥

L2 < ∞, where Λ is the pseudo-differential
operator Λ = (1 − ∂2

x)
1
2 . For n ∈ N, Cn(R) is the space of functions having continuous derivatives up to

order n, and C∞(R) =
⋂

n∈N
Cn(R). The Schwartz space is denoted S(R) and the tempered distributions

S ′(R). We use the following convention for the Fourier transform:

F(
f
)
(k) = f̂(k) def=

1√
2π

∫

R

f(x)e−ixk dx.

We start with standard estimates in Sobolev spaces. The following interpolation estimates are standard
and used without reference in our proofs.

Lemma 2.1. (Interpolation estimates) Let f ∈ Hμ(R), with μ > 1/2.
(i) One has f ∈ L∞(R) and

∥
∥f
∥
∥

L∞ �
∥
∥f
∥
∥1− 1

2μ

L2

∥
∥f
∥
∥

1
2μ

Hμ .

(ii) For any δ ∈ (0, μ), one has f ∈ Hμ−δ(R) and
∥
∥f
∥
∥

Hμ−δ ≤ ∥
∥f
∥
∥

δ
μ

L2

∥
∥f
∥
∥1− δ

μ

Hμ .

The following lemma is given for instance in [5, Theorem C.12].

Lemma 2.2. (Composition estimate) Let G be a smooth function vanishing at 0, and f ∈ Hμ(R) with
μ > 1/2. Then G ◦ f ∈ Hμ(R) and we have

∥
∥G ◦ f

∥
∥

Hμ ≤ C(
∥
∥f
∥
∥

L∞)
∥
∥f
∥
∥

Hμ .
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Lemma 2.3. (Product estimates)
(i) For any f, g ∈ L∞(R) ∩ Hs(R) with s ≥ 0, one has fg ∈ Hs(R) and

∥
∥fg

∥
∥

Hs �
∥
∥f
∥
∥

Hs

∥
∥g
∥
∥

L∞ +
∥
∥g
∥
∥

Hs

∥
∥f
∥
∥

L∞ .

(ii) For any f ∈ Hs(R), g ∈ Ht(R) with s + t ≥ 0, and let r such that min(s, t) ≥ r and r < s + t − 1/2.
Then one has fg ∈ Hr(R) and

∥
∥fg

∥
∥

Hr �
∥
∥f
∥
∥

Hs

∥
∥g
∥
∥

Ht .

(iii) For any ζ ∈ L∞(R) such that
∥
∥ζ
∥
∥

L∞ ≤ 1 − h0 with h0 > 0 and any f ∈ L∞(R), one has

∥
∥ f

1 + ζ

∥
∥

L∞ ≤ C(h−1
0 )

∥
∥f
∥
∥

L∞ .

(iv) For any ζ ∈ Hμ(R) with μ > 1/2 such that
∥
∥ζ
∥
∥

L∞ ≤ 1 − h0 with h0 > 0 and any f ∈ Hs(R) with
s ∈ [−μ, μ], one has

∥
∥ f

1 + ζ

∥
∥

Hs ≤ C(h−1
0 ,

∥
∥ζ
∥
∥

Hμ)
∥
∥f
∥
∥

Hs .

Proof. The first two items are standard (see for instance [5, Prop. C.11 and Th. C.10]). The third item
is obvious. The last item is proved using (ii) and Lemma 2.2. �

The following lemma justifies the assumptions of admissible Fourier multipliers in Definition 1.1.

Lemma 2.4. (Properties of admissible Fourier multipliers) Any admissible Fourier multipler (in the sense
of Definition 1.1), Fi, satisfies the following.

(i) The linear operator ∂xFi(D) is bounded from Hs(R) to Hs−1+θ(R), for any s ∈ R, and
∥
∥∂xFi

∥
∥

Hs→Hs−1+θ � CFi
+ .

Moreover, for any ζ ∈ Hs+1−θ, one has
∥
∥ζ
∥
∥2

Hs + (CFi
+ )−2

∥
∥∂xFi{ζ}∥∥2

Hs �
∥
∥ζ
∥
∥2

Hs+1−θ �
∥
∥ζ
∥
∥2

Hs + (CFi− )−2
∥
∥∂xFi{ζ}∥∥2

Hs .

(ii) Let ϕ ∈ C∞(R) with compact support and [∂xFi, ϕ]ζ = ∂xFi{ϕζ} − ϕ∂xFi{ζ}. Then
∥
∥[∂xFi, ϕ]ζ

∥
∥

L2 �
∥
∥ϕ̂′∥∥

L1

∥
∥ζ
∥
∥

H1−θ .

(iii) There exists j ≥ 2 and Cj such that for any ζ ∈ L2(R) with compact support

|∂xFi{ζ}|(x) ≤ Cj

dist(x, supp(ζ))j

∥
∥ζ
∥
∥

L2 , for a.a. x ∈ R \ supp(ζ).

Proof. The first result is obvious from Definition 1.1(i) and the definition of Sobolev spaces. For the
second, we shall first prove that the function Gi : k �→ kFi(k) satisfies

|G′
i(k)| � 〈k〉1−θ. (2.1)

To this aim, let us first consider G ∈ S(R) and χ a smooth cut-off function, such that χ(k) = 1 for
|k| ≤ 1/2 and χ(k) = 0 for |k| ≥ 1. We decompose

|G′|(k) ≤ |χ(D)G′|(k) + |(1 − χ(D))G′|(k).

For the first contribution, one has

|χ(D)G′|(k) =
1√
2π

∣
∣
∣
∣

∫

R

χ̂(ξ)G′(k + ξ)dξ

∣
∣
∣
∣ � sup

ξ∈R

|G(k + ξ)|
〈k + ξ〉1−θ

〈k〉1−θ
∥
∥〈·〉1−θχ̂′∥∥

L1 ,

and the second contribution satisfies for any j ≥ 2,

|(1 − χ(D))G′|(k) �
∥
∥(1 − χ(ξ))|ξ|Ĝ(ξ)

∥
∥

L1 �
∥
∥〈ξ〉−(j−1)|ξ|jĜ(ξ)

∥
∥

L1 �
∥
∥G(j)

∥
∥

L2 ,
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by the Cauchy–Schwarz inequality and Parseval’s theorem. Thus we find, for any j ≥ 2,

|G′|(k) �
∥
∥〈·〉θ−1G

∥
∥

L∞〈k〉1−θ +
∥
∥G(j)

∥
∥

L2 .

The same estimate applies to G(k) = kFi(k) by smooth approximation, and (2.1) follows from Defini-
tion 1.1. Using (2.1) and the mean value theorem together with Young’s inequality, we find

∥
∥[∂xFi, ϕ]ζ

∥
∥

L2 �
∥
∥ϕ̂′∥∥

L1

∥
∥(1 + | · |)1−θ ζ̂

∥
∥

L2 �
∥
∥ϕ̂′∥∥

L1

∥
∥ζ
∥
∥

H1−θ .

For the third result, let us assume at first that the kernel Ki
def= F−1(ikFi(k)) ∈ L2(R). Then one has

|∂xFi{ζ}|(x) =
1√
2π

∣
∣
∣
∣
∣

∫

supp(ζ)

(x − y)jKi(x − y)ζ(y)
(x − y)j

dy

∣
∣
∣
∣
∣
≤

(|Ki,j | ∗ |ζ|)(x)√
2π dist(x, supp(ζ))j

�
∥
∥ζ
∥
∥

L2

dist(x, supp(ζ))j
,

where we denote Ki,j(x) = xjKi(x), remark that Ki,j ∈ L2(R) by Definition 1.1(iii) and Plancherel’s
theorem, and apply the Cauchy–Schwarz inequality to the convolution. If Ki /∈ L2(R), we obtain the
result by regularizing Ki (i.e. smoothly truncating Fi) and passing to the limit. �

Lemma 2.5. Let γ ≥ 0, δ > 0, μ > 1/2 and Fi be admissible Fourier multipliers. Assume that ζ ∈ Hμ(R)
is such that 1 − ∥

∥ζ
∥
∥

L∞ ≥ h0, δ−1 − ∥
∥ζ
∥
∥

L∞ ≥ h0, with h0 > 0. Then there exist a constant C0 =
C(h−1

0 ,
∥
∥ζ
∥
∥

Hμ) such that

C−1
0

∥
∥ζ
∥
∥2

H1−θ ≤ E(ζ) ≤ C0

∥
∥ζ
∥
∥2

H1−θ .

Proof. We first deal with the contribution of E(ζ) defined in (1.6). By Lemma 2.4(i) we get that

E(ζ) ≤ C(
∥
∥ζ
∥
∥

L∞)
∥
∥ ζ

1 − ζ

∥
∥2

H1−θ and
∥
∥ ζ

1 − ζ

∥
∥2

H1−θ ≤ C(h−1
0 )E(ζ).

By Lemma 2.3(iv), one has
∥
∥ ζ

1 − ζ

∥
∥

H1−θ ≤ C(h−1
0 ,

∥
∥ζ
∥
∥

Hμ)
∥
∥ζ
∥
∥

H1−θ ,

and the triangle inequality together with Lemma 2.3(ii) yields

∥
∥ζ
∥
∥

H1−θ �
∥
∥ ζ

1 − ζ

∥
∥

H1−θ +
∥
∥ ζ2

1 − ζ

∥
∥

H1−θ �
∥
∥ ζ

1 − ζ

∥
∥

H1−θ +
∥
∥ζ
∥
∥

Hμ

∥
∥ ζ

1 − ζ

∥
∥

H1−θ .

Collecting the above information, we find that

C−1
0

∥
∥ζ
∥
∥2

H1−θ ≤ E(ζ) ≤ C0

∥
∥ζ
∥
∥2

H1−θ ,

with C0 = C(h−1
0 ,

∥
∥ζ
∥
∥

Hμ). Similar estimates hold for E(ζ), and thus for E(ζ) = γE(ζ) + E(ζ). �

Lemma 2.6. Let γ ≥ 0, δ > 0, μ > 1/2 and Fi be admissible Fourier multipliers. Assume that, for
j ∈ {1, 2}, ζj ∈ Hμ(R) is such that 1−∥

∥ζj

∥
∥

L∞ ≥ h0 and δ−1 −∥
∥ζj

∥
∥

L∞ ≥ h0, with h0 > 0. Then one has

E(ζ1) − E(ζ2) ≤ C(h−1
0 ,

∥
∥ζ1

∥
∥

Hμ ,
∥
∥ζ2

∥
∥

Hμ)
∥
∥ζ1 − ζ2

∥
∥

Hμ .

Proof. As previously, we detail the result for E(ζ), as the similar estimate for E(ζ) is obtained in the
same way. One has

E(ζ1) − E(ζ2) =
∫

R

ζ21
1 − ζ1

− ζ22
1 − ζ2

+
1
3
[
(1 − ζ1)3 − (1 − ζ2)3

](
∂xF1{ ζ1

1 − ζ1
})2

+
1
3
(1 − ζ2)3

[(
∂xF1{ ζ1

1 − ζ1
})2 − (

∂xF1{ ζ2
1 − ζ2

})2
]
dx,
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By Lemma 2.3(iii), and the Cauchy–Schwarz inequality, we immediately have
∫

R

∣
∣
∣
∣

ζ21
1 − ζ1

− ζ22
1 − ζ2

∣
∣
∣
∣ dx ≤ C(h−1

0 ,
∥
∥ζ1

∥
∥

L∞ ,
∥
∥ζ2

∥
∥

L∞)(
∥
∥ζ1

∥
∥

L2 +
∥
∥ζ2

∥
∥

L2)
∥
∥ζ1 − ζ2

∥
∥

L2 .

Similarly, we find by Lemmas 2.4(i), 2.3(iv),
∫

R

∣
∣
∣
∣

[
(1 − ζ1)3 − (1 − ζ2)3

](
∂xF1{ ζ1

1 − ζ1
})2

∣
∣
∣
∣ dx ≤ C(h−1

0 ,
∥
∥ζ1

∥
∥

Hμ ,
∥
∥ζ2

∥
∥

L∞)
∥
∥ζ1 − ζ2

∥
∥

L∞ .

Finally we conclude by Lemma 2.3(iv) that
∫

R

∣
∣
∣
∣(1 − ζ2)3

[(
∂xF1{ ζ1

1 − ζ1
})2 − (

∂xF1{ ζ2
1 − ζ2

})2
]∣∣
∣
∣dx

≤ C(
∥
∥ζ2

∥
∥

L∞)
∥
∥ ζ1

1 − ζ1
− ζ2

1 − ζ2

∥
∥

H1−θ

∥
∥ ζ1

1 − ζ1
+

ζ2
1 − ζ2

∥
∥

H1−θ

≤ C(h−1
0 ,

∥
∥ζ1

∥
∥

Hμ ,
∥
∥ζ2

∥
∥

Hμ)
∥
∥ζ1 − ζ2

∥
∥

H1−θ ,

The result is proved. �

Lemma 2.7. Let γ ≥ 0, δ > 0, and Fi be admissible Fourier multipliers. Let l ∈ {1, 2, 3} and ζ ∈ H l(R)
such that 1 − ∥

∥ζ
∥
∥

L∞ ≥ h0 and δ−1 − ∥
∥ζ
∥
∥

L∞ ≥ h0, with h0 > 0. Then one can decompose

E(ζ) =
∫

R

(γ + δ)ζ2 + (γ − δ2)ζ3 +
γ + δ−1

3
(∂xζ)2 dx + Erem(ζ),

and

〈dE(ζ), ζ〉 =
∫

R

2(γ + δ)ζ2 + 3(γ − δ2)ζ3 + 2
γ + δ−1

3
(∂xζ)2 dx + 〈dErem(ζ), ζ〉,

where

|Erem| + |〈dErem(ζ), ζ〉| ≤ C(h−1
0 ,

∥
∥ζ
∥
∥

H1)
(∥
∥ζ
∥
∥2

L∞
∥
∥ζ
∥
∥2

L2 +
∥
∥ζ
∥
∥

L∞
∥
∥∂xζ

∥
∥2

L2 +
∥
∥∂l

xζ
∥
∥

L2

∥
∥∂xζ

∥
∥

L2

)
.

Proof. We consider E(ζ); the corresponding expansion for E(ζ) is obtained similarly. We write

E(ζ) =
∫

R

ζ2 + ζ3 +
1
3
(∂xζ)2 dx + Erem(ζ),

where

Erem(ζ) =
∫

R

ζ4

1 − ζ
dx +

1
3

∫

R

(1 − ζ)3
(
∂x{ ζ

1 − ζ
})2 − (∂xζ)2 dx

+
∫

R

(1 − ζ)3
[
(
∂xF1{ ζ

1 − ζ
})2 − (

∂x{ ζ

1 − ζ
})2

]

dx.

The first integral is bounded by h−1
0

∥
∥ζ
∥
∥2

L∞
∥
∥ζ
∥
∥2

L2 and the second one by h−1
0

∥
∥ζ
∥
∥

L∞
∥
∥∂xζ

∥
∥2

L2 . Moreover
∣
∣
∣
∣
∣

∫

R

(1 − ζ)3
[(

∂xF1

{
ζ

1 − ζ

})2

−
(

∂x

{
ζ

1 − ζ

})2
]

dx

∣
∣
∣
∣
∣

≤
∫

R

(1 + |ζ|)3
∣
∣
∣
∣(∂xF1 − ∂x)

(
ζ

1 − ζ

)∣
∣
∣
∣

∣
∣
∣
∣(∂xF1 + ∂x)

(
ζ

1 − ζ

)∣
∣
∣
∣ dx.

Applying the Cauchy–Schwarz inequality, Plancherel’s theorem and the estimates

|F1(k) − 1| � |k|l−1, |F1(k) + 1| � 1,
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(by Definition 1.1, (i and ii)), we deduce
∣
∣
∣
∣
∣

∫

R

(1 − ζ)3
[(

∂xF1

{
ζ

1 − ζ

})2

−
(

∂x

{
ζ

1 − ζ

})2
]

dx

∣
∣
∣
∣
∣

≤ (1 +
∥
∥ζ
∥
∥

L∞)3
∥
∥∂l

x

(
ζ

1 − ζ

)
∥
∥

L2

∥
∥∂x

(
ζ

1 − ζ

)
∥
∥

L2

≤ C(
∥
∥ζ
∥
∥

Hμ)
∥
∥∂l

xζ
∥
∥

L2

∥
∥∂xζ

∥
∥

L2 ,

where the last inequality follows from Leibniz’s rule and standard bilinear estimates [5, Prop. C.12].
Combining the above estimates together with similar calculations for E yields the desired estimate for
|Erem|. The estimate for |〈dErem(ζ), ζ〉| follows in the same way when decomposing

〈dE(ζ), ζ〉 =
∫

R

2
h1 + γh2

h1h2
ζ2 − h2

1 − γh2
2

h2
1h

2
2

ζ3 +
2
3
δ−1h3

2

(
∂xF2{h−1

2 ζ})(∂xF2{h−2
2 ζ})

+
2γ

3
h3
1

(
∂xF1{h−1

1 ζ})(∂xF1{h−2
1 ζ})+ ζ

(
h2∂xF2{h−1

2 ζ})2 − γζ
(
h1∂xF1{h−1

1 ζ})2 dx, (2.2)

and we do not detail for the sake of conciseness. �

Using very similar arguments we obtain the following alternative decomposition.

Lemma 2.8. Let γ ≥ 0, δ > 0, μ > 1/2 and Fi be admissible Fourier multipliers such that μ ≥ 1 − θ. Let
ζ ∈ Hμ(R) such that 1 − ∥

∥ζ
∥
∥

L∞ ≥ h0 and δ−1 − ∥
∥ζ
∥
∥

L∞ ≥ h0, with h0 > 0. Then one can decompose

E(ζ) = E2(ζ) + E3(ζ) + E(1)
rem(ζ)

and

〈dE(ζ), ζ〉 = 2E2(ζ) + 3E3(ζ) + E(2)
rem(ζ),

where

E2(ζ) =
∫

R

(γ + δ)ζ2 + γ
1
3
(∂xF1{ζ})2 + δ−1 1

3
(∂xF2{ζ})2 dx,

E3(ζ) =
∫

R

(γ − δ2)ζ3 − γζ(∂xF1{ζ})2 + ζ(∂xF2{ζ})2

+ γ
2
3
(∂xF1{ζ})(∂xF1{ζ2}) − 2

3
(∂xF2{ζ})(∂xF2{ζ2}) dx.

Moreover, one has E2(ζ) ≥ (γ + δ)
∥
∥ζ
∥
∥2

L2 and

|E3(ζ)| ≤ C(h−1
0 ,

∥
∥ζ
∥
∥

Hμ)
∥
∥ζ
∥
∥

L∞
∥
∥ζ
∥
∥2

H1−θ ,

∀j ∈ {1, 2}, |E(j)
rem(ζ)| ≤ C(h−1

0 ,
∥
∥ζ
∥
∥

Hμ)
∥
∥ζ
∥
∥2

L∞
∥
∥ζ
∥
∥2

H1−θ .

2.2. Periodic Functional Setting

Given P > 0, we denote L2
P the space of P -periodic, locally square-integrable functions, endowed with

the norm

∥
∥u
∥
∥

L2
P

=
∥
∥u
∥
∥

L2(−P/2,P/2)

def=

(∫ P/2

−P/2

|u(x)|2 dx

) 1
2

.

The Fourier coefficients of u ∈ L2
P are defined by

ûk
def=

1√
P

∫ P/2

−P/2

u(x)e− 2iπkx
P dx, u(x) =

1√
P

∑

k∈Z

ûke
2iπkx

P .
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We define, for s ≥ 0,

Hs
P

def=

{

u ∈ L2
P ,

∥
∥u
∥
∥2

Hs
P

def=
∑

k∈Z

(

1 +
4π2k2

P 2

)s

|ûk|2 < ∞
}

.

The Fourier multiplier operator Λ: S ′(R) → S ′(R) is defined as usual by Λ = (1− ∂2
x)

1
2 . It maps periodic

distributions to periodic distributions and we have

Λ̂uk =
(

1 +
4π2k2

P 2

) 1
2

ûk.

Thus
∥
∥u
∥
∥2

Hs
P

=
∫ P/2

−P/2

uΛ2su dx

and Λm is an isomorphism from Hs
P to Hs−m

P for any s,m ∈ R. Similarly, the operators ∂xFi extend to
operators from S ′(R) to itself, and maps smoothly Hs

P into Hs−1+θ
P , acting on the Fourier coefficients by

pointwise multiplication:

̂∂xFiuk =
2πik
P

Fi(2πk/P )ûk.

For any s > 1/2, the continuous embedding

∥
∥u
∥
∥

L∞ ≤ 1√
P

∑

k∈Z

|ûk| ≤ ∥
∥u
∥
∥

Hs
P

× 1√
P

(
∑

k∈Z

1
(1 + 4π2k2

P 2 )s

) 1
2

�
∥
∥u
∥
∥

Hs
P
,

holds uniformly with respect to P ≥ 1. More generally, one checks by a partition of unity argument,
or repeating the proofs in the periodic setting, that Lemmas 2.1, 2.2, 2.3 and as a consequence Lem-
mas 2.5, 2.6, 2.7 and 2.8 have immediate analogues in the periodic setting, with uniform estimates with
respect to P ≥ 1, when defining

EP (ζ) = γEP (ζ) + EP (ζ)

where

EP (ζ) =
∫ P/2

−P/2

ζ2

1 − ζ
+

1
3
(1 − ζ)3

(
∂xF1{ ζ

1 − ζ
})2dx,

EP (ζ) =
∫ P/2

−P/2

ζ2

δ−1 + ζ
+

1
3
(δ−1 + ζ)3

(
∂xF2{ ζ

δ−1 + ζ
})2dx.

3. The Periodic Problem

Our first task is to construct periodic traveling-wave solutions with large periods by considering the
periodic minimization problem corresponding to (1.9). We will use this in the next section to construct
a special minimizing sequence for (1.9), which is useful when ν > 1 − θ. When θ < 1/2 and ν = 1 − θ,
any minimizing sequence has the special property and therefore it is strictly speaking unnecessary to
first consider the periodic minimization problem. Nevertheless, we consider here all possible parameters
in order to highlight some interesting differences between the cases ν = 1 − θ and ν > 1 − θ.

We ensure that the hypotheses of Sect. 2, namely

ζ ∈ Hν
P and

∥
∥ζ
∥
∥

L∞ < min(1, δ−1)

will be satisfied through a penalization argument. To this aim, we fix R > 0 and restrict ourselves to
values q ∈ (0, q0) sufficiently small so that

∥
∥ζ
∥
∥

Hν
P (R)

≤ 2R and (γ + δ)
∥
∥ζ
∥
∥2

L2
P

= q ensures (the reference

to Lemma 2.1(i)) that
∥
∥ζ
∥
∥

L∞ < min(1, δ−1) − h0 with some h0 > 0, uniformly with respect to P ≥ P0
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sufficiently large (and likewise in the real line setting). We then define � : [0, (2R)2) → [0,∞) a smooth,
non-decreasing penalization function, satisfying

(i) �(t) = 0 for 0 ≤ t ≤ R2;
(ii) �(t) → ∞ as t ↗ (2R)2;
(iii) For any a1 ∈ (0, 1), there exists M1,M2 > 0 and a2 > 1 such that

�′(t) ≤ M1�(t)a1 + M2�(t)a2 ; (3.1)

for instance � : (R2, (2R)2) � t �→ ((2R)2 − t)−1 exp( 1
R2−t ).

Now consider the functional

EP,	(ζ) def= �(
∥
∥ζ
∥
∥2

Hν
P
) + EP (ζ)

and the constraint set

VP,q,2R
def=

{
ζ ∈ Hν

P , (γ + δ)
∥
∥ζ
∥
∥2

L2
P

= q and
∥
∥ζ
∥
∥

Hν
P

< 2R
}

.

Standard weak continuity arguments (see e.g. [43, §I.1,I.2]) yield the existence of a minimizer for EP,	

when q is sufficiently small. More precisely, we have the following lemma.

Lemma 3.1. There exists q0 > 0 such that for any q ∈ (0, q0), the functional EP,	 : VP,q,2R → R is weakly
lower semi-continuous, bounded from below and EP,	(ζ) → ∞ as

∥
∥ζ
∥
∥

Hν
P

↗ 2R. In particular, it has a
minimizer ζP ∈ VP,q,2R, which satisfies the Euler–Lagrange equation

2�′(
∥
∥ζP

∥
∥2

Hν
P
)Λ2νζP + dEP (ζP ) + 2αP (γ + δ)ζP = 0 (3.2)

for some Lagrange multiplier αP (ζP ) ∈ R.

Now we wish to prove that ζP ∈ VP,q,R, and in particular satisfies the Euler–Lagrange equation

dEP (ζP ) + 2αP (γ + δ)ζP = 0.

From this point on, we heavily make use of the property (see Assumption 1.4)

γ − δ2 
= 0.

without explicit references in the statements.

Lemma 3.2. There exists m > 0 and q0 > 0 such that for any q ∈ (0, q0),

Iq
def= inf{E(ζ), ζ ∈ Vq,R} < q(1 − mq

2
3 )

and there exists Pq > 0 such that

IP,	,q
def= inf{EP,	(ζ), ζ ∈ VP,q,2R} < q(1 − mq

2
3 )

for any P ≥ Pq.

Proof. Let us first consider the case of the real line. Consider ψ ∈ C∞(R) with compact support, such
that (γ + δ)

∥
∥ψ

∥
∥2

L2 = 1; and denote ψλ : x �→ λ
1
2 ψ(λx). One has

∫

R

ψ3
λ dx = λ

1
2

∫

R

ψ3 dx and
∥
∥∂xψλ

∥
∥

L2 = λ
∥
∥∂xψ

∥
∥

L2 .

It follows that, for the case when γ − δ2 < 0, one can choose ψ ≥ 0 and λ small enough so that
∫

R

(γ − δ2)ψ3
λ +

γ + δ−1

3
(∂xψλ)2 dx

def= −2m < 0.

If γ − δ2 > 0, we instead let ψ ≤ 0 and again choose λ small enough so that the above holds.
Now, consider φq : x �→ q

2
3 ψλ(q

1
3 x). One has

∥
∥φq

∥
∥

L∞ ≤ q
2
3
∥
∥ψλ

∥
∥

L∞ ,

∫

R

φ3
q dx = q

5
3

∫

R

ψ3
λ dx and

∥
∥∂n

x φq

∥
∥

L2 = q
1
2+

n
3
∥
∥∂n

x ψλ

∥
∥

L2 (n ∈ N).
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In particular, for q sufficiently small,
∥
∥φq

∥
∥

Hν < R; and by Lemma 2.7 with l = 3,

E(φq) = (γ + δ)
∫

R

φ2
q dx +

∫

R

(γ − δ2)φ3
q +

γ + δ−1

3
(∂xφq)3 dx + O(q

7
3 )

= q − 2mq
5
3 + O(q

7
3 ).

The result follows in the real-line setting.
The result in the periodic setting is deduced in a similar way when restricting to P ≥ Pq sufficiently

large so that supp(φq) ∈ (−P/2, P/2), and considering φP,q =
∑

j∈Z
φq(x − jP ). �

Lemma 3.3. There exists q0 > 0 such that for any q ∈ (0, q0), one has

∀P ≥ Pq, |αP + 1| <
1
2
,

where αP is defined in Lemma 3.1 and Pq in Lemma 3.2.

Proof. Testing the Euler–Lagrange equation (3.2) against ζP yields

2�′(
∥
∥ζP

∥
∥2

Hν
P
)
∥
∥ζP

∥
∥2

Hν
P

+ 2αP (γ + δ)
∥
∥ζP

∥
∥2

L2
P

+ 〈dEP (ζP ), ζP 〉 = 0.

Using the decompositions in Lemma 2.8 (in the periodic setting) yields

− αP q = EP (ζP ) +
1
2
E3,P (ζP ) +

1
2
E(2)
rem,P (ζP ) − E(1)

rem,P (ζP ) + �′(
∥
∥ζP

∥
∥2

Hν
P
)
∥
∥ζP

∥
∥2

Hν
P
. (3.3)

Let us now use Lemma 3.2, which asserts

�(
∥
∥ζP

∥
∥2

Hν
P
) + EP (ζP ) < q(1 − mq

2
3 ) ≤ q. (3.4)

Remark that one has

EP (ζP ) ≥
∫ P/2

−P/2

γ
ζ2P

1 − ζP
+

ζ2P
δ−1 + ζP

dx = q + O(q1+
ε
2ν ),

where ε = ν − 1/2 > 0 and we use in the last estimate that
∥
∥ζP

∥
∥2

L∞ �
∥
∥ζP

∥
∥2− 1

ν

L2
P

∥
∥ζP

∥
∥

1
ν

Hν
P

= O(q
2ν−1
2ν ), by

the interpolation estimate Lemma 2.1(i) in the periodic-setting. Combining with (3.4) yields

EP (ζP ) = q + O(q1+
ε
2ν ) and �(

∥
∥ζP

∥
∥2

Hν
P
) = O(q1+

ε
2ν ). (3.5)

Using Lemma 2.5 on one hand and assumption (3.1) on the other hand, we deduce
∥
∥ζP

∥
∥2

H1−θ
P

� EP (ζP ) = O(q) and �′(
∥
∥ζP

∥
∥2

Hν
P
) = O(q1+

ε
4ν ).

Finally, we can estimate E3,P , E(1)
rem,P and E(2)

rem,P through Lemma 2.8 and combining previous estimates
into (3.3) yields

−αP q = q + O(q1+
ε
4ν ),

and the proof is complete. �

Lemma 3.4. Let q0, q ∈ (0, q0) and Pq be as in Lemma 3.3. There exists M > 0 such that one has
∥
∥ζ
∥
∥2

Hν
P

≤ Mq

uniformly over q ∈ (0, q0), P ≥ Pq and ζ in the set of minimizers of EP,	 over VP,q,2R.
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Proof. It follows from the proof of Lemma 3.3 that for q0 sufficiently small
∥
∥ζP

∥
∥2

H1−θ
P

� q with 0 ≤ θ < 1.
Thus the result is proved if ν = 1−θ, and we focus below on the situation ν > 1−θ. In this case we obtain
the desired estimate in a similar fashion after finite induction. Indeed, define rn = min(ν−(1−θ), n(1−θ)),
n ∈ N, and assume that

∥
∥ζP

∥
∥2

Hrn
P

� q. Note that this is satisfied for n = 0 by assumption. We will show
below that

∥
∥ζP

∥
∥2

H1−θ+rn
P

�
∥
∥ζP

∥
∥2

Hrn
P

� q. (3.6)

Since 1 − θ > 0, the desired result follows by finite induction.
Let us now prove (3.6). We test (3.2) against Λ2rnζP , and obtain

2�′(
∥
∥ζP

∥
∥2

Hν
P
)〈Λ2νζP ,Λ2rnζP 〉 + 〈dEP (ζP ),Λ2rnζP 〉 + 2αP (γ + δ)〈ζP ,Λ2rnζP 〉 = 0. (3.7)

Here, the notation 〈, 〉 represents the H
ν−2(1−θ)
P − H

−ν+2(1−θ)
P duality bracket. We will use the same

notation for Hs
P − H−s

P , where the value of s ∈ (−ν, ν] is clear from the context. Note that all the terms
are well-defined, since ζP ∈ Hν

P , and therefore by Lemma 2.3, dEP (ζP ) ∈ H
ν−2(1−θ)
P . Moreover, by (3.2),

if �′(
∥
∥ζP

∥
∥2

Hν
P
) > 0 then Λ2νζP ∈ H

ν−2(1−θ)
P as well. Finally, Λ2rnζP ∈ Hν−2rn

P , and rn +1− θ ≤ ν so that
ν − 2rn ≥ −ν + 2(1 − θ).

Now, using that �′(
∥
∥ζP

∥
∥2

Hν
P
) ≥ 0, we get from (3.7) and Lemma 3.3 that

γ〈dEP (ζP ),Λ2rnζP 〉 + 〈dEP (ζP ),Λ2rnζP 〉 ≤ 2(−αP )(γ + δ)
∥
∥ΛrnζP

∥
∥2

L2
P

≤ 3(γ + δ)
∥
∥ζP

∥
∥2

Hrn
P

. (3.8)

Consider the first contribution, namely

〈dE(ζP ),Λ2rnζP 〉 =
〈

2ζP − ζ2P
(1 − ζP )2

,Λ2rnζP

〉

+

〈

(1 − ζP )2
(

∂xF

{
ζP

1 − ζP

})2

,Λ2rnζP

〉

+
〈

2
3
(1 − ζP )3∂xF1

{
ζP

1 − ζP

}

, ∂xF1

{
Λ2rnζP

(1 − ζP )2

}〉

. (3.9)

We estimate each term of (3.9), using that (γ + δ)
∥
∥ζP

∥
∥2

L2
P

= q,
∥
∥ζP

∥
∥

Hν
P

< 2R and
∥
∥ζP

∥
∥

L∞ < 1 − h0,
recalling that Lemmas 2.1, 2.2, 2.3 and 2.4(i) are valid in the periodic setting.

The first term in (3.9) is estimated by the Cauchy–Schwarz inequality and Lemma 2.2:

∣
∣
∣
∣

〈
2ζP − ζ2P
(1 − ζP )2

,Λ2rnζP

〉∣
∣
∣
∣ ≤ ∥

∥ 2ζP − ζ2P
(1 − ζP )2

∥
∥

Hrn
P

∥
∥ζP

∥
∥

Hrn
P

�
∥
∥ζP

∥
∥2

Hrn
P

.

Next we see, using Lemmas 2.3(ii), 2.4(i) and finally Lemma 2.1(ii),
∣
∣
∣
∣
∣

〈

(1 − ζP )2
(

∂xF

{
ζP

1 − ζP

})2

,Λ2rnζP

〉∣
∣
∣
∣
∣

�
∥
∥

(

∂xF1

{
ζP

1 − ζP

})2∥
∥

Hθ−1+rn
P

∥
∥ζP

∥
∥

H1−θ+rn
P

�
∥
∥∂xF1

{
ζP

1 − ζP

}
∥
∥

Hrn
P

∥
∥∂xF1

{
ζP

1 − ζP

}
∥
∥

Hν+θ−1−ε
P

∥
∥ζP

∥
∥

H1−θ+rn
P

�
∥
∥ζP

∥
∥2

H1−θ+rn
P

∥
∥ζP

∥
∥

Hν−ε
P

� q
ε
2ν

∥
∥ζP

∥
∥2

H1−θ+rn
P

,
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for any 0 < ε < min(ν + θ − 1, 1 − θ, ν − 1/2). Finally, note that
〈

(1 − ζP )3∂xF1

{
ζP

1 − ζP

}

, ∂xF1

{
Λ2rnζP

(1 − ζP )2

}〉

=
〈
∂xF1{ζP }, ∂xF1{Λ2rnζP }〉

+
〈

(−3ζP + 3ζ2P − ζ3P )∂xF1

{
ζP

1 − ζP

}

, ∂xF1

{
Λ2rnζP

(1 − ζP )2

}〉

︸ ︷︷ ︸
I

+
〈

∂xF1

{
ζP

1 − ζP
− ζP

}

, ∂xF1

{
Λ2rnζP

(1 − ζP )2

}〉

︸ ︷︷ ︸
II

+
〈

∂xF1{ζP }, ∂xF1

{
Λ2rnζP

(1 − ζP )2
− Λ2rnζP

}〉

︸ ︷︷ ︸
III

.

First we see that, by Lemma 2.4(i),
∥
∥ζ
∥
∥2

Hrn
P

+
〈
∂xF1{ζP }, ∂xF1{Λ2rnζP }〉 �

∥
∥ζ
∥
∥2

H1−θ+rn
P

.

We estimate I proceeding as previously:
∣
∣
∣
∣

〈

ζP ∂xF1

{
ζP

1 − ζP

}

, ∂xF1

{
Λ2rnζP

(1 − ζP )2

}〉∣
∣
∣
∣ �

∥
∥∂xF1

{
ζP

1 − ζP

}
∥
∥

Hrn
P

∥
∥ζP ∂xF1

{
Λ2rnζP

(1 − ζP )2

}
∥
∥

H−rn
P

�
∥
∥ζP

∥
∥

H1−θ+rn
P

∥
∥ζP

∥
∥

Hν−ε
P

∥
∥∂xF1

{
Λ2rnζP

(1 − ζP )2

}
∥
∥

H−rn
P

�
∥
∥ζP

∥
∥

Hν−ε
P

∥
∥ζP

∥
∥2

H1−θ+rn
P

� q
ε
2ν

∥
∥ζP

∥
∥2

H1−θ+rn
P

,

where we choose 0 < ε < min{ν − 1/2, 1 − θ}. The remaining terms in I are of higher order and can be
estimated in the same way. Next we estimate II:

∣
∣
∣
∣

〈

∂xF1

{
ζ2P

1 − ζP

}

, ∂xF1

{
Λ2rnζP

(1 − ζP )2

}〉∣
∣
∣
∣ �

∥
∥ζ2P

∥
∥

H1−θ+rn
P

∥
∥Λ2rnζP

∥
∥

H1−θ−rn
P

� q
ν−1/2

2ν

∥
∥ζP

∥
∥2

H1−θ+rn
P

,

where we used Lemmas 2.3(i) and 2.1(i). Finally consider III: proceeding as above,
∣
∣
∣
∣

〈

∂xF1{ζP }, ∂xF1

{
Λ2rnζP

(1 − ζP )2
− Λ2rnζP

}〉∣
∣
∣
∣ �

∥
∥ζP

∥
∥

H1−θ+rn
P

∥
∥ 2ζP − ζ2P

(1 − ζP )2
Λ2rnζP

∥
∥

H1−θ−rn
P

� q
ε
2ν

∥
∥ζP

∥
∥2

H1−θ+rn
P

,

with 0 < ε < min(ν − 1/2, ν − (1 − θ), 1 − θ).
Collecting the previous estimates into (3.9) yields

∥
∥ζ
∥
∥2

H1−θ+rn
P

� 〈dE(ζP ),Λ2rnζP 〉 +
∥
∥ζP

∥
∥2

Hrn
P

+ q
ε
2ν

∥
∥ζP

∥
∥2

H1−θ+rn
P

with some ε > 0. It is clear that the same estimate holds for 〈dE(ζP ),Λ2rnζP 〉. Using these in (3.8) and
choosing q sufficiently small immediately imply (3.6). This concludes the proof. �

We now collect the preceding results and deduce the existence of solutions of the non-penalized periodic
problem.
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Theorem 3.5. (Existence of periodic minimizers) There exists q0 > 0 such that for any q ∈ (0, q0), one
can define Pq > 0 and the following holds. For each P ≥ Pq, there exists ζP ∈ VP,q,R such that

EP (ζP ) = inf
ζ∈VP,q,R

EP (ζ) def= IP,q

and the Euler–Lagrange equation holds with αP ∈ (−3/2,−1/2):

dEP (ζP ) + 2αP (γ + δ)ζP = 0. (3.10)

Furthermore, there exists M > 0, independent of q, such that
∥
∥ζP

∥
∥2

Hν
P

≤ Mq

uniformly with respect to P ≥ Pq.

Proof. From Lemma 3.4, any minimizer of EP,	 over VP,q,2R satisfies, for q0 sufficiently small and P ≥ Pq

sufficiently large,
∥
∥ζP

∥
∥2

Hν
P

≤ Mq < R2.

Thus the Euler–Lagrange equation (3.2) becomes (3.10), and the control on αP is stated in Lemma 3.3.
Moreover, since EP,	 = EP over VP,q,R, ζP minimizes EP over VP,q,R. The theorem is proved. �

Remark 3.6. If θ ∈ [0, 1/2) and ν = 1−θ, then the functional EP is coercive on VP,q,R by Lemma 2.5, and
it isn’t necessary to consider the penalized functional EP,	 to construct periodic minimizers. Indeed, one
can minimize EP over VP,q,R directly, noting that any minimizing sequence satisfies (up to subsequences)
supn

∥
∥ζP,n

∥
∥2

Hν
P

≤ Mq < R2 if q0 is sufficiently small.

4. The Real Line Problem

The construction of a minimizer for the real line problem (1.9), will follow from Lions’ concentration-
compactness principle. The main difficulty consists in excluding the “dichotomy” scenario. To this aim,
we shall use a special minimizing sequence (satisfying the additional estimate

∥
∥ζn

∥
∥2

Hν � q) to show that
the function q �→ Iq is strictly subhomogeneous (see Proposition 4.2), which implies that it is also strictly
subadditive (Corollary 4.3). This special subsequence is constructed from the solutions of the periodic
problem, obtained in Theorem 3.5, with period Pn → ∞.

4.1. A Special Minimizing Sequence

Theorem 4.1. (Special minimizing sequence for E) There exists q0 > 0 such that for any q ∈ (0, q0), one
can define constants m,M > 0 and a sequence {ζn}n∈N satisfying

(γ + δ)
∥
∥ζn

∥
∥2

L2 = q,
∥
∥ζn

∥
∥2

Hν ≤ Mq

and

lim
n→∞ E(ζn) = Iq

def= inf
ζ∈Vq,R

E(ζ) < q(1 − mq
2
3 ).

Proof. The estimate on Iq was proved in Lemma 3.2; thus we only need to construct a minimizing
sequence satisfying

∥
∥ζn

∥
∥2

Hν ≤ Mq. If ν = 1 − θ, then any minimizing sequence satisfies this property as
a consequence of Lemma 2.5, so we assume in the following that ν > 1 − θ. Let q0 be sufficiently small so
that Theorem 3.5 holds. By the construction of [24, p. 2918 and proof of Theorem 3.8], one obtains, for
any Pn sufficiently large, xn ∈ R, ζ̃Pn

∈ Hν
Pn

and ζn ∈ Hν(R) such that
∥
∥ζ̃Pn

− ζPn
(· − xn)

∥
∥

L2
Pn

→ 0 (Pn → ∞) (4.1)
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where ζPn
is defined by Theorem 3.5,

supp ζn ⊂ (−Pn/2 + P 1/2
n , Pn/2 − P 1/2

n ) and ζ̃Pn
=
∑

l∈Z

ζn(· + lPn). (4.2)

Moreover, one has
∥
∥ζn

∥
∥

L2 =
∥
∥ζ̃Pn

∥
∥

L2
P

=
∥
∥ζPn

∥
∥

L2
P

(4.3)

and ∥
∥ζn

∥
∥

Hν �
∥
∥ζ̃Pn

∥
∥

Hν
Pn

�
∥
∥ζPn

∥
∥

Hν
Pn

(4.4)

uniformly with respect to Pn sufficiently large.
By (4.4) and Theorem 3.5, one has

∥
∥ζn

∥
∥2

Hν ≤ Mq < R2 provided that Pn is sufficiently large and q0
is sufficiently small; and ζn ∈ Vq,R by (4.3). Thus there only remains to prove that ζn is a minimizing
sequence.

Here again we may proceed as in [24, Lemma 3.3 and Theorem 3.8]. Using in particular Lemma 2.4(iii),
we find that

EPn
(ζ̃Pn

) − E(ζn) → 0 (Pn → ∞).

Now by Lemma 2.6 (which holds in the periodic setting and uniformly with respect to P > 0) with ν
replaced by some ν′ ∈ (1/2, ν) and Lemma 2.1(ii) with (4.1) and (4.4), one has

EPn
(ζ̃Pn

) − IPn,q = EPn
(ζ̃Pn

) − EPn
(ζPn

(· − xn)) → 0 (Pn → ∞).

Thus we found that

Iq ≤ E(ζn) = IPn,q + o(1) (Pn → ∞).

There remains to prove the converse inequality. For any ε > 0, there exists ζ ∈ Vq,R such that E(ζ) ≤ Iq+ ε
3 .

By the same argument as above, we construct by smoothly truncating and rescaling, ζ̌ ∈ Vq,R such that
supp ζ̌ ∈ (−P�, P�), and E(ζ̌) ≤ E(ζ) + ε

3 . Then for Pn ≥ 2P�, one has ζ̌Pn
=
∑

j∈Z
ζ̌(· + jPn) ∈ VP,q,R

and, as above, EPn
(ζ̌Pn

) − E(ζ̌) → 0 as Pn → ∞. Hence for Pn sufficiently large, we have

IPn,q ≤ EPn
(ζ̌Pn

) ≤ Iq + ε.

Thus we proved that E(ζn) → Iq as Pn → ∞, which concludes the proof. �

The following proposition is essential to rule out the “dichotomy” scenario in Lions’ concentration-
compactness principle (see below).

Proposition 4.2. There exists q0 > 0 such that the map q �→ Iq is strictly subhomogeneous for q ∈ (0, q0):

Iaq < aIq whenever 0 < q < aq < q0.

Proof. Let us consider ζn the special minimizing sequence defined in Theorem 4.1. We first fix a0 > 1,
and restrict q0 > 0 if necessary, so that for any a ∈ (1, a0] and q ∈ (0, q0) such that aq < q0, one has
∥
∥a

1
2 ζn

∥
∥2

Hν ≤ Maq ≤ Mq0 < R2. Thus we have, by definition of Iaq and Lemma 2.8,

Iaq ≤ E(a
1
2 ζn) = aE(ζn) + (a

3
2 − a)E3(ζn) + E(1)

rem(a
1
2 ζn) − aE(1)

rem(ζn).

By Theorem 4.1 and Lemma 2.8 one has, for q ∈ (0, q0) with q0 sufficiently small,

lim sup
n→∞

E3(ζn) = lim sup
n→∞

(E(ζn) − E2(ζn) − E(1)
rem(ζn)

) ≤ −1
2
mq

5
3 .

Thus we find, using again Theorem 4.1,

Iaq ≤ aIq − m

2
(a

3
2 − a)q

5
3 + lim sup

n→∞

(E(1)
rem(a

1
2 ζn) − aE(1)

rem(ζn)
)
. (4.5)

We now estimate the last contribution, treating separately E(1)

rem and E(1)
rem. Consider E(1)

rem for instance.
We develop each contribution in E(1)

rem(a
1
2 ζn) using Neumann series in powers of a

1
2 ζn. The series are
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absolutely convergent provided q0 is sufficiently small, and start at index k = 4. We now subtract the
contributions of aE(1)

rem(ζn) and by the triangle and Cauchy–Schwarz inequalities,

|E(1)

rem(a
1
2 ζn) − aE(1)

rem(ζn)| ≤
∑

k≥4

(a
k
2 − a)

∥
∥ζn

∥
∥k−2

L∞
∥
∥ζn

∥
∥2

L2

+
∑

k1+k2+k3≥4

|ck1,k2,k3 |(a
k1+k2+k3

2 − a)
∥
∥ζn

∥
∥k1

L∞
∥
∥∂xF1{ζk2

n }∥∥
L2

∥
∥∂xF1{ζk3

n }∥∥
L2 .

Using that |a k
2 − a| ≤ (a

3
2 − a)(k − 2)a

k−3
2 , Lemma 2.4(i), that Hν is a Banach algebra as well as the

continuous embedding Hν ⊂ L∞, we find that one can restrict q0 > 0 such that the above series is
convergent and yields

|E(1)

rem(a
1
2 ζn) − aE(1)

rem(ζn)| ≤ C(a0)(a
3
2 − a)q2,

uniformly over q ∈ (0, q0) and a ∈ (1, a0] such that aq < q0. Plugging this estimate and the corresponding
one for E(1)

rem in (4.5) and restricting q0 if necessary, we deduce

Iaq < aIq for 0 < q < aq < q0, a ∈ (1, a0].

Consider now the general case: a ∈ (1, ap
0] for an integer p ≥ 2. Then a

1
p ∈ (1, a0] and so

Iaq = I
a

1
p a

p−1
p q

< a
1
p I

a
p−1

p q
= a

1
p I

a
1
p a

p−2
p q

< a
2
p I

a
p−2

p q
< . . . < aIq.

The result is proved. �
By a standard argument, Proposition 4.2 induces the subadditivity of the map q �→ Iq.

Corollary 4.3. There exists q0 > 0 such that the map q �→ Iq is strictly subadditive for q ∈ (0, q0):

Iq1+q2 < Iq1 + Iq2 whenever 0 < q1 < q1 + q2 < q0.

4.2. Concentration-Compactness: Proof of Theorem 1.6

We now prove Theorem 1.6. Let us first recall Lions’ concentration-compactness principle [34].

Theorem 4.4. (Concentration-compactness) Any sequence {en}n∈N ⊂ L1(R) of non-negative functions
such that

lim
n→∞

∫

R

en dx = I > 0

admits a subsequence, denoted again {en}n∈N, for which one of the following phenomena occurs.
• (Vanishing) For each r > 0, one has

lim
n→∞

(

sup
x∈R

∫ x+r

x−r

en dx

)

= 0.

• (Dichotomy) There are real sequences {xn}n∈N, {Mn}n∈N, {Nn}n∈N ⊂ R and I∗ ∈ (0, I) such that
Mn, Nn → ∞, Mn/Nn → 0, and

∫ xn+Mn

xn−Mn

en dx → I∗ and
∫ xn+Nn

xn−Nn

en dx → I∗

as n → ∞.
• (Concentration) There exists a sequence {xn}n∈N ⊂ R with the property that for each ε > 0, there

exists r > 0 with
∫ xn+r

xn−r

en dx ≥ I − ε

for all n ∈ N.
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We shall apply Theorem 4.4 to

en = γ

(
ζ2n

1 − ζn
+

1
3
(1 − ζn)3

(
∂xF1{ ζn

1 − ζn
})2

)

+
ζ2n

δ−1 + ζn
+

1
3
(δ−1 + ζn)3

(
∂xF2{ ζn

δ−1 + ζn
})2,

where ζn is a minimizing sequence of E over Vq,R with supn

∥
∥ζn

∥
∥2

Hν < R2. Such a sequence is known to
exist provided that q ∈ (0, q0) is sufficiently small, by Theorem 4.1 (and any minimizing sequence is valid
when ν = 1−θ, by Lemma 2.5; see Remark 3.6). The choice of density is inspired by the recent paper [3],
and allows (contrarily to the more evident choice en = ζ2n) to show, when ν = 1− θ, that the constructed
limit satisfies E(η) = Iq and is therefore a solution to the constrained minimization problem (1.9). Notice
that

∫

R

en dx = E(ζn) → Iq (n → ∞)

and that there exists a constant C such that, for any interval J ⊆ R,
∥
∥ζn

∥
∥2

L2(J)
=
∫

J

|ζn|2 dx ≤ C

∫

J

en dx. (4.6)

We exclude the two first scenarios in Lemmas 4.5 and 4.6 below. Thus the concentration scenario
holds and, using (4.6), we find that there exists {xn}n∈N ⊂ R such that for any ε > 0, there exists r > 0
with

∥
∥ηn

∥
∥

L2(|x|>r)
< ε,

where {ηn}n∈N

def= {ζn(· + xn)}n∈N. Since supn∈N

∥
∥ηn

∥
∥

Hν(R)
< R, there exists η ∈ Hν(R) satisfying

∥
∥η
∥
∥

Hν(R)
< R and ηn ⇀ η weakly in Hν(R) (up to the extraction of a subsequence). By compact

embedding [4, Corollary 2.96] and Cantor’s diagonal extraction process, one can extract a subsequence,
still denoted ηn, such that

∥
∥ηn − η

∥
∥

L2 → 0; and by interpolation
∥
∥ηn − η

∥
∥

Hs → 0 for any s ∈ [0, ν).

In particular (γ + δ)
∥
∥η
∥
∥2

L2 = q, and
∥
∥η
∥
∥

Hν ≤ supn

∥
∥ζn

∥
∥

Hν < R, thus η ∈ Vq,R. If ν > 1 − θ, we
deduce E(ηn) → E(η) as n → ∞ by Lemma 2.6. If on the other hand ν = 1 − θ we use the weak lower
semi-continuity argument to deduce that Iq ≤ E(η) ≤ limn→∞ E(ηn) = Iq. In either case we have that
E(η) = Iq.

The constructed function η ∈ Hν(R) is therefore a solution to the constrained minimization prob-
lem (1.9). In particular, it solves the Euler–Lagrange equation (1.10) with α < 0 provided that q ∈ (0, q0)
is sufficiently small (proceeding as in Lemma 3.3), and therefore satisfies (1.8) with c2 = (−α)−1 > 0.

This proves the first item of Theorem 1.6, as well as the second item—except for the strong con-
vergence in Hν(R) when ν = 1 − θ > 1/2. This result follows from the fact that weak conver-
gence together with convergence of the norm implies strong convergence in a Hilbert space (applied
to (γ1/2(1 − ζn)3/2

(
∂xF1{ ζn

1−ζn
}), (δ−1 + ζn)3/2

(
∂xF2{ ζn

δ−1+ζn
})) ∈ (L2(R))2).

There remains to prove the estimates of the third item. Proceeding as in Lemma 3.4, we find that
∥
∥ζ
∥
∥2

Hν ≤ Mq, uniformly over the minimizers of E over Vq,R. Moreover, by Lemma 2.8, one has

−α q = −α(γ + δ)
∥
∥ζ
∥
∥2

L2 =
1
2
〈dE(ζ), ζ〉 = E2(ζ) +

3
2
E3(ζ) +

1
2
E(2)
rem(ζ)

=
3
2
E(ζ) − 1

2
E2(ζ) − 3

2
E(1)
rem(ζ) +

1
2
E(2)
rem(ζ)

<
3
2
q
(
1 − mq

2
3

)
− 1

2
q + O(q2).

where we used Lemmas 2.8 and 3.2 in the last inequality. Theorem 1.6 is proved.

Lemma 4.5. (Excluding “vanishing”) No subsequence of {en}n∈N has the “vanishing” property.
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Proof. By Lemmas 2.8 and 3.2, one has for n sufficiently large

q(1 − mq
2
3 ) > E(ζn) = E2(ζn) + E3(ζn) + E(1)

rem(ζn)

≥ q + E3(ζn) + E(1)
rem(ζn)

and hence

mq
5
3 ≤ |E3(ζn)| + |E(1)

rem(ζn)| �
∥
∥ζn

∥
∥

L∞ .

On the other hand, one has
∥
∥ζn

∥
∥

L∞((x− 1
2 ,x+ 1

2 ))
≤ ∥
∥ϕxζn

∥
∥

L∞(R)
≤ ∥
∥ϕxζn

∥
∥1− 1

2ν

L2(R)

∥
∥ϕxζn

∥
∥

1
2ν

Hν(R)
≤ C

∥
∥ζn

∥
∥1− 1

2ν

L2((x−1,x+1))

∥
∥ζn

∥
∥

1
2ν

Hν(R)
,

where ϕx = ϕ(· − x) with ϕ a smooth function such that ϕ = 1 for |x| ≤ 1/2, ϕ = 0 for |x| ≥ 1, and
0 ≤ ϕ ≤ 1 otherwise; and using Lemmas 2.1(i) and 2.3(ii). Since C is independent of x ∈ R, this shows
that

∥
∥ζn

∥
∥

L∞ ≤ CR
1
2ν sup

x∈R

∥
∥ζn

∥
∥1− 1

2ν

L2((x−1,x+1))
.

Hence, using (4.6), it follows that “vanishing” cannot occur. �

Lemma 4.6. (Excluding “dichotomy”) No subsequence of {en}n∈N has the “dichotomy” property.

Proof. We denote by χ ∈ C∞(R+) a non-increasing function with

χ(r) = 1 if 0 ≤ r ≤ 1 and χ(r) = 0 if r ≥ 2, (4.7)

and such that

χ = χ2
1, 1 − χ = χ2

2

where χ1 and χ2 are smooth. For instance, set χ(r) = 1 − (1 − χ̃2(r))2 with χ̃ ∈ C∞(R+) non-increasing
and satisfying (4.7). Define ηn = ζn(· + xn), and

η(1)
n (x) = ηn(x)χ(|x|/Mn) and η(2)

n (x) = ηn(x)
(
1 − χ(2|x|/Nn)

)
,

noting that

supp(η(1)
n ) ⊂ [−2Mn, 2Mn] and supp(η(2)

n ) ⊂ R \ [−Nn/2, Nn/2].

After possibly extracting a subsequence, we can assume that
∥
∥η(1)

n

∥
∥2

L2 → q∗

γ + δ
(n → ∞) (4.8)

with q∗ ∈ [0, q]. By (4.6) and the assumption of the dichotomy scenario, we have
∥
∥ηn

∥
∥2

L2(Mn<|x|<Nn)
≤ C

∫

Mn<|x−xn|<Nn

endx → 0.

Hence, proceeding as in [24, Proposition 5.4], we find that
∥
∥η(2)

n

∥
∥2

L2 → q − q∗

γ + δ
(n → ∞). (4.9)

We claim that E(η(1)
n ) → I∗. To show this, note that

E(η(1)
n ) =

∫

R

(η(1)
n )2

1 − η
(1)
n

+
1
3
(1 − η(1)

n )3
(
∂xF1{ η

(1)
n

1 − η
(1)
n

})2dx,

where
∣
∣
∣
∣
∣

∫

R

(η(1)
n )2

1 − η
(1)
n

dx −
∫

|x|≤Mn

η2
n

1 − ηn
dx

∣
∣
∣
∣
∣
�
∫

Mn≤|x|≤Nn

η2
ndx → 0.
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The other contribution is more involved due to the nonlocal operator ∂xF1. However, using Lemmas 2.3(i)
and 2.1(i), and the fact that

∥
∥η

(1)
n

∥
∥

Hν �
∥
∥ηn

∥
∥

Hν ≤ R, we find that
∣
∣
∣
∣
∣

∫

R

(1 − η(1)
n )3

(
∂xF1{ η

(1)
n

1 − η
(1)
n

})2 − (1 − η(1)
n )3

(
∂xF1{ η

(1)
n

1 − ηn
})2dx

∣
∣
∣
∣
∣
�
∥
∥ηn

∥
∥1− 1

2ν

L2(Mn≤|x|≤Nn)
→ 0,

and
∣
∣
∣
∣
∣

∫

R

(1 − η(1)
n )3χ2(| · |/Mn)

(
∂xF1{ ηn

1 − ηn
})2dx −

∫

|x|≤Mn

(1 − ηn)3
(
∂xF1{ ηn

1 − ηn
})2dx

∣
∣
∣
∣
∣
→ 0.

Finally, by Lemma 2.4(ii), one has
∣
∣
∣
∣
∣

∫

R

(1 − η(1)
n )3

(
∂xF1{ η

(1)
n

1 − ηn
})2 − (1 − η(1)

n )3χ2(| · |/Mn)
(
∂xF1{ ηn

1 − ηn
})2dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

R

(1 − η(1)
n )3

((
∂xF1{ η

(1)
n

1 − ηn
})+ χ(| · |/Mn)

(
∂xF1{ ηn

1 − ηn
})
)
[∂xF1, χ(| · |/Mn)]

( ηn

1 − ηn

)
dx

∣
∣
∣
∣
∣

� M−1
n

∥
∥ηn

∥
∥2

Hν → 0.

Altogether, and since an analogous argument evidently holds for E , we find

E(η(1)
n ) =

∫

|x−xn|≤Mn

endx + o(1) → I∗

and by similar reasoning one finds that

E(η(2)
n ) =

∫

|x−xn|≥Nn

endx + o(1) → Iq − I∗.

We next claim that q∗ > 0. Indeed, if q∗ = 0, we set

η̃(2)
n

def= cnη(2)
n , cn

def=
q

1
2

(γ + δ)
1
2
∥
∥η

(2)
n

∥
∥

L2

.

By (4.9) and since q∗ = 0, one has cn → 1. Thus by Lemma 2.6 and since lim supn→∞
∥
∥η̃

(2)
n

∥
∥

Hν < R,

|E(η̃(2)
n ) − E(η(2)

n )| �
∥
∥η̃(2)

n − η(2)
n

∥
∥

Hν → 0

resulting in the contradiction Iq ≤ E(η̃(2)
n ) → Iq − I∗ < Iq as n → ∞. We obtain a similar contradiction

involving η
(1)
n and (4.8) if we assume that q∗ = q. Hence, 0 < q∗ < q, and we rescale

η̃(1)
n

def=
(q∗)

1
2

(γ + δ)
1
2
∥
∥η

(1)
n

∥
∥

L2

η(1)
n and η̃(2)

n
def=

(q − q∗)
1
2

(γ + δ)
1
2
∥
∥η

(2)
n

∥
∥

L2

η(2)
n ,

so that (γ + δ)
∥
∥η̃

(1)
n

∥
∥2

L2 = q and (γ + δ)
∥
∥η̃

(2)
n

∥
∥2

L2 = q − q∗ for any n ∈ N. One easily checks that

lim sup
n→∞

∥
∥η̃(1)

n

∥
∥

Hν < R, lim sup
n→∞

∥
∥η̃(2)

n

∥
∥

Hν < R

and that

lim
n→∞(E(η̃(1)

n ) − E(η(1)
n )) = lim

n→∞(E(η̃(2)
n ) − E(η(2)

n )) = 0.

Thus we arrive at the following contradiction to Corollary 4.3:

Iq < Iq∗ + Iq−q∗ ≤ lim
n→∞(E(η̃(1)

n ) + E(η̃(2)
n )) = I∗ + Iq − I∗ = Iq.

This concludes the proof of Lemma 4.6. �
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5. Long-Wave Asymptotics

In this section we prove that the solutions of (1.8) obtained in Theorem 1.6 are approximated by solu-
tions of the corresponding KdV equation in the long-wave regime, i.e. letting q → 0 in the constrained
minimization problem (1.9). Indeed, if we introduce the scaling

ζ(x) = SKdV(ξ)(x) def= q
2
3 ξ(q

1
3 x) (5.1)

in (1.10) and denote α + 1 = α0q
2
3 , then we find that the leading order part of the equation as q → 0 is

α0(γ + δ)ξ +
3(γ − δ2)ξ2

2
− (γ + δ−1)

3
∂2

xξ = 0. (5.2)

Recall (see e.g. [2]) that ξ ∈ L2(R) satisfying (5.2) uniquely defines (up to spatial translation) a solitary-
wave solution of the KdV equation, with explicit formula

ξKdV(x) =
α0(γ + δ)

δ2 − γ
sech2

(
1
2

√

3α0(γ + δ)
γ + δ−1

x

)

. (5.3)

Equation (5.2) can also be obtained as the Euler–Lagrange equation associated with the minimizer of the
scalar functional EKdV (consistently with Lemma 2.7)

EKdV(ξ) =
∫

R

(γ − δ2)ξ3 +
(γ + δ−1)

3
(∂xξ)2 dx,

over the set

U1
def= {ξ ∈ H1(R) : (γ + δ)

∥
∥ξ
∥
∥2

L2 = 1}.

Indeed, any minimizer satisfies the Euler–Lagrange equation

dEKdV(ξ) + 2(γ + δ)α0ξ = 0, (5.4)

which is (5.2) with α0 the Lagrange multiplier. Testing the constraint (γ + δ)
∥
∥ξ
∥
∥2

L2 = 1 with the above
explicit formula, we find that

(γ + δ)α0 =
3
4

(
(δ2 − γ)4

(γ + δ)(γ + δ−1)

) 1
3

. (5.5)

Additional computations show that

IKdV = inf{EKdV(ξ) : ξ ∈ U1} = EKdV(ξKdV) = −3
5
α0.

We aim at proving that the variational characterization of (5.2), and therefore its explicit solutions,
approximate (after suitable rescaling) the corresponding one of (1.8), namely (1.9), in the limit q → 0.

5.1. Refined Estimates

We start by establishing estimates on ζ ∈ Dq,R the set of minimizers of E over Vq,R, as provided by
Theorem 1.6. Here and below, we rely on extra assumptions on the Fourier multipliers, which are assumed
to be strongly admissible, in the sense of Definition 1.2.

Lemma 5.1. There exists q0 > 0 such that ζ ∈ Hs for any s ≥ 0, and there exists Ms > 0 such that
∥
∥ζ
∥
∥2

Hs ≤ Ms q

uniformly for q ∈ (0, q0) and ζ ∈ Dq,R.
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Proof. Once the regularity property ζ ∈ Hs has been established, the corresponding estimate is obtained
as in the proof of Lemma 3.4, thus we focus only on the regularity issue. This follows from the Euler–
Lagrange equation (1.10) and elliptic estimates. However, the ellipticity property is not straightforward
to ascertain when γ 
= 0, and we will make use of paradifferential calculus. These tools are recalled in the
Appendix.

By assumption, one has ζ ∈ Hν with ν > 1/2 and ν ≥ 1 − θ > 0. We fix ε ∈ (0, ν − 1/2) and
r = min(1 − θ, ν − 1/2 − ε) > 0. We show below that ζ ∈ Hν satisfying (1.10) yields ζ ∈ Hν+r, and the
argument can be bootstrapped to obtain arbitrarily high regularity, ζ ∈ Hs, s ≥ 0.

First we write (1.10) as the equality, valid in H−ν ,
2
3
h−2
2 ∂xF2

{
h3
2∂xF2{h−1

2 ζ}}+
2γ

3
h−2
1 ∂xF1

{
h3
1∂xF1{h−1

1 ζ}}

= 2α(γ + δ)ζ + 2
h1 + γh2

h1h2
ζ − h2

1 − γh2
2

h2
1h

2
2

|ζ|2 +
(
h2∂xF2{h−1

2 ζ})2 − γ
(
h1∂xF1{h−1

1 ζ})2

def= R(ζ) (5.6)

denoting h1 = 1 − ζ, h2 = δ−1 + ζ, and recalling α ∈ (−3/2,−1/2).
Using Lemmas 2.3(ii) and 2.4(i), one easily checks that R(ζ) ∈ H2(ν−(1−θ))−1/2−ε in the case 1/2 <

ν ≤ 1/2 + (1 − θ), and R(ζ) ∈ Hν−(1−θ) if ν > 1/2 + (1 − θ). In other words, we find

R(ζ) ∈ Hν−2(1−θ)+r. (5.7)

Above, we used that
∥
∥ζ
∥
∥

L∞ < min(1, δ−1) and therefore h1(x)n − 1 ∈ Hν and h2(x)n − (δ−1)n ∈ Hν

for any n ∈ Z. This holds as well in the Hölder space W r,∞ since r ∈ (0, ν − 1/2). In particular, we have

∀n ∈ Z, h1(x)n ∈ Γ0
r and ∂xFi ∈ Γ1−θ

r ,

recalling Definition A.1.
Using Lemmas A.3, A.4, A.5 A.6 as well as Lemmas 2.3 and 2.4, one easily checks that

h−2
1 ∂xF1

{
h3
1∂xF1{h−1

1 ζ}}− T−(kF1(k))2h−1
1

ζ ∈ Hν−2(1−θ)+r. (5.8)

By (5.7), (5.8) and the corresponding estimate for the second contribution in the left-hand side of (5.6),
one finds

T 2
3h−1

2 (ikF2(k))2+
2γ
3 h−1

1 (ikF1(k))2
ζ ∈ Hν−2(1−θ)+r.

Moreover, since ζ ∈ Hν , one has 2
3h−1

2 (x) + 2γ
3 h−1

1 (x) ∈ Γ0
r and therefore

T 2
3h−1

2 (x)+ 2γ
3 h−1

1 (x)ζ ∈ Hν ⊂ Hν−2(1−θ)+r.

Adding the two terms yields
Ta(x,k)ζ ∈ Hν−2(1−θ)+r (5.9)

with

a(x, k) def=
2
3
h−1
2 (x)

(
1 + (kF2(k))2

)
+

2γ

3
h−1
1 (x)

(
1 + (kF1(k))2

)
.

Notice that

a(x, k) ∈ Γ2(1−θ)
r and a(x, k)−1 ∈ Γ−2(1−θ)

r .

In particular, Lemma A.3 and (5.9) yield

Ta(x,k)−1Ta(x,k)ζ ∈ Hν+r.

Additionally, by Lemma A.4, we have

ζ − Ta(x,k)−1Ta(x,k)ζ = Ta(x,k)−1a(x,k)ζ − Ta(x,k)−1Ta(x,k)ζ ∈ Hν+r.

Adding the two terms shows that ζ ∈ Hν+r, which concludes the proof. �
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Remark 5.2. In the one-layer situation, namely γ = 0, the use of paradifferential calculus is not necessary,
and Lemma 5.1 can be obtained through a direct use of Lemmas 2.2 and 2.3. In particular, Lemma 5.1
and subsequent results hold for (non-necessarily strongly) admissible Fourier multipliers, in the sense of
Definition 1.1.

The following lemma shows that the minimizers of E over Vq,R, as provided by Theorem 1.6, scale
as (5.1).

Lemma 5.3. There exists q0 > 0 and C > 0 such that the estimates
∥
∥ζ
∥
∥

L∞ ≤ Cq
2
3 , (5.10)

∥
∥∂xζ

∥
∥2

L2 ≤ Cq
5
3 , (5.11)

∥
∥∂2

xζ
∥
∥2

L2 ≤ Cq
7
3 (5.12)

hold uniformly for q ∈ (0, q0) and ζ ∈ Dq,R, the set of minimizers of E over Vq,R.

Proof. Let ζ be minimizer over Vq,R. Since 2(γ + δ)αζ + dE(ζ) = 0, we get from Lemma 2.8 that

2α(γ + δ)ζ + dE2(ζ) = 2α(γ + δ)ζ + dE(ζ) − dE3(ζ) − dE(1)
rem(ζ) = −dE3(ζ) − dE(1)

rem(ζ),

By using the estimate for α in Theorem 1.6, the above identity in frequency space yields

|ζ̂(k)| ≤ 1
2

∣
∣
∣F
(
dE3(ζ) + dE(1)

rem(ζ)
)
(k)

∣
∣
∣

mq
2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2)
. (5.13)

The estimates follow from (5.13) and a suitable decomposition into high- and low-frequency components.
In order to estimate the right-hand-side, we heavily make use of Lemma 5.1:

∥
∥ζ
∥
∥2

Hn � q for all n ∈ N.
This will be used again throughout the proof without reference.

We first deduce from Lemma 2.3 that
∥
∥F(

dE3(ζ)
)∥
∥

L1 �
∥
∥dE3(ζ)

∥
∥

H1 � q

and
∥
∥F(

dE3(ζ)
)∥
∥

L∞ �
∥
∥ζ
∥
∥2

L2 +
∥
∥∂xζ

∥
∥2

L2 +
∥
∥ζ
∥
∥

L2

∥
∥∂2

xζ
∥
∥

L2 � q

and, similarly,
∥
∥F(

dE(1)
rem(ζ)

)∥
∥

L1 +
∥
∥F(

dE(1)
rem(ζ)

)∥
∥

L∞ � q
3
2 .

By the definition of admissible Fourier multipliers in (1.1), there exists c0, k0 > 0 such that

∀k ∈ R \ [−k0, k0], |k|Fi(k) ≥ c0, i = 1, 2.

We also assume that F(k) > 0, and therefore there exists c′
0 > 0 such that

∀k ∈ [−k0, k0], Fi(k) ≥ c′
0, i = 1, 2.

As a consequence, we have

sup
k∈R\[−k0,k0]

1
mq

2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2)
� 1

and
∫ k0

−k0

1
mq

2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2)
dk � q− 1

3 .
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Now, we have

∥
∥ζ
∥
∥

L∞ ≤ 1√
2π

∥
∥ζ̂
∥
∥

L1 ≤ 1
2
√

2π

∫

R

∣
∣
∣F
(
dE3(ζ) + dE(1)

rem(ζ)
)
(k)

∣
∣
∣

mq
2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2)
dk

≤ 1
2
√

2π

∥
∥F

(
dE3(ζ) + dE(1)

rem(ζ)
)
(k)

∥
∥

L∞ ×
∫ k0

−k0

1
mq

2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2)
dk

+
1

2
√

2π

∥
∥F

(
dE3(ζ) + dErem(ζ)

)
(k)

∥
∥

L1 sup
k∈R\[−k0,k0]

1
mq

2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2)
,

from which we immediately deduce the inequality (5.10).
Let us now turn to (5.11). By (5.13) we have

∥
∥∂xζ

∥
∥2

L2 ≤ 1
4

∫

R

k2|F(dE3(ζ) + dE(1)
rem(ζ))|2

(mq
2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2))2
dk. (5.14)

Notice also that
∥
∥kF(dE(1)

rem(ζ))
∥
∥

L2 � q
3
2 and, using (5.10),

∥
∥kF(dE3(ζ))

∥
∥

L2 �
∥
∥ζ
∥
∥

L∞
∥
∥∂xζ

∥
∥

L2 +
∥
∥∂xζ

∥
∥

L2

∥
∥∂2

xζ
∥
∥

H1 +
∥
∥ζ
∥
∥

L∞
∥
∥∂3

xζ
∥
∥

L2

� q
7
6 + q

1
2
∥
∥∂xζ

∥
∥

L2 .

Hence we have
∥
∥∂xζ

∥
∥2

L2 �
∥
∥F(dE3(ζ) + dE(1)

rem(ζ))(k)
∥
∥2

L∞ ×
∫ k0

−k0

k2

(mq
2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2))2
dk

+
∥
∥kF(dE3(ζ) + dE(1)

rem(ζ))
∥
∥2

L2 × sup
k∈R\[−k0,k0]

1
(mq

2
3 + 1

3 (γ(kF1(k))2 + δ−1(kF2(k))2))2

� q
5
3 + q

∥
∥∂xζ

∥
∥2

L2 .

This shows (5.11) for q0 sufficiently small.
The proof of (5.12) is similar to the proof of (5.11) and is therefore omitted. �

5.2. Convergence Results: Proof of Theorem 1.7

We are now in position to relate the minimizers of E in Dq,R with the corresponding solution of the KdV
equation. We first compare IKdV and Iq.

Lemma 5.4. There exists q0 > 0 such that the quantities Iq and IKdV satisfy

Iq = q + EKdV(ζ) + O(q2), (5.15)

Iq = q + q
5
3 IKdV + O(q2) = q − 3

5
α0q

5
3 + O(q2), (5.16)

uniformly over minimizers of E in Vq,R and q ∈ (0, q0).

Proof. Let ζ be a minimizer of E in Vq,R and note that ζ ∈ H2 by Lemma 5.1. Using Lemmas 2.7 and 5.3,
we obtain

Iq = E(ζ) = q + EKdV(ζ) + O(q2).

Introducing ξ = S−1
KdV(ζ), we find that ξ ∈ U1 and EKdV(ζ) = q

5
3 EKdV(ξ) ≥ q

5
3 IKdV. Thus we found

Iq ≥ q + q
5
3 IKdV + O(q2).

Similarly, notice that ζ̃ = SKdV(ξKdV) satisfies ζ̃ ∈ Vq,R (for q sufficiently small) and, by Lemma 2.7

Iq ≤ E(ζ̃) = q + EKdV(ζ̃) + O(q2).
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Since EKdV(ζ̃) = q
5
3 EKdV(ξKdV) = q

5
3 IKdV, we deduce

Iq ≤ q + q
5
3 IKdV + O(q2).

We have thus proved (5.16). �

This next result is the first part of Theorem 1.7, which relates the minimizers of E in Vq,R with the
minimizers of EKdV in U1.

Theorem 5.5. Let q0 > 0 be such that Theorem 1.6 and Lemma 5.4 hold. Then for any q ∈ (0, q0) and
ζ ∈ Dq,R, there exists xζ ∈ R such that

∥
∥q− 2

3 ζ(q− 1
3 ·) − ξKdV(· − xζ)

∥
∥

H1 � q
1
6 ,

uniformly with respect to q ∈ (0, q0) and ζ ∈ Dq,R.

Proof. Assume that there exists ε > 0 and a sequence ζn ∈ Dqn,R with qn ↘ 0 such that

∀n ∈ N, inf
x0∈R

∥
∥q

− 2
3

n ζn(q− 1
3

n ·) − ξKdV(· − x0)
∥
∥

H1 ≥ ε. (5.17)

Denote for simplicity ξn(x) = q
− 2

3
n ζn(q− 1

3
n x). From (5.15) in Lemma 5.4, we have

Iqn
= E(ζn) = qn + EKdV(ζn) + O(q2n) = qn + q

5
3
n EKdV(ξn) + O(q2n).

By (5.16) in Lemma 5.4, we deduce that

EKdV(ξn) − IKdV = O(q
1
3
n ).

In particular {ξn}n∈N is a minimizing sequence for EKdV satisfying the constraint (γ + δ)
∥
∥ξn

∥
∥2

L2 = 1. It
follows from [2] that there exists a sequence {xn}n∈N such that

∥
∥ξn(· − xn) − ξKdV

∥
∥

H1 → 0,

which contradicts (5.17).
The quantitative estimate follows from the argument in [6]. From the above, we may apply Lemma

4.1 therein and define uniquely xζ such that 〈ξ, ξKdV(· − xζ)〉 = 0, where we denote ξ = q− 2
3 ζ(q− 1

3 ·).
Following the above estimates and [6, Lemma 5.2], we find

∥
∥ξ − ξKdV(· − xζ)

∥
∥2

H1 � EKdV(ξ) − EKdV(ξKdV) � q
1
3 .

This concludes the proof. �

Next we prove the second part of Theorem 1.7, which relates the Lagrange multipliers α with the one
of the KdV equation, α0.

Theorem 5.6. The number α, defined in Theorem 1.6, satisfies

α + 1 = q
2
3 α0 + O(q

5
6 ),

uniformly over Dq,R.

Proof. By Lemmas 2.7 and 5.3, we have

〈dE(ζ), ζ〉 = 2q + q
5
3 〈dEKdV(S−1

KdV(ζ)), S−1
KdV(ζ)〉 + O(q

7
3 ).

By Theorem 5.5 there exists xζ such that
∥
∥S−1

KdV(ζ) − ξKdV(· − xζ)
∥
∥

H1 = O(q
1
6 ) as q ↘ 0. This implies

that

〈dEKdV(S−1
KdV(ζ)), S−1

KdVζ〉 − 〈dEKdV(ξKdV), ξKdV〉 = O(q
1
6 ) as q ↘ 0

and therefore

〈dE(ζ), ζ〉 = 2q + q
5
3 〈dEKdV(ξKdV), ξKdV〉 + O(q

11
6 ).
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Now recall the Euler–Lagrange equations (1.10) and (5.4), which yield immediately

2α(ζ) q = −〈dE(ζ), ζ〉,
2α0 = −〈dEKdV(ξKdV), ξKdV〉,

and the result follows. �

6. Numerical Study

In this section, we provide numerical illustrations of our results as well as some numerical experiments for
situations which are not covered by our results. We first describe our numerical scheme, before discussing
the outcome of these simulations.

6.1. Description of the Numerical Scheme

Our numerical scheme computes solutions for (1.8) for given value of c (and hence does not not follow
the minimization strategy developed in this work). Because we seek smooth localized solutions and
our operators involve Fourier multipliers, it is very natural to discretize the problem through spectral
methods [44]. We are thus left with the problem of finding a root for a nonlinear function defined in a
finite (but large) dimensional space. To this aim, we employ the Matlab script fsolve which implements
the so-called trust-region dogleg algorithm [19] based on Newton’s method. For an efficient and successful
outcome of the method, it is important to have a fairly precise initial guess. To this aim, we use the
exact solution of the Green–Naghdi model, which is either explicit (in the one-layer situation [42]) or
obtained as the solution of an ordinary differential equation (in the bi-layer situation [17,38]) that we
solve numerically. Our solutions are compared with the corresponding ones of the full Euler system. To
compute the latter, we use the Matlab script developed by Per-Olav Rus̊as and documented in [26] in
the bilayer configuration while in the one-layer case, the Matlab script of Clamond and Dutykh [18] offer
faster and more accurate results.

6.2. Two-Layer Setting

The solitary-wave solutions of the Miyata–Choi–Camassa system have been studied in the original papers
of [17,38]. In particular we know that for a given amplitude, or a given velocity, there exists at most one
solitary wave (up to spatial translations). The solitary waves are of elevation if δ2 − γ > 0, of depression
if δ2 − γ < 0, and do not exist if δ2 = γ. Contrarily to the one-layer situation, the bilayer Green–Naghdi
model admits solitary waves only for a finite range of velocities (resp. amplitudes), c ∈ (1, cmax(γ, δ))
(resp. |a| ∈ (0, amax(γ, δ))). With our choice of parameters (namely γ = 1, δ = 1/2), one has

cmax =
√

1 + 1/8 ≈ 1.06066 and |amax| = 1/2.

As the velocity approaches cmax, the solitary waves broadens and its mass keeps increasing. These type
of profiles or often referred to as “table-top” profiles, and lead to bore profiles in the limit c → cmax.

When the velocity is small the numerically computed solitary wave solutions of the bilayer original
(Fi = 1) and full dispersion (Fi = Fimp

i ) Green–Naghdi systems and the one of the water waves systems
(and to a lesser extent the KdV model) agree, so that the curves corresponding to the three former models
are indistinguishable in see Fig. 2a. For larger velocities, as in Fig. 2b, the numerically computed solitary
wave solutions of the Green–Naghdi and water waves systems is very different from the sech2 profile of
the solitary wave solution to the Korteweg–de Vries equation. It is interesting to see that both the original
and full dispersion Green–Naghdi models offer good approximations, even in this “large velocity” limit
(the normalized l2 difference of the computed solutions is ≈ 2.10−3 in both cases). This means that the
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(a) (b)

Fig. 2. Comparison of the bilayer Green–Naghdi models and the water waves system (γ = 1, δ = 1/2). a Small velocity,
c = 1.005 and b large velocity, c = 1.06065

(b)(a)

Fig. 3. Comparison of the solutions of the KdV and Green–Naghdi models and the water waves system in the one-layer
setting (γ = 0, δ = 1). a Rescaled solitary waves for c = 1.025, 1.01, 1.002 and b close-up

internal solitary wave keeps a long-wave feature even for large velocities. These observations were already
documented and corroborated by laboratory experiments in [10,26,37].

6.3. One-Layer Setting

In the one-layer setting, the script by Clamond and Dutykh [18] allows to have a very precise numerical
computation of the water waves solitary solution, from which the numerical solutions of the Green–Naghdi
models can be compared. In this setting, namely γ = 0 and δ = 1, we have an explicit solution for the
Green–Naghdi model [42]:

ζGN(x) = (c2 − 1) sech2

(
1
2

√

3
c2 − 1

c2
x

)

= c2ζKdV(x).

In Fig. 3, we compute the solitary waves for our models with different (small) values of the velocity,
rescaled by S−1

KdV. One clearly sees, as predicted by Theorem 1.7 and the above formula, that the solitary
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Fig. 4. Convergence rate. Log–log plot of the normalized l2 norm of the error as a function of c − 1

waves converge towards ξKdV after rescaling, as c ↘ 1. One also sees that the water waves solution is
closer to the one predicted by the model with full dispersion than the original Green–Naghdi model.
Figure 4 shows that the convergence rate is indeed quadratic for the full dispersion model whereas it is
only linear for the original Green–Naghdi model (and therefore only qualitatively better than the KdV
model).
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Appendix Paradifferential Calculus

The definitions and properties below are collected from [36]; see also [5,13] for relevant references.

Definition A.1. (Symbols) Given m ∈ R and r ≥ 0, we denote Γm
r the space of distributions a(x, ξ) on R

2

such that for almost any x ∈ R, ξ �→ a(x, ξ) ∈ C∞(R), and

∀α ∈ N,∃Cα > 0 such that ∀ξ ∈ R,
∥
∥∂α

ξ a(·, ξ)∥∥
W r,∞ ≤ Cα(1 + |ξ|)m−α,

where W r,∞ denote the Hölder space (Lipschitz for integer values).

Below, we use an admissible cut-off function ψ in the sense of [36, Definition 5.1.4] and define para-
differential operators as follows (the constant factor depends on the choice of convention for the Fourier
transform).

Definition A.2. (Paradifferential operators) For a ∈ Γm
0 and u ∈ S(R), we define

Tau(x) def=
1√
2π

〈
û(·), eix·ψ(D, ·)a(x, ·)〉

(S(R),S′(R)) ,

http://creativecommons.org/licenses/by/4.0/
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where ψ(D, ξ) is the Fourier multiplier associated with ψ(η, ξ) (here, ξ is a parameter). The operator is
defined for u ∈ Hs(R) by density and continuous linear extension.

The following lemma is a direct application of the above definitions [36, Theorem 5.1.15].

Lemma A.3. For any r ≥ 0 and a ∈ Γm
r ⊂ Γm

0 , and for all s ∈ R, the operator Ta extends in a unique
way to a bounded operator from Hs+m to Hs.

If a(ξ) is a symbol independent of x, then Ta = a(D), the corresponding Fourier multiplier.

The main tool we use is the following composition property [36, Theorem 6.1.1].

Lemma A.4. Let a ∈ Γm
r and b ∈ Γm′

r where 0 < r ≤ 1. Then ab ∈ Γm+m′
r and TaTb − Tab is a bounded

operator from Hs+m+m′−r to Hs, for any s ∈ R.

Of particular interest is the case when the symbol a(x) ∈ L∞ is independent of ξ. The admissible cut-
off function can be constructed so that the paraproduct Tau corresponds to a standard Littlewood-Paley
decomposition of the product au. This allows to show that au − Tau is a smoothing operator provided
that a is sufficiently regular.

Lemma A.5. Let v ∈ Hs and u ∈ Ht, and r ≥ 0. Then uv − Tvu ∈ Hr provided that s + t ≥ 0, s ≥ r and
s + t > r + 1/2.

The definitions of the paraproduct in [13] and [36] differ slightly but it is not hard to show that [13,
Theorem 2.4.1] still holds for the paraproduct as it is defined in [36], and Lemma A.5 follows directly
from this theorem.

We conclude with the following lemma, displayed in [36, Theorem 5.2.4]

Lemma A.6. Let G ∈ C∞(R) be such that G(0) = 0. If u ∈ Hs with s > 1/2, then G(u) − TG′(u)u ∈
H2s−1/2.
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[7] Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en com-
muniquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures
Appl. 17, 55–108 (1872)

[8] Buffoni, B.: Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation.
Arch. Ration. Mech. Anal. 173, 25–68 (2004)

[9] Buffoni, B., Groves, M.D., Sun, S.M., Wahlén, E.: Existence and conditional energetic stability of three-dimensional
fully localised solitary gravity-capillary water waves. J. Differ. Equ. 254, 1006–1096 (2013)

[10] Camassa, R., Choi, W., Michallet, H., Rusas, P.-O., Sveen, J.K.: On the realm of validity of strongly nonlinear asymptotic
approximations for internal waves. J. Fluid Mech. 549, 1–23 (2006)

[11] Carter, J.D.: Bidirectional Whitham Equations as Models of Waves on Shallow Water. arXiv:1705.06503v1
[12] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics.

Clarendon Press, Oxford (1961)
[13] Chemin, J.-Y.: Perfect Incompressible Fluids, Vol. 14 of Oxford Lecture Series in Mathematics and its Applications.

The Clarendon Press, Oxford University Press, New York (1998). Translated from the 1995 French original by Isabelle
Gallagher and Dragos Iftimie

http://arxiv.org/abs/1705.06503v1
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IRMAR - UMR 6625
University of Rennes 1, CNRS
35000 Rennes
France

http://arxiv.org/abs/1608.04685v1
http://www.internalwaveatlas.com/Atlas2_index.html
http://www.internalwaveatlas.com/Atlas2_index.html
https://doi.org/10.1111/sapm.12194


Vol. 20 (2018) Solitary Wave Solutions 1091

Dag Nilsson and Erik Wahlén
Centre for Mathematical Sciences
Lund University
PO Box 118, 221 00 Lund
Sweden
e-mail: erik.wahlen@math.lu.se

(accepted: November 27, 2017; published online: December 18, 2017)


	Solitary Wave Solutions to a Class of Modified Green–Naghdi Systems
	Abstract
	1. Introduction
	1.1. Motivation
	1.2. The Minimization Problem
	1.3. Statement of the Results

	2. Technical Results
	2.1. Functional Setting on the Real Line
	2.2. Periodic Functional Setting

	3. The Periodic Problem
	4. The Real Line Problem
	4.1. A Special Minimizing Sequence
	4.2. Concentration-Compactness: Proof of Theorem 1.6

	5. Long-Wave Asymptotics
	5.1. Refined Estimates
	5.2. Convergence Results: Proof of Theorem 1.7

	6. Numerical Study
	6.1. Description of the Numerical Scheme
	6.2. Two-Layer Setting
	6.3. One-Layer Setting

	Acknowledgements
	Appendix Paradifferential Calculus
	References




