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Abstract. Toeplitz matrices are typically non-Hermitian and hence they
evade the well-elaborated machinery one can employ in the Hermitian
case. In a pioneering paper of 1960, Palle Schmidt and Frank Spitzer
showed that the eigenvalues of large banded Toeplitz matrices clus-
ter along a certain limiting set which is the union of finitely many
closed analytic arcs. Finding this limiting set nevertheless remains a
challenge. We here present an algorithm in the spirit of Richard Beam
and Robert Warming that reduces testing O(N2) points in the plane
for membership in the limiting set by testing only O(N) points along a
one-dimensional curve. For tetradiagonal Toeplitz matrices, we describe
all types of the limiting sets, we classify their exceptional points, and we
establish asymptotic formulas for the analytic arcs near their endpoints.
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1. Introduction

It is well known that the properties of truncated n × n Toeplitz matrices

(aj−k)n
j,k=1 =

⎛
⎜⎜⎜⎝

a0 a−1 . . . a−(n−1)

a1 a0 . . . a−(n−2)

...
...

. . .
...

an−1 an−2 . . . a0

⎞
⎟⎟⎟⎠ (1.1)

as n goes to infinity are captured by the series a(z) =
∑∞

j=−∞ ajz
j (z ∈

C). We therefore denote the matrix (1.1) by Tn(a). The first Szegő limit
theorem [12] describes the asymptotic eigenvalue distribution of Tn(a) in the
case where the restriction of a to the complex unit circle T is (the Fourier
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series of) a real-valued L∞ function. More recent studies extend this to real-
valued L1 functions and even more general Hermitian situations; see, e.g., [6,
14–16]. The problem is of a completely different nature if the restriction a|T
is complex-valued. Here the path-breaking result is due to the 1960 paper [10]
by Schmidt and Spitzer.

Thus, let us consider the banded Toeplitz matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

a0 . . . a−r

...
. . . . . .

as a0 a−r

. . . . . .
...

as . . . a0

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

.

Throughout what follows we always assume that aj ∈ C, r ≥ 1, s ≥ 1,
a−r �= 0, and as �= 0. Schmidt and Spitzer [10] showed that the set σ(Tn(a))
of the eigenvalues of Tn(a) converges in the Hausdorff metric to some limiting
set Λ(a) which is the union of finitely many analytic arcs and their endpoints
and which does not contain isolated points. Ullman [17] later proved that
Λ(a) is connected.

It is tempting to say that once we know that the limiting set exists, we
could simply compute the eigenvalues of Tn(a) for n = 100 and this should
give a good approximation to Λ(a). Well, let

a(z) = z3 − 3(1 + i)z2 + 7iz + 4(1 − i) − 2z−1. (1.2)

We thus have a pentadiagonal matrix. Figure 1a shows the curve a(T) and the
eigenvalues of T100(a) delivered by Matlab. Clearly, part of the eigenvalues
are erroneous. Even after zooming in it is impossible to guess what Λ(a) is.

Already Schmidt and Spitzer employed the key trick with banded
Toeplitz matrices: namely, if D� = diag(�j−1)n

j=1, then

D�(aj−k)n
j,k=1D

−1
� = (�j−kaj−k)n

j,k=1 (1.3)

and hence Tn(a) = (aj−k)n
j,k=1 and (�j−kaj−k)n

j,k=1 have the same eigenval-
ues. The last matrix may be written as Tn(a�) with a�(z) =

∑s
j=−r �jajz

j .
Figure 1b–d shows a�(T) and the (in part erroneous) eigenvalues of T100(a�)
computed with Matlab for three choices of the parameter �. Without knowing
more on Λ(a) it is difficult to make a reliable guess.

Let us turn to the tetradiagonal case. A subset of C consisting of two
distinct points μ, ν ∈ C and an analytic arc (without self-intersection) joining
these two points will be denoted by [μ ∼ ν]. Part of our main result is as
follows.

Let γ be the piece of the curve {b ∈ C : |1 + b| = 2|b|2} that lies in the
closed disk {b ∈ C : |1 + b| ≤ 1} (see Fig. 7) and let Γ be the curve

Γ =
{

±2
(1 + b + b2)3/2

b(1 + b)
: b ∈ γ

}
.
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Figure 1. What is the limiting set?

The ± indicates that we take both values of (1 + b + b2)3/2. The curve Γ is
the boundary of the blue domain Ω shown in Fig. 2. The two red points are
±3

√
3 and they correspond to b = −1/2 ∈ γ.
As will be seen below, the key trick allows us to assume without loss of

generality that a(z) = z2 + cz + cz−1 with c ∈ C\{0}. Denote the roots of
a′(z) = 0 by t1, t2, t3 and order them so that |t3| ≤ |t2| ≤ |t1|. Put λk = a(tk).
Then Λ(a) is a set of one of the following types. If c is in the interior of Ω,
then the three points λ1, λ2, λ3 are distinct and

Λ(a) = [λ0 ∼ λ1] ∪ [λ0 ∼ λ2] ∪ [λ0 ∼ λ3] with λ0 = −|c|4/3;

the three arcs intersect only in λ0. If c lies on the boundary of the set Ω,
then Λ(a) = [λ1 ∼ λ2] ∪ [λ1 ∼ λ3]; if c = ±3

√
3, then λ1 = λ2 �= λ3 and Λ(a)

is actually the straight line segment [λ2, λ3], while if c �= ±3
√

3, the three
points λ1, λ2, λ3 are distinct and the two arcs intersect only in λ1, making
there a cusp. Finally, if c is outside the closed set Ω, then λ2 �= λ3 and
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Figure 3. The four types of the limiting sets

Λ(a) = [λ2 ∼ λ3]. Figure 3 shows some examples along with the eigenvalues
of T60(a).
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Schmidt and Spitzer [10] gave two descriptions of the limiting set Λ(a).
First, they showed that

Λ(a) =
⋂

�∈(0,∞)

σ(T (a�)),

where σ(T (a�)) is the spectrum of the Toeplitz operator generated by the
infinite Toeplitz matrix (�j−kaj−k)∞

j,k=1 on �2. Note that σ(T (a�)) is just the
union of the curve a�(T) and the points in the plane about which this curve
has nonzero winding number. For the second description, pick λ ∈ C, consider
the equation a(z) = λ (which after multiplication by zr becomes an equation
with an algebraic polynomial of degree r + s), and order the solutions zj(λ)
(j = 1, . . . , r + s) of this equation so that

|z1(λ)| ≤ |z2(λ)| ≤ · · · ≤ |zr+s(λ)|.
Then λ ∈ Λ(a) if and only if |zr(λ)| = |zr+1(λ)|.

The original reasoning of Schmidt and Spitzer was significantly simpli-
fied and accompanied with the density function for the eigenvalues along Λ(a)
by Hirschman [7] and Widom [18,19]; see also Chapter 11 of [2]. A new view
at the matter is given by Duits and Kuijlaars in [5]. We should also note that
in the tridiagonal case a(z) = a1z + a0 + a−1z

−1 we have

Λ(a) = [a0 − 2
√

a1a−1, a0 + 2
√

a1a−1].

If a(z) =
∑s

j=−r ajz
j takes only real values on T, then

Λ(a) = [min a(T),max a(T)].

Recently, Shapiro and Štampach [11] very beautifully characterized the Lau-
rent polynomials for which Λ(a) is a subset of the real line R: this happens
if and only if the pre-image a−1(R) contains a Jordan curve. We refer to
the books [2,3,6,8] for more on the eigenvalue cluster problem for Toeplitz
matrices. An analogue of the Schmidt-Spitzer result for Wiener-Hopf integral
operators is in [4]. We also want to mention the message of [9,13] according
to which in certain problems the eigenvalues of non-normal operators may
drastically mislead us.

Finally, recall that Tn(a) and Tn(a�) have the same eigenvalues. It fol-
lows in particular that

σ
(
Tn(a2z

2 + a1z + a0 + a−1z
−1)

)
= σ

(
Tn(�

2a2z
2 + �a1z + a0 + �−1a−1z

−1)
)
.

If a1 = 0, this reads

σ
(
Tn(a2z

2 + a0 + a−1z
−1)

)
= σ

(
Tn(�2a2z

2 + a0 + �−1a−1z
−1)

)

and taking � so that �2a2 = �−1a−1, we obtain that

σ(Tn(a)) = σ
(
Tn(a2z

2 + a0 + a−1z
−1)

)
= a0 + �2a2 σ

(
Tn(z2 + z−1)

)
,

which leads to a concrete single case. If a1 �= 0, we choose � so that �a1 =
�−1a−1 and get

σ(Tn(a)) = σ
(
Tn(�2a2z

2 + �a1z + a0 + �−1a−1z
−1)

)
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= a0 + �2a2 σ
(
Tn(z2 + cz + cz−1)

)

with c = �a1/(�2a2) = �−1a−1/(�2a2). The limiting set Λ(z2 + z−1) was
already determined by Schmidt and Spitzer: it is the star-shaped set

Λ(z2 + z−1) =
⋃

k=0,1,2

εk

[
0,

3
2

3
√

2
]

with ε = e2πi/3.

Thus, we are left with the one-parameter family Tn(z2+cz+cz−1), c ∈ C\{0}.

2. An Algorithm for Calculating the Limiting Set

The algorithm presented here is based on looking at the algorithm designed
by Beam and Warming in [1] from a different perspective.

A point λ is in Λ(a) if and only if λ = a(zr+1(λ)) = a(zr(λ)) holds with
zr+1(λ)/zr(λ) = eiϕ for some ϕ ∈ (−π, π]. Thus, the point zr(λ) satisfies the
two equations a(z) = λ and a(eiϕz) = λ and consequently, it is a root of the
equation

a(z) − a(eiϕz) = 0, (2.1)
which is only of use for ϕ �= 0. Instead of considering a(z) = λ for λ in the
two-dimensional plane C, we take ϕ from the one-dimensional set (−π, π]\{0}
and solve Eq. (2.1). Let uk(ϕ) (k = 1, . . . , r + s) be the solutions of this
equation. For each k, we put λk(ϕ) = a(uk(ϕ)) and label the roots zj,k(ϕ)
(j = 1, . . . , r + s) of the equation a(z) = λk(ϕ) so that

|z1,k(λ)| ≤ |z2,k(λ)| ≤ · · · ≤ |zr+s,k(λ)|.
If |zr+1,k(ϕ)| = |zr,k(ϕ)|, then λk(ϕ) ∈ Λ(a), and otherwise λk(ϕ) /∈ Λ(a). To
tackle the remaining case ϕ = 0, we replace Eq. (2.1) by

lim
ϕ→0

(a(z) − a(eiϕz))/ϕ = 0,

that is, by a′(z) = 0. Let tk (k = 1, . . . , r+s) be the solutions of this equation
and put λk(0) = a(tk) for each k. Then solve a(z) = λk(0) for each k and
sort the roots zj,k(0) so that

|z1,k(0)| ≤ |z2,k(0)| ≤ · · · ≤ |zr+s,k(0)|.
What results is that λk(0) ∈ Λ(a) if |zr+1,k(0)| = |zr,k(0)|, while λk(0) /∈ Λ(a)
otherwise.

In summary, instead of finding the zeros of a polynomial of degree r + s
parametrized by λ on a grid of order O(N2) covering a bounded subset of
C (one may take the convex hull of the range a(T) or even better some
σ(T (a�)) ), we have to find the zeros of r + s + 1 polynomials of degree r + s
parametrized by ϕ ∈ (−π, π] and thus by points of a grid of order O(N).

If u satisfies a(u) − a(eiϕu) = 0, then v = eiϕu satisfies the equation
a(v)−a(e−iϕv) = 0. Thus, the solutions u1(ϕ), . . . , ur+s(ϕ) coincide with the
solutions u1(−ϕ), . . . , ur+s(−ϕ), which implies that after appropriate sorting
we get λk(ϕ) = λk(−ϕ) for all k. We therefore may restrict the algorithm to
ϕ ∈ [0, π].
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Example 2.1. Figure 4 illustrates the algorithm for the septadiagonal matrix
Tn(a) induced by

a(z) = −iz3 + 2z2 + z + iz−1 + 2z−2 − z−3.

Example 2.2. We take the pentadiagonal matrix generated by the polynomial
(1.2). Recall that the numerically obtained eigenvalues are in Fig. 1. The
algorithm applied to a� with � = 0.4 yields Fig. 5. In the left picture, the
numerically computed eigenvalues of T100(a�) are shown as blue circles and
the limiting set computed with the algorithm is in green. The right picture
is a zoom in of the left.

3. The Different Points of the Limiting Set

A point λ ∈ Λ(a) is said to be a regular point if it has an open neighborhood
V ⊂ C such that Λ(a) ∩ V is an analytic arc (without self-intersection)
starting and ending at the boundary of V , and a point λ ∈ Λ(a) is called an
exceptional point if it is not regular. This is a purely (differential-)topological
classification of the points of Λ(a). As part of an analytic classification of the
points of Λ(a) we call a point λ ∈ Λ(a) a simple point if

|zr−1(λ)| < |zr(λ)| = |zr+1(λ)| < |zr+2(λ)| and zr(λ) �= zr+1(λ). (3.1)

Example 3.1. (A simple point need not be regular.) Consider the pentadiag-
onal case given by (1.2) and studied in Example 2.2. Straightforward com-
putation shows that we have the factorization

a(z) = (z − 1)(z − i)(z − 1 − i)2/z.

The origin λ = 0 belongs to Λ(a) if and only if |z1(0)| = |z2(0)|. The solutions
of a(z) = 0 are

z1(0) = 1, z2(0) = i, z3(0) = 1 + i, z4(0) = 1 + i.

Thus, the point λ = 0 is simple and z2(0)/z1(0) = eiϕ0 with ϕ0 = π/2. If
z = u(ϕ) is a solution of the equation

Φ(z, ϕ) := a(z) − a(eiϕz) = 0

satisfying u(π/2) = 1, then λ(ϕ) = a(u(ϕ)) remains a simple point on Λ(a)
for ϕ sufficiently close to π/2. We have

Φz(z, ϕ) = a′(z) − eiϕa′(eiϕz), Φzz(z, ϕ) = a′′(z) − e2iϕa′′(eiϕz).

From the representation (1.2) we get

Φz(1, π/2) = a′(1) − ia′(i) = 0, Φzz(1, π/2) = a′′(1) + a′′(i) = −10(1 + i).

Since Φz(1, π/2) = 0 but Φzz(1, π/2) �= 0, there is an open neighborhood U ⊂
C of λ = 0 such that Λ(a)∩U is formed by two analytic arcs perpendicularly
intersecting in λ = 0. Thus, λ is not regular. The perpendicularly intersecting
arcs are manifestly seen in Fig. 5b. �
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Figure 4. In a we see the range a(T) (red), the result of the
algorithm for ϕ = 0.1 : 0.1 : π (green), and the eigenvalues
of T60(a) (blue circles). b shows λ1(ϕ), . . . , λ6(ϕ) for ϕ =
0.1 : 0.01 : 0.8 (magenta). The black dots are the six values
for ϕ = 0.1. c This is λ1(ϕ), . . . , λ6(ϕ) for ϕ = 0.01 : 0.01 :
π. In d we have λ1(ϕ), . . . , λ6(ϕ) for ϕ = 0.01 : 0.01 : 2
(magenta) and the parts of these curves that form a piece
of Λ(a) (green). e is the same with λ1(ϕ), . . . , λ6(ϕ) for ϕ =
2 : 0.01 : 2.7, and f is the same with λ1(ϕ), . . . , λ6(ϕ) for
ϕ = 2.7 : 0.001 : π
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Figure 5. The true limiting set for the matrices of Fig. 1

If a point λ ∈ Λ(a) is simple, that is, if it satisfies (3.1), then there is a
unique number ϕ ∈ (−π, π]\{0} such that zr+1(λ)/zr(λ) = eiϕ. We say that
the simple point λ is nondegenerate if

a′(zr(λ)) − eiϕa′(eiϕzr(λ)) �= 0,

and otherwise we call it degenerate. The point λ = 0 in Example 3.1 was
degenerate.

Theorem 3.2. A nondegenerate simple point is a regular point of Λ(a).

Proof. Let λ0 ∈ Λ(a) be a simple point with

|zr−1(λ0)| < |zr(λ0)| = |zr+1(λ0)| < |zr+2(λ0)| (3.2)

and zr(λ0) �= zr+1(λ0). Then zr+1(λ0)/zr(λ0) = eiϕ0 with ϕ0 ∈ (−π, π]\{0}.
We consider the equation Φ(u, ϕ) := a(u) − a(eiϕu) = 0 with the initial
condition u(ϕ0) = zr(λ0) =: u0. If (∂Φ/∂u)(u0, ϕ0) �= 0, the implicit function
theorem ensures the existence of a unique analytic solution u = u(ϕ) in a
sufficiently small open neighborhood V of ϕ0 satisfying u(ϕ0) = u0. It follows
that λ(ϕ) = a(u(ϕ)) describes an analytic arc in the plane. If V is sufficiently
small, we infer from (3.1) that

|zr−1(λ)| < |zr(λ)| = |zr+1(λ)| < |zr+2(λ)|,
which implies that the arc is part of Λ(a). Finally, the condition

(∂Φ/∂u)(u0, ϕ0) �= 0

is nothing but the condition

a′(u0) − eiϕ0a′(eiϕ0u0) = a′(zr(λ0)) − eiϕ0a′(eiϕ0zr(λ0)) �= 0,

which in turn is just the nondegeneracy required. �

Theorem 3.3. In the tetradiagonal case all simple points are nondegenerate
and hence regular.
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Proof. Let a(z) = a2z
2 +a1z +a0 +a−1z

−1 and suppose λ0 is a simple point.
This means that the zeros of a(z)−λ0 are z0, e

iϕ0z0, w0 with ϕ0 ∈ (−π, π]\{0}
and |z0| < |w0|. We have

a(z) − λ0 = a2(z − z0)(z − eiϕ0z0)(z − w0)z−1

and thus

a′(z0) − eiϕ0a′(eiϕ0z0) = (1 − eiϕ0)(z0 + eiϕ0z0 − 2w0). (3.3)

Since eiϕ0 �= 1 and |z0 + eiϕ0z0| ≤ 2|z0| < 2|w0|, the right-hand side of (3.3)
cannot be zero. �

The rest of the paper is devoted to tetradiagonal Toeplitz matrices. In
that case we accompany the topological classification of the point in Λ(a)
into regular end exceptional points by the following analytical classification.
In accordance with the definition given above, we call λ ∈ Λ(a) a simple point
if

|z1(λ)| = |z2(λ)| < |z3(λ)| and z1(λ) �= z2(λ).

We refer to a point λ ∈ Λ(a) as a branch point if two (or all three) of the
points z1(λ), z2(λ), z3(λ) coincide. In that case we may label the points so
that

z1(λ) = z2(λ) and |z1(λ)| = |z2(λ)| ≤ |z3(λ)|.
The remaining points λ ∈ Λ(a) are the points for which z1(λ), z2(λ), z3(λ)
are three distinct points satisfying

|z1(λ)| = |z2(λ)| = |z3(λ)|.
These points will be called multiple points.

4. Branch Points

Let for the moment a(z) =
∑s

j=−r ajz
j with r, s ≥ 1 and a−ras �= 0 be a

general Laurent polynomial. A point λ0 ∈ Λ(a) is called a branch point if the
equation λ0 = a(z) has a root of multiplicity at least 2. This is equivalent
to saying that λ0 = a(z0) and that z0 is a multiple zero of the polynomial
zr(a(z) − λ0). The latter happens if and only if z0 is a root of

d

dz

(
zr(a(z) − λ0)

)
= rzr−1(a(z) − λ0) + zra′(z),

and since z0 = 0 is impossible, we conclude that λ0 ∈ Λ(a) is a branch point
if and only if there is a z0 such that λ = a(z0) and a′(z0) = 0. As

a′(z) =
s∑

j=−r

jajz
j−1 = z−r−1(−ra−r + · · · + sasz

r+s),

the number of branch points is less than or equal to r + s. (The argument
employed in [2, Lemma 11.4] gave only the upper bound 2(r + s) − 1.)
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Figure 6. The gray set OAB is {b ∈ C : Re b ≥ −1/2, |1 +
b| ≤ 1}

We now return to the tetradiagonal case a(z) = z2 + cz + cz−1 with
c �= 0. Then

a′(z) =
2z3 + cz2 − c

z2

has three (possibly coinciding) zeros. We denote these zeros by t1, t2, t3 and
label them so that |t1| ≥ |t2| ≥ |t3|.
Lemma 4.1. There is a complex number b �= 0 satisfying Re b ≥ −1/2 and
|1 + b| ≤ 1 such that

t2 = − b

1 + b
t1 and t3 = bt1, (4.1)

and after fixing any value of w = (1 + b + b2)1/2 there is an σ ∈ {−1, 1} such
that

t1 = σ
w

b
, t2 = −σ

w

1 + b
, t3 = σw, c = −2σ

w3

b(1 + b)
. (4.2)

Proof. Vieta’s theorem for the equation 2z3 + cz2 − c = 0 gives

t1t2t3 =
c

2
, t1t2 + t1t3 + t2t3 = 0, t1 + t2 + t3 = − c

2
. (4.3)

Put b′ = t2/t1 and b = t3/t1. Then 0 < |b| ≤ |b′| ≤ 1. The second equality
of (4.3) implies that t21(b

′+b+b′b) = 0 with t1 �= 0. It follows that b �= −1 and
b′ = −b/(1+ b). From 0 < |b| ≤ |b′| ≤ 1 we therefore get 0 < |b| ≤ |1+ b| ≤ 1.
With b = α + iβ, this is equivalent to the requirement 0 < α2 + β2 ≤ (1 +
α)2+β2 ≤ 1, which happens if and only if b �= 0, α ≥ −1/2, (1+α)2+β2 ≤ 1.

Inserting (4.1) in the first and third equalities of (4.3) we obtain

−t31
b2

1 + b
=

c

2
, t1

1 + b + b2

1 + b
= − c

2
,
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A

B

O

G+

G−

−1
2

D+

D−

D0

Figure 7. The set OBA and the curve γ (violet)

and hence t21b
2 = 1 + b + b2. Letting w be any square root of 1 + b + b2,

we conclude that t1 = σw/b. Equalities (4.1) then give t2 = −σw/(1 + b),
t3 = σw, and finally we have c = 2t1t2t3 = −2σw3/(b(1 + b)). �

Let γ be the piece of the curve {b ∈ C : |1 + b| = 2|b|2} that lies in the
open disk {b ∈ C : |1 + b| < 1}. In polar coordinates,

γ =

{
reiϕ : cos ϕ =

4r4 − r2 − 1
2r

, r ∈
(

1
2
,

√
2

2

)}
.

The endpoints of γ on the circle |1 + b| = 1 are G± = −1/4 ± i
√

7/4. The
curve γ divides the domain {b ∈ C : Re b > −1/2, |1+ b| < 1} into three open
sets D0,D+,D− as seen in Fig. 7.

Lemma 4.2. For k = 1, 2, 3, let tk and b be as in Lemma 4.1 and put λk =
a(tk). Then λ2 and λ3 are branch points belonging to Λ(a). The point λ1 is
a branch point lying on Λ(a) if and only if b is in the closure of D− ∪ D+.

Proof. Let tk, tk, zk be the roots of the equation

a(z) − λk = z−1(z3 + cz2 − λkz + c) = 0.

We have λk ∈ Λ(a) if and only if |tk| ≤ |zk|. Vieta tells us that t2kzk = −c
and from (4.3) we know that c = 2t1t2t3. Thus, |zk| = 2|t1t2t3/t2k|. It follows
that |tk| ≤ |zk| if and only if |tk|3 ≤ 2|t1t2t3|.
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If k = 3, Lemma 4.1 shows that |t3|3 ≤ 2|t1t2t3| if and only if 1 ≤
2/(|b||1 + b|). But the latter inequality is certainly true because |b| ≤ 1 and
|1+ b| ≤ 1. For k = 2, the inequality |t2|3 ≤ 2|t1t2t3| reads |b| ≤ 2|1+ b|2 due
to Lemma 4.1, and this is also always true since 1/2 ≤ |1+b| and |b| ≤ |1+b|,
which gives 2|1 + b|2 ≥ |1 + b| ≥ |b|. Finally, in the case k = 1, we obtain
from Lemma 4.1 that |t1|3 ≤ 2|t1t2t3| if and only if |1 + b| ≤ 2|b|2, which is
equivalent to the requirement that b is in the closure of D− ∪ D+. �

The blue set Ω in Fig. 2 is closed. Its left and right points are ±3
√

3,
and the upper and lower points are ±i. The set Ω is symmetric about the
real and the imaginary axes. Thus, it results from one of its quarters lying
in one of the four quadrants by reflexions on the real and imaginary axes.
Recall the connection between b and c given by Lemma 4.1. In dependence
of the choice of σw3, the closure of D+ is mapped by

b �→ −2σ
w3

b(1 + b)
= c

onto either the quarter in the first quadrant or the quarter in the third quad-
rant. To be specific, suppose this quarter is the one in the first quadrant.
Then the segment from b = −1/2 to A is mapped to the segment from the
(red) point 3

√
3 to the origin, the arc from A to G+ is mapped to the segment

from 0 to i, and the arc of γ from G+ to b = −1/2 is mapped to the boundary
piece of Ω from i to 3

√
3. The other choice −σw3 maps the closure of D+

to the quarter of Ω in the third quadrant. The closure of D− is mapped into
the union of the quarters in the second and fourth quadrants.

Combining the description of Ω with Lemma 4.1 we arrive at the fol-
lowing result.

Theorem 4.3. Let a(z) = z2 + cz + cz−1 with c �= 0. Denote the roots of
a′(z) = 0 by t1, t2, t3 and order them so that |t3| ≤ |t2| ≤ |t1|. Put λk = a(tk).
Then λ2 and λ3 are branch points of Λ(a), whereas λ1 is a branch point of
Λ(a) if and only if c ∈ Ω.

Remark 4.4. The parameter c is immediately available but checking whether
c is in Ω or on ∂ Ω may be difficult if c is close to ∂ Ω. However, one may
proceed as follows. First solve the cubic equation a′(z) = 0, denote the roots
by t1, t2, t3, label them so that |t1| ≥ |t2| ≥ |t3|, and put b = t3/t1. Then

c ∈ int Ω ⇐⇒ |1 + b| < 2|b|2, c ∈ ∂ Ω ⇐⇒ |1 + b| = 2|b|2.
We now turn to the following question: how many analytic arcs do

come out of the branch points and what is their asymptotic behavior near
the branch points? Here is the result.

Theorem 4.5. Let a(z) = z2 + cz + cz−1 with c �= 0. Denote the roots of
a′(z) = 0 by t1, t2, t3 and order them so that |t3| ≤ |t2| ≤ |t1|. Put λk = a(tk).

(a) If c /∈ Ω, then there are two analytic arcs �2 and �3 belonging to Λ(a)
and coming from the points λ2 = a(t2) and λ3 = a(t3), respectively, and
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these arcs have the following asymptotic representations in a neighbor-
hood of the points λ2, λ3:

�j = {λ ∈ C : λ = λj +
a′′(tj)

2
d21,jϕ

2 + O(ϕ3), ϕ ∈ (0, ε)}, (4.4)

where d1,j = −i
tj
2

(j = 2, 3).

(b) If c ∈ int Ω, then there are three analytic arcs �1, �2, and �3 belonging to
Λ(a) and coming from the points λ1 = a(t1), λ2 = a(t2) and λ3 = a(t3),
respectively, and these arcs have an asymptotic representation of the
form (4.4) for j = 1, 2, 3.

(c) If c ∈ ∂Ω\{±3
√

3}, then there are two analytic arcs that come from
λ2 = a(t2) and λ3 = a(t3) with asymptotic representations of the form
(4.4) in a neighborhood of these points. The roots of the equation a(z) =
λ1 are t1, t1, e

iϕ0t1 and there are two analytic arcs �±
1 that come from

λ1 = a(t1) and have the representations

�±
1 =

{
λ ∈ C : λ = a(t1) +

a′′(t1)
2

d21(ϕ − ϕ0)2 +

+
(

a′′(t1)d1d2 +
a′′′(t1)

6
d31

)
(ϕ − ϕ0)3 + O(|ϕ − ϕ0|4)

}
, (4.5)

with
d1 = −it1, d2 = −1

2

(
2 + i cot

ϕ0

2

)
t1, (4.6)

where ϕ ∈ (ϕ0, ϕ0 + ε) for �+1 and ϕ ∈ (ϕ0 − ε, ϕ0) for �−
1 . These two

arcs make a cusp at the point λ1.
(d) If c = ±3

√
3, then Λ(a) is the line segment [−9, 45

4 ] = [−9, 11.25].

Proof. Let λ0 ∈ Λ(a) be a branch point and let t0 ∈ {t1, t2, t3} be a point
such that a(t0) = λ0 and a′(t0) = 0. The roots of the equation a(z) = λ0 are
t0, t0, z3. From the proof of Lemma 4.2 we know that |t0| < |z3| if and only
if |t0|3 < 2|t1t2t3|. The latter inequality is always true for t0 ∈ {t2, t3} and
it is satisfied for t0 = t1 if and only if |1 + b| < 2|b|2, which happens if and
only if c ∈ int Ω. We know from Sect. 2 that if λ ∈ Λ(a) is sufficiently close
to λ0, then λ = a(u(ϕ)) with a function u = u(ϕ) that is implicitly given by
the equation a(u)− a(eiϕu) = 0 and u(0) = t0. The solutions of the equation
a(z) = λ are u(ϕ), eiϕu(ϕ), v(ϕ) with u(ϕ) close to t0 and v(ϕ) close to z3.
Thus, if |t0| < |z3|, then any u(ϕ) satisfying a(u)−a(eiϕu) = 0 and u(0) = t0
yields an arc starting at t0. We may suppose that ϕ ranges over (0, ε) with
sufficiently small ε > 0, because, as noted in Sect. 2, a(u(−ϕ)) = a(u(ϕ)).

We look for u(ϕ) in the form

u(ϕ) = t0 + d1ϕ + d2ϕ
2 + O(ϕ3). (4.7)

Then

eiϕu(ϕ) =
(

1 + iϕ − ϕ2

2
+ O(ϕ3)

)
(t0 + d1ϕ + d2ϕ

2 + O(ϕ3))

= t0 + (d1 + it0)ϕ +
(

d2 + id1 − t0
2

)
ϕ2 + O(ϕ3).
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Taking into account that

a(z) = a(t0) +
a′′(t0)

2
(z − t0)2 +

a′′′(t0)
6

(z − t0)3 + O(|z − t0|4) (4.8)

we get a(u) − a(eiϕu) = B1ϕ
2 + B2ϕ

3 + O(ϕ4) with

B1 =
a′′(t0)

2
(
d21 − (d1 + it0)2

)

B2 =
a′′(t0)

2

(
2d1d2 − 2(d1 + it0)

(
d2 + id1 − t0

2

))

+
a′′′(t0)

6

(
d31 − (d1 + it0)3

)
.

The coefficients B1 and B2 must be zero. If a′′(t0) = 0, then c = −t30, and
as also a′(t0) = 0, we conclude that t0 = ±√

3 and hence c = ±3
√

3. This
case will be treated separately in part (d). Thus, let a′′(t0) �= 0. Then the
equation B1 = 0 yields

d1 = −i
t0
2

. (4.9)

It follows that B2 equals

a′′(t0)
2

[
−it0d2 − 2

(
− it0

2
+ it0

)(
d2 +

t0
2

− t0
2

)]

+
a′′′(t0)

6

[
it30
8

−
(

− it0
2

+ it0

)3
]

,

and hence from the equation B2 = 0 we obtain

−a′′(t0)it0d2 +
a′′′(t0)

6
it30
4

= 0,

and thus

d2 =
1
24

a′′′(t0)
a′′(t0)

t20. (4.10)

Replacing (4.7) by u(ϕ) = t0+
∑∞

k=1 dkϕk, taking the full power series for eiϕ

and a(z), and proceeding as above, one will see that for k ≥ 2 the coefficient
dk enters Bk linearly and is completely determined by dj for 1 ≤ j ≤ k − 1.
Consequently, there is a unique arc starting at λ0. Inserting (4.7), (4.9), (4.10)
into the expansion

a(u) = a(t0) +
a′′(t0)

2
(u − t0)2 + O(|u − t0|3) (4.11)

we get the expression on the right of (4.4) for the arc. At this point we have
proved all assertions concerning λ2 and λ3 (because for them |t0| < |z3|) and
we have also proved part (b), since, as said, for c ∈ int Ω we have |t0| < |z3|,
too.

We turn to part (c). In that case there is a positive number ϕ0 such that
{t0, t0, e

iϕ0t0} is the solution set of the equation a(z) = λ0. We have to look
for solutions u = u(ϕ) of the equation a(u)−a(eiϕu) = 0 satisfying u(0) = t0
or u(ϕ0) = eiϕ0t0. As noted above, for the initial condition u(0) = t0 we
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need only take ϕ from [0, ε), but the initial condition u(ϕ0) = eiϕ0t0 requires
taking ϕ from (ϕ0 − ε, ϕ0 + ε).

We first consider the initial condition u(0) = t0. As above, we get a
unique solution u(ϕ) = t0 +

∑∞
k=1 dkϕk with d1, d2 given by (4.9), (4.10).

Vieta for the equation

z(a(z) − λ0) = z3 + cz2 − λ0z + c = 0

gives 2t0 + eiϕ0t0 = −c and eiϕ0t30 = −c. This implies

a′′(t0) = 2(1 − eiϕ0), a′′′(t0) = 6
eiϕ0

t0

and results in

d2 =
eiϕ0t0

8(1 − eiϕ0)
=

1
16

i
eiϕ0/2t0

sin(ϕ0/2)
.

Consequently,

|u(ϕ)|2 = |t0|2
∣∣∣∣1 − i

2
ϕ +

i

16
eiϕ0/2

sin(ϕ0/2)
ϕ2 + O(ϕ3)

∣∣∣∣
2

= |t0|2
((

1 − 1
16

ϕ2

)2

+
(

−1
2
ϕ

)2

+ O(ϕ3)

)

= |t0|2
(

1 +
1
8
ϕ2 + O(ϕ3)

)
.

It follows that |u(ϕ)| > |t0|. The zeros of z(a(z) − λ) = z3 + cz2 − λz + c are
u(ϕ), eiϕu(ϕ), v(ϕ), and Vieta tells us that eiϕu2(ϕ)v(ϕ) = −c. Thus,

|v(ϕ)| =
|c|

|u(ϕ)|2 <
|c|

|t0|2 = |v(0)| = |t0| < |u(ϕ)|,

and because λ ∈ Λ(a) would require that |u(ϕ)| = |eiϕu(ϕ)| ≤ |v(ϕ)| we
conclude that (4.7) does not give an arc of Λ(a).

We are left with the equation a(u)−a(eiϕu) = 0 in neighborhood of the
point ϕ = ϕ0. Using power series one can show that the solution is unique.
We may write

u(ϕ) = t0 + d1(ϕ − ϕ0) + d2(ϕ − ϕ0)2 + O(|ϕ − ϕ0|3), ϕ ∈ (ϕ0 − ε, ϕ0 + ε)

and calculations as before give

d1 = −it0, d2 = −1
2

(
2 + i cot

ϕ0

2

)
t0.

It follows that

|u(ϕ)|2 = |t0|2
(

1 − i(ϕ − ϕ0) − 1
2

(
2 + i cot

ϕ0

2

)
(ϕ − ϕ0)2

+O(|ϕ − ϕ0|3)
)2

= |t0|2((1 − (ϕ − ϕ0)2)2 + ((−(ϕ − ϕ0))2 + O(|ϕ − ϕ0|3))
= |t0|2(1 − (ϕ − ϕ0)2 + O(|ϕ − ϕ0|3)).
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This time |u(ϕ)| < |t0| and hence

|v(ϕ)| =
|c|

|u(ϕ)|2 >
|c|

|t0|2 =
|c|

|u(ϕ0)|2 = |v(ϕ0)| = |t0| > |u(ϕ)|,

which shows that the two arcs induced by ϕ ∈ (ϕ0−ε, ϕ0) and ϕ ∈ (ϕ0, ϕ0+ε)
are part of Λ(a). Inserting the expressions obtained for u(ϕ) in (4.11) with t0
replaced by t1 we get (4.5) and (4.6). It is clear that �±

1 make a cusp at λ1.
We finally prove (d). Equality (1.3) with � = −1 shows that always

Λ(z2 + cz + cz−1) = Λ(z2 − cz − cz−1)

Thus, the limiting sets for c = ±3
√

3 are the same. Let a(z) = z2 − cz − cz−1

with c = 3
√

3. Using (1.3) with � =
√

3, we get

Λ(a) = Λ(a√
3) = Λ

(
3z2 − 3

√
3
√

3z − 3
√

3√
3

z−1

)
= 3Λ(z2 − 3z − z−1).

Consequently, with f(z) := z2 − 3z − z−1, we have Λ(a) = 3Λ(f) and we are
left with proving that Λ(f) = [−3, 15/4].

We first show that Λ(f) is a subset of R. So let λ ∈ Λ(f). From Sect. 2
we know that λ = f(z) where z satisfies f(z) − f(eiϕz) = 0 for some ϕ �= 0
or where z = tk is a root of the equation f ′(z) = 0. The zeros of f ′(z) are
t1 = 1, t2 = 1, t3 = −1/2 and λ2 = f(t2) = −3 as well as λ3 = f(t3) = 15/4
are real. So suppose f(z) − f(eiϕz) = 0 with ϕ �= 0. Adding 3 to both sides
of the equation f(z) = f(eiϕz) we obtain the equation

(z − 1)3

z
=

(eiϕz − 1)3

eiϕz
,

and writing v := eiϕ/3, this equation becomes
(

v2z − v−1

z − 1

)3

= 1.

Consequently, (v2z − v−1)/(z − 1) = ε where ε3 = 1. It follows at once that
z = (v−1 − ε)/(v2 − ε) and thus

λ = f(z) =
(z − 1)3

z
− 3 =

(1 − v3)3

v2(v2 − ε)2(1 − vε)
− 3.

This gives

λ =
(1 − v−3)3

v−2(v−2 − ε−1)2(1 − v−1ε−1)
− 3

=
v−9(v3 − 1)3

(v−2v−1v−4)(ε−1ε−2)(ε − v2)(vε − 1)
− 3 = λ

and therefore implies that λ ∈ R, as asserted.
In summary, Λ(f) is a closed and connected subset of R and thus some

closed line segment in R. To conclude that Λ(f) = [−3, 15/4], we may have
recourse to part (a), according to which Λ(f) is an analytic arc starting at
λ2 = f(t2) = −3 and terminating at λ3 = f(t3) = 15/4. An argument
avoiding part (a) is as follows. We know that Λ(f) is the intersection of the
spectra of the Toeplitz operators T (f�) for � ∈ (0,∞). So consider the curve
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f�(T). If � = 1, this curve and thus also the spectrum of T (f�) are located in
the half-plane Reλ ≥ −3, and if � = −1/2, the curve and hence the spectrum
of T (f�) are contained in the half-plane Reλ ≤ 15/4. Consequently, Λ(f) is
a subset of [−3, 15/4], and since −3 = λ2 and 15/4 = λ3 belong to Λ(f), it
follows that Λ(f) = [−3, 15/4]. �

Remark 4.6. The referee kindly pointed out that part of assertion (d), namely
that Λ(f) ⊂ R, may also be derived from the main result of [11], according
to which Λ(f) is contained in R if and only if the pre-image f−1(R) contains
a Jordan curve. To see this, let q(t) = sin(3t)/ sin(2t) and consider the set
K = {κ(t) := 1− qeit : t ∈ [−π/3, π/3]}. This is a Jordan curve and we have

f(κ) = κ2 −3κ − 1
κ

=
(κ − 1)3

κ
−3 = −q3

e3it

κ
−3 = − q3

|κ|2 e3it(1−qe−it) −3.

Consequently, the imaginary part of f(κ(t)) is

− q3

|κ|2 (sin(3t) − q sin(2t)) = − q3

|κ|2
(

sin(3t) − sin(3t)
sin(2t)

sin(2t)
)

= 0,

which shows that f(K) ⊂ R and thus, by [11], Λ(f) ⊂ R. �

We recall that t1, t2, t3 are the zeros of a′(z). We therefore have

a′(tk) = 2tk + c − c

t2k
= 0, a′′(tk) = 2 +

2c

t3k
.

The first of these equalities gives c/t3k = 2 + c/tk, and inserting this in the
second equality we get a′′(tk) = 6 + 2c/tk. Thus the repeatedly occurring
a′′(tk) in the theorem may simply be replaced by 6 + 2c/tk.

5. Multiple Points

Let again a(z) = z2 + cz + cz−1 with c �= 0. Recall that a point λ0 ∈ Λ(a) is
said to be a multiple point if the roots z1(λ0), z2(λ0), z3(λ0) of the equation
a(z) = λ0 are pairwise distinct but have the same absolute value.

Lemma 5.1. Let r = |c|1/3 and write c = −r3eiθ with θ ∈ (−π, π]. Put d =
r2e2iθ/3. Then the following are equivalent:

(i) there is a point λ0 ∈ Λ(a) such that the equation a(z) = λ0 has three
solutions of the same absolute value,

(ii) the equation
hp(ψ) := pe−iψ + e2iψ = d (5.1)

has a solution (ψ, p) ∈ R × [−2, 2].
If (i), (ii) hold, then λ0 necessarily equals −r4 (= −|c|4/3 ).

Proof. (i) ⇒ (ii). Suppose the equation a(z) = λ0 has three solutions of the
same modulus. They are zk(λ0) = reiϕk with r > 0 and ϕk ∈ R. Vieta’s
theorem applied to the equation

a(z) − λ0 = z−1
(
z3 + cz2 − λ0z + c

)
= 0 (5.2)
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gives
r3ei(ϕ1+ϕ2+ϕ3) = −c, r

(
eiϕ1 + eiϕ2 + eiϕ3

)
= −c. (5.3)

It follows that r = |c|1/3 and ϕ1 + ϕ2 + ϕ3 = θ + ξ with ξ ∈ 2πZ. From (5.3)
we now infer that

ei(ϕ1+ϕ2)/2
[
ei(ϕ1−ϕ2)/2 + e−i(ϕ1−ϕ2)/2

]
+ ei(θ+ξ−ϕ1−ϕ2) = − c

r
, (5.4)

or equivalently,

ei(ϕ1+ϕ2)/22 cos
ϕ2 − ϕ1

2
+ eiθe−i(ϕ1+ϕ2) = − c

r
.

Putting

ψ =
θ

3
− ϕ1 + ϕ2

2
, p = 2 cos

ϕ2 − ϕ1

2
, (5.5)

we get ei(θ/3−ψ)p + eiθe−2i(θ/3−ψ) = −c/r, that is,

eiθ/3pe−iψ + eiθ/3e2iψ = − c

r
, (5.6)

and finally

hp(ψ) = pe−iψ + e2iψ = −e−iθ/3c

r
= −e−iθ/3(−eiθ)r3

r
= r2e2iθ/3 = d.

(ii) ⇒ (i). Let (ψ, p) ∈ R × [−2, 2] be a solution of (5.1). Then (5.6)
holds, and with arbitrary ϕ1, ϕ2 satisfying (5.5), we obtain (5.4) with ξ = 0.
After putting ϕ3 = θ − ϕ1 − ϕ2 we arrive at (5.3). Equation (5.2) is then
satisfied by zk = reiϕk when taking

λ0 = −r2
(
ei(ϕ1+ϕ2) + ei(ϕ1+ϕ3) + ei(ϕ2+ϕ3)

)
. (5.7)

Now suppose (i) is true. Then the solutions of the equation a(z) = λ0 are
reiϕk as above and Vieta implies (5.3) and (5.7). Since ϕ1+ϕ2+ϕ3−θ ∈ 2πZ,
we obtain from (5.7) that

r2
(
ei(θ−ϕ3) + ei(θ−ϕ2) + ei(θ−ϕ1)

)
= −λ0

and hence

−λ0 = reiθr(eiϕ1 + eiϕ2 + eiϕ3) = r
(
− c

r3

)
(−c) =

|c|2
r2

=
r6

r2
= r4.

�

We emphasize that in the previous lemma we admit ϕ1 ≤ ϕ2 ≤ ϕ3. The
cases ϕ1 = ϕ2 and ϕ2 = ϕ3 occur for branch points. For multiple points we
have strict inequalities.

Let D2 be the set of all d ∈ C for which Eq. (5.1) has a solution p ∈
[−2, 2] and ψ ∈ R. Note that the function hp : R → C is 2π-periodic and that
h−p(R) = hp(R). Figure 8a shows the ranges hp(R) for several values of p and
suggests that D2 is the set bounded by h2(R). This can indeed be proved,
but we do not need this for our purposes. Moreover, writing −c = r3eiθ and
d = r2e2πi/3 as in Lemma 5.1, we get

(−c)2/3 = (r3eiθ)2/3 = εkr2e2πi/3 = εkd (ε = e2πi/3, k = 0, 1, 2).



8 Page 20 of 27 A. Böttcher et al. IEOT
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(b)

Figure 8. On the left we see the range hp(R) for p = 0
(green), p = 0.6 (magenta), p = 1.3 (red), p = 2 (blue).On
the right we show the set Ω2/3 divided into three pieces

The map c �→ (−c)2/3 maps Ω to the set shown in Fig. 8b. The blue set is the
image of the part of Ω that lies on the right of the imaginary axis for some
k ∈ {0, 1, 2}, the red and green sets are the images for the other two values of
k. The left piece of Ω is mapped onto the same set. Thus, the set in Fig. 8b
is covered twice. Comparison of Fig. 8a, b indicates that D2 = (−Ω)2/3,
and since Ω = −Ω, that actually D2 = Ω2/3. This can again be rigorously
verified, but we will not embark on this issue here. The conclusion is that
Λ(a) has a point λ0 for which the equation a(z) = λ0 has three solutions of
the same modulus if and only if (−c)2/3 ∈ D2 and that this happens if and
only if c ∈ Ω. The result of genuine interest to us is that Λ(a) has a multiple
point, that is, a point λ0 such that a(z) = λ0 is satisfied by three pairwise
distinct numbers of the same modulus, if and only if c ∈ int Ω. This will be
a consequence of Theorem 6.1 below.

Theorem 5.2. Let λ0 be a multiple point of Λ(a) and let reiϕ1 , reiϕ2 , reiϕ3

with
−π < ϕ1 < ϕ2 < ϕ3 ≤ π

be the solutions of the equation a(z) = λ0. Then there are exactly three ana-
lytic arcs of Λ(a) coming from λ0. Their local representations are

�0,j = {λ ∈ C : λ = λ0 + a′(z0,j)qj(ϕ − ϕ0,j) + O(|ϕ − ϕ0,j |)2} (5.8)

for j = 1, 2, 3 with

qj =
iz0,j

s(z0,j , ϕ0,j) − 1

and

z0,1 = reiϕ1 , ϕ0,1 = ϕ2 − ϕ1, s(z0,1, ϕ0,1) = − sin ϕ3−ϕ1
2

sin ϕ3−ϕ2
2

e− i(ϕ2−ϕ1)
2 ,
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z0,2 = reiϕ1 , ϕ0,2 = ϕ3 − ϕ1, s(z0,2, ϕ0,2) = − sin ϕ2−ϕ1
2

sin ϕ2−ϕ3
2

e− i(ϕ3−ϕ1)
2 ,

z0,3 = reiϕ2 , ϕ0,3 = ϕ3 − ϕ2, s(z0,3, ϕ0,3) = − sin ϕ1−ϕ2
2

sin ϕ1−ϕ3
2

e− i(ϕ3−ϕ2)
2 .

In (5.8) one has to take ϕ > ϕ0 or ϕ < ϕ0 to enforce that
(
Re (qj/z0,j)

)
(ϕ − ϕ0) < 0.

Proof. We proceed as in the case of branch points. Now the equation a(z) −
λ0 = 0 has the solutions reiϕ1 , reiϕ2 , reiϕ3 , where r > 0, ϕj ∈ (−π, π], and
ϕ1 < ϕ2 < ϕ3. In order to find the analytic arcs that pass through λ0 in a
neighborhood around it, we consider again the equation a(u) − a(eiϕu) = 0.
We have a(u0) − a(eiϕ0u0) = 0 in the following three cases:

u0 = reiϕ1 , ϕ0 = ϕ2 − ϕ1, j = 1,

u0 = reiϕ1 , ϕ0 = ϕ3 − ϕ1, j = 2,

u0 = reiϕ2 , ϕ0 = ϕ3 − ϕ2, j = 3.

Pick one of these cases. In a neighborhood of (u0, ϕ0) we look for u(ϕ) in the
form

u(ϕ) = u0 + q(ϕ − ϕ0) + O(|ϕ − ϕ0|2), ϕ ∈ (ϕ0 − ε, ϕ0 + ε) (5.9)

Of course, q depends on j and will eventually become qj . We obtain

eiϕu(ϕ) = eiϕ0ei(ϕ−ϕ0)u(ϕ) = eiϕ0
(
1 + i(ϕ − ϕ0) + O(|ϕ − ϕ0|2)

)
u(ϕ)

= eiϕ0u0 + eiϕ0(q + iu0)(ϕ − ϕ0) + O(|ϕ − ϕ0|2)
and thus

a(u) − a(eiϕu) =
(
a′(u0)q − eiϕ0a′(eiϕ0u0)(q + iu0)

)
(ϕ − ϕ0) + O(|ϕ − ϕ0|2),

implying that a′(u0)q − eiϕ0a′(eiϕ0u0)(q + iu0) = 0. This gives

q =
iu0

s(u0, ϕ0) − 1
with s(u0, ϕ0) := e−iϕ0

a′(u0)
a′(u0eiϕ0)

. (5.10)

Let us calculate a′(u0) at u0 = reiϕ1 . We have

a′(reiϕ1) = 2reiϕ1 + c − c

r2e2iϕ1
.

Using the Vieta equalities (5.3) we get

a′(u0) = a′(reiϕ1) = r
(
2eiϕ1 − (eiϕ1 + eiϕ2 + eiϕ3) + ei(−ϕ1+ϕ2+ϕ3)

)

= r
(
(eiϕ1 − eiϕ2) − eiϕ3(1 − e−i(ϕ1−ϕ2))

)

= r
(
2iei

ϕ1+ϕ2
2 sin

ϕ1 − ϕ2

2
− 2iei(ϕ3− ϕ1−ϕ2

2 ) sin
ϕ1 − ϕ2

2

)

= 2ir sin
ϕ1 − ϕ2

2
ei

ϕ2
2

(
ei

ϕ1
2 − ei(ϕ3− ϕ1

2 )
)

= −4rei
ϕ2+ϕ3

2 sin
ϕ1 − ϕ2

2
sin

ϕ1 − ϕ3

2
.
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Analogously,

a′(eiϕ0u0) = a′(reiϕ2) = −4rei
ϕ1+ϕ3

2 sin
ϕ2 − ϕ1

2
sin

ϕ2 − ϕ3

2
.

Inserting the two expressions obtained into (5.10) we arrive at

s(u0, ϕ0) = s(reiϕ1 , ϕ2 − ϕ1) = − sin ϕ3−ϕ1
2

sin ϕ3−ϕ2
2

e− i(ϕ2−ϕ1)
2 .

We have Re (q/u0) �= 0. Indeed, if Re (q/u0) = 0, then, by (5.10), s(u0, ϕ0)
must be a real number, which implies that Im

(
ei(ϕ2−ϕ1)/2

)
= 0, whence

ϕ2 = ϕ1, contradicting our requirement ϕ2 > ϕ1. From (5.9) we now get

|u(ϕ)|2 = |u0|2
(
1 + 2Re (g/u0)(ϕ − ϕ0) + O(|ϕ − ϕ0|2

)
.

It follows that a(u(ϕ)) belongs to Λ(a) if and only if
(
Re (g/u0)

)
(ϕ − ϕ0) < 0, (5.11)

since if we have (5.11), then the roots of the equation a(z) = λ(ϕ) with λ(ϕ) =
a(u(ϕ)) have absolute value smaller than r, which means that the third root
v(ϕ) of this equation has absolute value |v(ϕ)| = |c|

|u(ϕ)|2 = r3

|u(ϕ)|2 > r, while
if (5.11) does not hold, then |v(ϕ)| < |u(ϕ)|. The reasoning is analogous for
j = 2 and j = 3. Thus, we have shown that three analytic arcs with the
asserted local representation start at λ0. Inserting the full power series for
u(ϕ) in the equation a(u)−a(eiϕu) = 0 one can check that all its coefficients
are uniquely determined, which implies that no more than three analytic arcs
come from λ0. �

6. The Types of the Limiting Set

We say that Λ(a) is of type Lj (j = 1, 2, 3) if Λ(a) is the closure of the union
of exactly j analytic arcs and Λ(a) has exactly j + 1 exceptional points.

Theorem 6.1. Let a(z) = z2 + cz + cz−1 with c �= 0. Denote the roots of
a′(z) = 0 by t1, t2, t3 and order them so that |t3| ≤ |t2| ≤ |t1|. Put λk = a(tk).

(a) The set Λ(a) is of type L1 if and only if c /∈ Ω or c = ±3
√

3. In that
case Λ(a) = [λ2 ∼ λ3].

(b) The set Λ(a) is of type L2 if and only if c ∈ ∂ Ω\{±3
√

3}. In that case
the set Λ(a) is Λ(a) = [λ1 ∼ λ2] ∪ [λ1 ∼ λ3] with a cusp at λ1.

(c) The set Λ(a) is of type L3 if and only if c ∈ int Ω. In that case we have
Λ(a) = [λ0 ∼ λ1] ∪ [λ0 ∼ λ2] ∪ [λ0 ∼ λ3] with λ0 = −|c|4/3.

Proof. If c = ±3
√

3, then Λ(a) is a line segment by Theorem 4.5(d). Let
c /∈ Ω. Then, by Theorems 4.3 and 4.5, Λ(a) has exactly λ2 and λ3 as branch
points and in each of them there is one outgoing arc. If Λ(a) had a multiple
point λ0, then due to Theorem 5.2 there would be three arcs starting at
λ0. Note that, by Lemma 5.1, Λ(a) can have at most one multiple point.
It is impossible to weld these five arcs together without creating additional
exceptional points and without increasing the number of outgoing arcs in
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λ2 and λ3. Thus, Λ(a) cannot posses a multiple point and we must have
Λ(a) = [λ2 ∼ λ3].

Now suppose c ∈ int Ω. Then, again by Theorems 4.3 and 4.5, λ1, λ2, λ3

are branch points with a single arc starting in each of them. One cannot glue
together these three arcs without creating additional exceptional points or
increasing the number of outgoing arcs in the branch points. Consequently,
Λ(a) must have a multiple point λ0 with three outgoing arcs. The only pos-
sibility to join these arcs in order to get a connected set with no more
exceptional points and without increasing the number of outgoing arcs in
the branch points is Λ(a) = [λ0 ∼ λ1]∪ [λ0 ∼ λ2]∪ [λ0 ∼ λ3]. By Lemma 5.1,
λ0 = −|c|4/3.

Finally, let c �= ±3
√

3 belong to ∂ Ω. Theorems 4.3 and 4.5 tell us that
λ1, λ2, λ3 are branch points and that λ1 has two outgoing arcs and λ2, λ3

have one outgoing arc. If Λ(a) had a multiple point, it would be impossible
to join the seven arcs without getting new exceptional points or increasing
the number of outgoing arcs. It follows that Λ(a) has no multiple point and
that Λ(a) = [λ1 ∼ λ2] ∪ [λ1 ∼ λ3]. �

The two arcs (4.5) emerging for c ∈ ∂Ω\{±3
√

3} make a cusp at the
point λ1. If c moves along ∂Ω to ±3

√
3, one of these arcs becomes smaller

and smaller, and at c = ±3
√

3 it disappears while the other arc becomes the
line segment [−9, 11.25]. This line segment changes to an analytic arc outside
Ω whereas inside Ω it transforms into a star with three analytic legs by giving
birth to two legs at one of its ends. At c = ±i, the set Λ(a) is formed by two
arcs making a cusp. As c moves from ±i into the exterior of Ω, the cusp is
bulging out to an analytic curve, and as c moves from ±i into the interior
of Ω, the cusp mutates into a star with three legs by creating a new arc at
the cusp point and opening the zero angle of the two arcs of the cusp to a
positive angle.

We excluded the parameter c = 0. Trivially, in that case Λ(z2) = {0}.
If c �= 0 approaches the origin, then the star Λ(z2 + cz + cz−1) with the three
legs becomes smaller and smaller and eventually it collapses to the point {0}.

Theorem 6.2. Let a(z) = z2 + cz + cz−1 with c /∈ Ω. Denote the roots of
a′(z) = 0 by t1, t2, t3 and order them so that |t3| ≤ |t2| ≤ |t1|. Put λk =
a(tk). The limiting set Λ(a) = [λ2 ∼ λ3] is a line segment if and only if
c ∈ (−∞,−3

√
3) ∪ (3

√
3,∞). In that case λ2 and λ3 are real.

Proof. Suppose first that ±c ∈ (3
√

3,∞). Such c may be represented in the
form (4.2) with −1/2 < b < 0. It follows that w = (1 + b + b2)1/2 may be
taken as a positive real number and (4.2) then tells us that all tk are also
real numbers. Consequently,

λk = a(tk) = t2k + ctk + ct−1
k ∈ R.

The set Λ(a) is the intersection of the spectra of the operators T (a�) for
� ∈ (0,∞). Since a�(z) = a�(z), the curves a�(T) are symmetric about the
real line. Hence so also are the spectra of all T (a�) and thus also Λ(a). But
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an arc starting and ending on R and being symmetric about R must be a line
segment in R.

Conversely, assume now that Λ(a) = [λ2 ∼ λ3] ⊂ C is a line segment.
Then the tangents to the arc at λ2 and λ3 point into opposite directions.
By representation (4.4), this means that there is a real number μ > 0 such
that a′′(t2)t22/(a′′(t3)t23) = −μ. By the remark at the end of Sect. 4, we have
a′′(tk) = 6 + 2c/tk. We may write the numbers t2, t3, c in the form (4.2) with
−1/2 < Re b < 0. It follows that

a′′(t2)t22
a′′(t3)t23

=
t2
t3

· 6t2 + 2c

6t3 + 2c
=

1
1 + b

· −3b − 2(1 + b + b2)
3b(1 + b) − 2(1 + b + b2)

=
1

1 + b
· 2b2 + 5b + 2

b2 + b − 2
=

1
1 + b

· (2b + 1)(b + 2)
(b + 2)(b − 1)

= −2b + 1
1 − b2

= −μ.

Put μ = 1/ν. The equation (2b + 1)/(1 − b2) = 1/ν is a quadratic equation
with the two solutions b = −ν ± √

ν2 − ν + 1. Since ν2 − ν + 1 > 0 for
all ν, we conclude that b is a real number. As also −1/2 < Re b < 0, it is
only b ∈ (−1/2, 0) which can give oppositely directed tangents. But these b

correspond just to ±c ∈ (3
√

3,∞). �

Remark 6.3. The referee again kindly turned attention to the fact that the
“if portion” of Theorem 6.2 can also be deduced from the more general result
of [11]. Indeed, let c ∈ [3

√
3,∞). For x ≥ 0, the function x3 − x decreases

from 0 to −2/(3
√

3) ≤ −2/c and then increases to infinity. Consequently,
there are numbers 0 < x2 < x1 < x0 such that

{x > 0 : −2/c ≤ x3 − x ≤ 2/c} = (0, x2] ∪ [x1, x0].

It follows that the set {r > 0 : −2/c ≤ 1/r3 − 1/r ≤ 2/c} is of the form
[r0, r1] ∪ [r2,∞) with rj = 1/xj . Consider the curve

K = {κ(r) := σ(r) ± iτ(r) : r ∈ [r0, r1]}
with

σ(r) =
c

2
1 − r2

r2
, τ(r) =

1
2r2

√
4r3 − c2(1 − r2)2.

Note that τ(r) > 0 for r ∈ (r0, r1) and that τ(r0) = τ(r1) = 0. This reveals
that K is a Jordan curve. We have σ2 + τ2 = r2, and hence κ = κ(r) satisfies
the quadratic equation

κ2 − c(1 − r2)
r2

κ + r2 = 0.

Dividing by κr2 we get

κ/r2 − c(1 − r2)
r4

+ 1/κ = 0.

The last two equations imply

f(κ) = κ2 + cκ + c/κ =
c(1 − r2)

r2
κ − r2 + cκ +

c2(1 − r2)
r4

− cκ

r2
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=
c2(1 − r2)

r4
− r2 ∈ R,

showing that f(K) ⊂ R and hence, by [11], proving that Λ(f) is a real line
segment. �
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