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1. Introduction

In this work we examine the existence and regularity of solutions to the magnetohydrodynamics equations
(MHD) in 3d cylindrical domains. The governing system of equations reads

v,t + (v · ∇)v − νΔv + ∇
(

p +
1
2

|H|2
)

− (H · ∇)H = f in ΩT := Ω × (t0, T ),

H,t + (v · ∇)H − (H · ∇)v − νκΔH = 0 in ΩT ,

divv = 0, divH = 0 in ΩT ,

rotv × n = 0, v · n = 0 on ∂ΩT := ∂Ω × (t0, T ),

rotH × n = 0, H · n = 0 on ∂ΩT ,

v|t=t0 = vt0 , H|t=t0 = Ht0 in Ω × {t = t0},

(1.1)

where Ω = Ω′ × (−a, a), a > 0 and Ω′ ⊂ R
2 is a bounded subset with the C2-boundary. Here, the

unknowns are:
• the velocity field v : Ω → R

3, v = v(x, t) = (v1(x1, x2, x3, t), v2(x1, x2, x3, t), v3(x1, x2, x3, t)),
• the magnetic field H : Ω → R

3, H = H(x, t) = (H1(x1, x2, x3, t),H2(x1, x2, x3, t),H3(x1, x2, x3, t)),
• the pressure p : Ω → R, p = p(x, t) = p(x1, x2, x3, t).

The external force f : Ω → R
3, f = f(x, t), f = (f1(x1, x2, x3, t), f2(x1, x2, x3, t), f3(x1, x2, x3, t)), the

viscosity coefficients ν, νκ > 0 and the initial conditions vt0 , Ht0 are given.
System (1.1) describes the motion of a viscous, incompressible and resistive fluid filling a region Ω

(see e.g. [1,2]). This motion under the presence of the magnetic fields generates electric field and electric
currents, thereby evoking forces which alter the magnetic field and the fluid motion itself. Clearly, (1.1)
is a combination of the Navier-Stokes equations (NSE) and Maxwell’s equations. Since the problem of
regularity of weak solutions to the 3d NSE for arbitrary smooth data is still open, we cannot get any
better results for (1.1) than there are for the ordinary NSE. Therefore, to obtain a new result for (1.1)
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we need to make further assumptions. Two basic strategies are: either take the initial data small enough
or require some conditional regularity of v (see e.g. [3]).

In the following paper we are interested in proving the existence of strong solutions (see Definition 2.1)
to system (1.1) without any assumptions on the magnitude of the L2-norms of the initial and external
data. Instead, we assume that the L2-norms of the derivatives of the initial and external data along the
axis of the cylinder Ω are small. More precisely, we prove the following:

Theorem 1. Suppose that vt0 ,Ht0 ∈ H1(Ω),div vt0 = divHt0 = 0, f ∈ L2(ΩT ), f,x3 ∈ L2(t0, T ;L 6
5
(Ω)).

Let us introduce

E2(T ) := ‖vt0‖2
H1(Ω) + ‖Ht0‖2

H1(Ω) + ‖f‖2
L2(ΩT ) ,

d2(T ) := ‖vt0‖2
L2(Ω) + ‖Ht0‖2

L2(Ω) + ‖f‖2
L2(t0,T ;L 6

5
(Ω)) ,

δ2(T ) := ‖vt0,x3‖2
L2(Ω) + ‖Ht0,x3‖2

L2(Ω) + ‖f,x3‖2
L2(t0,T ;L 6

5
(Ω)) .

Fix T > t0. If δ2(T ) is sufficiently small then there exists a unique strong solution to (1.1). This unique
solution satisfies the following exponential growth estimate for all t ∈ [t0, T ]

‖v‖2
V 1

2 (Ωt) + ‖H‖2
V 1

2 (Ωt) ≤ cE2(T )ec(1+d2(T ))2

,

where a generic constant c depends on ν, νκ and Ω but not on T .

Before we briefly discuss the proof, we should clarify that all constants in the sequel are denoted by
c and they may vary from line to line. They may depend on ν, νκ and Ω but neither on t nor on the
initial and external data. The definition of the space V k

2 (ΩT ), k ∈ N, is given in Sect. 2. The proof of
the above theorem is based on the refined energy estimates and a fixed point principle. We derive these
estimates by utilizing the multiplicative Sobolev inequality (see e.g. [4, Remark 2.1], [5, Remark (iii)]),
which distinguishes the differentiation with respect to x3 from the whole gradient (see Lemma 3.7). To
exploit this inequality we introduce an auxiliary problem for (v,x3 ,H,x3) (see Lemma 4.2). The first
energy estimate for the solutions to this problem reads

‖v,x3‖2
V 0

2 (Ωt) + ‖H,x3‖2
V 0

2 (Ωt) ≤ c exp
(
c ‖Δv‖2

L2(Ωt) + c ‖ΔH‖2
L2(Ωt)

)
δ2(T ), ∀t≤T .

Next, we test (1.1)1,2 with −Δv and −ΔH, respectively, and use the multiplicative Sobolev inequality
to estimate the non-linear terms (see Lemma 6.1). First we obtain(

‖v(t)‖2
H1(Ω) + ‖H(t)‖2

H1(Ω)

)
+ ‖Δv‖2

L2(Ωt) + ‖ΔH‖2
L2(Ωt) ≤ cϕ

(
‖Δv‖2

L2(Ωt) + ‖ΔH‖2
L2(Ωt)

)
δ

4
3 (T )

+ cE2(T )+c sup
t0≤t≤T

(
‖v(t)‖2

H1(Ω) + ‖H(t)‖2
H1(Ω)

)3

δ
4
3 (T )+

∫ t

t0

(
‖v(τ)‖2

H1(Ω) + ‖H(τ)‖2
H1(Ω)

)
g(τ) dτ,

where ϕ is a positive, increasing function of exponential type and g(t) is a function such that
T∫

t0

g(t) dt

is bounded only by the data. Using the continuity argument (see e.g. [6, Ch. 1, §1.3]) it is clear that for
sufficiently small δ2(T ) we can eliminate ϕ from the right-hand side. Next, we use the Gronwall inequality,
basic energy estimates and the continuity argument again. In the end we can conclude the estimate for
v and H (see Lemma 6.1). Finally, the existence of solutions to (1.1) follows from the Leray–Schauder
fixed point theorem (see Lemma 7.1).

There is a slight problem with the above idea, namely the multiplicative Sobolev inequality cannot
be utilized directly for v and H because of the boundary conditions (1.1)4,5. They do not imply that
H′ = (H1,H2, 0) and v′ = (v1, v2, 0) vanish on the bottom and the top of the cylinder, therefore we have
to subtract from v′ and H′ their mean values along the x3-variable. More precisely, we introduce (cf.
Sect. 3)
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v̄ =
(∫ a

−a

v1(x1, x2, s) ds,

∫ a

−a

v2(x1, x2, s) ds, 0
)

,

H̄ =
(∫ a

−a

H1(x1, x2, s) ds,

∫ a

−a

H2(x1, x2, s) ds, 0
)

.

Now we easily observe that the functions v − v̄ and H− H̄ satisfy the assumptions of the multiplicative
Sobolev inequality (see Remark 3.8), whereas the functions v̄, H̄ are two-dimensional, i.e. they depend
merely on x1 and x2. The mean value operator that we have just introduced, was successfully used in
e.g. [4] or more recently in [7].

Let us shortly discuss the consequences of the smallness of δ2(T ). Let u ∈ {v,H}. By the definition

‖ut0‖2
H1(Ω) = ‖ut0‖2

L2(Ω) + ‖ut0,x1‖2
L2(Ω) + ‖ut0,x2‖2

L2(Ω) + ‖ut0,x3‖2
L2(Ω) .

In (3.2) we shall see that conditions (1.1)4,5 imply that v3 = H3 = 0 on the top and the bottom of the
cylinder. Thus, we have the Poincaré inequality for u3 with respect to x3 and we easily get

‖vt0‖2
H1(Ω) + ‖Ht0‖2

H1(Ω) ≤ ∥∥v′
t0

∥∥2

L2(Ω)
+

∥∥H′
t0

∥∥2

L2(Ω)
+

∥∥v′
t0,x′

∥∥2

L2(Ω)
+

∥∥H′
t0,x′

∥∥2

L2(Ω)

+ (1 + 2a)δ2(T ),

where x′ = (x1, x2),v′ = (v1, v2),H′ = (H1,H2). This means that the third components of the initial
velocity and magnetic fields must be close to zero. Thus, the initial flow is close to two-dimensional flow
and in light of Lemma 4.2 it remains so for any time T . Note that this limitation is a direct consequence
of the boundary conditions for v and H on the top and the bottom of the cylinder. It would not hold if Ω
was e.g. a cylinder periodic with respect to x3. Then, ‖v3(t0)‖L2(Ω) and ‖H3(t0)‖L2(Ω) could be arbitrarily
large.

For further discussion and references of MHD equations in periodic, cylindrical domains we refer the
reader to e.g. [8] and [9]. Cylindrical domains play an important role in studying plasma physics (see [10]
and [11]) and to some extent are used as approximations of a torus (see [12]).

We end this Introduction remarking that to the best of our knowledge results like Theorem 1 have not
appeared in the literature. However, in case of the whole space and slightly more general system (i.e. with
the fractional Laplacian) a result similar to ours follows from [13][Theorems 1.2 and 1.4]. Furthermore,
if we assume v = 0 on the boundary, then (1.1) was studied in [14–16] and [17], where the existence
of regular solutions was proved either for short time or for any time but under the assumption of the
smallness of the initial data. For a detailed summary of various results related to MHD equations we refer
the reader to the Introduction in [18].

2. Notation

The Boundary of the Domain

The boundary S := ∂Ω is a union of three sets:

SL =
{
x ∈ R

3 : ϕ(x1, x2) = cϕ,−a < x3 < a
}

(the lateral surface),

SB =
{
x ∈ R

3 : ϕ(x1, x2) < cϕ, x3 = −a
}

(the bottom),

ST =
{
x ∈ R

3 : ϕ(x1, x2) < cϕ, x3 = a
}

(the top),

where ϕ(x1, x2) = cϕ is a closed C2-curve in the plane x3 = const.
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Shorthand Notation

Some formulas appear often in the sequel. To shorten the notation we use

pH := p +
1
2

|H|2 ,

d2(T ) — a constant from the energy estimate, see Theorem 1,

δ2(T ) — the smallness assumption from Theorem 1,

E2(T ) — a sum of some norms of the initial and the external data from Theorem 1,

ΓT := Γ × (t0, T ), where Γ ∈ {Ω, S, SL, SB , ST },

N := {0, 1, 2, . . .}.

Function Spaces

Throughout the paper we use the standard Lebesgue Lp(Ω) and Sobolev W k
2 (Ω) = Hk(Ω) spaces. We

also need V k
2 (ΩT ), which is defined as follows:

V k
2 (ΩT ) =

⎧⎨
⎩u : ‖u‖V k

2 (ΩT ) ≡ ess sup
t0≤t≤T

‖u‖Hk(Ω) +

(∫ T

t0

‖u(t)‖2
Hk+1(Ω) dt

) 1
2

< ∞
⎫⎬
⎭ , k ∈ N.

Weak and Strong Solutions

Definition 2.1. By a weak solution to problem (1.1) we mean a pair of functions (v,H) ∈ V 0
2 (ΩT )×V 0

2 (ΩT )
such that divv = divH = 0 and satisfying∫

ΩT

(−v · ϕ,t + (v · ∇)v · ϕ + ν rotv · rotϕ + (H · ∇)ϕ · H)
dx dt

+
∫

Ω

v · ϕ|t=T dx −
∫

Ω

v · ϕ|t=t0 dx =
∫

ΩT

f · ϕ dx dt,

∫
ΩT

(−H · ψ,t − (v · ∇)ψ · H + (H · ∇)ψ · v + νκ rotH · rotψ
)

dx dt

+
∫

Ω

H · ψ|t=T dx −
∫

Ω

H · ψ|t=t0 dx = 0,

where ϕ,ψ ∈ H1(ΩT ),ϕ · n = 0,ψ · n = 0 div ϕ = div ψ = 0. If the pair (v,H) ∈ V 1
2 (ΩT ) × V 1

2 (ΩT )
satisfies the above integral identities then we call (v,H) a strong solution.

3. Auxiliary Remarks and Tools

Boundary Conditions

Since Ω is a cylinder, we can easily determine the unit outward normal vector n and the unit tangent
vectors τ i, i = 1, 2. We have:

on SL n =
1

|∇ϕ| [ϕ,x1 , ϕ,x2 , 0] τ 1 =
1

|∇ϕ| [−ϕ,x2 , ϕ,x1 , 0] τ 2 = [0, 0, 1] ,

on SB n = [0, 0,−1] τ 1 = [1, 0, 0] τ 2 = [0, 1, 0],

on ST n = [0, 0, 1] τ 1 = [1, 0, 0] τ 2 = [0, 1, 0].

(3.1)
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Using the above formulas in (1.1)4,5 we immediately get the following identities on ST and SB

v3 = H3 = 0, v3,xi
= H3,xi

= 0 i ∈ {1, 2},

vi,x3 = Hi,x3 = 0 i ∈ {1, 2}, v3,x3x3 = H3,x3x3 = 0,

(v1,x2 − v2,x1),x3
= (H1,x2 − H2,x1),x3

= 0.

(3.2)

On SL we only obtain

v1,x2 − v2,x1 = H1,x2 − H2,x1 = 0. (3.3)

Let us observe that the discussed boundary conditions suggest the following integration by parts
formula: Let u and w belong to H1(Ω) and satisfy rotu×n = rotw×n = 0 and u ·n = w ·n = 0. Then∫

Ω

rotu · w dx =
∫

Ω

rotw · udx +
∫

S

u × n · w dS

=
∫

Ω

rotw · udx −
∫

S

w × n · udS.

(3.4)

Finally, let us note that there are other possible choices for the boundary conditions for the magnetic
field. For an insightful discussions we refer the interested reader into [19–21] and [22].

Divergence-Free Magnetic Field

At first sight it might seem that system (1.1) is overdetermined since it contains four equations for H
while H has only three unknown components. This is perfectly fine and consistent with the MHD theory
(see e.g. [23, Ch.2 ]). However, it may appear that condition (1.1)5 violates the equation divH = 0. This
issue was partly addressed in [15, Lemma 2.1]. In Lemma 3.12 we show that if divHt0 = 0 and H satisfies
(1.1)5, then divH = 0 for all t ≥ t0.

Mean Value Operator

The proof of Theorem 1 is based on the multiplicative Sobolev inequality, which requires that a given
function u satisfies: u3|ST

= u3|SB
= 0 and

∫
Ω

uj(x1, x2, x3) dx3 = 0 for j = 1, 2. Since we do not
know whether

∫
Ω

vj dx3 and
∫
Ω

Hj dx3 are equal to zero for j = 1, 2, so we define the mean value for
v′ = (v1, v2) and H′ = (H1,H2) with respect to the x3-variable as follows: if z : R3 → R then we write

z̄(x1, x2) =
1
2a

∫ a

−a

z(x1, x2, s) ds (3.5)

and

v̄(x1, x2) = (v̄1(x1, x2), v̄2(x1, x2), 0) , H̄(x1, x2) =
(
H̄1(x1, x2), H̄2(x1, x2), 0

)
.

Such defined functions have several properties, which we summarize in lemmas below.

Lemma 3.1. Let z : Ω → R
3, z3|SB

= z3|ST
= 0. Then z̄ = (z̄1, z̄2, 0) has the following properties:

(1) ∂k
xj
z̄ = ∂k

xj
z, j ∈ {1, 2}, k ∈ N,

(2)
∫ a

−a

(z − z̄)′ dx3 = 0,

(3)
∫ a

−a

(z − z̄)′
,xj

dx3 = 0, j ∈ {1, 2},

(4) rot z̄ = [0, 0, z̄1,x2 − z̄2,x1 ],

(5) Δz̄ = Δz,

(3.6)
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where ′ means restriction to the two first coordinates, i.e. z̄′ = (z̄1, z̄2). If div z = 0, then

(6) div z̄ = 0.

Finally, let rot z × n = 0, z · n = 0 on S. Then

(7)
z̄ · n = 0
rot z̄ × n = 0

on S.

Proof. Properties (1) and (2) follow immediately from (3.5). Property (3) is a direct consequence of (1)
and (2). The computation of rot z̄ in (4) is straightforward. For the justification of (5) we refer the reader
to [4, Lemma 1.1].

To prove (6) we note

div z̄
(1)
=

1
2a

∫ a

−a

(z1,x1(x1, x2, s) + z2,x2(x1, x2, s)) ds = − 1
2a

∫ a

−a

z3,x3(x1, x2, s) ds = 0.

Finally, we deduce (7) from (3.1) and (1.1)4,5. This completes the proof. �

Lemma 3.2. Let a, b : Ω → R
3 belong to H1(Ω), div a = divb = 0. Suppose that a and b satisfy the

Navier boundary conditions (i.e. (1.1)4,5). If ā = [ā1, ā2, 0] and b̄ = [b̄1, b̄2, 0], then∫
Ω

rot (a − ā) · rot b̄dx = 0

and ∫
Ω

Δ(a − ā) · Δb̄ dx = 0.

Proof. Consider the first integral. We see that in light of (3.6)4 we only need to examine∫ a

−a

rot(a − ā)3 dx3 =
∫ a

−a

(z1,x2 − z̄1,x2 − (z2,x1 − z̄2,x1)) dx3.

From (3.6)1 it follows that the above integral vanishes.
To investigate the second integral we use (3.6)4 twice. Since div b̄ = 0 (see Lemma 3.1) we conclude

that the third component of Δb̄ is zero and the first two components do not depend on x3. Thus, we
need to examine∫ a

−a

Δ(a − ā)′ dx3 =
∫ a

−a

(
∂2

x1x1
+ ∂2

x2x2

)
(a − ā)′ dx3 +

∫ a

−a

∂2
x3x3

(a − ā)′ dx3.

The first integral on the right-hand side vanishes due to (3.6)1. The second integral is equal to

a′
,x3

(x1, x2, a) − a′
,x3

(x1, x2,−a).

The boundary conditions for a imply a′
,x3

= 0 (we saw it in (3.2)2). This concludes the proof. �

Lemma 3.3. Suppose that z ∈ H1(Ω), z3|SB
= z3|ST

= 0. Then

‖z‖2
L2(Ω) = ‖z − z̄‖2

L2(Ω) + ‖z̄‖2
L2(Ω) ,

‖z‖2
H1(Ω) = ‖z − z̄‖2

H1(Ω) + ‖z̄‖2
H1(Ω) ,

‖z‖2
H2(Ω) = ‖z − z̄‖2

H2(Ω) + ‖z̄‖2
H2(Ω) .

Proof. We have

|z|2 = (z − z̄ + z̄) · (z − z̄ + z̄) ,

|∇z|2 = (∇ (z − z̄) + ∇z̄) · (∇ (z − z̄) + ∇z̄) ,

|Δz|2 = (Δ (z − z̄) + Δz̄) · (Δ (z − z̄) + Δz̄) .
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From Lemma 3.1 it follows that the integrals∫
Ω

(z − z̄) · z̄dx and
∫

Ω

∇ (z − z̄) · ∇z̄ dx

vanish because z̄ and ∇z̄ do not depend on x3. The integrals containing Δ were analyzed in Lemma 3.2.
This concludes the proof. �
Remark 3.4. From the above Lemma we instantly deduce that

‖z̄‖Hk(Ω) ≤ ‖z‖Hk(Ω) and ‖z − z̄‖Hk(Ω) ≤ ‖z‖Hk(Ω)

for k = 0, 1, 2.

The subsequent lemma will be very useful for estimating the integrals originating from the non-linear
terms.

Lemma 3.5. Let a, b, w : Ω → R
3. Then∫

Ω

(a · ∇)b · w̄ dx =
∫

Ω

(ā · ∇)b̄ · w̄ dx +
∫

Ω

((a − ā) · ∇)
(
b − b̄

) · w̄ dx (3.7a)

and ∫
Ω

(a · ∇)b · (w − w̄) dx =
∫

Ω

((a − ā) · ∇) b̄ · (w − w̄) dx

+
∫

Ω

(ā · ∇)
(
b − b̄

) · (w − w̄) dx +
∫

Ω

((a − ā) · ∇)
(
b − b̄

) · (w − w̄) dx. (3.7b)

Proof. We have

(a · ∇)b = ((a − ā + ā) · ∇)
(
b − b̄ + b̄

)
= ((a − ā) · ∇)

(
b − b̄

)
+ ((a − ā) · ∇) b̄ + (ā · ∇)

(
b − b̄

)
+ (ā · ∇)b̄.

Multiplying the above formula by c and integrating over Ω results in four integrals on the right-hand
side. We denote these integrals by Jk. If c = w̄ then

J2 =
∫

Ω

((a − ā) · ∇) b̄ · w̄ dx =
∫

Ω′

(∫ a

−a

(a − ā) dx3 · ∇
)
b̄ · w̄ dx′ = 0,

which follows from Lemma 3.1. Similarly J3 = 0 and (3.7a) is proved.
We now set c = w − w̄. Then, Lemma 3.1 implies that J4 = 0 which justifies (3.7b). This ends the

proof. �
Remark 3.6. From the above Lemma it follows that∫

Ω

(a · ∇)b · Δw dx =
∫

Ω

(a · ∇)b · Δw̄ dx +
∫

Ω

(a · ∇)b · Δ(w − w̄) dx

=
∫

Ω

(ā · ∇)b̄ · Δw̄ dx +
∫

Ω

((a − ā) · ∇)
(
b − b̄

) · Δw̄ dx

+
∫

Ω

((a − ā) · ∇) b̄ · Δ(w − w̄) dx +
∫

Ω

(ā · ∇)
(
b − b̄

) · Δ(w − w̄) dx

+
∫

Ω

((a − ā) · ∇)
(
b − b̄

) · Δ(w − w̄) dx.

Thus ∫
Ω

(a · ∇)b · Δw dx =
∫

Ω

(ā · ∇)b̄ · Δw̄ dx +
∫

Ω

((a − ā) · ∇)
(
b − b̄

) · Δw dx

+
∫

Ω

((a − ā) · ∇) b̄ · Δ(w − w̄) dx +
∫

Ω

(ā · ∇)
(
b − b̄

) · Δ(w − w̄) dx.

In light of the above Remark we see that every integral containing the non-linear term generates four
new integrals. As we shall see these new integrals will be much easier to handle.
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Auxiliary Tools

Lemma 3.7. Suppose that u ∈ H1(Ω), u3|SB
= u3|ST

= 0 and
∫
Ω

uj(x1, x2, x3) dx3 = 0 for j = 1, 2.
Then

‖u‖L6(Ω) ≤ c ‖u,x3‖
1
3
L2(Ω) ‖∇u‖ 2

3
L2(Ω) .

Proof. In cylindrical domains we have the following Sobolev inequality (see [4, Remark 2.1]

‖u‖L6(Ω) ≤ c
(
‖u‖L2(Ω) + ‖u,x3‖

) 1
3

(
‖u‖L2(Ω) + ‖u,x1‖L2(Ω) + ‖u,x2‖L2(Ω)

) 2
3

.

Using the Poincaré inequality with respect to x3 we conclude the proof. �

Remark 3.8. Lemma 3.7 is valid for u = w − w̄, where w ∈ {v,H}. Thus

‖u − ū‖L6(Ω) ≤ c ‖u,x3‖
1
3
L2(Ω) ‖∇ (u − ū)‖ 2

3
L2(Ω) .

Moreover, if w satisfies rotw × n = 0, w · n = 0 on the boundary, then we also have

‖∇′ (u − ū)‖Lp(Ω) ≤ c ‖∇′u,x3‖
1
3
L2(Ω)

∥∥∇2 (u − ū)
∥∥ 2

3

L2(Ω)
,

where 2 ≤ p ≤ 6. Indeed, let g = u,x′ . Then

∇′ (u − ū) = u,x′ − u,x′ = g − ḡ,

where the first equality follows from (3.6)1. From (3.6)2 we infer that∫ a

−a

(g − ḡ)′ dx3 = 0.

Since g3 − ḡ3 = u3,x′ − ū3,x′ = 0 (see (3.2) and Lemma 3.1), all assumption from Lemma 3.7 are satisfied
and the Remark is proved.

Lemma 3.9. (see Theorem 1.1 in [24]) Suppose that z is a solution to the following problem

rot z = α,

div z = β,

z × n = 0 or z · n = 0.

Then

‖z‖Hk+1(Ω) ≤ c
(
‖α‖Hk(Ω) + ‖β‖Hk(Ω)

)
, k ∈ N.

The direct consequence of the above Lemma is the following useful inequality:

Lemma 3.10. Suppose that (w − w̄) ∈ H2(Ω) and rotw × n = 0, w · n = 0. Then

‖w − w̄‖H2(Ω) ≤ c ‖Δ(w − w̄)‖L2(Ω) .

Proof. We set z = w − w̄ in Lemma 3.9. Clearly z · n = 0 on S (see Lemma 3.1), thus

‖w − w̄‖H2(Ω) ≤ c ‖rot (w − w̄)‖H1(Ω) .

Next we set z = rot (w − w̄). Then z × n = 0 (see Lemma 3.1). Then, by Lemma 3.9 and the above
inequality we get

‖w − w̄‖H2(Ω) ≤ c ‖rot (w − w̄)‖H1(Ω) ≤ c ‖rot rot (w − w̄)‖L2(Ω) ,

and since div (w − w̄) = 0 we conclude the proof. �
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Lemma 3.11. (Gagliardo–Nirenberg interpolation inequality, see [25]) Suppose that u : Ω → R, Ω ⊂ R
n.

Fix 1 ≤ q, r ≤ ∞ and m ∈ N. Suppose that a real number α ≥ 0 and j ∈ N are such that
1
p

=
j

n
+

(
1
r

− m

n

)
α +

1 − α

q
, where

j

m
≤ α ≤ 1.

Then ∥∥Dju
∥∥

Lp(Ω)
≤ c1 ‖Dmu‖α

Lr(Ω) ‖u‖1−α
Lq(Ω) + c2 ‖u‖Ls(Ω) ,

where s > 0 is arbitrary and the constants c1 and c2 do not depend on u.

Finally, we justify why (1.1)5 does not violate the condition divH = 0.

Lemma 3.12. Suppose that H satisfy (1.1)5 and divH0 = 0. Then divH = 0 for all t ≥ 0.

Proof. Let h := divH. We take div of both sides in (1.1)2 and we get

h,t − νκΔh = 0 in ΩT ,

h|t=t0 = 0 on Ω × {t = t0}.

From (3.2) we immediately deduce that

∇h · n|SB
= ∇h · n|ST

= 0.

We only need to find the boundary condition for h on SL. Using the vector identities
−Δ = rot rot−∇div,

rot(A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B,

we rewrite (1.1)2 in the form

H,t + rot (H × v) + νκ rot rotH − νκ∇divH = 0.

Multiplying this equation by n and projecting the result onto SL yields

∇h · n|SL
=

1
νκ

rot (H × v) · n|SL
+ rot rotH · n|SL

. (3.8)

Using the identity

div(A × B) = B · rotA − A · rotB

we see that

− 1
νκ

rot (H × v) · n|SL
=

1
νκ

div (n × (H × v)) |SL
− 1

νκ
H × v · rotn|SL

.

Now

n × (H × v) = (n · v)H − (n · H)v = 0

because of (1.1)4,5. From (3.1)1 we get

rotn|SL
= ∇

(
1

|∇ϕ|
)

× [ϕ,x1 , ϕ,x2 , 0]|SL
=

[
0, 0, ∂x1

(
1

|∇ϕ|
)

ϕ,x2 − ∂x2

(
1

|∇ϕ|
)

ϕ,x1

]
|SL

and
H · n|SL

= H1n1 + H2n2|SL
= 0,

v · n|SL
= v1n1 + v2n2|SL

= 0.

Thus

(H × v)3 = H1v2 − H2v1 = −H2
n2

n1

(
−v1

n1

n2

)
− H2v1 = 0.

Hence
1
νκ

H × v · rotn|SL
= 0
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and (3.8) becomes

∇h · n|SL
= rot rotH · n|SL

.

Using (3.1) we obtain

rot rotH · n|SL
=

1
|∇ϕ| [(H2,x1x2 − H1,x2x2 − H1,x3x3 + H3,x1x3) ϕ,x1

+ (H3,x2x3 − H2,x3x3 − H2,x1x1 + H1,x1x2) ϕ,x2 ] .

Since e3 = [0, 0, 1] is tangent to SL we add to the above equality ∂x3 (rotH × n) = 0

rot rotH · n|SL
=

1
|∇ϕ| [(H2,x1x2 − H1,x2x2) ϕ,x1 + (H1,x1x2 − H2,x1x1) ϕ,x2 ] .

Using (3.3) we eventually get

rot rotH · n|SL
= 0,

thus

∇h · n|SL
= 0.

Summarizing, we get

h,t − νκΔh = 0 in ΩT ,

∇h · n|S = 0 on ST ,

h|t=t0 = 0 on Ω × {t = t0}.

Multiplying the first equation by h, integrating with respect to Ω and t we easily see that h ≡ 0 for all
t ∈ (t0, T ) a.e. This concludes the proof. �

Existence and Estimates of Solutions to Evolutionary Systems

Lemma 3.13. Let us consider the Stokes problem

v,t − νΔv + ∇p = F in ΩT ,

divv = 0 in ΩT ,

v · n = 0 on ST ,

rotv × n = 0 on ST ,

v|t=t0 = vt0 on Ω × {t = t0}.

(3.9)

If F ∈ Ls(ΩT ) and vt0 ∈ W
2− 2

s
s (Ω), where 1 < s < ∞, then there exist a unique solution such that

v ∈ W 2,1
s (ΩT ), ∇p ∈ Ls(ΩT ) and

‖v‖W 2,1
s (Ωt) + ‖∇p‖Ls(ΩT ) ≤ c

(
‖F‖Ls(ΩT ) + ‖vt0‖

W
2− 2

s
s (Ω)

)
.

Sketch of the proof. An identical problem but with slip boundary conditions with friction was considered
in [26]. In cylindrical domains there is a tight relation between the Navier and slip boundary conditions,
see e.g. [27, Lemma 6.5]. If we were to follow the details from [26], we would have to make sure that the
problem for p has proper boundary conditions. Applying div to both sides of (3.9)1 yields

Δp = divF.

To derive the boundary conditions we multiply (3.9)1 by n and project the result onto S. From (3.9)3,4

and (3.2) we immediately obtain

−νΔv · n + ∇p · n = F · n on S.
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The first term on the left-hand side is zero. Indeed, we have

−Δv · n = rot rotv · n = 0

because the tangential component of rotv is zero and therefore by the Stokes’ theorem the normal
component of rot rotv is zero, too. Summarizing, we have

Δp = divF in Ω,

∇p · n = F · n on S,
(3.10)

which is a simpler version of Problem (2.29) from [26] (in [26] condition (3.10) reads ∇p · n = F · n + b).
Therefore, the whole proof of the main Theorem in [26] can be safely repeated. �

Lemma 3.14. Consider the following initial-boundary value problem

H,t − νκΔH = G in ΩT ,

H · n = 0 on ST ,

rotH × n = 0 on ST ,

H|t=t0 = Ht0 on Ω × {t = t0}.

(3.11)

Assume that G ∈ Lp(ΩT ), Ht0 ∈ W
2− 2

p
p (Ω), 1 < p < ∞. Then, there exist a unique solution H such that

H ∈ W 2,1
p (ΩT ) and

‖H‖W 2,1
p (ΩT ) ≤ c

(
‖G‖Lp(ΩT ) + ‖Ht0‖

W
2− 2

p
p (Ω)

)
.

Sketch of the proof. Since the boundary is not smooth we proceed as follows. First we reflect H outside
Ω with respect to x3. This is possible due to (3.11)2,3, which imply (3.2). In that way we obtain (3.11)
in Ω̄ := Ω′ × (−3a, 3a).

In the second step we introduce a partition of unity
N∑

l=0

ζk(x3) = 1 on Ω, i.e. Ω ⊂ ⋃
l=0...N supp ζl. For

a given l two situations may occur: either supp ζl ∩ S = ∅ or supp ζl ∩ S �= ∅. In the first situation we
get a model problem in the whole space. In the second situation after straightening up the boundary we
obtain the model problem in the half-space. For further investigation of these model problems we refer
the reader to e.g. [28]. �

4. Basic Energy Estimates

In this Section we establish energy estimates for (v,H) and (v,x3 ,H,x3).

Lemma 4.1. Suppose that vt0 , Ht0 ∈ L2(Ω),div vt0 = divHt0 = 0, and f ∈ L2(t0, T ;L 6
5
(Ω)). Then, for

any t ∈ (t0, T ) we have v, H ∈ V 0
2 (Ωt) and

‖v‖2
V 0

2 (Ωt) + ‖H‖2
V 0

2 (Ωt) ≤ cd2(T ). (4.1)

Proof. We multiply (1.1)1,2 by v and H, respectively, integrate over Ω and add to each other
1
2

d
dt

(
‖v‖2

L2(Ω) + ‖H‖2
L2(Ω)

)
+ ν ‖rotv‖2

L2(Ω) + νκ ‖rotH‖2
L2(Ω)

=
∫

Ω

(H · ∇)H · v dx +
∫

Ω

(H · ∇)v · Hdx +
∫

Ω

f · v dx.

The sum of the two first integrals on the right-hand side is equal to zero. To the last integral we apply
the Hölder and Cauchy inequalities. To get H1-norms we use Lemma 3.9. We have

d
dt

(
‖v‖2

L2(Ω) + ‖H‖2
L2(Ω)

)
+ c ‖v‖2

H1(Ω) + c ‖H‖2
H1(Ω) ≤ c ‖f‖2

L 6
5
(Ω) .
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Integration with respect to time concludes the proof. �

Lemma 4.2. Suppose that divvt0 = divHt0 = 0,∇v, ∇H ∈ L2(t0, t;L3(Ω)) for any t0 ≤ t ≤ T and
δ(T ) < ∞. Then v,x3 , H,x3 ∈ V 0

2 (Ωt) and

‖v,x3‖2
V 0

2 (Ωt) + ‖H,x3‖2
V 0

2 (Ωt) ≤ ce
c
(
‖Δv‖2

L2(Ωt)+‖ΔH‖2
L2(Ωt)

)
δ2(T ).

To make the proof of the above Lemma more readable we introduce a temporary notation
w := v,x3 , K := H,x3 ,

qH := ∂x3

(
p +

1
2

|H|2
)

.

Differentiating (1.1)1,2,3 with respect to x3 and using (3.2) we get the following systems for w and K:

w,t − νΔw + ∇qH

= −(w · ∇)v − (v · ∇)w + (K · ∇)H + (H · ∇)K + f,x3

in ΩT ,

divw = 0 in ΩT ,

rotw × n = 0, w · n = 0 on ST
L ,

w′ = 0, w3,x3 = 0 on ST
B and ST

T ,

w|t=t0 = wt0 on Ω × (t0, T )

(4.2)

and
K,t − νκΔK

= (K · ∇)v + (H · ∇)w − (w · ∇)H − (v · ∇)K
in ΩT ,

divK = 0 in ΩT ,

rotK × n = 0, K · n = 0 on ST
L ,

K′ = 0, K3,x3 = 0 on ST
B and ST

T ,

K|t=t0 = Kt0 on Ω × (t0, T ).

(4.3)

Proof of Lemma 4.2. We multiply (4.2)1 and (4.3)1 by w and K, respectively, integrate over Ω and add
to each other

1
2

d
dt

(
‖w‖2

L2(Ω) + ‖K‖2
L2(Ω)

)
+ ν ‖rotw‖2

L2(Ω) + νκ ‖rotK‖2
L2(Ω)

=
∫

Ω

[(−(w · ∇)v − (v · ∇)w + (K · ∇)H + (H · ∇)K + f,x3) · w
+ ((K · ∇)v + (H · ∇)w − (w · ∇)H − (v · ∇)K) · K] dx.

On the right-hand side we have nine terms under the integral sign. The second and the ninth terms vanish
due to (4.2)2 and (4.3)2. The fourth and the seventh terms have opposite sign. Hence

1
2

d
dt

(
‖w‖2

L2(Ω) + ‖K‖2
L2(Ω)

)
+ ν ‖rotw‖2

L2(Ω) + νκ ‖rotK‖2
L2(Ω)

=
∫

Ω

[(−(w · ∇)v · w + (K · ∇)H · w + f,x3 · w) + ((K · ∇)v · K − (w · ∇)H · K)] dx.

Next, we apply Lemma 3.9 on the left-hand side and the Hölder, Young and Sobolev inequalities on the
right-hand side

1
2

d
dt

(
‖w‖2

L2(Ω) + ‖K‖2
L2(Ω)

)
+ c

(
‖w‖2

H1(Ω) + ‖K‖2
H1(Ω)

)
≤ cε1

(
‖w‖2

H1(Ω) + ‖K‖2
H1(Ω)

)

+
c

ε1

(
‖w‖2

L2(Ω) + ‖K‖2
L2(Ω)

)(
‖∇v‖2

L3(Ω) + ‖∇H‖2
L3(Ω)

)
+ cε2 ‖w‖2

H1(Ω) +
c

ε2
‖f,x3‖2

L 6
5 (Ω)

.
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Choosing ε1 and ε2 small enough we get

d
dt

(
‖w‖2

L2(Ω) + ‖K‖2
L2(Ω)

)
+ c

(
‖w‖2

H1(Ω) + ‖K‖2
H1(Ω)

)

≤ c
(
‖w‖2

L2(Ω) + ‖K‖2
L2(Ω)

) (
‖∇v‖2

L3(Ω) + ‖∇H‖2
L3(Ω)

)
+ c ‖f,x3‖2

L 6
5 (Ω)

. (4.4)

The Gronwall inequality yields

‖w(t)‖2
L2(Ω) + ‖K(t)‖2

L2(Ω) ≤ c exp
(
c ‖∇v‖2

L2(t0,t;L3(Ω)) + c ‖∇H‖2
L2(t0,t;L3(Ω))

)
δ2(T ).

Integrating (4.4) with respect to time and using the above inequality along with the Sobolev inequality
ends the proof. �

5. Auxiliary Estimates

We start this section with a simple observation that follows from the Gagliardo–Nirenberg inequality.

Remark 5.1. If we set p = 4, r = q = 2, j = 0 and m = 1 in Lemma 3.11, then

‖z̄‖L4(Ω′) ≤ c ‖∇z̄‖ 1
2
L2(Ω′) ‖z̄‖ 1

2
L2(Ω′) + c ‖z̄‖L2(Ω′) ,

‖∇z̄‖L4(Ω′) ≤ c
∥∥D2z̄

∥∥ 1
2

L2(Ω′) ‖∇z̄‖ 1
2
L2(Ω′) + c ‖∇z̄‖L2(Ω′) .

If additionally z̄|∂Ω′ = 0 or
∫
Ω′ z̄ dx′ = 0, then (see e.g. [29, Ch. 2, §2, Thm. 2.2 and Rem. 2.1])

‖z̄‖L4(Ω′) ≤ c ‖∇z̄‖ 1
2
L2(Ω′) ‖z̄‖ 1

2
L2(Ω′) .

Below we prove a couple of results related to integrals corresponding to non-linear terms. We saw in
Remark 3.6 that every integral involving a non-linear term splits into four integrals. These four integrals
are estimated separately in a series of Lemmas 5.3–5.6.

Lemma 5.2. Suppose that divw = 0 and rotw × n = 0. If w̄ = (w̄1, w̄2, 0), then∫
Ω

(w̄ · ∇)w̄ · Δw̄ dx = 0.

Proof. First we note that the given integral does not depend on x3. Next, we use that −Δw̄ = rot rot w̄
and integrate by parts

−
∫

Ω

(w̄ · ∇)w̄ · Δw̄ dx = 2a

∫
Ω′

(w̄ · ∇′)w̄ · rot rot w̄ dx′

= 2a

∫
Ω′

rot ((w̄ · ∇′)w̄) · rot w̄ dx′ −
∫

S′
rot w̄ × n · (w̄ · ∇′)w̄ dS′.

The boundary integral vanishes due to Lemma 3.1. Moreover,

2a

∫
Ω′

rot ((w̄ · ∇′)w̄) · rot w̄ dx′ = 2a

∫
Ω′

(w̄1,x2w̄1,x1 + w̄1w̄1,x1x2 + w̄2,x2w̄1,x2 + w̄2w̄1,x2x2

− w̄1,x1w̄2,x1 − w̄1w̄2,x1x1 − w̄2,x1w̄2,x2 − w̄2w̄2,x2x1) (w̄1,x2 − w̄2,x1) dx′.

Since div w̄ = 0 we infer that the above integral is equal to

2a

∫
Ω′

(
w1 (w̄1,x2 − w̄2,x1),x1

+ w2 (w̄1,x2 − w̄2,x1),x2

)
(w̄1,x2 − w̄2,x1) .

Integrating by parts and using div w̄ = 0 and w̄ · n = 0 we conclude the proof. �
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Lemma 5.3. Suppose that a ∈ H1(Ω), b, w ∈ H2(Ω) and divb = 0. Then∫
Ω

(ā · ∇)b̄ · Δw̄ dx ≤ ε ‖Δw‖2
L2(Ω) +

c

ε

(
‖a‖L2(Ω) ‖∇a‖L2(Ω) ‖∇b‖L2(Ω) ‖Δb‖L2(Ω) + ‖a‖2

L2(Ω) ‖∇b‖2
L2(Ω)

)

+
c

ε

(
‖a‖2

L2(Ω) ‖∇b‖L2(Ω) ‖Δb‖L2(Ω) + ‖∇b‖2
L2(Ω) ‖a‖L2(Ω) ‖∇a‖L2(Ω)

)
.

Proof. In light of the Hölder and Young inequalities∫
Ω

(ā · ∇)b̄ · Δw̄ dx ≤ ε ‖Δw̄‖2
L2(Ω) +

c

ε
‖ā‖2

L4(Ω)

∥∥∇b̄
∥∥2

L4(Ω)
.

To estimate the L4-norms we use Remark 5.1 and the Young inequality

‖ā‖2
L4(Ω)

∥∥∇b̄
∥∥2

L4(Ω)
=

(
‖ā‖ 1

2
L2(Ω) ‖∇ā‖ 1

2
L2(Ω) + ‖ā‖L2(Ω)

)2 (∥∥∇b̄
∥∥ 1

2

L2(Ω)

∥∥∇2b̄
∥∥ 1

2

L2(Ω)
+

∥∥∇b̄
∥∥

L2(Ω)

)2

≤ c ‖ā‖L2(Ω) ‖∇ā‖L2(Ω)

∥∥∇b̄
∥∥

L2(Ω)

∥∥∇2b̄
∥∥

L2(Ω)
+ c ‖ā‖2

L2(Ω)

∥∥∇b̄
∥∥2

L2(Ω)

+ c ‖ā‖2
L2(Ω)

∥∥∇b̄
∥∥

L2(Ω)

∥∥∇2b̄
∥∥

L2(Ω)
+ c

∥∥∇b̄
∥∥2

L2(Ω)
‖ā‖L2(Ω) ‖∇ā‖L2(Ω) .

Using div b̄ = 0 we get b̄i,xjxi
= −b̄j,xjxj

for i, j ∈ {1, 2}. To conclude the proof we use Remark 3.4. �

Lemma 5.4. Suppose that a, b ∈ {v,H}. Then∫
Ω

((a − ā) · ∇)
(
b − b̄

) · Δw dx ≤ ε
(
‖Δw‖2

L2(Ω) + ‖Δb‖2
L2(Ω)

)

+
c

ε
‖a,x3‖

4
3
L2(Ω) ‖∇a‖ 8

3
L2(Ω) ‖∇b‖2

L2(Ω) .

Proof. Using the Hölder and the Young inequalities we get∫
Ω

((a − ā) · ∇)
(
b − b̄

) · Δw dx ≤ ε ‖Δw‖2
L2(Ω) +

c

ε
‖a − ā‖2

L6(Ω)

∥∥∇(b − b̄)
∥∥2

L3(Ω)
.

By the interpolation inequality between Lp-spaces

‖a − ā‖2
L6(Ω)

∥∥∇(b − b̄)
∥∥2

L3(Ω)
≤ ‖a − ā‖2

L6(Ω)

∥∥∇(b − b̄)
∥∥

L2(Ω)

∥∥∇(b − b̄)
∥∥

L6(Ω)
.

Remark 3.8, the embedding theorem and the Cauchy inequality yield

‖a − ā‖2
L6(Ω)

∥∥∇(b − b̄)
∥∥

L2(Ω)

∥∥∇(b − b̄)
∥∥

L6(Ω)

≤ ε
∥∥Δ(b − b̄)

∥∥2

L2(Ω)
+

c

ε
‖a,x3‖

4
3
L2(Ω) ‖∇ (a − ā)‖ 8

3
L2(Ω)

∥∥∇(b − b̄)
∥∥2

L2(Ω)
.

We conclude the proof using Lemma 3.10 and Remark 3.4. �

Lemma 5.5. Suppose that a, b ∈ {v,H}. Then∫
Ω

((a − ā) · ∇) b̄ · Δ(w − w̄) dx ≤ ε
(
‖Δw‖2

L2(Ω) + ‖Δb‖2
L2(Ω)

)

+
c

ε
‖a,x3‖

4
3
L2(Ω) ‖∇a‖ 8

3
L2(Ω) ‖∇b‖2

L2(Ω) .

Proof. The proof is identical to the proof of Lemma 5.4. �

Lemma 5.6. Suppose that a, b ∈ {v,H} and b satisfies rotb×n = 0, b ·n = 0 on SB and on ST . Then∫
Ω

(ā · ∇)
(
b − b̄

) · Δ(w − w̄) dx ≤ ε
(
‖Δw‖2

L2(Ω) + ‖Δb‖2
L2(Ω)

)

+
c

ε
‖a‖6

H1(Ω) ‖∇b,x3‖2
L2(Ω) .
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Proof. Since ā3 = 0 we get from the application of the Hölder and the Young inequalities∫
Ω

(ā · ∇)
(
b − b̄

) · Δ(w − w̄) dx ≤ ε ‖Δ(w − w̄)‖2
L2(Ω) +

c

ε
‖ā‖2

L6(Ω)

∥∥∇′ (b − b̄
)∥∥2

L3(Ω)
,

where ∇′ = [∂x1 , ∂x2 ]. By Remark 3.8 we get
∥∥∇′ (b − b̄

)∥∥2

L3(Ω)
≤ c ‖∇b,x3‖

2
3
L2(Ω)

∥∥∇2
(
b − b̄

)∥∥ 4
3

L2(Ω)
.

Application of the Young inequality along with Lemma 3.10 and Remark 3.4 ends the proof. �

6. Higher Order Estimates

Lemma 6.1. Suppose that vt0 , Ht0 ∈ H1(Ω),div vt0 = divHt0 = 0, and f ∈ L2(ΩT ). If δ2(T ) is suffi-
ciently small, then

‖v‖2
V 1

2 (Ωt) + ‖H‖2
V 1

2 (Ωt) ≤ cE2(T )ec(1+d2(T ))2

(6.1)

for any t ∈ (t0, T ).

Proof. We multiply (1.1)1,2 by −Δv and −ΔH respectively, integrate over Ω and add to each other

−
∫

Ω

v,t · Δv dx −
∫

Ω

H,t · ΔHdx + ν

∫
Ω

Δv · Δv dx + νκ

∫
Ω

ΔH · ΔHdx

=
∫

Ω

∇
(

p +
1
2

|H|2
)

· Δv dx +
∫

Ω

(v · ∇)v · Δv dx −
∫

Ω

(H · ∇)H · Δv dx

+
∫

Ω

(v · ∇)H · ΔHdx −
∫

Ω

(H · ∇)v · ΔHdx −
∫

Ω

f · Δv dx =:
6∑

k=1

Jk. (6.2)

In the two first integrals of the left-hand side we integrate by parts using (3.4). Thus, the left-hand side
of (6.2) is estimated from below by

1
2

d
dt

(
‖rotv‖2

L2(Ω) + ‖rotH‖2
L2(Ω)

)
+ c

(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)
.

On the right-hand side in (6.2) we have 6 integrals, which we denote by Jk. In light of (3.4) and
Lemma 3.1 we see that J1 = 0. To estimate integrals J2–J5 we first use Remark 3.6

J2 =
∫

Ω

(v̄ · ∇)v̄ · Δv̄ dx +
∫

Ω

((v − v̄) · ∇) (v − v̄) · Δv dx

+
∫

Ω

((v − v̄) · ∇) v̄ · Δ(v − v̄) dx +
∫

Ω

(v̄ · ∇) (v − v̄) · Δ(v − v̄) dx =:
4∑

m=1

J2m,

J3 = −
∫

Ω

(H̄ · ∇)H̄ · Δv̄ dx −
∫

Ω

(
(H − H̄) · ∇) (

H − H̄
) · Δv dx

−
∫

Ω

(
(H − H̄) · ∇)

H̄ · Δ(v − v̄) dx −
∫

Ω

(H̄ · ∇)
(
H − H̄

) · Δ(v − v̄) dx =: −
4∑

m=1

J3m,

J4 =
∫

Ω

(v̄ · ∇)H̄ · ΔH̄ dx +
∫

Ω

((v − v̄) · ∇)
(
H − H̄

) · ΔHdx

+
∫

Ω

((v − v̄) · ∇) H̄ · Δ
(
H − H̄

)
dx +

∫
Ω

(v̄ · ∇)
(
H − H̄

) · Δ
(
H − H̄

)
dx =:

4∑
m=1

J4m
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and

J5 = −
∫

Ω

(H̄ · ∇)v̄ · ΔH̄ dx −
∫

Ω

(
(H − H̄) · ∇)

(v − v̄) · ΔHdx

−
∫

Ω

(
(H − H̄) · ∇)

v̄ · Δ
(
H − H̄

)
dx −

∫
Ω

(H̄ · ∇) (v − v̄) · Δ
(
H − H̄

)
dx =: −

4∑
m=1

J5m.

We have obtained 16 new integrals, which we estimate using various lemmas from Sect. 5. Using Lemma 5.2
we see that J21 = 0.

Next, the Hölder and Cauchy inequalities along with the following lemmas yield:
• Lemma 5.3:

−J31 ≤ ε
(
‖ΔH‖2

L2(Ω) + ‖Δv‖2
L2(Ω)

)
+

c

ε

(
‖H‖2

L2(Ω) ‖∇H‖4
L2(Ω)

+ ‖H‖2
L2(Ω) ‖∇H‖2

L2(Ω) + ‖H‖4
L2(Ω) ‖∇H‖2

L2(Ω) + ‖H‖L2(Ω) ‖∇H‖3
L2(Ω)

)
,

J41 ≤ ε
(
‖ΔH‖2

L2(Ω) + ‖Δv‖2
L2(Ω)

)
+

c

ε

(
‖∇H‖2

L2(Ω) ‖v‖2
L2(Ω) ‖∇v‖2

L2(Ω)

+ ‖∇H‖2
L2(Ω) ‖v‖2

L2(Ω) + ‖∇H‖2
L2(Ω) ‖v‖4

L2(Ω) + ‖v‖L2(Ω) ‖∇v‖L2(Ω) ‖∇H‖2
L2(Ω)

)
and

−J51 ≤ ε
(
‖ΔH‖2

L2(Ω) + ‖Δv‖2
L2(Ω)

)
+

c

ε

(
‖H‖2

L2(Ω) ‖∇H‖2
L2(Ω) ‖∇v‖2

L2(Ω)

+ ‖H‖2
L2(Ω) ‖∇v‖2

L2(Ω) + ‖H‖4
L2(Ω) ‖∇v‖2

L2(Ω) + ‖H‖L2(Ω) ‖∇H‖L2(Ω) ‖∇v‖2
L2(Ω)

)
.

• Lemma 5.4:

J22 ≤ ε ‖Δv‖2
L2(Ω) +

c

ε
‖v,x3‖

4
3
L2(Ω) ‖∇v‖ 14

3
L2(Ω) ,

−J32 ≤ ε
(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)
+

c

ε
‖H,x3‖

4
3
L2(Ω) ‖∇H‖ 14

3
L2(Ω) ,

J42 ≤ ε ‖ΔH‖2
L2(Ω) +

c

ε
‖v,x3‖

4
3
L2(Ω) ‖∇v‖ 8

3
L2(Ω) ‖∇H‖2

L2(Ω)

and

−J52 ≤ ε
(
‖ΔH‖2

L2(Ω) + ‖Δv‖2
L2(Ω)

)
+

c

ε
‖H,x3‖

4
3
L2(Ω) ‖∇H‖ 8

3
L2(Ω) ‖∇v‖2

L2(Ω)

• Lemma 5.5:

J23 ≤ ε ‖Δv‖2
L2(Ω) +

c

ε
‖v,x3‖

4
3
L2(Ω) ‖∇v‖ 14

3
L2(Ω) ,

−J33 ≤ ε
(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)
+

c

ε
‖H,x3‖

4
3
L2(Ω) ‖∇H‖ 14

3
L2(Ω) ,

J43 ≤ ε ‖ΔH‖2
L2(Ω) +

c

ε
‖v,x3‖

4
3
L2(Ω) ‖∇v‖ 8

3
L2(Ω) ‖∇H‖2

L2(Ω)

and

−J53 ≤ ε
(
‖ΔH‖2

L2(Ω) + ‖Δv‖2
L2(Ω)

)
+

c

ε
‖H,x3‖

4
3
L2(Ω) ‖∇H‖ 8

3
L2(Ω) ‖∇v‖2

L2(Ω)

• Lemma 5.6:

J24 ≤ ε ‖Δv‖2
L2(Ω) +

c

ε
‖v‖6

H1(Ω) ‖∇v,x3‖2
L2(Ω) ,

−J34 ≤ ε
(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)
+

c

ε
‖H‖6

H1(Ω) ‖∇H,x3‖2
L2(Ω) ,

J44 ≤ ε ‖ΔH‖2
L2(Ω) +

c

ε
‖v‖6

H1(Ω) ‖∇H,x3‖2
L2(Ω) ,

−J54 ≤ ε
(
‖ΔH‖2

L2(Ω) + ‖Δv‖2
L2(Ω)

)
+

c

ε
‖H‖6

H1(Ω) ‖∇v,x3‖2
L2(Ω) .
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Finally, the estimate for the last term on the right-hand side in (6.2) is straightforward
∫

Ω

f · Δv dx ≤ ε ‖Δv‖2
L2(Ω) +

c

ε
‖f‖2

L2(Ω) .

In the end we obtain

1
2

d
dt

(
‖rotv‖2

L2(Ω) + ‖rotH‖2
L2(Ω)

)
+ c

(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)

≤ 16ε
(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)
+

c

ε

(
‖∇v‖2

L2(Ω) + ‖∇H‖2
L2(Ω)

)

·
(
‖H‖2

L2(Ω) ‖∇H‖2
L2(Ω) + ‖H‖L2(Ω) ‖∇H‖L2(Ω) + ‖v‖2

L2(Ω) ‖∇v‖2
L2(Ω) + ‖v‖L2(Ω) ‖∇v‖L2(Ω)

+ ‖v‖4
L2(Ω) + ‖v‖2

L2(Ω) + ‖H‖4
L2(Ω) + ‖H‖2

L2(Ω)

)

+
c

ε

(
‖∇v‖2

L2(Ω) + ‖∇H‖2
L2(Ω)

)(
‖H,x3‖

4
3
L2(Ω) + ‖v,x3‖

4
3
L2(Ω)

)(
‖∇H‖ 8

3
L2(Ω) + ‖∇v‖ 8

3
L2(Ω)

)

+
c

ε

(
‖∇H,x3‖2

L2(Ω) + ‖∇v,x3‖2
L2(Ω)

)(
‖v‖6

H1(Ω) + ‖H‖6
H1(Ω)

)
+

c

ε
‖f‖2

L2(Ω) .

Now we chose ε = c
32 , multiply the result by 2, apply Lemma 3.9 on the left-hand side and estimate

some L2-norms by H1-norms and use the Young inequality on the right-hand side. We obtain

d
dt

(
‖v(t)‖2

H1(Ω) + ‖H(t)‖2
H1(Ω)

)
+ c

(
‖Δv‖2

L2(Ω) + ‖ΔH‖2
L2(Ω)

)

≤ c
(
‖v‖2

H1(Ω) + ‖H‖2
H1(Ω)

) (
‖H‖2

L2(Ω) ‖H‖2
H1(Ω) + ‖H‖2

H1(Ω) + ‖v‖2
L2(Ω) ‖v‖2

H1(Ω) + ‖v‖2
H1(Ω)

)

+ c
(
‖v‖2

H1(Ω)+ ‖H‖2
H1(Ω)

)3 (
‖H,x3‖

4
3
L2(Ω) + ‖v,x3‖

4
3
L2(Ω) + ‖H,x3‖2

H1(Ω)+ ‖v,x3‖2
H1(Ω)

)
+c ‖f‖2

L2(Ω) .

(6.3)

Let

y(t) :=
(
‖v(t)‖2

H1(Ω) + ‖H(t)‖2
H1(Ω)

)
.

We integrate (6.3) with respect to t and get

y(t) + c

∫ t

t0

(
‖Δv(τ)‖2

L2(Ω) + ‖ΔH(τ)‖2
L2(Ω)

)
dτ

≤ c

∫ t

t0

y(t)
(
‖H(τ)‖2

L2(Ω) ‖H(τ)‖2
H1(Ω) + ‖H(τ)‖2

H1(Ω) + ‖v(τ)‖2
L2(Ω) ‖v(τ)‖2

H1(Ω) + ‖v(τ)‖2
H1(Ω)

)
dτ

+ c sup
t0≤τ≤t

y3(τ)
∫ t

t0

(
‖H,x3(τ)‖ 4

3
L2(Ω) + ‖v,x3(τ)‖ 4

3
L2(Ω) + ‖H,x3(τ)‖2

H1(Ω) + ‖v,x3(τ)‖2
H1(Ω)

)
dτ

+ cE2(T ). (6.4)

To estimate the second integral on the right-hand side we utilize Lemma 4.2. Since δ2(T ) < δ
4
3 (T ) we

have by the Cauchy inequality

c sup
t0≤τ≤t

y3(τ)
∫ t

t0

(
‖H,x3(τ)‖ 4

3
L2(Ω) + ‖v,x3(τ)‖ 4

3
L2(Ω) + ‖H,x3(τ)‖2

H1(Ω) + ‖v,x3(τ)‖2
H1(Ω)

)
dτ

≤ c sup
t0≤τ≤t

y6(τ)δ
4
3 (T ) + ce

c
(
‖Δv‖2

L2(Ωt)+‖ΔH‖2
L2(Ωt)

)
δ

4
3 (T ). (6.5)
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Using the above estimate in (6.4) and taking δ(T ) small enough yields

y(t) ≤ c

∫ t

t0

y(t)
(
‖H(τ)‖2

L2(Ω) ‖H(τ)‖2
H1(Ω)

+ ‖H(τ)‖2
H1(Ω) + ‖v(τ)‖2

L2(Ω) ‖v(τ)‖2
H1(Ω) + ‖v(τ)‖2

H1(Ω)

)
dτ

+ c sup
t0≤τ≤t

y6(τ)δ
4
3 (T ) + cE2(T ).

By the Gronwall inequality

y(t) ≤
(

c sup
t0≤τ≤t

y6(τ)δ
4
3 (T ) + cE2(T )

)

· exp
(

c

∫ t

t0

(
‖H(τ)‖2

L2(Ω) ‖H(τ)‖2
H1(Ω) + ‖H(τ)‖2

H1(Ω) + ‖v(τ)‖2
L2(Ω) ‖v(τ)‖2

H1(Ω) + ‖v(τ)‖2
H1(Ω)

)
dτ

)

In light of Lemma 4.1 the above integral is bounded by c(1 + d2(T ))2. Therefore, if δ(T ) is small enough,
then

y(t) ≤ sup
t0≤τ≤t

y(τ) ≤ cE2(T )ec(1+d2(T ))2

.

We use the above estimate along with (6.5) in (6.4). By Lemma 4.1 and the smallness of δ(T ) we obtain

sup
t0≤τ≤t

y(τ) + c

∫ t

t0

(
‖Δv(τ)‖2

L2(Ω) + ‖ΔH(τ)‖2
L2(Ω)

)
dτ ≤ cE2(T )ec(1+d2(T ))2 (

1 + d2(T )
)2

+ cE2(T )

≤ cE2(T )ec(1+d2(T ))2

.

This completes the proof. �

Remark 6.2. Using (6.1) in Lemmas 3.13 and 3.14 we obtain the following estimate

‖v‖W 2,1
s (ΩT ) + ‖H‖W 2,1

s (ΩT ) ≤ cE8(T )ec(1+d2(T ))2

,

where 1 < s < +∞.

7. Proof of Theorem 1

The key tool for proving the existence of solutions to problem (1.1) is the Leray–Schauder fixed point
theorem, which we recall below following [30, §3]:

Theorem 2. Let B be a Banach space. Assume that Φ: [0, 1] × B → B is mapping with the following
properties:

(i) The mapping Φ(λ, ·) : B → B is completely continuous for any fixed λ ∈ [0, 1].
(ii) For any bounded X ⊂ B the family of mappings Φ(·, x) : [0, 1] → B, x ∈ X, is uniformly equicon-

tinuous.
(iii) There exists a bounded subset X ⊂ B such that any fixed point of Φ(λ, ·) in B for 0 ≤ λ ≤ 1 is

contained in X.
(iv) The mapping Φ(0, ·) has exactly one fixed point in B.

Then, Φ(1, ·) has at least one fixed point in B.



Vol. 20 (2018) Strong Solutions to MHD Equations in Cylindrical Domains 1031

First we rewrite (1.1)

v,t − νΔv + ∇p = −λ

(
(v̄ · ∇)v̄ − (H̄ · ∇)H̄ + ∇1

2

∣∣H̄∣∣2) + f in ΩT ,

H,t − νκΔH = −λ
(−(v̄ · ∇)H̄ + (H̄ · ∇)v̄

)
in ΩT ,

divv = 0, divH = 0 in ΩT ,

rotv × n = 0, v · n = 0 on ST ,

rotH × n = 0, H · n = 0 on ST ,

v|t=t0 = vt0 , H|t=t0 = Ht0 on Ω × {t = t0},

(7.1)

where λ ∈ [0, 1] and v̄, H̄ are considered as given. We introduce the space

M(ΩT ) :=
{
u : ‖u‖L 20

3
(ΩT ) < ∞, ‖∇u‖L 20

7
(ΩT ) < ∞,divu = 0

}
.

We see that (7.1) determines the mapping

Φ: M(ΩT ) × M(ΩT ) × [0, 1] → M(ΩT ) × M(ΩT ),

Φ(v̄, H̄, λ) = (v,H).

Lemma 7.1. Under the assumptions of Theorem 1 there exists a strong solution to problem (1.1).

Proof. We have to check all assumptions from Theorem 2.

Assumption (i). To check this assumption we will show that Φ(λ, ·) : B → B is compact and continuous.
Indeed, assume that ū, w̄ ∈ M(ΩT ), where ū, w̄ ∈ {v̄, H̄}. Then

‖(ū · ∇)w̄‖L2(ΩT ) ≤ ‖ū‖L 20
3

(ΩT ) ‖∇w̄‖L 20
7

(ΩT ) ≤ ‖ū‖M(ΩT ) ‖w̄‖M(ΩT ) .

In light of Lemmas 3.13 and 3.14 we see that the solution to (7.1) belongs to W 2,1
2 (ΩT ). Since the

embeddings

W 2,1
2 (ΩT ) ↪→ L 20

3
(ΩT ),

W 2,1
2 (ΩT ) ↪→ L 20

7
(ΩT )

(7.2)

are compact we have justified that Φ is a compact mapping.
To prove the continuity of Φ we introduce

vk
,t − νΔvk + ∇pk = −λ

(
(v̄k · ∇)v̄k − (H̄k · ∇)H̄k + ∇1

2

∣∣H̄k
∣∣2) + f in ΩT ,

Hk
,t − νκΔHk = −λ

(−(v̄k · ∇)H̄k + (H̄k · ∇)v̄k
)

in ΩT ,

divvk = 0, divHk = 0 in ΩT ,

rotvk × n = 0, vk · n = 0 on ST ,

rotHk × n = 0, Hk · n = 0 on ST ,

vk|t=t0 = vk
t0 , Hk|t=t0 = Hk

t0 on Ω × {t = t0},
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where k ∈ {1, 2}. Let V = v1 −v2, h = H1 −H2, P = p1 − p2. Then (V,h) is a solution to the problem

V,t − νΔV + ∇P = −λ
(
(V̄ · ∇)v̄1 + (v̄2 · ∇)V̄

−(h̄ · ∇)H̄1 − (H̄2 · ∇)h̄ + h̄ · (∇H̄1) + H̄2 · (∇h̄)
) in ΩT ,

H,t − νκΔH = −λ
(−(V̄ · ∇)H̄1 − (v̄2 · ∇)h̄ + (h̄ · ∇)v̄1 + (H̄2 · ∇)V̄

)
in ΩT ,

divV = 0, divh = 0 in ΩT ,

rotV × n = 0, V · n = 0 on ST ,

roth × n = 0, h · n = 0 on ST ,

V|t=t0 = Vt0 , h|t=t0 = ht0 on Ω × {t = t0}.

From (7.2), Lemmas 3.13, 3.14 and the Hölder inequality we immediately deduce

‖V‖M(ΩT ) + ‖h‖M(ΩT ) ≤ c
(
‖V‖W 2,1

2 (ΩT ) + ‖h‖W 2,1
2 (ΩT )

)

≤ c

(∥∥V̄∥∥
L 20

3
(ΩT )

+
∥∥∇V̄

∥∥
L 20

7
(ΩT )

+
∥∥h̄∥∥

L 20
3

(ΩT )
+

∥∥∇h̄
∥∥

L 20
7

(ΩT )

)

·
(

‖∇v̄1‖L 20
7

(ΩT ) + ‖v̄2‖L 20
3

(ΩT ) +
∥∥∇H̄1

∥∥
L 20

7
(ΩT )

+
∥∥H̄2

∥∥
L 20

3
(ΩT )

)
.

In view of Remark 6.2 and (7.2) we can estimate all terms in the second bracket in terms of data only.
This shows that

‖V‖M(ΩT ) + ‖h‖M(ΩT ) ≤ c(T, Ω,data)
(∥∥V̄∥∥

M(ΩT )
+

∥∥h̄∥∥
M(ΩT )

)
,

which justifies the continuity of Φ.

Assumption (ii). In light of definition of Φ we easily see that this assumption is met.

Assumption (iii). This follows immediately from Lemma 6.1.

Assumption (iv). To check this assumption we take two different solutions (v1,H1) and (v2,H2) to (7.1)
with λ = 0. Then, the pair (V,h), where V = v1 − v2, h = H1 − H2 is a solution to the problem

V,t − νΔV + ∇P = 0 in ΩT ,

h,t − νκΔh = 0 in ΩT ,

divV = 0, divh = 0 in ΩT ,

rotV × n = 0, V · n = 0 on ST ,

roth × n = 0, h · n = 0 on ST ,

V|t=t0 = 0, h|t=t0 = 0 on Ω × {t = t0}.

(7.3)

Multiplying (7.3)1,2 by V, h, respectively, integrating over Ω yields

1
2

d
dt

(
‖V‖2

L2(Ω) + ‖h‖2
L2(Ω)

)
+ ν ‖rotV‖2

L2(Ω) + νκ ‖roth‖2
L2(Ω) = 0.

Integrating with respect to t gives

‖V(t)‖2
L2(Ω) + ‖h(t)‖2

L2(Ω) ≤ 0,

which proves that V = h = 0 a.e. Thus, assumption (iv) is met.

�

Proof of Theorem 1. The existence of strong solutions follows from Lemma 7.1, whereas their estimate
from Lemma 6.1. The uniqueness of solutions is straightforward. �
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