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Algebra Universalis

MacNeille completion and profinite completion can
coincide on finitely generated modal algebras

Jacob Vosmaer

Abstract. Following Bezhanishvili and Vosmaer, we confirm a conjecture of Yde
Venema by piecing together results from various authors. Specifically, we show that
if A is a residually finite, finitely generated modal algebra such that HSP(A) has
equationally definable principal congruences, then the profinite completion of A is
isomorphic to its MacNeille completion, and ♦ is smooth. Specific examples of such
modal algebras are the free K4-algebra and the free PDL-algebra.

1. Introduction

In this paper we compare two mathematical constructions applied to modal

algebras. The first is the MacNeille completion, which is an order-theoretic

generalization of the construction of the reals from the rationals using Dedekind

cuts [12]. It has been applied in logic to prove, for example, the completeness

of predicate calculi [14]. The second is the profinite completion, which is a

universal algebraic construction, transforming an algebra into a topological al-

gebra endowed with a Stone (compact, Hausdorff, zero-dimensional) topology.

This construction stems from Galois theory [15], but has more recently also

been connected with lattice completions [3, 10, 19, 4].

This paper is a companion piece to [4]. In that paper, parallel versions

of our Theorems 3.1 and 4.2 arise in a study of the connections between dif-

ferent completions of Heyting algebras, using Esakia duality. In light of the

topological character of the profinite completion, in the present paper we will

present topological algebra proofs instead. This establishes a strong connec-

tion with the body of work on canonicity [8] and MacNeille canonicity [17].

Another advantage of our present perspective is that we can show how the two

main theorems pivot around an interaction between principal lattice filters and

principal algebra congruences, which are in a one-to-one correspondence for

Heyting algebras, but not for modal algebras. Finally, we will briefly mention

some of the connections of our results to modal logic.

Presented by I. Hodkinson.
Received November 13, 2007; accepted in final form April 28, 2008.
2000 Mathematics Subject Classification: Primary: 06E25; Secondary: 06B23, 03B45,

22A30.
Key words and phrases: modal algebra, MacNeille completion, profinite completion.
This research was supported by VICI grant 639.073.501 of the Netherlands Organization

for Scientific Research (NWO).



450 J. Vosmaer Algebra Univers.

2. Completions and topologies

Let B = 〈B;∧,∨,¬, 0, 1〉 be a Boolean algebra. Given b ∈ B we write

b↓ = {a ∈ B | a ≤ b} (b↑ is defined dually). We say S ⊆ B is join-dense in B iff,

for every a ∈ B, a =
∨

(a↓∩S) (meet-density is defined dually). A completion

of a lattice B is a pair (m, C), where m : B ↪→ C is a lattice embedding into

a complete lattice C. Completions (m, C) and (k, D) of B are isomorphic if

gm = k for some lattice isomorphism g : C → D. If (m, C) is a completion of

B, let ρB be the topology on C generated by basis {[m(a),m(b)] | a, b ∈ B}

(where [x, y] = {z ∈ C | x ≤ z ≤ y}). By γ↓

B
, γ↑

B
and γB we denote the Scott

topology, the dual Scott topology, and the biScott topology on B respectively.

Let At B be the (possibly empty) set of atoms of B, and let Atω B be the set of

all finite joins of atoms of B. Then ιB is the topology generated by the basis

{[a,¬b] | a, b ∈ Atω B}. By [8, Section 2], ιB = γB if B is complete and atomic.

The MacNeille completion [2] of a Boolean algebra B is defined up to iso-

morphism as a completion (m, C) such that m[B] is join-dense in C (by [5,

Theorem V-27] C is then also a Boolean algebra). We denote the MacNeille

completion of B by B̄. Alternatively [17, Theorem 4.5], B̄ can be characterized

up to isomorphism as a completion (m, C) of B such that 〈C, ρB〉 is Haus-

dorff. If f : B → C is an order-preserving map between Boolean algebras, then

f◦ : B̄ → C̄, defined by f◦ : x �→
∨
{f(a) | mB(a) ≤ x}, is the lower extension

of f . The upper extension f• is defined dually. Alternatively [17, Section 5],

f◦ is the (pointwise) largest (ρB, γ↓

C̄
)-continuous extension of f , and f• is the

smallest (ρB, γ↑

C̄
)-continuous extension of f . We say f is smooth if f◦ = f•.

Given a modal algebra A = 〈A;♦〉, let ΦA := {θ ∈ Con A | A/θ is finite}.

We say A is residually finite if, for all a, b ∈ A with a 
= b, there exists θ ∈ ΦA

such that a/θ 
= b/θ. The inverse system 〈{A/θ}θ∈ΦA
, fθψ〉, where fθψ : A/θ �

A/ψ (for all θ, ψ ∈ ΦA such that θ ⊆ ψ) is defined by fθψ : a/θ �→ a/ψ, has a

projective limit

Â =
{
α ∈

∏
ΦA

A/θ | ∀θ, ψ ∈ ΦA with θ ⊆ ψ, if α(θ) = a/θ then α(ψ) = a/ψ
}
.

The map µ : A → Â, defined by µ : a �→ (a/θ)θ∈ΦA
, is a modal algebra homo-

morphism which is injective iff A is residually finite. We call Â the profinite

completion of A [15]. Since Â is a complete lattice [10], it follows that (µ, Â)

is a completion of A iff A is residually finite. If we define the discrete topol-

ogy on each A/θ, Â inherits a topology τ
Â

as a closed subspace of the prod-

uct
∏

ΦA
A/θ. Now 〈Â, τ

Â
〉 is a Stone space [3, Section 2], and in particular

♦̂ : Â → Â is (τ
Â
, τ

Â
)-continuous [1].

Lemma 2.1. If A is a Boolean algebra expansion, then τ
Â

= ι
Â

= γ
Â
.

Proof. Since 〈Â, τ
Â
〉 is a compact Hausdorff topological lattice, it follows by [9,

Corollary VII-2.3] that τ
Â

= γ
Â
. Since Â is also a complete, atomic Boolean

algebra [3, 19], we know that ι
Â

= γ
Â

[8, Section 2]. �
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3. Comparing profinite completion and MacNeille completion

Theorem 3.1 (cf. [4, Theorem 4.12]). Let A be a modal algebra. The following

are equivalent:

(1) the profinite completion (µ, Â) is the MacNeille completion of A, and ♦

is smooth;

(2) A is residually finite and, for every θ ∈ ΦA, 1/θ is a principal lattice filter.

Proof. If (µ, Â) is the MacNeille completion of A, then µ : A → Â must be

injective, so that A is residually finite (see above). Let θ ∈ ΦA; then it follows

from the definition of Â that the projection πθ : Â � A/θ commutes with µ and

the natural map a �→ a/θ; i.e., a/θ = πθµ(a). By [3, Lemma 2.7], π−1
θ (1/θ) is a

closed principal filter of Â; say π−1
θ (1/θ) = α↑. Because of the correspondence

between modal filters and modal congruences [18, Theorem 29], α↑ completely

characterizes A/θ in the following sense: A/θ ∼= [0, α]
Â

as a bounded lattice

[7, Exercise 4.12]. This implies that α↓ is finite. Since (µ, Â) is the MacNeille

completion of A, µ[A] is join-dense in Â, so by finiteness of α↓, there must exist

a ∈ A such that µ(a) = α. Now b/θ = 1/θ iff µ(b) ∈ π−1
θ (1/θ) = α↑ = µ(a)↑

iff b ≥ a, so 1/θ = a↑ is a principal lattice filter.

Conversely, if A is residually finite, then µ : A → Â is injective, so (µ, Â) is

a completion of A. To show that (µ, Â) is the MacNeille completion of A, we

will consider the different topologies on Â. We first show that At Â ⊆ µ[A].

If α ∈ At Â, there must be some θ ∈ ΦA such that α(θ) ∈ At A/θ. Because

1/θ is a principal lattice filter c↑, we know that A/θ ∼= [0, c]A as a bounded

lattice, so there must be some a ≤ c with a ∈ At A and a/θ = α(θ). But then

µ(a) = α. It follows that At Â ⊆ µ[A], whence ι ⊆ ρ. Since ι is Hausdorff, so

is ρ. Using [17, Theorem 4.5] we can thus conclude that, as far as the Boolean

substructure of A is concerned, (µ, Â) is the MacNeille completion of A. Now

to show that ♦ is smooth, remember that ♦̂ : Â → Â is (τ, τ)-continuous. Since

τ = ι = γ by Lemma 2.1 and ι ⊆ ρ, it follows that ♦̂ is (ρ, γ)-continuous. But

then since γ↓, γ↑ ⊆ γ, it follows by [17, Proposition 5.9] that ♦• ≤ ♦̂ ≤ ♦◦.

Since also ♦◦ ≤ ♦• [17, Proposition 5.6], it follows that ♦ is smooth. �

Note that the theorem above also admits a third equivalent condition, char-

acterizing the dual space of A. This perspective is further explored in [4].

4. Finitely generated modal algebras with EDPC

Having equationally definable principal congruences (EDPC) is a strong

meta-logical property of varieties of algebras that coincides with, for example,

the existence of a deduction theorem or of a master modality [6, 11] for the

modal logic corresponding to a variety of modal algebras. Examples of such

logics are logics of bounded depth, n-transitive logics such as K4, or regular

test-free PDL with finitely many basic programs.
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Lemma 4.1 (Proposition 3.4.3 of [11]). Let V be a variety of modal algebras.

V has EDPC iff every principal modal filter of an algebra in V is a principal

lattice filter.

Note that the hypotheses below strongly resemble those of [20, Theorem 4].

Theorem 4.2 (cf. [4, Corollary 4.5.3]). If A is a residually finite, finitely

generated modal algebra such that HSP(A) has equationally definable principal

congruences, then the profinite completion (µ, Â) is the MacNeille completion

of A and ♦ is smooth.

Proof. Since A is a finitely generated algebra, every θ ∈ ΦA is compact [16,

Theorem 1]. As is remarked in [20], every compact congruence of a modal

algebra is principal, so under our hypotheses, every θ ∈ ΦA is principal. Now

since HSP(A) has EDPC, Lemma 4.1 tells us that 1/θ is a principal lattice

filter for all θ ∈ ΦA, so by Theorem 3.1, (µ, Â) is the MacNeille completion of

A and ♦ is smooth. �

Note that the EDPC clause in the theorem above is suppressed in the Heyt-

ing algebra case [4], because every variety of Heyting algebras has EDPC.

The conditions of Theorem 4.2 above are sufficient; what about necessity?

From Theorem 3.1 we know that it is necessary that A is residually finite.

Moreover, in light of [19, Section 3.3], we know that it is necessary for Theorem

4.2 that A is atomic. This helps us to find counterexamples to the theorem

if we remove the requirements of being finitely generated or having EDPC.

For instance, let A be the free algebra on one generator for the modal logic

T (the logic of reflexive Kripke frames). Then [20, Corollary 7: Example 1]

tells us that A is residually finite and finitely generated but not atomic. This

shows us that being residually finite and finitely generated is not sufficient

for the conclusion of Theorem 4.2. Alternatively, the free transitive modal

algebra on ω generators is an example of a residually finite modal algebra A,

generating a variety with EDPC, such that A is not atomic. In summary,

residual finiteness is necessary for Theorem 4.2, and if we remove either of the

other two conditions, we can find non-atomic counterexamples.

Corollary 4.3. Let A be a finitely generated free algebra for K4 or PDL.

Then the MacNeille completion and the profinite completion of A are the same

and ♦ is smooth.

Proof. Let L be either K4 or PDL and let V be the variety corresponding to

L. Since L has the finite model property, V is generated by its finite members.

By [13, Theorem IV-14.4], this implies that A, being a finitely generated free

algebra for V, is residually finite. Using the fact that L has a master modality,

it follows that we can apply Theorem 4.2. �
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