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Abstract. In this paper we study the concept of radical factorization in the
context of abstract ideal theory in order to obtain a unified approach to
the theory of factorization into radical ideals and elements in the literature
of commutative rings, monoids and ideal systems. Using this approach we
derive new characterizations of classes of rings whose ideals are a product
of radical ideals, and we obtain also similar characterizations for classes
of ideal systems in monoids and star ideals in integral domains.
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1. Introduction

This article is concerned with the factorization of ideals in commutative rings
and monoids into products of radical ideals. Much is known about the integral
domains, rings and cancellative monoids whose ideals possess this factoriza-
tion property; see [1,7,9,14,15,16,18,19] and their references. While by many
measures, radical factorization is quite a bit weaker than prime factorization,
it is still the case that a ring or monoid whose ideals have radical factorization
must meet a number of strong demands, as is evidenced in the characteriza-
tions in the cited references. However, one also finds factorization into radical
ideals among special subclasses of ideals of rings and monoids. Rather than re-
quire all ideals to have the radical factorization property, we thus can consider
restricted classes of ideals. This is analogous to the passage from Dedekind
domains to Krull domains: The property that every proper ideal of a domain
is a product of prime ideals characterizes Dedekind domains, and hence is
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rather restrictive. Taking a more flexible approach and working up to divi-
sorial closure, we have the familiar property of Krull domains that divisorial
ideals factor into prime ideals up to divisorial closure; i.e., every proper di-
visorial ideal I is of the form I = ((P1 · · · Pn)−1)−1 for some height 1 prime
ideals P1, . . . , Pn. Thus by working with a restricted class of ideals and a more
flexible interpretation of product we find Dedekind factorization outside the
class of Dedekind domains.

Our goal in this article is to show that the radical factorization property
also can be found in more general settings by suitably restricting the ideals
considered and having a more flexible notion of product. In fact, our meth-
ods allow us to work with both ideal systems of commutative rings as well
as monoids. Rather than develop ad hoc approaches to each of these different
settings, we give a unified treatment through the use of multiplicative lattices.
The collections of ideals that we will be interested in (in both the ring and
monoid settings) can be viewed in an obvious way as a lattice having a mul-
tiplicative structure. On a more philosophical level, this approach shows that
the phenomenon of radical factorization, at least to the extent that we consider
it here, is a consequence of the arithmetic of the ideals of the ring, monoid
or ideal system, rather than the elements in these ideals, i.e., our analysis of
these properties involves quantification over ideals rather than elements. As
we recall in Section 2, multiplicative lattices have been well studied by many
authors, and so there are a number of tools available for our purposes.

Thus we develop first in Sections 2–6 a theory of radical factorization
for multiplicative lattices and use the results obtained in this fashion to de-
rive in Sections 7 and 8 a number of results and characterizations of radical
factorization in commutative rings, monoids and ideal systems.

Throughout the paper we assume all rings, monoids and semigroups are
commutative and have more than one element.

2. Multiplicative lattices

Our methods in this paper involve those of abstract ideal theory, and so our
main tool is that of a multiplicative lattice.

Definition 2.1. A multiplicative lattice is a partially ordered multiplicative
monoid (L,≤) with the following properties.
(a) (L,≤) is a complete lattice, and hence has a top element 1 and a bottom

element 0.
(b) x(

∨
y∈S y) =

∨
y∈S xy for each x ∈ L and S ⊆ L.

(c) The top element 1 is the multiplicative identity of L.
If also ab = 0 implies a or b is 0 for all a, b ∈ L, then L is a multiplicative
lattice domain.

An element x of a lattice L is compact if whenever x ≤ ∨
α yα for some

collection {yα} of elements of L, we have that x ≤ yα1 ∨ · · · ∨ yαn
for some

α1, . . . , αn. Let L∗ denote the set of compact elements of L.
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Definition 2.2. A multiplicative lattice L is a C-lattice if the set L∗ of compact
elements is multiplicatively closed (i.e., 1 ∈ L∗ and xy ∈ L∗ for all x, y ∈ L∗)
and every element in L is a join of compact elements. The argument in [10,
Lemma 1] shows that a multiplicative lattice L is a C-lattice if and only if
there is some multiplicatively closed set A ⊆ L∗ such that every element of L
is a join of elements from A.

Notation 2.3. Let L be a multiplicative lattice, and let x, y ∈ L. We use the
following notation.
(1) (y : x) =

∨{a ∈ L | ax ≤ y}.
(2)

√
x =

∨{y ∈ L | yn ≤ x for some n ∈ N}.
(3) Max(L) = the set of maximal elements of L.

An element x is �-radical if x =
√

x. In the literature on multiplica-
tive lattices, an �-radical element is called simply a radical element, but we
use the term �-radical since there exists the different notion of radical ele-
ments in monoids (i.e., an element of a monoid is called radical if the ideal
generated by it is a radical ideal). To avoid similar confusion, we use the
terms �-principal and �-invertible in the next definition in place of what are
called principal and invertible elements in the context of multiplicative
lattices.

One motivation for consideration of multiplicative lattices is that these
structures capture fundamental properties of ideals of commutative rings. The
notion of a principal element in a multiplicative lattice, first introduced by
Dilworth (see [6] for an overview of the history of this notion), plays a role
similar to that of finitely generated locally principal ideals in commutative
rings (see [3] and [13, Theorem 2] for more on this). Weaker versions of prin-
cipality also prove useful since they encode familiar properties such as being a
multiplicative or cancellative element (see [2]).

Definition 2.4. Let L be a multiplicative lattice, and let x ∈ L.
(1) x is cancellative if it is a cancellative element of the monoid (i.e., xy = xz

implies y = z for all y, z ∈ L or equivalently xy ≤ xz implies y ≤ z for
all y, z ∈ L).

(2) x is weak meet principal if x ∧ y = (y : x)x for all y ∈ L.
(3) x is meet principal if y ∧ zx = ((y : x) ∧ z)x for all y, z ∈ L.
(4) x is weak join principal if (xy : x) ≤ y ∨ (0 : x) for all y ∈ L.
(5) x is join principal if y ∨ (z : x) = ((yx ∨ z) : x) for all y, z ∈ L.
(6) x is �-principal if it is both meet and join principal.
(7) x is �-invertible if x is �-principal and cancellative.

The lattice L is principally generated if each element is a join of �-principal
elements.

Note that in a multiplicative lattice domain, every nonzero �-principal
element is cancellative and hence is �-invertible.

The next lemma collects several useful properties of �-principal and �-
invertible elements; see [4, Lemma 2.3] and [6, Corollary 3.3].
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Lemma 2.5. Let L be a multiplicative lattice, and let x, y ∈ L.
(1) If x, y are �-principal, then xy is �-principal.
(2) xy is �-invertible if and only if x and y are �-invertible.
(3) 1 ∈ L is �-invertible.

As we recall next, the fact that a C-lattice has a good supply of compact
elements allows for a localization theory that behaves like that of commutative
rings.

Notation 2.6. Let L be a C-lattice, and let p ∈ L be �-prime (i.e., p �= 1 and
for all a, b ∈ L, ab ≤ p implies a ≤ p or b ≤ p). We use the terminology
of �-prime elements to distinguish these elements from the prime elements in
monoids. For each x ∈ L, we set

xp =
∨

{a ∈ L∗ | ∃b ∈ L∗ such that b �≤ p and ab ≤ x},

and we let Lp = {xp | x ∈ L}.

Lemma 2.7 (cf. [11, pp. 201–203]). Let L be a C-lattice, let x, y ∈ L and let
p ∈ L be an �-prime element.
(1) xp = 1 if and only if x �≤ p.
(2) (xy)p = (xpyp)p.
(3) (x ∧ y)p = xp ∧ yp.
(4) If p ∈ Max(L), then (pn)p = pn for all n ∈ N.
(5) x =

∧
m∈Max(L) xm and x = y if and only if xm = ym for all m ∈

Max(L).
(6) If x is compact, then (y : x)p = (yp : xp).
(7) If x is both weak meet and weak join principal, then x is compact.
(8)

√
x =

∧{q ∈ L | q is �-prime with x ≤ q}.
(9) √

xp =
√

xp.

Lemma 2.8. Let L be a C-lattice, x ∈ L and p ∈ L an �-prime element which
is minimal above x. Then √

xp = p.

Proof. It is clear that √
xp ≤ p. Let a ∈ L∗ be such that a ≤ p. Set Ω = {ban |

b ∈ L∗, b �≤ p, n ∈ N0}. It suffices to show that there is some z ∈ Ω such that
z ≤ x.

Assume that z �≤ x for each z ∈ Ω. Since Ω is a multiplicatively closed
set of compact elements of L, there is some �-prime q ∈ L such that x ≤ q and
z �≤ q for each z ∈ Ω. Note that if c ∈ L∗ is such that c �≤ p, then c ∈ Ω, and
hence c �≤ q. Therefore, x ≤ q ≤ p, and hence a ≤ p = q. Since, a ∈ Ω, we have
that a �≤ q, a contradiction. �

Definition 2.9. If L is a multiplicative lattice and the length of the longest
chain of �-prime elements is n, then the dimension of L is n − 1.

We will be mainly interested in zero-dimensional elements of L, i.e., those
elements x for which the only �-prime elements above x are maximal.

A lattice L is modular if for all x, y, z ∈ L such that x ≤ z it follows
that (x ∨ y) ∧ z = x ∨ (y ∧ z) (equivalently, for all x, y, z ∈ L such that x ≤ z
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we have that (x ∨ y) ∧ z ≤ x ∨ (y ∧ z). In Section 8, whether a multiplicative
lattice is modular is a key issue for determining the ideal systems to which our
methods can be applied. The relevance of the modularity condition is due to
the following lemma.

Lemma 2.10 (cf. [2, Proposition 1.1]). Let L be a multiplicative lattice and
x ∈ L a cancellative element.

(1) x is weak join principal.
(2) If x is weak meet principal, then x is meet principal.
(3) If L is modular and x is weak meet principal, then x is �-principal.

In particular, if L is modular, then an element of L is �-invertible if and only
if it is weak meet principal and cancellative.

Proof. (1) If y ∈ L, then (xy : x) = y ≤ y ∨ (0 : x). Therefore, x is weak join
principal.

(2) Let x be weak meet principal. First we show that yx ∧ zx = (y ∧ z)x
for each y, z ∈ L. Let y, z ∈ L. Since x is weak meet principal and yx∧zx ≤ x,
there is some a ∈ L such that yx ∧ zx = ax. We infer that ax ≤ yx and
ax ≤ zx. Therefore, a ≤ y ∧ z, and hence xy ∧ xz ≤ x(y ∧ z) ≤ xy ∧ xz.

Now let y, z ∈ L. Then

y ∧ zx = (y ∧ x) ∧ zx = ((y : x)x) ∧ zx = ((y : x) ∧ z)x.

(3) Let L be modular and let x be weak meet principal. By (2) it remains
to show that x is join principal. Let y, z ∈ L. Note that yx ≤ x, and hence

(y ∨ (z : x))x = yx ∨ (z : x)x = yx ∨ (z ∧ x) = (yx ∨ z) ∧ x = ((yx ∨ z) : x)x,

since x is weak meet principal. Since x is cancellative, we infer that

y ∨ (z : x) = ((yx ∨ z) : x). �

3. Radical factorization in C-lattices

The purpose of this section is to give a sufficient condition in Theorem 3.1 for
a zero-dimensional element of a C-lattice to factor into a product of �-radical
elements. An application of this to commutative rings is given in Theorem 7.8.
In the next section, we use Theorem 3.1 to find necessary and sufficient condi-
tions for a lattice domain to have the property that every element is a product
of �-radical elements.

Theorem 3.1. Let L be a C-lattice, and let x �= 1 be a zero-dimensional element
of L. If each maximal element above x is also above a zero-dimensional �-
radical element that is compact and weak meet principal, then x = y1 · · · yk for
some �-radical elements y1 ≤ · · · ≤ yk.

Proof. We prove the theorem by establishing a series of claims.

Claim 1. (x :
√

x)m = (xm :
√

xm) for all m ∈ Max(L).
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Let m ∈ Max(L). If x �≤ m, then
√

x �≤ m, and since x ≤ (x :
√

x) we
have that (x :

√
x) �≤ m. Therefore, by Lemma 2.7(1),

(x :
√

x)m = 1 = (xm :
√

xm).

Now suppose x ≤ m. It is clear that (x :
√

x)m ≤ (xm :
√

xm). By
assumption there is a zero-dimensional �-radical element y ∈ L such that y ≤ m
and y is weak meet principal and compact. Observe that ym = m =

√
xm by

Lemma 2.8. Next we show that (x ∨ y)n ≥ √
xn for all n ∈ Max(L). Let

n ∈ Max(L). If x ≤ n, then (x ∨ y)n ≥ yn ≥ n = nn ≥ √
xn. If x �≤ n, then

(x ∨ y)n = 1 ≥ √
xn.

We infer that x ∨ y ≥ √
x, and hence (x : y) = (x : (x ∨ y)) ≤ (x :

√
x).

This implies that (xm :
√

xm) = (xm : ym) = (x : y)m ≤ (x :
√

x)m.

Claim 2. x =
√

xx1 for some x1 ∈ L.

Using Lemma 2.7(5), we may verify the equality locally by showing that
if m ∈ Max(L),

xm =
(√

x(x :
√

x)
)
m

.

Let m ∈ Max(L). Consider first the case that x ≤ m. By assumption, there
exists an �-radical zero-dimensional element y ∈ L such that y ≤ m and y is
compact and weak meet principal. Since y is a weak meet principal element
of L, we have that ym is a weak meet principal element of Lm. Moreover, it
follows by Lemma 2.8 that

√
xm = m = ym, and thus

√
xm is a weak meet

principal element of Lm. Therefore, xm = (
√

xm(xm :
√

xm))m, and hence
xm = (

√
x(x :

√
x))m by Claim 1.

On the other hand, if m ∈ Max(L) is not above x, then Claim 1 and the
assumption that x �≤ m imply

xm = 1 =
(√

xm(xm :
√

xm)
)
m

=
(√

xm(x :
√

x)m

)
m

=
(√

x(x :
√

x)
)
m

.

Thus xm = (
√

x(x :
√

x))m. Since we have shown this equality holds for all
m ∈ Max(L), we conclude by Lemma 2.7(5) that x =

√
x(x :

√
x).

Claim 3. There exist a positive integer t and zero-dimensional �-radical ele-
ments z1, . . . , zt such that z1 · · · zt ≤ x.

Let {mα} denote the collection of maximal elements above x. By assump-
tion, for each α there is a zero-dimensional �-radical element yα ∈ L such that
yα ≤ mα and yα is compact and weak meet principal. Consider the element
a =

∨
α(

√
x : yα). We show a = 1. For each α, since yα is compact we have by

Lemma 2.7(6) that

amα
≥ (

√
x : yα)mα

= (
√

xmα
: (yα)mα

) = (mα : mα) = 1.

Therefore, amα
= 1, which forces a �≤ mα. Since x ≤ a, the maximal elements

above a are among the mα. Therefore, a =
∧

α amα
= 1.

By assumption, the top element 1 of L is compact, so there are s ∈ N

and α1, . . . , αs such that 1 = (
√

x : yα1) ∨ · · · ∨ (
√

x : yαs
). For each 1 ≤ i ≤ s,

let zi = yαi
. Observe that 1 = (

√
x : z1)∨· · ·∨ (

√
x : zs) ≤ (

√
x : z1 · · · zs), and

thus 1 = (
√

x : z1 · · · zs). Therefore, z1 · · · zs ≤ √
x. Hence the fact that z1 · · · zs

is compact and below
√

x implies there is n ∈ N such that (z1 · · · zs)n ≤ x.
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Claim 4. There exist �-radical elements y1, . . . , yk of L such that y1 ≤ · · · ≤
yk and x = y1 · · · yk.

By Claim 2, x =
√

xx1 for some x1 ∈ L. If x1 �= 1, then since x1 is zero-
dimensional, we may apply Claim 2 to obtain x =

√
x
√

x1x2 for some x2 ∈ L.
Continuing in this fashion, we obtain that either x = y1 · · · yk for some �-
radical elements y1 ≤ y2 ≤ · · · ≤ yk, in which case the proof is complete, or
there are �-radical elements y1 ≤ y2 ≤ · · · such that for each i ∈ N, there is
xi+1 �= 1 with yi+1 = √

xi+1 and x = y1y2 · · · yixi+1.
Suppose the latter case holds. By Claim 3 there are zero-dimensional

�-radical elements z1, . . . , zt ∈ L such that z1 · · · zt ≤ x. We claim that x =
y1y2 · · · yt+1.

We verify the equality x = y1y2 · · · yt+1 locally. Let m ∈ Max(L), and
suppose first that xt+1 ≤ m. Using the fact that

y1 ≤ · · · ≤ yt ≤ yt+1 =
√

xt+1 ≤ m,

we have that

z1 · · · zt ≤ x = y1 . . . ytxt+1 ≤ mt+1.

Since (zi)m ≥ m for each i, localizing at m yields

mt ≤ ((z1)m · · · (zt)m)m = (z1 · · · zt)m ≤ xm ≤ mt+1.

Therefore, xm = mt = mt+1 for all m ∈ Max(L) with xt+1 ≤ m. Since
yt+1 = √

xt+1 ≤ m, we have that (y1 · · · ytyt+1)m = mt+1 = xm. On the other
hand, if xt+1 �≤ m, then again since yt+1 = √

xt+1 we have that

xm = (y1 · · · ytxt+1)m = ((y1)m · · · (yt)m(xt+1)m)m

= ((y1)m · · · (yt)m(yt+1)m)m

= (y1 · · · yt+1)m.

Therefore, x = y1 · · · yt+1 since this equality holds locally. �

Corollary 3.2. Let L be C-lattice, and let y be a compact zero-dimensional �-
radical element in L that is weak meet principal. Then for each x ∈ L with
y ≤ √

x, there are �-radical elements y1 ≤ · · · ≤ yk such that x = y1 · · · yk.

Proof. Apply Theorem 3.1. �

4. Radical factorization in lattice domains

In this section we characterize the radical factorization property in C-lattices
for which every element is a join of �-invertible elements. The characterization
in Theorem 4.6, the main result of this section, will serve as a basis for most
of the applications given in later sections.

Definition 4.1. A radical factorial lattice L is a multiplicative lattice L such
that every element in L is a product of �-radical elements.
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The proof of Theorem 4.6 relies on three technical lemmas, all of which
are motivated by arguments from [1], although our proofs are more complicated
due to the generality of our setting. We show in Section 7 how to derive some
of the results from [1] in our context.

Lemma 4.2. Let L be a C-lattice, and let p be an �-prime element of L. If x
is a compact join principal element such that x �≤ p and x2 ∨ p is a product
of �-radical elements, then for each �-prime element q minimal over x ∨ p, we
have that p ≤ (q2)q and q �= (q2)q.

Proof. Let q be an �-prime element minimal over x∨p. By assumption, x2∨p =
x1 · · · xk for some �-radical elements xi. Therefore, (x2∨p)q = ((x1)q · · · (xk)q)q.
Since q is minimal over x ∨ p, and hence minimal over x2 ∨ p, it follows that
for each i, (xi)q is either 1 or q is minimal over (xi)q. In the latter case,
since xi is �-radical, (xi)q = q. Consequently, from the fact that (x2 ∨ p)q =
((x1)q · · · (xk)q)q, we conclude that (x2 ∨ p)q = (qn)q for some n ∈ N.

Assume that (x2 ∨ p)q = q. Then q = (x2 ∨ p)q ≤ (x ∨ p)q ≤ q, and thus
xq ≤ (x ∨ p)q = (x2 ∨ p)q. The fact that x is join principal, p is �-prime and
x �≤ p implies that ((p ∨ x2) : x) = x ∨ (p : x) = x ∨ p. Since x is compact, we
have that 1 = ((p ∨ x2)q : xq) = ((p ∨ x2) : x)q = (x ∨ p)q by Lemma 2.7(6).
We infer by Lemma 2.7(1) that x ∨ p �≤ q, a contradiction. Therefore, (x2 ∨
p)q �= q, and thus n ≥ 2. Consequently, p ≤ (x2 ∨ p)q = (qn)q ≤ (q2)q. If
q = (q2)q, then q = (qk)q for each k ∈ N, and hence (x2 ∨ p)q = (qn)q = q, a
contradiction. �

Lemma 4.3. Let L be a C-lattice, and let p < q be �-prime elements of L.
Suppose there is a compact weak meet principal element x ≤ q with xq = q. If
p is a join of compact weak join principal elements, each of which is a product
of �-radical elements, then p = 0q.

Proof. Let z be a compact weak join principal element with z ≤ p such that
z = z1 · · · zn, where each zi is an �-radical element of L. Since p is a join of such
elements, to prove that p = 0q it suffices to show that zq ≤ 0q. Now z ≤ p <
q = xq, so without loss of generality, z1 ≤ p. If x ≤ p, then q = xq ≤ pq = p,
a contradiction. Consequently, x �≤ p. Since x is weak meet principal, there is
a ∈ L such that z1 ∧ x = ax. Therefore, (ax)q = (z1)q ∧ xq = (z1)q.

Moreover, since z1 ≤ p, it follows that ax ≤ (ax)q = (z1)q ≤ p, and hence
a ≤ p ≤ q. Therefore, we have that a2 ≤ aq = axq ≤ (z1)q. Since (z1)q is an
�-radical element of L, this implies a ≤ (z1)q. Hence (z1)q = (ax)q ≤ (z1x)q,
and so zq = (z1z2 · · · zn)q ≤ (z1xz2 · · · zn)q = (zx)q. Since z ≤ (zx)q and z is
compact, Lemma 2.7 implies there is b �≤ q such that zb ≤ zx. By assumption,
z is weak join principal, so b ≤ x ∨ (0 : z). Since x ≤ q and b �≤ q, this implies
(0 : z) �≤ q. Therefore, zq ≤ 0q. �

Lemma 4.4. Let L be a principally generated radical factorial C-lattice.
(1) dimL ≤ 1.
(2) If x ∈ L and m ∈ Max(L), then either xm = mk for some k ∈ N0 or

xm = 0m.
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(3) L is a Prüfer lattice, i.e., each compact element is �-principal.

Proof. (1) The main part of the proof of (1) consists in showing that if p is a
nonmaximal �-prime element, then p = 0m for all m ∈ Max(L) above p. For
suppose that this has been established and q ≤ p < m are �-prime elements
and m ∈ Max(L). Then p = 0m = q by the claim, which in turn implies
that dimL ≤ 1. Therefore, we focus in the proof on showing that if p is a
nonmaximal �-prime element, then p = 0m for all m ∈ Max(L) above p.

Let p be a nonmaximal �-prime element in L, let m ∈ Max(L) with p < m,
and let x be an �-principal element in L such that x ≤ m and x �≤ p. Let q be an
�-prime element with q ≤ m and q minimal over p∨x. By Lemma 4.2, q �= (q2)q.
Let y be an �-principal element in L such that y ≤ q and y �≤ (q2)q. Write
y = y1 · · · yk, where the yi are �-radical elements. Then yq = ((y1)q · · · (yk)q)q.
With an aim of applying Lemma 4.3, we show that yq = q.

In light of Lemma 2.8, the preceding decomposition of y and the assump-
tion that y �≤ (q2)q, to prove that yq = q it is enough to show that q is a
minimal �-prime element above y. Assume that there is some �-prime element
n with y ≤ n < q. Then there exists an �-principal element z ≤ q and z �≤ n.
Since z ∨ n ≤ q, there is an �-prime element n′ ≤ q minimal over z ∨ n. By
assumption, z2 ∨ n is a product of �-radical elements. From Lemma 4.2 we
have that y ≤ n ≤ ((n′)2)n′ �= n′. Note that ((n′)2)n′ = v1 · · · vs, where the
vi are �-radical elements of L. There is some 1 ≤ j ≤ s such that vj ≤ n′.
Since (n′)2 ≤ vj ≤ n′, we have that vj = n′. If vi �≤ n′ for all 1 ≤ i ≤ s
such that i �= j, then ((n′)2)n′ = ((v1)n′ · · · (vs)n′)n′ = n′. We infer that
((n′)2)n′ = (n′)2, and thus y ≤ (n′)2 ≤ (q2)q, a contradiction.

Now, applying Lemma 4.3, we have that p = 0q. If q < m, then we may
repeat the preceding argument to show that there is an �-prime element n with
q < n ≤ m such that q = 0n. Then p = 0q = (0n)q = qq = q, contrary to the
choice of q. Therefore, q = m. We conclude that if m ∈ Max(L) with p < m,
we have that p = 0m. This proves the claim.

(2) Let m ∈ Max(L), and let x ∈ L. Without restriction let x ≤ m.
Let p ∈ L be �-prime with p ≤ m and p minimal over xm. Suppose first that
p < m. Then as observed in the proof of (1), p = 0m, in which case, xm = 0m.
Otherwise, if p = m, then

√
xm = m, and since xm is a product of �-radical

elements, we have that xm is a power of m.
(3) Let x ∈ L be compact. It follows from Lemma 2.7(6) that x is �-

principal if and only if xm is �-principal in Lm for each m ∈ Max(L) with
x ≤ m. Let m ∈ Max(L) with x ≤ m. We show that xm is �-principal in Lm.
Indeed, by (2) the elements in Lm are totally ordered with respect to ≤. Since
x is compact in L, xm is compact in Lm. Since every element of L, hence of
Lm is a join of �-principal elements, it follows that xm is a join of finitely many
�-principal elements in Lm. Since the elements in Lm are totally ordered, it
follows that xm is �-principal in Lm. �

We want to thank T. Dumitrescu for pointing out (by personal com-
munication) that Lemma 4.4(1) can be proved directly (i.e., not relying on
Lemmas 4.2 and 4.3 of this paper) by modifying the proof of [1, Theorem 3.3].
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Remark 4.5. The proof of (3) shows that for each m ∈ Max(L), every element
of Lm is an �-principal element. For more on C-lattices with this property
(which are called almost principal element lattices), see [10].

Theorem 4.6. The following are equivalent for a principally generated C-lattice
domain L.
(1) L is a radical factorial lattice.
(2) dimL ≤ 1 and each �-invertible element is a product of �-radical elements.
(3) Each nonzero �-prime element is maximal and above an �-invertible �-

radical element.
(4) Each element is a product of �-radical elements x1 ≤ · · · ≤ xn.
(5) The �-radical of each nonzero compact element is �-invertible.
(6) Every nonzero compact element is �-invertible and the �-radical of every

compact element is compact.

Proof. (1) ⇒ (2) This is an immediate consequence of Lemma 4.4(1).
(2) ⇒ (3) Let m ∈ Max(L), and let x be an �-invertible element with

x ≤ m. By (2), x = x1 · · · xk for some �-radical elements x1, . . . , xk. Since x
is �-invertible, we have by Lemma 2.5 that so is each xi. Since m is �-prime,
there is i such that xi ≤ m, which verifies (3).

(3) ⇒ (4) We use Theorem 3.1 to prove this implication. Let 0 �= y ∈ L,
and let m ∈ Max(L) with y ≤ m. By (3), the �-prime elements minimal over
y are maximal elements. Thus y is zero-dimensional, and so by Theorem 3.1,
y is a product of �-radical elements y1 ≤ y2 ≤ · · · ≤ yk.

(4) ⇒ (1) This is clear.
(4) ⇒ (6) Let x be a nonzero compact element. By Lemma 4.4(3), x

is �-principal. Since L is a multiplicative lattice domain, we have that x is �-
invertible. Now by (4), x = x1 · · · xk for some �-radical elements x1 ≤ · · · ≤ xk.
Since x is �-invertible, so is x1 by Lemma 2.5. Since x1 =

√
x, statement (6)

follows.
(6) ⇒ (5) This is obvious.
(5) ⇒ (3) We prove this part by establishing a series of claims.

Claim 1. Every nonzero �-prime element of L is above an �-invertible �-radical
element.

Let p ∈ L be a nonzero �-prime element. There is some nonzero x ∈ L∗

such that x ≤ p. Set y =
√

x. Then y is an �-invertible �-radical element of L
and y ≤ p. This proves Claim 1.

Claim 2. If x ∈ L∗ is nonzero and p ∈ L is an �-prime element minimal above
x, then p is a minimal nonzero �-prime element of L.

Let x ∈ L∗ be nonzero, p ∈ L an �-prime element minimal above x and
q ∈ L an �-prime element such that 0 < q ≤ p. We have to show that p ≤ q.
Observe that Lp is a principally generated C-lattice domain and Max(Lp) =
{pp}. Moreover, if w ∈ Lp is a nonzero compact element, then w = tp for some
nonzero compact element t ∈ L, and hence

√
w =

√
tp =

√
tp is an �-invertible

element of Lp (since
√

t is an �-invertible element of L). Therefore, the �-radical
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of every nonzero compact element of Lp is �-invertible. Also note that xp is a
compact element of Lp, pp is an �-prime element of Lp that is minimal above
xp, and qp is an �-prime element of Lp such that 0p < qp ≤ pp. Therefore, we
can assume without restriction that Max(L) = {p}.

Since p is minimal above x, we have that p =
√

x is an �-invertible element
of L. By Claim 1 there is an �-invertible �-radical element y ∈ L such that
y ≤ q. We have that y ≤ p, and since p is weak meet principal, there is some
b ∈ L such that y = pb. Assume that b �= 1. Since b ≤ p and p is weak meet
principal, there is some d ∈ L such that b = pd. Consequently, (pd)2 ≤ p2d = y,
and since y is �-radical, we have that pd ≤ y. Therefore, b = pd ≤ y ≤ b. It
follows that y = b, and thus y = py. Since y is cancellative, we infer that p = 1,
a contradiction. This implies that b = 1, and hence p = y ≤ q, which proves
Claim 2.

Claim 3. For each m ∈ Max(L) and all �-invertible x, y ∈ L we have that xm

and ym are comparable.

Assume to the contrary that there are some m ∈ Max(L) and �-invertible
elements x, y ∈ L such that xm and ym are not comparable. Observe that
x, y ≤ m. Clearly, x ∨ y is nonzero and compact, and thus z0 =

√
x ∨ y is

�-invertible and �-radical. Since x ≤ z0, y ≤ z0 and z0 is weak meet principal,
there are some v, w ∈ L such that x = vz0 and y = wz0. We have that v
and w are �-invertible. If vm and wm are comparable, say vm ≤ wm, then
xm = (vm(z0)m)m ≤ (wm(z0)m)m = ym, a contradiction. Therefore, vm and
wm are not comparable.

Set x0 = x and y0 = y. Using the observation before, we can recur-
sively construct a sequence (zi)i∈N0 of �-invertible �-radical elements of L
and sequences (xi)i∈N0 and (yi)i∈N0 of �-invertible elements of L such that
zi =

√
xi ∨ yi, xi = xi+1zi and yi = yi+1zi for all i ∈ N0. Note that if i ∈ N0,

then (xi)m and (yi)m are not comparable and, in particular, xi, yi ≤ m and
zi ≤ zi+1 ≤ m. Observe that z0 is compact, and hence there is some k ∈ N

such that zk
0 ≤ x0 ∨ y0. We infer that

zk
0 ≤ x0 ∨ y0 = z0 · · · zk−1(xk ∨ yk) ≤ z0 · · · zk.

Since zk �= 1, there is some �-prime element p ∈ L that is minimal above zk.
Since zk is nonzero and compact, it follows by Claim 2 that p is a minimal
nonzero �-prime element of L. In particular, if 0 ≤ i ≤ k, then p is minimal
above zi and (zi)p = p. Consequently, (pk)p = (zk

0 )p ≤ (z0 · · · zk)p = (pk+1)p,
and thus (pk)p = (pk+1)p. Note that (z0)p = p and (zk

0 )p = (zk+1
0 )p. Ob-

serve that (z0)p is an �-invertible element of Lp. Therefore, (z0)p = 1 and
z0 ≤ zk ≤ p, a contradiction. This proves Claim 3.

Now let p be an �-prime element and m ∈ Max(L) such that 0 < p ≤ m.
It is sufficient to show that b ≤ p for all nonzero b ∈ L∗ such that b ≤ m. Let
b ∈ L∗ be nonzero such that b ≤ m. There is some �-prime element q ∈ L that
is minimal above b such that q ≤ m. Observe that

p =
∨

{cm | c ∈ L is �-invertible and c ≤ p} and
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q =
∨

{cm | c ∈ L is �-invertible and c ≤ q}.

Assume that p and q are not comparable. Then there are some �-invertible
elements c, d ∈ L such that cm ≤ p, cm �≤ q, dm �≤ p and dm ≤ q. We infer that
cm and dm are not comparable, which contradicts Claim 3. Therefore, p and
q are comparable. If p ≤ q, then since q is a minimal nonzero �-prime element
by Claim 2, it follows that p = q. In any case we have that b ≤ q ≤ p. �

We will prove in Corollary 6.7 that the decomposition x = x1 · · · xn in
statement (4) of Theorem 4.6 is unique if x is nonzero and the xi are proper.
The following remark was communicated to us by T. Dumitrescu.

Remark 4.7. Let L be a principally generated radical factorial C-lattice do-
main. Then L is isomorphic to the lattice of ideals of some SP-domain.

Proof. By Lemma 4.4(2), L is locally totally ordered. This implies that Lm is
a modular lattice for each m ∈ Max(L), and hence L is a modular lattice. Now
[2, Theorem 3.4] applies to show that L is isomorphic to the lattice of ideals
of some Prüfer domain D. Note that the �-radical elements of the lattice of
ideals of D are precisely the radical ideals of D. Since L is a radical factorial
lattice, we infer that D is an SP-domain. �

Remark 4.8. Note that the “L is a principally generated lattice” condition
in Lemma 4.4 and Theorem 4.6 cannot be replaced by the condition that
every element of L is a join of (weak) meet principal cancellative elements. We
consider the monoid H that is constructed in [17, Example 4.2], and we let
L be the set of t-ideals of H. (The definition of t-ideals and the t-system of
monoids can be found in [17].)

Note that H is an (additively written) cancellative monoid and t is a
finitary ideal system on H. By Lemma 8.1 we know that L is a C-lattice.
It follows by [17, Example 4.2] that L is a radical factorial lattice such that
dim L = 2 and every nonzero element of L is cancellative. In particular, L is a
multiplicative lattice domain. Moreover, if I ∈ L, then I =

∨{x + H | x ∈ I}
and x + H is a meet principal cancellative element of L for each x ∈ H.

5. Example: upper semicontinuous functions

The purpose of this section is to give a class of examples of radical factorial
lattices arising in a topological context. The importance of this class becomes
evident in the next section, where it is shown that all principally generated
radical factorial C-lattice domains arise this way. In later sections, we interpret
these topological results in the context of rings and monoids.

Recall that for a topological space X, a function f : X → N0 = N∪{0} is
upper semicontinuous if f−1([n,∞)) is a closed set for all n ∈ N0. Our focus is
on compactly supported upper semicontinuous functions taking values among
the nonnegative integers N0. If X is a Hausdorff space, then compact subsets
of X are closed and so we have that a function f : X → N0 is compactly
supported and upper semicontinuous if and only if f−1([k,∞)) is compact
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for all k ∈ N. The compactness of the preimages here implies that such a
function takes on only finitely many values. A convenient decomposition of
such functions is given in Lemma 5.2(5) based on this observation.

Definition 5.1. Let X be a Hausdorff space. We define U(X) to be the monoid
of compactly supported upper semicontinuous functions f : X → N0 with
binary operation given by pointwise addition of functions. We define an order
≤d on U(X) dual to the usual one by f ≤d g iff f(x) ≥ g(x) for all x ∈ X. With
this order, the zero function 0 is the top element of U(X) and is an additive
identity for the monoid (U(X),+). For technical reasons, it will be convenient
to introduce a bottom element b to this partially ordered set. We define b :
X → N0 ∪ {∞} by b(x) = ∞ for each x ∈ X. Thus Ub(X) := U(X) ∪ {b}
is the partially ordered set with this bottom element appended. Observe that
b + f = f + b = b for all f ∈ Ub(X), and hence Ub(X) is a monoid.

Throughout this section, we denote the characteristic function of a subset
A of a set X by 1A; i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x �∈ A.

Lemma 5.2. Let X be a Hausdorff space. With the order ≤d, Ub(X) is a mul-
tiplicative lattice domain with the following properties.
(1) The meet f ∧d g and join f ∨d g are given for all x ∈ X by

(f ∧d g)(x) = max{f(x), g(x)} and (f ∨d g)(x) = min{f(x), g(x)}.

(2) If F is a nonempty subset of U(X), then
∨

d F exists and is given for all
x ∈ X by

(
∨

d

F
)

(x) = min{f(x) | f ∈ F}.

(3) If F is a subset of U(X) that is bounded below in U(X) with respect
to ≤d, then

∧
d F exists and is given by

∧
d F =

∨
d G, where

G = {g ∈ U(X) | g(x) ≥ f(x) for all x ∈ Xand f ∈ F}.
(4) If F is a subset of U(X) that is not bounded below in U(X), then

∧
d F = b

in Ub(X).
(5) A function f : X → N0 is in U(X) iff

f = k01C0 +
n∑

i=1

(ki − ki−1)1Ci
,

where k0 < k1 < · · · < kn are positive integers and C0 ⊇ C1 ⊇ · · · ⊇ Cn

are compact subsets of X.

Proof. That Ub(X) is a multiplicative lattice (written additively) follows from
(1)–(4), which we will establish below, and the observation that addition (since
it is pointwise) commutes with the arbitrary join defined in (2). That the
bottom element b of Ub(X) is �-prime is a consequence of the fact that f +g ∈
U(X) for all f, g ∈ U(X). Thus, once we have established (1)–(4), we have that
Ub(X) is a multiplicative lattice domain for which the top element of Ub(X)
is the zero function.
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(1) Define a function h on X by h(x) = max{f(x), g(x)} for all x ∈ X.
For each k ∈ N, we have that h−1([k,∞)) = f−1([k,∞)) ∪ g−1([k,∞)). As a
union of two compact sets, h−1([k,∞)) is also compact. Therefore, h ∈ U(X).
It is clear that h is the greatest lower bound of f and g with respect to ≤d.
The proof that the join exists and is as claimed is similar, using instead the
fact that the intersection of compact sets is closed, hence compact.

(2) The proof of (2) is a straightforward extension of the argument in (1).
(3) This follows from (2).
(4) This is clear.
(5) Let f ∈ U(X). Since f is compactly supported, f is bounded, and so

f takes on only finitely many positive values, say k0 < k1 < · · · < kn are the
positive values of f . For each i, let Ci = f−1([ki,∞)). Since f is compactly
supported and each ki is positive, each closed set Ci is compact. Hence each
characteristic function 1Ci

is in U(X) and C0 ⊇ · · · ⊇ Cn. Moreover,

f = k01C0 +
n∑

i=1

(ki − ki−1)1Ci
.

Conversely, any function of this form is easily seen to be upper semicontinuous
and compactly supported. �
Theorem 5.3. If X is a Hausdorff space, then Ub(X) is a radical factorial
lattice domain.

Proof. By Lemma 5.2, Ub(X) is a multiplicative lattice domain. We claim that
1A is an �-radical element of Ub(X) for each compact subset A of X. Let A be
a compact subset of X. Then 1A ∈ Ub(X). To see that 1A is �-radical, suppose
f ∈ Ub(X) and nf ≤d 1A for some n ∈ N. Then 1 = 1A(x) ≤ nf(x) for all
x ∈ A. Therefore, for each x ∈ A, f(x) �= 0 and hence 1 = 1A(x) ≤ f(x). It
follows that 1A(x) ≤ f(x) for all x ∈ X and hence f ≤d 1A. Thus 1A is an
�-radical element of Ub(X). Applying Lemma 5.2(5), we obtain that Ub(X) is
a radical factorial lattice. �
Remark 5.4. The proof of Theorem 5.3 shows that for each compact subset A
of X, 1A is an �-radical element of U(X). The converse is also true: Suppose g
is an �-radical element of U(X). If g = 0, then g is the characteristic function of
the empty set. Suppose g �= 0. Since g is bounded, n = max{g(x) | x ∈ X} ex-
ists. Since the values of g are nonnegative integers, to prove g is a characteristic
function of a closed set, it suffices to show that n = 1. Let A = g−1([1,∞)).
Since g is upper semicontinuous, A is closed in X. Now g(x) ≤ n1A(x) for all
x ∈ X. Thus n1A ≤d g, and since g is �-radical, we have that 1A ≤d g. But
then g(x) ≤ 1 for all x ∈ A. Therefore, n = 1. Moreover, since g is compactly
supported, A is a closed subset of a compact set and hence is compact.

6. Representation of radical factorial lattices

In this section we show that every principally generated radical factorial C-
lattice domain can be represented as the multiplicative lattice Ub(X) of com-
pactly supported upper semicontinuous functions studied in the last section.
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Using this fact, we show in Corollary 6.6 that the structure of a principally gen-
erated radical factorial C-lattice domain is determined entirely by the topology
of the space of maximal elements of L. Using this description, we obtain in
Corollary 6.7 a uniqueness result for the representation of elements as products
of �-radical elements in such radical factorial lattices.

Definition 6.1. For a C-lattice L, we define XL = Max(L), and we view XL as
a topological space with respect to the inverse topology on XL. This topology
has as a basis of open sets of the form V (x) := {m ∈ XL | x ≤ m}, where
x is a compact element of L. Thus XL has a basis of closed sets of the form
U(x) := {m ∈ XL | x �≤ m}, where x is compact.

For the next lemma, recall that a topological space is zero-dimensional if
it has a basis of clopen sets.

Lemma 6.2. If L is a principally generated radical factorial C-lattice domain,
then XL is a zero-dimensional Hausdorff space.

Proof. To see that XL is Hausdorff, let m,n ∈ XL. Then m ∨ n = 1, so, since
1 is compact and each of x and y is a join of compact elements, there exist
compact elements x ≤ m and y ≤ n such that x ∨ y = 1. Therefore, V (x) and
V (y) are disjoint open neighborhoods of m and n, respectively, proving that
XL is Hausdorff.

To prove that XL is a zero-dimensional space, it suffices to show that
for each nonzero compact element y in L, the set V (y) is a compact open
subspace of XL. Let y be a nonzero compact element in L. By Theorem 4.6,√

y is again compact. Thus we may assume without loss of generality that y
is �-radical. Suppose {yα} is a collection of compact elements in L such that
V (y) ⊆ ⋃

α V (yα). Then

V (y) =
⋃

α

(V (yα) ∩ V (y)) =
⋃

α

V (y ∨ yα).

We claim that for each α, (y ∨ yα) ∨ (y : (y ∨ yα)) = 1. Let m ∈ XL. If
y∨yα ≤ m, then since dim L ≤ 1 by Theorem 4.6 and y is �-radical and nonzero,
we have that ym = (y ∨ yα)m = m. Since y ∨ yα is compact, Lemma 2.7(6)
implies that

(y : (y ∨ yα))m = (ym : (y ∨ yα)m) = (m : m) = 1.

Therefore, if y ∨ yα ≤ m, we have that (y : (y ∨ yα)) �≤ m. Consequently,
(y ∨ yα) ∨ (y : (y ∨ yα)) = 1.

Since 1 is compact, we may choose a compact element zα ∈ L such that
zα ≤ (y : (y ∨ yα)) and (y ∨ yα) ∨ zα = 1.

Thus

(y ∨ yα)zα ≤ (y ∨ yα)(y : (y ∨ yα)) ≤ y,

and so we conclude that V (y ∨ yα) = V (y) ∩ U(zα). Therefore,

V (y) =
⋃

α

(V (y) ∩ U(zα)) .
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It follows that V (y) ⊆ ⋃
α U(zα) and hence y∨(

∨
α zα) = 1. Since 1 is compact,

there exist α1, . . . , αk such that y ∨ zα1 ∨ · · · ∨ zαk
= 1. Therefore,

V (y) =
k⋃

i=1

(V (y) ∩ U(zαi
)) =

k⋃

i=1

V (y ∨ yαi
).

This proves that the open cover {V (y) ∩ V (yα)} of V (y) has a finite
subcover. We conclude that V (y) is compact. �

The next lemma introduces a valuation-like map vm : L → N0 ∪ {∞} for
each m ∈ XL. This map is used in Lemma 6.4 to define the functions from XL
to N0 that will be our primary interest in this section.

Lemma 6.3. Let L be a principally generated radical factorial C-lattice domain,
and let m ∈ XL. For each m ∈ XL, define vm : L → N0 ∪ {∞} by vm(x) =
sup{k ∈ N0 | x ≤ mk} for each x ∈ L. The following properties hold for all
nonzero x, y ∈ L.

(i) vm(x) is the unique k ∈ N0 for which xm = mk.
(ii) vm(xy) = vm(x) + vm(y).

Proof. (i) First we show that there is some k ∈ N0 for which xm = mk. Assume
to the contrary that xm �= mk for all k ∈ N0. Then by Lemma 4.4(2), we have
that xm = 0m. However, L is a principally generated C-lattice domain, and
so xm is above an �-invertible element y in L. Thus ym = 0m = (y2)m, so
that yb ≤ y2 for some compact b �≤ m. Since y is �-invertible, this implies
b ≤ y ≤ m, a contradiction.

It remains to show that for each n ∈ N0 with xm = mn we have that
n = vm(x). Let n ∈ N0 be such that xm = mn. Then x ≤ mn, and hence
n ≤ vm(x). Suppose that n < vm(x). Then xm ≤ mn+1 ≤ mn = xm, and
hence mn = mn+1. By Theorem 4.6, there is a zero-dimensional �-invertible
�-radical element z with zm = m. Thus mn = mn+1 implies (zn)m = (zn+1)m.
In this case, there is a compact b �≤ m such that bzn ≤ zn+1. Since z is
�-invertible, this implies b ≤ z ≤ m, a contradiction.

(ii) By (i) and Lemma 2.7(2) it follows that

mvm(xy) = (xmym)m = (mvm(x)mvm(y))m = mvm(x)+vm(y).

We infer by (i) that vm(xy) = vm(x) + vm(y). �

Lemma 6.4. If L is a principally generated radical factorial C-lattice domain,
then for each nonzero x ∈ L, the function αx : XL → N0 : m �→ vm(x) is
compactly supported and upper semicontinuous. If x is compact, then αx is
continuous.

Proof. We prove the second assertion first. Let x be a nonzero compact element
of L. Since N0 is a discrete space, to show that αx is continuous it suffices to
prove that for each k ∈ N0, {m ∈ XL | vm(x) = k} is an open subset of XL.
Let k ∈ N0. Using Theorem 4.6, write x = x1 · · · xs for some �-radical elements
x1 ≤ · · · ≤ xs.
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We observe that the join of any two nonzero �-radical elements x, y ∈ L
is �-radical. Note that if n ∈ XL is such that x ∨ y ≤ n, then n ≥ (x ∨ y)n ≥
xn ∨ yn = n ∨ n = n, and hence {(x ∨ y)m | m ∈ XL, x ∨ y ≤ m} = {m ∈ XL |
x ∨ y ≤ m}. Since dim(L) ≤ 1 by Theorem 4.6, we infer from Lemma 2.7 that

√
x ∨ y =

∧
{m ∈ XL | x ∨ y ≤ m}

=
∧

{(x ∨ y)m | m ∈ XL and x ∨ y ≤ m} = x ∨ y.

Moreover, for any two �-radical elements y and z in L with y �≤ z, we
have that

(z : y) =
∧

{m ∈ XL | m ≥ z,m �≥ y} =
∧

(V (z) ∩ U(y)) .

Set xs+1 = 1. Using these observations and the assumption that the xi’s form
a chain, we see that

{m ∈ XL | vm(x) = k} = {m ∈ XL | vm(x1 · · · xs) = k}
= {m ∈ XL | xk ≤ m,xk+1 �≤ m}
= {m ∈ XL | (xk : xk+1) ≤ m} = V ((xk : xk+1)).

To prove this set is open in XL, it suffices to show that (xk : xk+1) is
compact. Since x is compact, we have by Lemma 4.4(3) that x is �-invertible,
and hence by Lemma 2.5(2) each xi is �-invertible. From this it follows that
(xk : xk+1) is compact: If (xk : xk+1) ≤ ∨

α yα, then xk = xk+1(xk : xk+1) ≤∨
α xk+1yα. The compactness of xk implies then that xk ≤ xk+1yα1 ∨ · · · ∨

xk+1yαt
for some α1, . . . , αt. Using the fact that xk+1 is cancellative, we obtain

(xk : xk+1) ≤ (xk+1yα1 ∨ · · · ∨ xk+1yαt
: xk+1) = yα1 ∨ · · · ∨ yαt

,

which proves that (xk : xk+1) is compact. This shows that αx is continuous.
Next, suppose that x is an element of XL that is not necessarily compact.

We claim that αx is upper semicontinuous. To this end, let k ∈ N0. Let A be
the set of �-invertible elements in L below x. Since L is a principally generated
C-lattice domain, we have that x =

∨
a∈A a. Therefore,

α−1
x ([k,∞)) = {m ∈ XL | vm(x) ≥ k} = {m ∈ XL | x ≤ mk}

= {m ∈ XL | a ≤ mk for all a ∈ A}
= {m ∈ XL | vm(a) ≥ k for all a ∈ A}
=

⋂

a∈A

α−1
a ([k,∞)).

Since each a is compact, αa is a continuous function by what we have
previously established. Therefore, the last intersection is an intersection of
closed sets. Hence α−1

x ([k,∞)) is closed, which proves that αx is upper semi-
continuous.

To see next that αx is compactly supported, let y be an �-invertible
element in L with y ≤ x. To prove that x is compactly supported, it suffices to
show that {m ∈ XL | y ≤ m} is compact in XL. This is the case by Lemma 6.2,
so αx is compactly supported. �



24 Page 18 of 29 B. Olberding and A. Reinhart Algebra Univers.

Theorem 6.5. If L is a principally generated radical factorial C-lattice domain,
then L and Ub(XL) are isomorphic as multiplicative lattices.

Proof. We claim that the mapping φ : L → Ub(XL) defined by φ(0) = b and
φ(x) = αx for all nonzero x ∈ L is an isomorphism of multiplicative lattices.
By Lemma 6.4, φ is well-defined. To see that φ is a homomorphism of monoids,
first observe that if x ∈ L, then it is clear that φ(0 · x) = φ(0) + φ(x). Now let
x, y be nonzero elements in L. Then for each m ∈ XL,

φ(xy)(m) = αxy(m) = vm(xy) = vm(x) + vm(y)
= αx(m) + αy(m) = (φ(x) + φ(y))(m)

by Lemma 6.3(ii) and φ(1)(m) = α1(m) = vm(1) = 0. Therefore, φ(1) = 0
and φ(xy) = φ(x) + φ(y) for all x, y ∈ L, and thus φ is a homomorphism of
monoids.

We show next that for all x, y ∈ L, x ≤ y iff φ(x) ≤d φ(y). Let x, y ∈ L
and m ∈ XL. Without restriction let x, y �= 0. If x ≤ y, then

φ(x)(m) = vm(x) ≥ vm(y) = φ(y)(m),

so that φ(x)(n) ≥ φ(y)(n) for all n ∈ XL, and hence φ(x) ≤d φ(y). Conversely,
if φ(x) ≤d φ(y), then vm(y) = φ(y)(m) ≤ φ(x)(m) = vm(x), so that xn =
nvn(x) ≤ nvn(y) = yn for all n ∈ XL by Lemma 6.3(i), and hence x ≤ y by
Lemma 2.7(5).

It is an immediate consequence of the last statement that φ is injective.
Finally, to see that φ is onto, observe first that φ(0) = b and every element

of U(XL) is by Lemma 5.2(5) a linear combination of characteristic functions
1C , where C is compact in XL. Therefore, we need only show that each such
characteristic function is in the image of φ. Let C be a compact subset of XL.
Without restriction we can assume that 0 �∈ XL. Since C ⊆ ⋃

a∈L∗\{0} V (a),
the fact that C is compact implies there is a finite set A ⊆ L∗\{0} such that
C ⊆ ⋃

a∈A V (a). Set y =
√∏

a∈A a. Then y is a nonzero �-radical element of
L such that C ⊆ V (y).

Since C is closed in XL, there is a collection {yi} of compact elements
in L such that C =

⋂
i U(yi). We can assume without restriction that each yi

is �-radical, since U(yi) = U(
√

yi) and
√

yi is compact for each i by Theorem
4.6. Since also C ⊆ V (y), we have that C =

⋂
i (V (y) ∩ U(yi)). Now V (y) ∩

U(yi) = V ((y : yi)). Let z =
∨

i(y : yi). Then C = V (z) and z is an �-
radical element in L since every element above the zero-dimensional �-radical
element y is �-radical. Thus zm = m for each m ∈ Max(L) above z. Since
φ(z)(m) = αz(m) = vm(z), it follows that for each m ∈ XL, we have that
m ∈ C if and only if φ(z)(m) = 1. Therefore, φ(z) = 1C , which proves that φ
is onto. �

Corollary 6.6. Two principally generated radical factorial C-lattice domains L
and L′ are isomorphic if and only if XL and XL′ are homeomorphic.

Proof. If XL and XL′ are homeomorphic, then it follows that Ub(XL) ∼=
Ub(XL′). Theorem 6.5 then implies L ∼= L′. The converse is
straightforward. �
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Corollary 6.7. Let L be a principally generated radical factorial C-lattice do-
main. Then each nonzero x ∈ L can be written uniquely as a product of proper
�-radical elements x1 ≤ · · · ≤ xn.

Proof. First observe that by Theorem 4.6, each nonzero element of L has such
a representation. Let x �= 0 be an element of L. Suppose that x = x1 · · · xn =
y1 · · · yt, where x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yt are proper �-radical elements.
Necessarily x1 =

√
x = y1, so that since by Theorem 6.5,

∑n
i=1 αxi

= αx =
∑t

j=1 αyj
, it follows that

∑n
i=2 αxi

=
∑t

j=2 αyj
. Since the mapping φ in The-

orem 6.5 is injective, we have that x2 · · · xn = y2 · · · yt. Repeating the argument
we obtain that n = t and xi = yi for all
i = 1, 2, . . . , n. �

7. Applications to commutative rings

We now interpret the results of the last sections in the context of commutative
rings by viewing the set consisting of the regular ideals of a ring and the zero
ideal of the ring as a principally generated lattice domain. By doing so, we
obtain in Theorem 7.4 a characterization of a class of rings whose ideals are a
product of radical ideals, followed by similar characterizations for domains in
Corollary 7.7. Because it comes at no extra expense of effort, we work more
generally in the first two lemmas, where the focus is on a situation in which
the role that the total quotient ring plays for regular ideals is replaced with a
ring extension. The notion of regularity is replaced with a relativized notion
that is flexible enough to cover both subclasses of regular ideals as well as
ideals that need not contain a nonzerodivisor.

We recall several relevant definitions from [12]. If R ⊆ T is an extension
of commutative rings, an ideal I of R is T -regular if IT = T . For example, if
T is the total quotient ring of R, then an ideal is T -regular if and only if it
is regular in the usual sense of containing a nonzerodivisor, while if T is the
complete ring of quotients of R, then an ideal is T -regular if and only if no
nonzero element annihilates it. An ideal I of R is T -invertible if there is an
R-submodule J of T such that IJ = R. The extension R ⊆ T is tight if for
each t ∈ T there is a T -invertible ideal I with tI ⊆ R. Any ring of quotients is
tight (see [12, p. 39]).

Lemma 7.1. Let R ⊆ T be an extension of commutative rings, and let L be the
partially ordered set (ordered by inclusion) consisting of the T -regular ideals of
R and the zero ideal.

(1) L is a C-lattice domain having the same residual (I : J) as the lattice of
all ideals of R.

(2) The compact elements of L are the finitely generated T -regular ideals of
R together with the zero ideal.

(3) If R ⊆ T is a tight extension, then the nonzero �-principal elements of L
are the T -invertible ideals of R and are �-invertible elements of L.
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Proof. (1) and (2). Since the intersection of any two T -regular ideals I and J
is T -regular (as it contains IJ), and the sum of any two T -regular ideals is
T -regular, we may view L as a sublattice of the complete lattice of all ideals
of R. It is clear that the join of an arbitrary subset of L is again in L. If
F is a subset of L such that

⋂
I∈F I is not T -regular, then we set

∧ F = 0.
Otherwise, we set

∧ F =
⋂

I∈F I. With this definition of arbitrary meets, L
is a multiplicative lattice (see [5, pp. 409–410]). Moreover, as discussed in [5,
p. 410], the residuation (I : J) is the same whether defined relative to L or
the lattice of all ideals of R. It follows that L is a multiplicative lattice. Since
the nonzero elements in L are T -regular, L is a lattice domain.

To see next that L is a C-lattice, we first verify (2). Let I be a compact
element in L. Since IT = T , I is the sum of the finitely generated T -regular
ideals of R contained in I. Compactness of I now implies that I is finitely
generated. The converse, that a finitely generated T -regular ideal is compact
in L, is routine. Since every T -regular ideal of R is the sum of the finitely
generated T -regular ideals contained in it, this proves that L is a C-lattice.

(3) Let I be a nonzero �-principal element in L. Since I is a T -regular
ideal and R ⊆ T is tight, there is a T -invertible ideal A contained in I. Since
I is weak meet principal, we have that IJ = A for some T -regular ideal J
of R. There is some R-submodule D of T for which AD = R. We infer that
I(JD) = R, proving that I is T -invertible. This also implies I is cancellative
since if IB ⊆ IC for ideals B,C of R, then (JD)IB ⊆ (JD)IC, so that
B ⊆ C. Conversely, if I is a T -invertible ideal of R, it is routine to see that I
is �-principal in L. �

In the next lemma we work under the assumption that every T -regular
ideal of R is a sum of T -invertible ideals. This can be viewed as a general-
ization of the Marot property that requires of a ring that every regular ideal
is generated by regular elements. However, the former assumption is quite a
bit broader than the Marot property, since for example any Prüfer ring also
satisfies it. We point this out again in Remark 7.6.

Lemma 7.1 situates the lattice of T -regular ideals in the context of mul-
tiplicative lattices. With the lemma, we may apply Theorem 4.6 to obtain a
characterization of the radical factorization property for T -regular ideals. If
R ⊆ T is an extension of rings, we denote by Max−1

T (R) the set of maximal T -
regular ideals with the inverse topology, that is, the topology having as a basis
of open sets the sets of the form V (I) := {M ∈ Max−1

T (R) | I ⊆ M}, where I
is T -regular and finitely generated. The extension R ⊆ T is a Prüfer extension
if it is tight and every finitely generated T -regular ideal is T -invertible.

Lemma 7.2. The following are equivalent for a tight extension R ⊆ T such
that every T -regular ideal of R is a sum of T -invertible ideals.
(1) Every T -regular ideal is a product of radical ideals.
(2) Each T -regular ideal is a product of (unique proper) radical ideals J1 ⊆

· · · ⊆ Jn.
(3) Every T -regular prime ideal is maximal and each T -invertible ideal is a

product of radical ideals.



Vol. 80 (2019) Radical factorization in commutative rings Page 21 of 29 24

(4) Each T -regular prime ideal is maximal and contains a T -invertible radical
ideal.

(5) The radical of each finitely generated T -regular ideal is T -invertible.
(6) The multiplicative lattice consisting of the T -regular ideals and the zero

ideal is isomorphic to Ub(Max−1
T (R)).

(7) R ⊆ T is a Prüfer extension for which the radical of each finitely gener-
ated T -regular ideal is finitely generated.

Proof. By Lemma 7.1, the lattice L consisting of the T -regular ideals and
the zero ideal is a C-lattice domain. The assumption that every T -regular
ideal is a sum of T -invertible ideals implies that L is principally generated.
Thus statements (1)–(7) follow from Lemma 7.1, Theorems 4.6 and 6.5 and
Corollary 6.7. �
Remark 7.3. If R ⊆ T is a Prüfer extension, then it is clear that every T -
regular ideal is a sum of T -invertible ideals. Thus statements (1)–(7) of
Theorem 7.2 are equivalent under the lone hypothesis that R ⊆ T is a Prüfer
extension.

Specializing to the case where T is the total quotient ring of R, we ob-
tain the main theorem of this section, which generalizes to a larger class of
rings some known characterizations of Marot SP-rings and adds a new one.
Specifically, under the more restrictive assumption that R is a Marot N -ring,
the equivalence of (1)–(6) is proved by Ahmed and Dumitrescu in [1, Theorem
2.12]. (A Marot ring is an N -ring if for each regular maximal ideal M of R, RM

is a discrete rank one Manis valuation ring.) In the theorem, we use Max−1
reg(R)

to denote the set of maximal regular ideals of R with respect to the inverse
topology. Alternatively, this space can be viewed as Max−1

Q(R)(R).

Theorem 7.4. The following are equivalent for a ring R for which every regular
ideal is a sum of invertible ideals.
(1) R is an SP-ring.
(2) Each regular ideal is a product of (unique proper) radical ideals J1 ⊆

· · · ⊆ Jn.
(3) Every regular prime ideal is maximal and every invertible ideal of R is a

product of radical ideals of R.
(4) Each regular prime ideal is maximal and contains an invertible radical

ideal.
(5) The radical of each regular finitely generated ideal is invertible.
(6) The multiplicative lattice consisting of the regular ideals and the zero ideal

is isomorphic to Ub(Max−1
reg(R)).

(7) R is a Prüfer ring for which the radical of each finitely generated regular
ideal is finitely generated.

Proof. Apply Lemma 7.2 in the case in which T is the total quotient ring
of R. �

As in Remark 7.3, a Prüfer ring has the property that every regular ideal
is a sum of invertible ideals, so we have the following corollary.
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Corollary 7.5. Statements (1)–(7) of Theorem 7.4 are equivalent for a Prüfer
ring R.

Remark 7.6. A Marot N -ring is a Prüfer ring, so the equivalence of (1)–(6) in
the corollary can also be viewed as a generalization of [1, Theorem 2.12].

Specializing Theorem 7.4 to domains, we obtain the following character-
ization.

Corollary 7.7. The following are equivalent for an integral domain R.
(1) Each proper ideal of R is a product of radical ideals.
(2) Each (nonzero) ideal is a product of (unique proper) radical ideals J1 ⊆

· · · ⊆ Jn.
(3) dim(R) ≤ 1 and each invertible ideal of R is a product of radical ideals

of R.
(4) Each nonzero prime ideal is maximal and contains an invertible radical

ideal.
(5) The radical of each nonzero finitely generated ideal is invertible.
(6) The multiplicative lattice of ideals of R is isomorphic to Ub(Max−1(R)).
(7) R is a Prüfer domain for which the radical of each finitely generated ideal

is finitely generated.

The equivalence of (1) and (2) can also be found in [9, Lemma 4.2] (see
also [15, Theorem 2.1]). The rings satisfying (1) are known as SP -domains
in the literature (where “SP” stands for semi-prime). See [15] for background
on this class rings, and see also [1,7,9,14,16] for more characterizations and
properties of these rings.

We mention another consequence of Lemma 7.2, this one concerned with
a “neighborhood” version of radical factorization that shows that invertible
zero-dimensional radical ideals give rise to ideals that factor into radical ideals.

Theorem 7.8. Let R be a commutative ring. If J is an invertible radical zero-
dimensional ideal, then every ideal that contains a power of J can be written
uniquely as a product of proper radical ideals J1 ⊆ · · · ⊆ Jn.

Proof. Let Q(R) be the total quotient ring of R, and let T =
⋃

k∈N0
(R :Q(R)

Jk). Then R ⊆ T is a tight extension for which every T -regular ideal is a sum
of invertible T -ideals. The multiplicative lattice consisting of the zero ideal
and the ideals containing a power of J is the lattice of T -regular ideals and
the zero ideal. The claim now follows from Lemma 7.2. �

Remark 7.9. Under the hypotheses of Theorem 7.8, we obtain also from
Lemma 7.2 that the multiplicative lattice L consisting of the zero ideal and
the ideals that contain a power of J is isomorphic to Ub(Max−1

T (R)). Since the
maximal T -regular ideals are the maximal ideals of R containing J , it follows
that Max−1

T (R) and Max−1(R/J) are homeomorphic. Since dim(R/J) = 0, the
Zariski and inverse topologies agree on Max(R/J) [9, Lemma 6.3]. Therefore,
Max−1(R/J) = Max(R/J), and hence L ∼= Ub(Max(R/J)).
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Remark 7.10. Ahmed and Dumitrescu [1] define a ring R to be an SSP-ring
if every ideal of R is a product of radical ideals. Remark 4.5 generalizes a
theorem of Ahmed and Dumitrescu [1] that states an SSP-ring is an almost
multiplication ring, i.e., a ring R such that RM is a discrete valuation domain
or a special principal ideal ring for all M ∈ Max(R).

8. Ideal systems and star operations

We next apply the results of Section 2–6 to ideal systems of monoids, which
allows us to give characterizations of the radical factorization property for
subclasses of ideals subject to natural closure conditions. At the end of this
section, we translate these characterizations into the context of modular star
operations on integral domains.

Throughout this section let H be a commutative multiplicative monoid.

By z(H) we denote the set of zero elements of H (i.e., the set of elements
z ∈ H for which xz = z for each x ∈ H) and by P(H) we denote the power set
of H. We say that H is cancellative if every x ∈ H\z(H) is cancellative. Let
r : P(H) → P(H), X �→ Xr be a map. We say that r is a weak ideal system
on H if r satisfies the following properties for all X,Y ⊆ H and c ∈ H.

(A) XH ∪ z(H) ⊆ Xr.
(B) If X ⊆ Yr, then Xr ⊆ Yr.
(C) cXr ⊆ (cX)r.

Let r be a weak ideal system on H. We say that r is an ideal system on
H if cXr = (cX)r for all X ⊆ H and c ∈ H. Moreover, r is called finitary
if Xr =

⋃
E⊆X,|E|<∞ Er for all X ⊆ H (equivalently, Xr ⊆ ⋃

E⊆X,|E|<∞ Er

for all X ⊆ H). We say that a subset X ⊆ H is an r-ideal of H if Xr = X.
Moreover, Xr is called the r-closure of X.

A cancellative element x ∈ H is called regular if (xA)r = xAr for all
A ⊆ H. We say that

(1) I is proper if I � H.
(2) I is nontrivial if z(H) � I.
(3) I is regular if it contains a regular element of H.
(4) I is r-invertible if (IJ)r = yH for some J ⊆ H and some regular y ∈ H.

By Ir(H) (resp. Ir(H)reg) we denote the set of r-ideals (resp. the set of regular
r-ideals together with the bottom element ∅r) of H. Let I be an r-ideal of
H. We say that I is r-finitely generated if I = Er for some finite E ⊆ I.
Furthermore, we say that r is modular if for all r-ideals I, J,N of H with
I ⊆ N it follows that (I ∪ J)r ∩ N ⊆ (I ∪ (J ∩ N))r (equivalently: for all
r-ideals I, J,N of H with I ⊆ N it follows that (I ∪J)r ∩N = (I ∪ (J ∩N))r).

Next we introduce two important ideal systems, namely the s-system and
the d-system. Let R be a ring.

Let

s : P(H) → P(H),X �→ XH ∪ z(H).
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Let

d : P(R) → P(R),X �→ R(X),

where is R(X) is the (ring) ideal of R generated by X. It is straightforward to
prove that s resp. d are modular finitary ideal systems on H resp. R.

Let r be a weak ideal system on H. We define the r-multiplication
Ir(H) × Ir(H) → Ir(H) by (I, J) �→ (IJ)r. Then Ir(H) is a multiplica-
tive lattice, where the multiplication is the r-multiplication and the partial
order is inclusion (see [8, Chapter 8]). Also note that if J ⊆ Ir(H), then∨ J = (

⋃
J∈J J)r and

∧ J =
⋂

J∈J J . Moreover, Ir(H)reg forms a multiplica-
tive lattice domain under restricted r-multiplication and inclusion. (Clearly,
finite r-products and arbitrary joins of regular r-ideals are regular. The meet
of elements in Ir(H)reg is the meet of these elements in Ir(H) if it is regular
and the bottom element otherwise.)

Lemma 8.1. Let r be a weak ideal system on H. Each compact element of
Ir(H) and each compact element of Ir(H)reg is r-finitely generated and the
following are equivalent:
(A) r is finitary.
(B) Every r-finitely generated r-ideal of H is a compact element of Ir(H).
(C) {x}r is a compact element of Ir(H) for every x ∈ H.
If these equivalent conditions are satisfied, then Ir(H) and Ir(H)reg are both
C-lattices.

Proof. Let I ∈ Ir(H) be compact. Then

I = Ir =

(
⋃

x∈I

{x}r

)

r

=
∨

{{x}r | x ∈ I},

and hence there is some finite E ⊆ I such that I =
∨{{x}r | x ∈ E}. Therefore,

I = Er is r-finitely generated.
Now let A ∈ Ir(H)reg be nontrivial and compact and let z ∈ A be regular.

Since A =
∨{{x, z}r | x ∈ A}, we have that A =

∨{{x, z}r | x ∈ F} for some
finite F ⊆ A. Therefore, A = (F ∪ {z})r is r-finitely generated.

(A) ⇒ (B) Let r be finitary, I an r-finitely generated r-ideal of H and
E a set of r-ideals of H such that I ≤ ∨ E . There is some finite F ⊆ I such
that I = Fr. We have that F ⊆ (

⋃
J∈E J)r. Since r is finitary, there is some

finite F ′ ⊆ ⋃
J∈E J such that F ⊆ (F ′)r. Clearly, there is some finite E ′ ⊆ E

such that F ′ ⊆ ⋃
J∈E′ J , and thus I = Fr ⊆ F ′ ⊆ (

⋃
J∈E′ J)r. We infer that

I ≤ ∨ E ′, and hence I is compact.
(B) ⇒ (C) Trivial.
(C) ⇒ (A) Let X ⊆ H and x ∈ X. Since {x}r is compact and

{x}r ≤ Xr =
∨

{{y}r | y ∈ X},

there is some finite E ⊆ X such that {x}r ≤ ∨{{y}r | y ∈ E} and hence
x ∈ {x}r ⊆ (

⋃
y∈E{y}r)r = Er.

Now let the above conditions be satisfied. We infer that the set of compact
elements of Ir(H) is the set of r-finitely generated r-ideals of H, and hence it



Vol. 80 (2019) Radical factorization in commutative rings Page 25 of 29 24

is multiplicatively closed. Since J =
∨{{x}r | x ∈ J} for each J ∈ Ir(H), we

infer that Ir(H) is a C-lattice.
Clearly, every compact element of Ir(H) that is an element of Ir(H)reg

is a compact element of Ir(H)reg. We infer that the set of compact elements of
Ir(H)reg is the set of regular r-finitely generated r-ideals of H together with
the bottom element, and thus it is multiplicatively closed. If J ∈ Ir(H)reg
and y ∈ J is regular, then since J =

∨{{x, y}r | x ∈ J} is a join of compact
elements of Ir(H)reg, we have that Ir(H)reg is a C-lattice. �

Lemma 8.2. Let r be a weak ideal system on H.
(1) Every r-invertible r-ideal of H is a weak meet principal and cancellative

element of both Ir(H) and Ir(H)reg.
(2) If r is modular, then every r-invertible r-ideal of H is an �-invertible

element of both Ir(H) and Ir(H)reg.
(3) Every �-invertible element of Ir(H)reg is r-invertible.

Proof. (1) Let I be an r-invertible r-ideal of H. It is clear that I ∈ Ir(H)reg.
Therefore, it is sufficient to show that I is a weak meet principal and cancella-
tive element of Ir(H). There are some B ∈ Ir(H) and some regular y ∈ H
such that (IB)r = yH.

First we show that I is a cancellative element of Ir(H). Let J, L ∈ Ir(H)
be such that (IJ)r = (IL)r. Then

yJ = (yJ)r = (IBJ)r = ((IJ)rB)r = ((IL)rB)r = (IBL)r = (yL)r = yL,

and thus J = L.
Next we show that I is weak meet principal. It is sufficient to show that

for each J ∈ Ir(H) such that J ⊆ I, there is some A ∈ Ir(H) such that
J = (AI)r. Let J ∈ Ir(H) be such that J ⊆ I. Then (JB)r ⊆ (IB)r = yH.
Set A = ({z ∈ H | yz ∈ (JB)r})r. Then A ∈ Ir(H). Let x ∈ (JB)r. Then
x = yz for some z ∈ H. We have that z ∈ A, and thus x ∈ yA. Moreover,
yA = (y{z ∈ H | yz ∈ (JB)r})r ⊆ (JB)r. Therefore, (JB)r = yA, and thus

yJ = (yHJ)r = ((IB)rJ)r = (IBJ)r = (JBI)r

= ((JB)rI)r = (yAI)r = y(AI)r.

We infer that J = (AI)r.
(2) This is an immediate consequence of (1) and Lemma 2.10(3).
(3) Let I be an �-invertible element of Ir(H)reg. There is some regular

x ∈ I. Since xH ⊆ I and I is weak meet principal, it follows that xH =
xH ∩ I = ((xH : I)I)r. On the other hand, (xH : I) ∈ Ir(H), and thus I is
r-invertible. �

Corollary 8.3. Let r be a modular weak ideal system on H such that every
regular r-ideal of H is an r-union of r-invertible r-ideals of H. Then Ir(H)reg
is a principally generated lattice.

Proof. We infer by Lemma 8.2(2) that every r-invertible r-ideal of H is an �-
invertible element of Ir(H)reg. Consequently, Ir(H)reg is principally generated,
since the r-union of elements in Ir(H)reg is their join in Ir(H)reg. �
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Let r be a weak ideal system on H. We say that H is an r-Prüfer monoid
if every regular r-finitely generated r-ideal is r-invertible. Note that every r-
Prüfer monoid satisfies the condition that every regular r-ideal of H is an
r-union of r-invertible r-ideals in Corollary 8.3. Moreover, note that this con-
dition is satisfied by every r-Marot monoid (i.e., a monoid for which every
regular r-ideal is the r-closure of a set of regular elements). An r-ideal I of
H is called radical if for each n ∈ N and x ∈ H such that xn ∈ I it follows
that x ∈ I. Moreover, H is called an r-SP-monoid if every r-ideal is a finite
r-product of radical r-ideals of H.

Furthermore, let r-max(H) denote the set of r-maximal r-ideals (resp.
let r-max(H)reg denote the set of regular r-maximal r-ideals of H). Let r-
max−1(H) resp. r-max−1(H)reg be the corresponding topological spaces
equipped with the inverse topology (as defined in Definition 6.1). Moreover,
set dimr(H) = dim Ir(H).

Theorem 8.4. The following are equivalent for a modular finitary weak ideal
system r on H such that each regular r-ideal of H is an r-union of r-invertible
r-ideals of H.

(1) Every regular r-ideal of H is an r-product of radical r-ideals.
(2) Every regular prime r-ideal is r-maximal and each r-invertible r-ideal is

an r-product of radical r-ideals.
(3) Each regular prime r-ideal is r-maximal and contains an r-invertible rad-

ical r-ideal.
(4) Each regular r-ideal is an r-product of (unique proper) radical r-ideals

J1 ⊆ · · · ⊆ Jn.
(5) The radical of each regular r-finitely generated r-ideal is r-invertible.
(6) The C-lattice Ir(H)reg is isomorphic to Ub(r-max−1(H)reg).
(7) H is an r-Prüfer monoid and the radical of every r-finitely generated

r-ideal is r-finitely generated.

Proof. This is an immediate consequence of Theorems 4.6, 5.3 and 6.5, Corol-
laries 6.7 and 8.3 and Lemma 8.1. �

Corollary 8.5. The following are equivalent if H is cancellative and r is a
modular finitary ideal system on H.

(1) H is an r-SP-monoid.
(2) dimr(H) ≤ 1 and each r-invertible r-ideal is an r-product of radical r-

ideals.
(3) dimr(H) ≤ 1 and each nontrivial prime r-ideal contains an r-invertible

radical r-ideal.
(4) Each (nontrivial) r-ideal is an r-product of (unique proper) radical r-

ideals J1 ⊆ · · · ⊆ Jn.
(5) The radical of each nontrivial r-finitely generated r-ideal is r-invertible.
(6) The C-lattice Ir(H) is isomorphic to Ub(r-max−1(H)).
(7) H is an r-Prüfer monoid and the radical of every r-finitely generated

r-ideal is r-finitely generated.



Vol. 80 (2019) Radical factorization in commutative rings Page 27 of 29 24

Proof. Observe that xH is an r-invertible r-ideal of H for every cancellative
element x ∈ H. Let I be a nontrivial r-ideal of H. Clearly, I is regular and
I = (

⋃
x∈I\z(H) xH)r. The statement now follows by Theorem 8.4. �

Let R be an integral domain. An ideal system r on R is called a star
operation on R if every r-ideal of R is a (ring) ideal of R. A star operation on
R is called of finite type if it is finitary (as an ideal system). A star operation
is called modular if it is modular as an ideal system. Note that this concept of
star operation differs from the classical notion of star operation, but it leads
to the same monoid of star ideals as the “classical star operations”. More
precisely, if r is a star operation on R and F(R) denotes the set of nonzero
fractional ideals of R, then ∗ : F(R) → F(R) defined by X∗ = c−1(cX)r

for all X ∈ F(R) and nonzero c ∈ R such that cX ⊆ R is a “classical star
operation” on R and Ir(R) = {I ∈ F(R) | I ⊆ R, I∗ = I} ∪ {(0)}. Conversely
if ∗ : F(R) → F(R) is a “classical star operation” on R, then r : P(R) → P(R)
defined by Xr = (R(X))∗ if X � {0} and by Xr = {0} if X ⊆ {0}, then r is a
star operation on R. If ∗ is a star operation of finite type, then we say that R
is a P∗MD if every nonzero ∗-finitely generated ∗-ideal of R is ∗-invertible. We
say that R is a ∗-SP-domain if every ∗-ideal of R a finite ∗-product of radical
∗-ideals of R.

Corollary 8.6. The following are equivalent for an integral domain R and a
modular star operation ∗ on R of finite type.
(1) R is a ∗-SP-domain.
(2) dim∗(R) ≤ 1 and every ∗-invertible ∗-ideal of R is a finite ∗-product of

radical ∗-ideals of R.
(3) Each nonzero prime ∗-ideal is maximal and contains a ∗-invertible radical

∗-ideal.
(4) Each ∗-ideal is a product of (unique) radical ∗-ideals J1 ⊆ · · · ⊆ Jn.
(5) The radical of each nonzero ∗-finitely generated ∗-ideal is ∗-invertible.
(6) The C-lattice I∗(R) is isomorphic to Ub(∗-max−1(R)).
(7) R is a P∗MD for which the radical of each ∗-finitely generated ∗-ideal is

∗-finitely generated.

Proof. This follows from Corollary 8.5. �
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