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Characterizations of canonically compactifiable graphs via
intrinsic metrics and algebraic properties

Simon Puchert

Abstract. We consider infinite graphs and the associated energy forms.
We show that a graph is canonically compactifiable (i.e. all functions
of finite energy are bounded) if and only if the underlying set is totally
bounded with respect to any finite measure intrinsic metric. Furthermore,
we show that a graph is canonically compactifiable if and only if the
space of functions of finite energy is an algebra. These results answer
questions in a recent work of Georgakopoulos, Haeseler, Keller, Lenz,
and Wojciechowski.
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Introduction. Open bounded sets in Euclidean space provide an important
and well-studied instance of spectral geometry. Recently, discrete analogues
of such sets have become a focus of attention [6,10,11]. In particular, Geor-
gakopoulos et al. [6] propose the concept of canonically compactifiable graphs
as graphs with strong intrinsic compactness properties. By definition, a graph
is called canonically compactifiable if all functions of finite energy are bounded.
For such graphs, there is a natural compactification, namely, the Royden com-
pactification. Clearly, in order to study the geometry of such graphs, it is
desirable to understand metric compactness features of such graphs.

As shown in [6], total boundedness with respect to common metrics such
as the resistance metric or a standard length metric implies that the under-
lying graph is canonically compactifiable but the converse is not true. So,
Georgakopoulos et al. [6] leave open the question of a metric compactness
characterization of such graphs. Still, a candidate for such a characterization
is proposed there. More specifically, it is shown that total boundedness with
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respect to all finite measure intrinsic metrics implies that the graph is canon-
ically compactifiable and the converse is shown to hold for locally finite trees.
The converse for general graphs, however, remained open and is posed as a
problem in [6]. The first main result of this note (Theorem 1) solves this prob-
lem. Combining this main result with the mentioned result of Georgakopoulos
et al. [6], we obtain that a graph is canonically compactifiable if and only if
it is totally bounded with respect to all metrics that are intrinsic with respect
to a finite measure (Corollary 1). This characterization turns out to extend
without modification to general (non connected) graphs.

To put this result in perspective, we briefly discuss the relevance of intrinsic
metrics next. Intrinsic metrics for strongly local Dirichlet forms were intro-
duced in [18] and have subsequently played a fundamental role as they allow
for a study of intrinsic spectral geometry of such forms. For general regular
Dirichlet forms, a concept was only proposed recently in [5] (see [3,4,7,19] for
independent related studies on graphs). A special feature of the case of gen-
eral Dirichlet forms is well worth pointing out: While in the strongly local case
there is a maximal intrinsic metric, there are, in general, several incomparable
intrinsic metrics on graphs [5]. Hence, in general, one cannot expect that it
will be sufficient to consider only one intrinsic metric for graphs. Recent years
have witnessed rather successful applications of intrinsic metrics in order to
understand spectral geometry of graphs, see the mentioned works as well as,
e.g., [1,2,8]. Given this, it is very natural to look for a characterization of
the intrinsic compactness property of canonical compactifiability in terms of
intrinsic metrics. Theorem 1 provides such a characterization.

In the last section, we provide an answer to another question raised in
[6]. This question concerns an algebraic characterization of canonically com-
pactifiable graphs. More specifically, in [6], it is shown that the set of func-
tions of finite energy is an algebra if the graph is canonically compactifiable
and we show that the converse is also true (Theorem 2). Our proof can be
modified slightly to obtain a similar characterization for uniform transience
(Theorem 3), a property that was recently introduced in [10]. Moreover, it can
also be generalized to resistance forms in the sense of Kigami [12]. We briefly
discuss this extension in Theorem 4. Typical examples for resistance forms are
provided by metric graphs and fractals, we refer to [12,13] for details.

1. Background. In this section, we first introduce the necessary notations and
recall basic facts shown in [6] (see [9] for a description of the general setting
as well).

A weighted graph G = (X, b) consists of a nonempty countable set X of
nodes and a symmetric edge weight function b : X ×X → [0,∞) that vanishes
on the diagonal and satisfies the summability condition

∑

y∈X

b(x, y) < ∞ for all x ∈ X.

Two nodes x, y ∈ X are called connected if there is a sequence (x =
x0, . . . , xn = y) with b(xk, xk+1) > 0 for all 0 ≤ k < n. Similarly, a graph
is called connected if all of its nodes are connected.
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This graph structure gives rise to a quadratic form that assigns to any
function f : X → C its Dirichlet energy

Q̃(f) :=
1
2

∑

x,y∈X

b(x, y)|f(x) − f(y)|2

and consequently defines the functions of finite energy

D(G) := {f : X → C | Q̃(f) < ∞}.

This set is closed with respect to addition since

Q̃(f + g)1/2 ≤ Q̃(f)1/2 + Q̃(g)1/2.

The graph (X, b) is called canonically compactifiable if all functions of finite
energy are bounded, that is if D(G) ⊆ �∞(X).

In the rest of this note, we will only look at connected graphs. We can do
this since a graph is canonically compactifiable if and only if it has finitely
many connected components (i.e. equivalence classes with respect to connect-
edness) and every connected component is canonically compactifiable. We will
explicitly state if we don’t use this assumption.

For any o ∈ X, we define a pseudo-norm ‖ · ‖o on D(G) via

‖f‖2o := Q̃(f) + |f(o)|2.
Since we assumed connectedness, this yields a Hilbert space (D(G), ‖f‖o) and
the pointwise evaluation

D(G) → C, f �→ f(x),

is continuous for every x ∈ X, see, e.g., [15, Section 1.2].
Pseudo metrics are symmetric functions σ : X × X → [0,∞) that vanish

on the diagonal and satisfy the triangle inequality σ(x, z) ≤ σ(x, y) + σ(y, z).
Any pseudo metric σ naturally induces a distance from any nonempty sub-

set U ⊆ X via

σU : X → [0,∞), σU (x) = inf
y∈U

σ(x, y),

and the diameter of U ⊆ X by

diamσ(U) := sup
x,y∈U

σ(x, y).

Whenever (X, b) is a graph and m is a measure on X (i.e. an additive
function P(X) → [0,∞] induced by a node weight function X → (0,∞)),
a pseudo metric σ is called intrinsic with respect to the measure m if the
inequality

1
2

∑

y∈X

b(x, y)σ(x, y)2 ≤ m({x})

holds for all x ∈ X.
Any graph (X, b) comes with a metric � defined as

�(x, y) := sup
{

|f(x) − f(y)| | f ∈ D(G) with Q̃(f) ≤ 1
}

.
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Given this definition, it is easy to see that any function f of bounded Dirichlet
energy satisfies

|f(x) − f(y)| ≤ Q̃(f)1/2�(x, y).

Indeed, the inequality is optimal; the definition of � gives that it is character-
ized by

inf{Q̃(f) | |f(x) − f(y)| = C} =
C2

�(x, y)2

for any C > 0. The metric � is tied to canonical compactifiability, as [6, Theo-
rem 4.3] proves that a connected graph (X, b) is canonically compactifiable if
and only if it is bounded with respect to �, i.e. diam�(X) < ∞. This will be
used below.

Remark. This metric is closely tied to the resistance metric r by �2 = r (it is
shown that r is a metric for locally finite graphs in [6, Theorem 3.19] and for
general graphs in [14]). The metric is also related to intrinsic metrics (see [6,
Theorem 3.13]).

Remark. Let us emphasize that our results do not assume local finiteness of
the graph.

2. Characterization via intrinsic metrics. In this section, we provide a char-
acterization of canonical compactifiability via intrinsic pseudo metrics.

A key step is the subsequent lemma. It provides an estimate for the energy
of the distance to a set with respect to an intrinsic pseudo metric, which may
be of interest in other contexts as well. A different bound (by m(X) instead
of 2m(X \ U)) is given in [6, Propositions 3.10 and 3.11].

Lemma 1. Let G = (X, b) be a graph and let σ be an intrinsic pseudo metric
with respect to a finite measure m on X. For a nonempty subset U ⊂ X, the
energy of σU is bounded by

Q̃(σU ) ≤ 2m(X \ U).

Proof. Immediately, we deduce σU (x) = 0 for all x ∈ U and |σU (x)−σU (y)| ≤
σ(x, y) for all x, y ∈ X. These properties already imply the desired bound on
the Dirichlet energy of σU :

Q̃(σU ) =
1
2

∑

x,y

b(x, y)(σU (x) − σU (y))2

=
1
2

∑

(x,y)∈X2\U2

b(x, y)(σU (x) − σU (y))2

≤ 1
2

∑

(x,y)∈X2\U2

b(x, y)σ(x, y)2

=
∑

x∈X\U

⎛

⎝1
2

∑

y∈X

b(x, y)σ(x, y)2

⎞

⎠ +
∑

y∈X\U

(
1
2

∑

x∈U

b(x, y)σ(x, y)2
)
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≤ 2m(X \ U).

Here, we used the fact that σ is intrinsic with respect to m in the last estimate.
�

Theorem 1. Let (X, b) be a canonically compactifiable graph and consider a
pseudo metric σ which is intrinsic with respect to a finite measure m. Then
(X, b) is totally bounded with respect to σ.

Proof. Fix an arbitrary ε > 0. We have to find a finite subset S of X with
σS(x) < ε for all x ∈ X.

For δ > 0, define the set Uδ = {x ∈ X : m({x}) < δ}. As m is finite
and the graph is canonically compactifiable (i.e. diam�(X) < ∞ holds by [6,
Theorem 4.3]), we can choose δ > 0 such that

m(Uδ) <
ε2

2 diam�(X)2
.

We now claim that the set S := X \ Uδ has the desired properties:
Indeed, the set is finite as we clearly have |S| ≤ m(X)

δ < ∞.
Moreover, σS(x) < ε can be proven as follows: Lemma 1 helps us to estimate

the Dirichlet energy of the function σS :

Q̃(σS) ≤ 2m(Uδ)

<
ε2

diam�(X)2
.

Now, recall the inequality |f(x) − f(y)| ≤ Q̃(f)1/2�(x, y) and pick an arbi-
trary point o ∈ S to see

σS(x) = |σS(x) − σS(o)| ≤ Q̃(σS)1/2diam�(X) < ε.

This finishes the proof. �
Combining the previous theorem with its converse, [6, Corollary 4.5], and

the fact that a general graph is canonically compactifiable if and only if it
has finitely many connected components and each component is canonically
compactifiable, we obtain the following characterization of canonically com-
pactifiable graphs.

Corollary 1. A (not necessarily connected) graph (X, b) is canonically compact-
ifiable if and only if X is totally bounded with respect to any pseudo metric σ
that is intrinsic with respect to a finite measure.

3. Algebraic characterization. In this section, we will prove that a graph is
canonically compactifiable if and only if the space of functions of finite energy
is an algebra (with the usual pointwise addition and multiplication of func-
tions). The proof can be transferred to show a similar algebraic characteriza-
tion of uniform transience and can even be extended to resistance forms, see
the discussion after Corollary 2.

Since [6, Lemma 4.8] already states that the space of functions of finite
Dirichlet energy is an algebra if the underlying graph is canonically compact-
ifiable, we will focus on the other direction.
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Again, we use the splitting of canonical compactifiability to reduce the
problem to connected graphs.

Theorem 2. Let G = (X, b) be a graph. If the space of functions of finite
Dirichlet energy D(G) is an algebra, the graph G is canonically compactifiable.

Proof. We analyze graphs that are not canonically compactifiable and find
functions f ∈ D(G) such that Q̃(f2) = ∞, implying that D(G) cannot be an
algebra.

Let G be a graph that is not canonically compactifiable and fix an arbitrary
node o ∈ X. We know that � is unbounded on G since G is not canonically
compactifiable, see [6, Theorem 4.3]. Select an infinite sequence of nodes (xn :
n ∈ I ⊆ N) such that 8n < �(xn, o) ≤ 8n+1 (if there is no such xn for a certain
n, just omit this index). Now, we aim to find functions fn ∈ D(G) that satisfy

fn(o) = 0, fn(xn) = 4n, 0 ≤ fn ≤ 4n, and Q̃(fn) ≤ 4−n.

Such functions exist because

8n < �(xn, o) = sup{|f(xn) − f(o)| | f ∈ D(G), Q̃(f) ≤ 1}
yields

inf{Q̃(f) | f(o) = 0, f(xn) = 4n, 0 ≤ f ≤ 4n} =
(4n)2

�(xn, o)2
< 4−n,

where the additional condition 0 ≤ f ≤ 4n can be introduced since Q̃ is
Markovian, i.e. Q̃(0 ∨ f ∧ 4n) ≤ Q̃(f) for all f .

Considering
∑

n∈I Q̃(fn)1/2 ≤ ∑∞
n=1 2−n = 1 and the fact that

(D(G), ‖ · ‖o) is a Hilbert space, the function f :=
∑

n∈I fn ∈ D(G) is well-
defined and Q̃(f) ≤ 1. Conversely, for all n ∈ I, we have

Q̃(f2) ≥ |f(xn)2 − f(o)2|2
�(xn, o)2

≥ fn(xn)4

�(xn, o)2
≥ 256n

64n+1
= 4n−3,

thus Q̃(f2) = ∞. �
Combining Theorem 2 with its converse, [6, Lemma 4.8], then yields the

following characterization.

Corollary 2. A graph G = (X, b) is canonically compactifiable if and only if
the space of functions of finite Dirichlet energy D(G) is an algebra.

Let D0(G) be the closure of Cc(X) in the Hilbert space

(D(G), ‖ · ‖o)

and define the metric

�0(x, y) = sup
{

|f(x) − f(y)| | f ∈ D0(G) with Q̃(f) ≤ 1
}

.

The graph G is called uniformly transient if D0(G) ⊆ C0(X), where C0(X)
stands for the closure of Cc(X) in �∞(X), see [10, Section 2]. Moreover, for
connected graphs, uniform transience is equivalent to the boundedness of �0,
see [10, Theorem 3.2].
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The space D0(G) ∩ �∞(X) is an algebra, see [17, Theorem 6.2], and the
proof of Theorem 2 can be modified by replacing D(G) with D0(G) and �
with �0. These observations yield the following characterization of uniform
transience.

Theorem 3. A graph is uniformly transient if and only if D0(G) is an algebra.

The same line of reasoning also applies to resistance forms in the sense of
Kigami. Here we only state the result and sketch a proof. For notation, further
background, and examples, we refer to [12,13].

Let (E ,F) be a resistance form on the set X �= ∅, see [12, Definition 2.3.1],
and let

�E(x, y) = sup{|f(x) − f(y)| | f ∈ F , E(f) ≤ 1}
be the square root of the associated resistance metric. Our main result for
resistance forms reads as follows.

Theorem 4. The following assertions are equivalent.
(i) F ⊆ �∞(X).
(ii) ρE is bounded.
(iii) F is an algebra.

Proof. The equivalence of (i) and (ii) can be proven along the same lines as
[6, Theorem 4.3].

(i) =⇒ (iii): This follows from the fact that F ∩ �∞(X) is an algebra, see,
e.g., [16, Theorem 2.22] and the following remark.
(iii) =⇒ (ii): This can be proven along the same lines as Theorem 2. �
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