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1. Introduction

In insurance mathematics, risks are usually represented by non-negative
bounded random variables on a given probability space. A premium principle
is a functional assigning to every risk a non-negative real number. There are
several methods of defining principles. In this paper we deal with the principle
of equivalent utility, belonging to the so-called economic methods of insurance
contracts pricing. The principle, introduced by Bühlmann [2], involves the no-
tion of a utility function and postulates a fairness in terms of utility. In order to
recall the principle, assume that w ∈ [0,∞) is an insurance company’s initial
wealth level and � is its preference relation over a family X+ of risks. Then
the relation � in a natural way induces on X+ the indifference relation ∼:

X ∼ Y ⇐⇒ (X � Y ) and (Y � X)

for X,Y ∈ X+. The principle of equivalent utility for the risk X ∈ X+ is a real
number H�(X) such that

w + H�(X) − X ∼ w. (1)
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This condition has the following interpretation: the company is indifferent
between rejecting the contract and entering into it. Thus, H�(X) is a minimal
price for which the insurance company would be ready to insure the risk X.

In general, the principle of equivalent utility need not exist and, even if it
exists, it need not be uniquely determined. Under the Expected Utility theory
(1) becomes

E[u(w + Hu(X) − X)] = u(w), (2)
where u : R → R is a continuous strictly increasing utility function. One can
prove that, for every X ∈ X+, there exists a unique real number Hu(X) such
that (2) is valid. Therefore, Eq. (2) determines a functional on X+, called the
principle of equivalent utility. For more details concerning the properties of
the principle of equivalent utility under the Expected Utility Theory we refer
e.g. to [1,2,8,14].

The principle of equivalent utility under the Rank-Dependent Utility model
and under the Cumulative Prospect Theory, has been introduced and consid-
ered by Heilpern [7] and Ka�luszka and Krzeszowiec [9,10], respectively. Under
the first of these models, the premium H(u,g)(X) for a risk X ∈ X+ is defined
as a solution of the equation

Eg[u(w + H(u,g)(X) − X)] = u(w), (3)

where u : R → R is a continuous strictly increasing utility function and Eg

is the Choquet integral with respect to a probability distortion function g.
Let us recall that g : [0, 1] → [0, 1] is called a probability distortion function,
provided it is non-decreasing and satisfies the boundary conditions g(0) = 0
and g(1) = 1. For every bounded random variable X, the Choquet integral
with respect to the probability distortion function g is defined as follows

Eg[X] =
∫ 0

−∞
(g(P (X > t)) − 1) dt +

∫ ∞

0

g(P (X > t)) dt. (4)

It has been proved in [4] that, if g is a continuous probability distortion function
and u : R → R is a continuous strictly increasing utility function, with u(0) =
0, then for every X ∈ X+ the number H(u,g)(X) is uniquely determined by
(3).

Under the Cumulative Prospect Theory, the premium H(u,g,h)(X) for a risk
X ∈ X+ is defined as a solution of the equation

Egh[u(w + H(u,g,h)(X) − X)] = u(w) (5)

where, for every bounded random variable X,

Egh[X] = Eg[max{X, 0}] − Eh[max{−X, 0}] (6)

is the generalized Choquet integral related to the probability distortion func-
tions g (for gains) and h (for losses). According to [4, Theorem 3.1], in the
case where w ∈ (0,∞), for every continuous and strictly increasing function
u : R → R satisfying u(0) = 0 and every continuous probability distortion
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functions g and h, Eq. (5) uniquely determines H(u,g,h)(X) for X ∈ X+. If
w = 0, then H(u,g,h)(X) is uniquely determined by (5) for every X ∈ X+ if
and only if

h(p) + g(1 − p) > 0 for p ∈ [0, 1]. (7)
Furthermore (cf. [9]), we have

0 ≤ H(u,g,h)(X) ≤ ess sup X for X ∈ X+, (8)

H(u,g,h)(c · 1lΩ) = c for c ∈ R

and

H(u,g,h)(X + c · 1lΩ) = H(u,g,h)(X) + c for X ∈ X+, c ∈ [0,∞).

These properties are usually referred to as: non-excessive loading, no unjus-
tified risk loading and translation invariance (or consistency), respectively.
Furthermore, as the generalized Choquet integral is monotone (cf. [9, Lemma
1]), from (5) one can easily derive that the principle of equivalent utility under
the Cumulative Prospect Theory is monotone, that is

H(u,g,h)(X) ≤ H(u,g,h)(Y ) for X,Y ∈ X+, X ≤ Y. (9)

It turns out that, under the Expected Utility model, every functional of
equivalent utility can be uniquely extended from the family of all binary risks,
i.e. risks taking exactly two non-negative values with positive probabilities,
to X+ (cf. e.g. [5, Theorem 6]). In fact, in [5] only the case w = 0 has been
considered but, making a straightforward substitution, from [5, Theorem 6]
one can easily derive the analogous result for w > 0. In a recent paper [3],
some aspects of the extension problem for functionals of equivalent utility
under the Cumulative Prospect Theory have been investigated. In particular,
the functionals whose restriction to the family of binary risks reduces either
to the net principle or to the exponential principle, have been characterized.
It follows from the results in [3] that under the Cumulative Prospect Theory a
counterpart of [5, Theorem 6] does not hold. Therefore, the following question
naturally arises: does there exist a reasonable, in a sense, family of risks such
that, under the Cumulative Prospect Theory, every functional of equivalent
utility defined on this family can be uniquely extended to X+. The aim of
this paper is to show that the family of ternary risks, taking exactly three
non-negative values, one of them being 0, with positive probabilities, possesses
such a property.

2. Auxiliary results

Assume that (Ω,Σ, P ) is a non-atomic probability space and X+ is the family
of all non-negative bounded random variables on (Ω,Σ, P ). According to (5)
the premium for a given risk depends only on a probability distribution of
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the risk. Therefore, in what follows we identify the risks with their probability
distributions. Let

P3 := {p = (p1, p2, p3) : p1, p2, p3 ∈ (0, 1) : p1 + p2 + p3 = 1}.

Since (Ω,Σ, P ) is non-atomic, for every x1, x2, x3 ∈ R, with x1 < x2 < x3,
and every p = (p1, p2, p3) ∈ P3, there exists a random variable X on the space
(Ω,Σ, P ) such that P (X = xi) = pi for i ∈ {1, 2, 3} (cf. e.g. [12, Lemma 2.7.1]).
We denote such a random variable by 〈x1, x2, x3; p〉. Furthermore, X (3) denotes
the family of all such random variables and

X (3)
0 := {〈0, x, y; p〉 : 0 < x < y, p ∈ P3}.

In the whole section we assume that w ∈ [0,∞), u : R → R is a strictly
increasing continuous function with u(0) = 0 and g, h : [0, 1] → [0, 1] are
continuous distortion functions such that g(p), h(p) ∈ (0, 1) for p ∈ (0, 1). Then
(7) is satisfied and so, as we have already noted, the principle of equivalent
utility H(u,g,h) is uniquely defined by (5). Applying (4) and (6), we get that,
if X = 〈x1, x2, x3; p1, p2, p3〉 ∈ X (3), then

Egh[X] = (1−g(p2+p3))x1+(g(p2+p3)−g(x3))x2+g(p3)x3 if x1 ≥ 0, (10)

Egh[X] = h(p1)x1 + (g(p2 + p3) − g(p3))x2 + g(p3)x3 if x1 < 0 ≤ x2, (11)

Egh[X] = h(p1)x1 + (h(p1 + p2) − h(p1))x2 + g(p3)x3 if x2 < 0 ≤ x3 (12)

and

Egh[X] = h(p1)x1 + (h(p1 + p2) − h(p1))x2 + (1 − h(p1 + p2))x3 if x3 < 0.

Let
T := {(x, y) ∈ (0,∞)2 : x < y} (13)

and, for every p ∈ P3, let φp, ψp : T → R be defined as follows

φp(x, y) = w + H(u,g,h)(〈0, x, y; p〉) − x for (x, y) ∈ T, (14)
ψp(x, y) = w + H(u,g,h)(〈0, x, y; p〉) − y for (x, y) ∈ T. (15)

Obviously, we have

ψp(x, y) < φp(x, y) for (x, y) ∈ T, p ∈ P3,

and
ψp(x, y) − φp(x, y) = x − y for (x, y) ∈ T, p ∈ P3. (16)

Moreover, in view of (8), we get

w − x ≤ φp(x, y) ≤ w + y − x for (x, y) ∈ T, p ∈ P3 (17)

and
w − y ≤ ψp(x, y) ≤ w for (x, y) ∈ T, p ∈ P3. (18)

Lemma 2.1. Let (x, y) ∈ T and p = (p1, p2, p3) ∈ P3. Then:
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(i)
ψp(x, y) > 0 (19)

if and only if

(g(p1 + p2) − g(p1))u(y − x) + g(p1)u(y) < u(w); (20)

(ii)
ψp(x, y) ≤ 0 ≤ φp(x, y) (21)

if and only if

h(p3)u(x − y) + g(p1)u(x) ≤ u(w) ≤ (g(p1 + p2) − g(p1))u(y − x) + g(p1)u(y);
(22)

(iii)
φp(x, y) < 0 (23)

if and only if

u(w) < h(p3)u(x − y) + g(p1)u(x). (24)

Furthermore, the left (right) inequality in (21) is strict if and only if so is
the right (left) inequality in (22).

Proof. Let X := 〈0, x, y; p〉 and let dX : R → R be given by

dX(t) = Egh[u(w + t − X)] − u(w) for t ∈ R.

Since the generalized Choquet integral is monotone and u is strictly increas-
ing, dX is non-decreasing. Furthermore, as g(p), h(p) ∈ (0, 1) for p ∈ (0, 1),
applying [4, Lemma 3.3] we conclude that dX is injective. Hence, dX is strictly
increasing. Moreover, we have 0 < u(y − x) < u(y), u(x − y) < 0 < u(x),

u(y − X) = 〈0, u(y − x), u(y); p3, p2, p1〉
and

u(x − X) = 〈u(x − y), 0, u(x); p3, p2, p1〉.
Thus, considering (10) and (11), we obtain

dX(y−w) = Egh[u(y−X)]−u(w) = (g(p1+p2)−g(p1))u(y−x)+g(p1)u(y)−u(w)

and

dX(x − w) = Egh[u(x − X)] − u(w) = h(p3)u(x − y) + g(p1)u(x) − u(w),

respectively. On the other hand, considering (5), from (14) and (15) we derive
that

dX(φp(x, y) + x − w) = dX(ψp(x, y) + y − w) = dX(H(u,g,h)(X)) = 0.

Therefore, as dX is strictly increasing, we obtain (i)–(iii) as well as the second
part of the assertion. �

Corollary 2.2. Assume that (x, y) ∈ T and p = (p1, p2, p3) ∈ P3.
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(i) If (20) holds, then

(1 − g(p1 + p2))u(ψp(x, y)) + (g(p1 + p2) − g(p1))u(φp(x, y))

+ g(p1)u(φp(x, y) + x) = u(w).
(25)

(ii) If (22) is valid, then

h(p3)u(ψp(x, y)) + (g(p1 + p2) − g(p1))u(φp(x, y))

+ g(p1)u(φp(x, y) + x) = u(w).
(26)

(iii) If (24) holds, then

h(p3)u(ψp(x, y)) + (h(p2 + p3) − h(p3))u(φp(x, y))

+ g(p1)u(φp(x, y) + x) = u(w).
(27)

Proof. Let X := 〈0, x, y; p〉. Then, in view of (14)-(15), we get

w + H(u,g,h)(X) − X = 〈ψp(x, y), φp(x, y), φp(x, y) + x; p3, p2, p1〉.
Moreover, as w ∈ [0,∞), from (8) and (14) we derive that φp(x, y) + x =
w + H(u,g,h)(X) ≥ 0. Therefore, making use of (5) and (10)–(12), in view of
Lemma 2.1, we obtain assertions (i)–(iii). �

Lemma 2.3. Assume that w > 0 and put L := limx→∞ u(x).

(a) If L = ∞, then for every p ∈ P3 there exists (x, y) ∈ T such that

ψp(x, y) < 0 < φp(x, y). (28)

(b) If L < ∞ and p = (p1, p2, p3) ∈ P3 is such that

g(1 − p3) > u(w)/L, (29)

then (28) is valid for some (x, y) ∈ T .
(c) If L < ∞ and (21) is satisfied for some p = (p1, p2, p3) ∈ P3 and (x, y) ∈

T , then (29) holds.

Proof. (a) If L = ∞, then taking x ∈ (0, w) and sufficiently big x ∈ (0, w), we
conclude that (x, y) ∈ T and (22) holds, with both inequalities being strict.
Thus, according to Lemma 2.1(ii), (28) is valid for such (x, y).

(b) Assume that L < ∞ and p ∈ P3 is such that (29) holds. Then, for every
x ∈ (0,∞), we have

lim
y→∞((g(p1+p2)−g(p1))u(y−x)+g(p1)u(y)) = g(p1+p2)L = g(1−p3)L > u(w).

Thus, for every x ∈ (0, w) and sufficiently big y ∈ (w,∞), (22) is valid, with
both inequalities being strict. Hence, applying Lemma 2.1(ii), we conclude that
(28) holds for some (x, y) ∈ T .
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(c) Assume that L < ∞ and (21) holds for some p = (p1, p2, p3) ∈ P3 and
(x, y) ∈ T . Then, according to Lemma 2.1(ii), (22) is satisfied and so

u(w) ≤ (g(p1 +p2)−g(p1))u(y−x)+g(p1)u(y) ≤ g(p1 +p2)u(y) < g(1−p3)L.

Thus, (29) is valid. �

Lemma 2.4. For every p ∈ P3, the functions φp and ψp are continuous.

Proof. Let p ∈ P3. In view of (16), it is enough to show that φp is continuous.
Furthermore, it follows from (9) and (14) that φp is monotone in y for each
x. Thus, in order to prove the continuity of φp, it suffices to show that it
is continuous in x and y separately. Since in both cases similar arguments
work, we prove only the continuity of φp in x. Suppose that, for some y ∈
(0,∞), φp(·, y) is not continuous at the point x ∈ (0, y). Then there exists
a sequence (xn : n ∈ N) of elements of (0, y) such that limn→∞ xn = x but
(φp(xn, y) : n ∈ N) does not tend to φp(x, y). According to (17), the sequence
(φp(xn, y) : n ∈ N) is bounded, so there exists a subsequence (xnk

: k ∈ N) of
the sequence (xn : n ∈ N) such that limk→∞ φp(xnk

, y) =: d = φp(x, y). Note
that, in view of (16), we have

lim
k→∞

ψp(xnk
, y) = d + x − y. (30)

Moreover, the following three cases are possible:
1. ψp(x, y) ≥ 0,
2. ψp(x, y) < 0 < φp(x, y),
3. φp(x, y) ≤ 0.

Case 1 If ψp(x, y) > 0, then in view of Lemma 2.1(i), (20) is valid and so, for
sufficiently big k ∈ N, we get

(g(p1 + p2) − g(p1))u(y − xnk
) + g(p1)u(y) < u(w).

Furthermore, applying Corollary 2.2(i), we obtain (25) and

(1 − g(p1 + p2))u(ψp(xnk
, y)) + (g(p1 + p2) − g(p1))u(φp(xnk

, y))

+ g(p1)u(φp(xnk
, y) + xnk

) = u(w)
(31)

for sufficiently big k ∈ N. Letting k → ∞ in (31) and subtracting the equality
obtained this way from (25), in view of (30), we get

(1 − g(p1 + p2))(u(ψp(x, y)) − u(d + x − y))

+ (g(p1 + p2) − g(p1))(u(φp(x, y)) − u(d))

+ g(p1)(u(φp(x, y) + x) − u(d + x)) = 0.

On the other hand g is non-decreasing, with g(p) ∈ (0, 1) for p ∈ (0, 1), and u
is strictly increasing. Thus, making use of (16), we conclude that the left hand
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side of the last equality is positive whenever d < φp(x, y), and it is negative
whenever d > φp(x, y). This yields a contradiction.

Suppose that ψp(x, y) = 0. Then, in view of (16), φp(x, y) = y − x > 0 and
so, applying Lemma 2.1(i) and Corollary 2.2(i), we obtain

h(p3)u(x − y) + g(p1)u(x) < u(w) (32)

and
(g(p1 + p2) − g(p1))u(y − x) + g(p1)u(y) = u(w). (33)

If d > y − x, then making use of (30), we get limk→∞ ψp(xnk
, y) > 0. Hence,

for sufficiently big k ∈ N, we have ψp(xnk
, y) > 0 and so, according to

Lemma 2.1(i) and Corollary 2.2(i), (31) holds. Thus, passing in (31) to the
limit as k → ∞ and subtracting the obtained equality from (33), in view of
(30), we get

(g(p1 + p2) − g(p1))(u(y − x) − u(d))

+ g(p1)(u(y) − u(d + x)) − (1 − g(p1 + p2))u(d + x − y) = 0.

However, as u is strictly increasing and g is non-decreasing, with g(p) ∈ (0, 1)
for p ∈ (0, 1), the left hand side of this equality is negative, which gives a
contradiction.
If d < y − x, then in view of (30), we get limk→∞ ψp(xnk

, y) < 0. Thus
ψp(xnk

, y) < 0 for sufficiently big k ∈ N. On the other hand, making use of
(32), for sufficiently big k ∈ N, we get

h(p3)u(xnk
− y) + g(p1)u(xnk

) < u(w)

whence, by Lemma 2.1(ii), φp(xnk
, y) > 0. Therefore, applying Lemma 2.1(ii)

and Corollary 2.2(ii), we get

h(p3)u(ψp(xnk
, y)) + (g(p1 + p2) − g(p1))u(φp(xnk

, y))

+ g(p1)u(φp(xnk
, y) + xnk

) = u(w)
(34)

for sufficiently big k ∈ N. Letting in the last equality k → ∞ and subtracting
the obtained equality from (33), in view of (30), we obtain

(g(p1 + p2) − g(p1))(u(y − x) − u(d))

+ g(p1)(u(y) − u(d + x)) − h(p3)u(d + x − y) = 0.

Since d < y − x, arguing as previously, we conclude that the left hand side of
this equality is positive, which yields a contradiction.

Case 2 Applying Lemma 2.1(ii) and Corollary 2.2(ii), we obtain (22), with
both inequalities being strict, and (26). Hence, we have

h(p3)u(xnk
−y)+g(p1)u(xnk

) < u(w) < (g(p1+p2)−g(p1))u(y−xnk
)+g(p1)u(y)
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for sufficiently big k ∈ N. Therefore, according to Corollary 2.2(ii), for suffi-
ciently big k ∈ N, we get

h(p3)u(ψp(xnk
, y)) + (g(p1 + p2) − g(p1))u(φp(xnk

, y))

+ g(p1)u(φp(xnk
, y) + xnk

) = u(w).

Thus, making use of (26) and arguing as in the previous case, we obtain

h(p3)(u(ψp(x, y)) − u(d + x − y)) + (g(p1 + p2) − g(p1))(u(φp(x, y)) − u(d))

+ g(p1)(u(φp(x, y) + x) − u(d + x)) = 0,

which gives a contradiction.
Case 3 If φp(x, y) < 0, then according to Lemma 2.1(iii), we have (24).

Thus

u(w) < h(p3)u(xnk
− y) + g(p1)u(xnk

)

for sufficiently big k ∈ N. Furthermore, applying Corollary 2.2(iii), we obtain
(27) and

h(p3)u(ψp(xnk
, y)) + (h(p2 + p3) − h(p3))u(φp(xnk

, y))

+ g(p1)u(φp(xnk
, y) + xnk

) = u(w)

for sufficiently big k ∈ N. Hence, repeating the arguments from the first case,
we get

h(p3)(u(ψp(x, y)) − u(d + x − y)) + (h(p2 + p3) − h(p3))(u(φp(x, y)) − u(d))

+ g(p1)(u(φp(x, y) + x) − u(d + x)) = 0,

which yields a contradiction.
If φp(x, y) = 0, then in view of (16), ψp(x, y) = x−y < 0. Hence, according

to Lemma 2.1(ii) and Corollary 2.2(ii), we have

u(w) < (g(p1 + p2) − g(p1))u(y − x) + g(p1)u(y) (35)

and

h(p3)u(x − y) + g(p1)u(x) = u(w). (36)

It follows from (35) that, for sufficiently big k ∈ N,

u(w) < (g(p1 + p2) − g(p1))u(y − xnk
) + g(p1)u(y)

whence, in view of Lemma 2.1(iii), ψp(xnk
, y) < 0. Therefore, if d > 0, then for

sufficiently big k ∈ N, we have ψp(xnk
, y) < 0 < φp(xnk

, y) and so, according
to Lemma 2.1(ii) and Corollary 2.2(ii), (34) holds. Passing to the limit in (34)
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as k → ∞ and subtracting the equality obtained this way from (36), in view
of (30), we get

h(p3)(u(x − y) − u(d + x − y)) + g(p1)(u(x) − u(d + x))

− (g(p1 + p2) − g(p1))u(d) = 0.

Since d > 0, the left hand side of this equality is negative and so we get a
contradiction.
If d < 0, then φp(xnk

, y) < 0 for sufficiently big k ∈ N. Thus, applying
Lemma 2.1(iii) and Corollary 2.2(iii), we conclude that

h(p3)u(ψp(xnk
, y)) + (h(p2 + p3) − h(p3))u(φp(xnk

, y))

+ g(p1)u(φp(xnk
, y) + xnk

) = u(w)

for sufficiently big k ∈ N. Hence, arguing as previously, we obtain

h(p3)(u(x − y) − u(d + x − y)) + g(p1)(u(x) − u(d + x))

− (h(p2 + p3) − h(p3))u(d) = 0.

However, as d < 0, the left hand side of the last equality is positive. So, we
have a contradiction.

This proves the continuity of φp(·, y) at x. �

Lemma 2.5. Let p ∈ P3.
(a) If w = 0, then for every y ∈ (0,∞), 0 is an interior point of φp((0, y) ×

{y}).
(b) If w > 0, then for every y ∈ (0, w), w is an interior point of φp((0, y) ×

{y}).

Proof. Note that, for every y ∈ (0,∞), we have

lim
x→y−

(h(p3)u(x − y) + g(p1)u(x)) = g(p1)u(y), (37)

lim
x→0+

(h(p3)u(x − y) + g(p1)u(x)) = h(p3)u(−y) (38)

and

lim
x→0+

((g(p1 + p2) − g(p1))u(y − x) + g(p1)u(y)) = g(p1 + p2)u(y). (39)

Therefore, if w = 0, then taking an arbitrary y ∈ (0,∞), from (37) we derive
that, for x ∈ (0, y) sufficiently close to y, (24) is valid. Thus, according to
Lemma 2.1(iii), (23) holds for some x ∈ (0, y). Furthermore, as u is strictly in-
creasing, making use of (38) and (39), we obtain that, for x ∈ (0, y) sufficiently
close to 0, (22) is satisfied, with both inequalities being strict. So, applying
Lemma 2.1(ii), we conclude that φp(x, y) > 0 for some x ∈ (0, y). Hence, as
φp is continuous, 0 belongs to the interior of φp((0, y) × {y}).
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Now assume that w > 0 and fix y ∈ (0, w). Then, for every x ∈ (0, y),
(20) is satisfied and so, according to Corollary 2.2(i), (25) holds. Suppose that
φp(x, y) ≥ w for x ∈ (0, y). Then, in view of (16) and (17), we get

lim
x→y−

φp(x, y) = lim
x→y−

ψp(x, y) = w.

Hence, letting in (25) x → y−, we obtain g(p1)(u(w + y) − u(w)) = 0. Since
u is strictly increasing and g(p1) > 0, this yields a contradiction. In this way
we have proved that φp(x, y) < w for some x ∈ (0, y). On the other hand, if
φp(x, y) ≤ w for x ∈ (0, y), then applying (17), we get limx→0+ φp(x, y) = w.
Thus, in view of (16), we have limx→0+ ψp(x, y) = w − y and so, letting in
(25) x → 0+, we obtain (1 − g(p1 + p2))(u(w − y) − u(w)) = 0. Since u is
strictly increasing and g(p1 + p2) < 1, this gives a contradiction. Therefore
φp(x, y) > w for some x ∈ (0, y) and so, as φp is continuous, w is an interior
point of φp((0, y) × {y}). �

Lemma 2.6. A family {φp(T ) : p ∈ P3} is a cover of [w,∞) and a family
{ψp(T ) : p ∈ P3} is a cover of (−∞, w), that is

[w,∞) ⊂
⋃

p∈P3

φp(T ) (40)

and
(−∞, w) ⊂

⋃
p∈P3

ψp(T ), (41)

respectively.

Proof. In order to prove (40), fix (x, y) ∈ T . Since g and h are continuous,
with g(0) = 0 and h(1) = 1, in the case where w = 0, for sufficiently small
p1, p2 ∈ (0, 1), we have

h(1−p1−p2)u(x−y)+g(p1)u(x)<u(w)<(g(p1+p2)−g(p1))u(y−x)+g(p1)u(y).

Hence, applying Corollary 2.2(ii), we obtain

h(1 − p1 − p2)u(ψ(p1,p2,1−p1−p2)(x, y))

+ (g(p1 + p2) − g(p1))u(φ(p1,p2,1−p1−p2)(x, y))

+ g(p1)u(φ(p1,p2,1−p1−p2)(x, y) + x) = u(w)

for sufficiently small p1, p2 ∈ (0, 1). Thus, taking into account (17) and (18),
we get

lim
p1,p2→0+

u(ψ(p1,p2,1−p1−p2)(x, y)) = u(w).

Since u is a continuous, strictly increasing function, this implies that

lim
p1,p2→0+

ψ(p1,p2,1−p1−p2)(x, y) = w. (42)
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If w > 0, then for sufficiently small p1, p2 ∈ (0, 1), (20) holds and so, applying
Corollary 2.2(i), we get

(1 − g(p1 + p2))u(ψ(p1,p2,1−p1−p2)(x, y))

+ (g(p1 + p2) − g(p1))u(φ(p1,p2,1−p1−p2)(x, y))

+ g(p1)u(φ(p1,p2,1−p1−p2)(x, y) + x) = u(w).

Thus, repeating the previous arguments, we obtain (42). In this way we have
proved that (42) holds for every (x, y) ∈ T . Therefore, taking x0 ∈ [w,∞) and
(x, y) ∈ T , with y − x > x0 − w, in view of (16), we get

lim
p1,p2→0+

φ(1−p1−p2,p1,p2)(x, y) = lim
p1,p2→0+

(ψ(1−p1−p2,p1,p2)(x, y) + y − x)

= w + y − x > x0.

Hence, there exists p ∈ P3 such that φp(x, y) > x0. On the other hand, from
Lemma 2.4 and Lemma 2.5 we deduce that φp(T ) is connected and w is its
interior point, respectively. Thus x0 ∈ φp(T ), which proves (40).

Now, we show that (41) holds. To this end, fix x0 ∈ (−∞, w). Let (x, y) ∈ T
be such that x < w and y > max{w,w − x0}. Then, for sufficiently small
p2, p3 ∈ (0, 1), we have

h(p3)u(x − y) + g(1 − p2 − p3)u(x) < u(w)

< (g(1 − p3) − g(1 − p2 − p3))u(y − x) + g(1 − p2 − p3)u(y)

and so, applying Corollary 2.2(ii), we obtain

h(p3)u(ψ(1−p2−p3,p2,p3)(x, y)) + (g(1− p3)− g(1− p2 − p3))u(φ(1−p2−p3,p2,p3)(x, y))

+ g(1− p2 − p3)u(φ(1−p2−p3,p2,p3)(x, y) + x) = u(w).

Thus, arguing as previously, we get

lim
p2,p3→0+

u(φ(1−p2−p3,p2,p3)(x, y) + x) = u(w)

and so
lim

p2,p3→0+
φ(1−p2−p3,p2,p3)(x, y) = w − x.

Hence, considering (16), we obtain

lim
p2,p3→0+

ψ(1−p2−p3,p2,p3)(x, y) = w − y < x0.

So, there exists p ∈ P3 such that ψp(x, y) < x0. Furthermore, in view of
(18), we get limy→0+ ψp(y/2, y) = w. Since, in view of Lemma 2.4, ψp(T ) is
connected, this means that x0 ∈ φp(T ) and so, (41) is proved. �
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Lemma 2.7. Let p = (p1, p2, p3) ∈ P3 and Fp : T → R
2 be defined as follows

Fp(x, y) = (φp(x, y), ψp(x, y)) for (x, y) ∈ T. (43)

Then Fp(T ) is open.

Proof. It follows from Lemma 2.4 that Fp is continuous. We show that it is
injective. Suppose that Fp(x1, y1) = Fp(x2, y2) for some (x1, y1), (x2, y2) ∈ T .
Then

φp(x1, y1) = φp(x2, y2) (44)

and
ψp(x1, y1) = ψp(x2, y2). (45)

Therefore, applying Lemma 2.1 and Corollary 2.2, we obtain

g(p1)u(φp(x1, y1) + x1) = u(w) − γu(φp(x1, y1)) − δu(ψp(x1, y1))
= u(w) − γu(φp(x2, y2)) − δu(ψp(x2, y2)) = g(p1)u(φp(x2, y2) + x2),

where

γ :=
{

g(p1 + p2) − g(p1) whenever φp(x1, y1) ≥ 0,
h(p2 + p3) − h(p3) otherwise

and

δ :=
{

1 − g(p1 + p2) whenever ψp(x1, y1) > 0,
h(p3) otherwise.

Thus, as u is strictly increasing and g(p1) > 0, we get

φp(x1, y1) + x1 = φp(x2, y2) + x2.

Hence, in view of (44), we obtain x1 = x2. Furthermore, considering (16), (44)
and (45), we conclude that

y1 = φp(x1, y1) − ψp(x1, y1) + x1 = φp(x2, y2) − ψp(x2, y2) + x2 = y2,

which completes the proof of the injectivity of Fp.
Now, as Fp is continuous and injective, applying the Invariant Domain

Theorem, we obtain that Fp(T ) is open. �

The following lemma, concerning the solutions of the general linear equation
on a region, will play an important role in the proof of our main results. For
more details concerning the general linear equation we refer to [11, Chapter
13.10].

Lemma 2.8. Assume that D is a nonempty, open and connected subset of R2,
f : R → R is a nonconstant continuous function, a, b, A,B ∈ R\{0} and
c, C ∈ R. Then f satisfies the equation

f(ax + by + c) = Af(x) + Bf(y) + C for (x, y) ∈ D (46)
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if and only if there exist γ ∈ R\{0} and β1, β2 ∈ R such that

f(x) =
γa

A
x + β1 for x ∈ D1, (47)

f(x) =
γb

B
x + β2 for x ∈ D2 (48)

and

f(x) = γ(x − c) + Aβ1 + Bβ2 + C for x ∈ {as + bt + c : (s, t) ∈ D}, (49)

where

D1 := {x ∈ R : (x, y) ∈ D for some y ∈ R}
and

D2 := {y ∈ R : (x, y) ∈ D for some x ∈ R}.

Proof. Assume that f satisfies (46). Replacing in (46) x and y by x/a and y/b,
respectively, we conclude that a triple of functions (f1, f2, f3), where f1(x) =
Af(x/a) for x ∈ R, f2(x) = Bf(x/b) for x ∈ R and f3(x) = f(x + c) − C for
x ∈ R, satisfies the Pexider equation

f3(x + y) = f1(x) + f2(y) for (x, y) ∈ (a, b) · D,

where (a, b) · D := {(as, bt) : (s, t) ∈ D}. Moreover, fi for i ∈ {1, 2, 3} are
nonconstant continuous functions and, as D is nonempty, open and connected,
so is (a, b) · D. Therefore, applying [11, Theorem 13.3.5] and [13, Theorem 1],
we obtain that there exist γ ∈ R\{0} and δ1, δ2 ∈ R such that

f1(x) = γx + δ1 for x ∈ a · D1 := {as : s ∈ D1},

f2(x) = γx + δ2 for x ∈ b · D2 := {bt : t ∈ D2}
and

f3(x) = γx + δ1 + δ2 for x ∈ {as + bt : (s, t) ∈ D}.

Hence, considering the definitions of f1, f2 and f3, we get (47)–(49) with
β1 := δ1/A and β2 := δ2/B.

The converse is easy to check. �

We complete this section with one more result, which will be useful in our
further considerations.

Lemma 2.9. Let I ⊆ R be an open interval and let u1, u2 : R → R be strictly
increasing functions. Assume that, for every x ∈ I, there exist αx ∈ R\{0},
βx ∈ R and rx ∈ (0,∞) such that

u2(z) = αxu1(z) + βx for z ∈ Ux := (x − rx, x + rx). (50)

Then there exist α ∈ R\{0} and β ∈ R such that

u2(z) = αu1(z) + β for z ∈ I. (51)
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Proof. It is enough to show that, for every x, y ∈ I, we have αx = αy and
βx = βy. To this end, fix x, y ∈ I. Let zx ∈ Ux and zy ∈ Uy. According to
[6, Lemma 2.4], there exist n ∈ N and x0, x1, ..., xn ∈ I such that zx ∈ Ux0 ,
zy ∈ Uxn

and Uxi−1 ∩ Uxi
= ∅ for i ∈ {1, ..., n}. Thus, in view of (50), we get

αxu1(z) + βx = αx0u1(z) + βx0 for z ∈ Ux ∩ Ux0 . (52)

Hence, if αx and αx0 were different, then we would have

u1(z) =
βx0 − βx

αx − αx0

for z ∈ Ux ∩ Ux0 ,

which is not possible, as Ux ∩ Ux0 is a nonempty open set and u1 is strictly
increasing. Thus αx0 = αx and so, in view of (52), βx0 = βx. Then, we have

αx0u1(z) + βx0 = αx1u1(z) + βx1 for z ∈ Ux0 ∩ Ux1 .

Hence, arguing as previously, we obtain that αx0 = αx1 and βx0 = βx1 . There-
fore, αx = αx1 and βx = βx1 . Repeating this procedure, we conclude finally
that αx = αy and βx = βy. �

3. Main results

The following three theorems, concerning the extension problem for functionals
of equivalent utility under the Cumulative Prospect Theory, are the main
results of the paper.

Theorem 3.1. Let w ∈ [0,∞). Assume that, for i ∈ {1, 2}, ui : R → R is a
strictly increasing continuous function with ui(0) = 0 and gi, hi : [0, 1] → [0, 1]
are strictly increasing continuous probability distortion functions. Furthermore,
assume that H(u1,g1,h1) and H(u2,g2,h2) are the functionals of equivalent utility,
defined by (5), such that

H(u1,g1,h1)(X) = H(u2,g2,h2)(X) for X ∈ X (3)
0 . (53)

(a) If w = 0 or limx→∞ u1(x) = ∞, then g1 = g2, h1 = h2 and there exists
α ∈ (0,∞) such that

u2(x) = αu1(x) for x ∈ R. (54)

(b) If w > 0 and L := limx→∞ u1(x) < ∞, then g1 = g2 and there exist
α, β ∈ (0,∞) such that

h2(p) =
β

α
h1(p) for p ∈ [0, 1 − g−1

1 (u1(w)/L)] (55)

and

u2(x) =
{

αu1(x) for x ∈ (−∞, 0),
βu1(x) for x ∈ [0,∞). (56)
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Proof. Let T be given by (13) and let, for every p ∈ P3 and i ∈ {1, 2},
φ

(i)
p , ψ

(i)
p : T → R be defined as follows

φ
(i)
p (x, y) = w + H(ui,gi,hi)(〈0, x, y; p〉) − x for (x, y) ∈ T,

ψ
(i)
p (x, y) = w + H(ui,gi,hi)(〈0, x, y; p〉) − y for (x, y) ∈ T,

respectively. Then, in view of (53), for every p ∈ P3, we have φp := φ
(1)
p = φ

(2)
p

and ψp := ψ
(1)
p = ψ

(2)
p . Furthermore, for every p ∈ P3, define Fp : T → R

2 by
(43).

First we show that (56) holds for some α, β ∈ (0,∞). To this end, fix
x0 ∈ R\{0}. If x0 ≥ w, then in view of (40), there exists p = (p1, p2, p3) ∈ P3

such that x0 ∈ φp(T ). Moreover, applying Lemma 2.7, we obtain that the set
{y ∈ R : (x0, y) ∈ Fp(T )} is nonempty and open. Thus, (x0, y0) ∈ Fp(T ) for
some y0 ∈ R\{0}. In the case where y0 > 0, there is rx0 > 0 such that

B((x0, y0), rx0) := (x0 − rx0 , x0 + rx0) × (y0 − rx0 , y0 + rx0) ⊂ Fp(T ) ∩ (0,∞)2.

Therefore, taking (x, y) ∈ B((x0, y0), rx0) and putting (s, t) := F−1
p (x, y),

in view of (43), we get ψp(s, t) > 0. Hence, according to Lemma 2.1(i), for
i ∈ {1, 2}, we have

(gi(p1 + p2) − gi(p1))ui(t − s) + gi(p1)ui(t) < ui(w)

and so, applying Corollary 2.2(i), we obtain
ui(φp(s, t) + s)

=
1

gi(p1)
[ui(w) − (1 − gi(p1 + p2))ui(ψp(s, t)) − (gi(p1 + p2) − gi(p1))ui(φp(s, t))]

=
1

gi(p1)
[ui(w) − (1 − gi(p1 + p2))ui(y) − (gi(p1 + p2) − gi(p1))ui(x)].

Thus, setting a := g1(p1)−g1(p1+p2)
g1(p1)

, A := g2(p1)−g2(p1+p2)
g2(p1)

, b := g1(p1+p2)−1
g1(p1)

,

B := g2(p1+p2)−1
g2(p1)

, c := u1(w)
g1(p1)

and C := u2(w)
g2(p1)

, for every (x, y) ∈ B((x0, y0), rx0),
we get

u−1
1 (au1(x) + bu1(y) + c) = u−1

2 (Au2(x) + Bu2(y) + C).
Therefore, a function

f := u2 ◦ u−1
1 (57)

satisfies Eq. (46) with

D := {(u1(x), u1(y)) : (x, y) ∈ B((x0, y0), rx0)}.

Moreover, as u1 is a continuous injection, D is open and connected. Thus,
according to Lemma 2.8, there exist αx0 ∈ R\{0} and βx0 ∈ R such that

f(x) = αx0x + βx0 for x ∈ u1((x0 − rx0 , x0 + rx0)).
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Hence, in view of (57), we get

u2(x) = αx0u1(x) + βx0 for x ∈ (x0 − rx0 , x0 + rx0). (58)

In the case where y0 < 0 there exists rx0 > 0 such that

B((x0, y0), rx0) ⊂ Fp(T ) ∩ [(0,∞) × (−∞, 0)].

Furthermore, arguing as previously, we obtain that the function f , defined
by (57), satisfies Eq. (46) with a, A, c, C and D as above, b := −h1(p3)

g1(p1)
and

B := −h2(p3)
g2(p1)

. Hence, (58) holds with some αx0 ∈ R\{0} and βx0 ∈ R.
If x0 < w, then in view of (41), there exists p ∈ P3 such that x0 ∈ ψp(T ) .

Thus, repeating the previous procedure, we conclude that (58) is satisfied with
some αx0 ∈ R\{0} and βx0 ∈ R. .

In this way we have proved that for every x ∈ R\{0} there exist αx ∈ R\{0},
βx ∈ R and rx ∈ (0,∞) such that (50) is valid. Thus, as u1 and u2 are strictly
increasing and continuous, with u1(0) = u2(0) = 0, applying Lemma 2.9 with
I = (0,∞) and then with I = (−∞, 0), we obtain that there exist α, β ∈ (0,∞)
such that (56) holds.

In the remaining part of the proof we consider two cases:
1. w = 0,
2. w > 0.
Case 1 Let p = (p1, p2, p3) ∈ P3 and y ∈ (0,∞). Then, according to

Lemma 2.5, φp(x, y) = 0 for some x ∈ (0, y). Thus, in view of (16), we have
ψp(x, y) = x − y < 0. So, applying Lemma 2.1(ii) and Corollary 2.2(ii), we
obtain

hi(p3)ui(x − y) + gi(p1)ui(x) = 0 for i ∈ {1, 2}.

Hence, considering (56), we get

h2(p3)
g2(p1)

= − u2(x)
u2(x − y)

= −β

α

u1(x)
u1(x − y)

=
β

α

h1(p3)
g1(p1)

.

Since p = (p1, p2, p3) ∈ P3 is fixed arbitrarily, this means that

h2(p3)
h1(p3)

=
β

α

g2(p1)
g1(p1)

for p1, p3 ∈ (0, 1), p1 + p3 < 1. (59)

Thus, taking q1, q2 ∈ (0, 1) and p ∈ (0,min{1 − qi : i ∈ {1, 2}}), we obtain

h2(q1)
h1(q1)

=
β

α

g2(p)
g1(p)

=
h2(q2)
h1(q2)

,

which means that the function h1/h2 is constant on (0, 1). Since, for i ∈ {1, 2},
hi is continuous, with hi(1) = 1, this implies that h1 = h2. Furthermore, from
(59) we derive that g2(p)

g1(p) = α
β for p ∈ (0, 1). Therefore, using the fact that, for

i ∈ {1, 2}, gi is continuous and gi(1) = 1, we get β = α. Hence g1 = g2 and,
considering (56), we obtain (54). This completes the proof in the case w = 0.
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Case 2 Fix p = (p1, p2, p3) ∈ P3 and y ∈ (0, w). Then, in view of Lemma 2.5,
there exists x ∈ (0, y) such that φp(x, y) = w. Moreover, making use of (16), we
get ψp(x, y) = w+x−y > 0. Thus, applying Lemma 2.1(i) and Corollary 2.2(i),
for i ∈ {1, 2}, we obtain

(1−gi(p1+p2))ui(w+x−y)+(gi(p1+p2)−gi(p1))ui(w)+gi(p1)ui(w+x) = ui(w).

Hence
1 − gi(p1 + p2)

gi(p1)
=

ui(w) − ui(w + x)
ui(w + x − y) − ui(w)

for i ∈ {1, 2}.

Therefore, since p = (p1, p2, p3) ∈ P3 is fixed arbitrarily, in view of (56), we
get

1 − g1(p1 + p2)
g1(p1)

=
1 − g2(p1 + p2)

g2(p1)
for p1, p2 ∈ (0, 1), p1 + p2 < 1.

Thus, as g1 and g2 are continuous, taking p1 ∈ (0, 1) and letting p2 → 0+, we
obtain that g1(p1) = g2(p1). Since gi(0) = 0 and gi(1) = 1 for i ∈ {1, 2}, this
implies that g1 = g2.

Suppose that p = (p1, p2, p3) ∈ P3 is such that (28) holds for some (x, y) ∈
T . Then, in view of Lemma 2.1(ii) and Corollary 2.2(ii), for i ∈ {1, 2}, we get

hi(p3)ui(ψp(x, y))+(gi(p1+p2)−gi(p1))ui(φp(x, y))+gi(p1)ui(φp(x, y)+x) = ui(w).

Since g1 = g2, making use of (56), from the last equality one can easily derive
that

h2(p3) =
β

α
h1(p3). (60)

Now, if limx→∞ u1(x) = ∞, then applying Lemma 2.3(a), we conclude that
(60) holds for every p3 ∈ (0, 1). Since, for i ∈ {1, 2}, hi is continuous with
hi(1) = 1, letting in (60) p3 → 1− we obtain that β = α. Thus, in view of (56)
and (60), we get (54) and h1 = h2, respectively. If L := limx→∞ u1(x) < ∞,
then according to Lemma 2.3(b), (60) holds for every p3 ∈ (0, 1) such that
g1(1 − p3) > u1(w)/L. As h1 and h2 are continuous, this implies (55). �

Theorem 3.2. Let w ∈ [0,∞). Assume that, for i ∈ {1, 2}, ui : R → R is a
strictly increasing continuous function with ui(0) = 0 and gi, hi : [0, 1] → [0, 1]
are strictly increasing continuous probability distortion functions. Furthermore,
let H(ui,gi,hi) for i ∈ {1, 2} be the functionals of equivalent utility, defined by
(5). If

(i) g1 = g2, h1 = h2 and (54) holds with some α ∈ (0,∞)
or

(ii) w > 0, L := limx→∞ u1(x) < ∞, g1 = g2 and (55), (56) hold with some
α, β ∈ (0,∞),
then

H(u1,g1,h1)(X) = H(u2,g2,h2)(X) for X ∈ X+. (61)
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Proof. Since the generalized Choquet integral is positively homogeneous (cf.
[9, Lemma 1]), in view of (5), in the case of (i), we get

Eg2h2 [u2(w + H(u1,g1,h1)(X) − X)] = αEg1h1 [u1(w + H(u1,g1,h1)(X) − X)]

= αu1(w) = u2(w) for X ∈ X+,

which implies (61).
Assume that (ii) holds and fix X ∈ X+. We claim that

P (X > w + H(u1,g1,h1)(X)) ≤ 1 − g−1
1 (u1(w)/L). (62)

Suppose that this is not true. Then, as the space (Ω,Σ, P ) is non-atomic, there
exists B ∈ Σ such that

B ⊂ A := {X > w + H(u1,g1,h1)(X)}
and

1 − g−1
1 (u1(w)/L) < P (B) < P (A). (63)

Hence, setting

X := w · 1lA\B + (w + H(u1,g1,h1)(X)) · 1lB ,

we get X ≤ X which, in view of (9), gives

H(u1,g1,h1)(X) ≤ H(u1,g1,h1)(X). (64)

Furthermore, we have

X = 〈0, w, w + H(u1,g1,h1)(X); p〉 ∈ X (3)
0 , (65)

where
p := (1 − P (A), P (A\B), P (B)).

Let T be of the form (13) and let φ
(1)
p , ψ

(1)
p : T → R be given by

φ
(1)
p (x, y) = w + H(u1,g1,h1)(〈0, x, y; p〉) − x for (x, y) ∈ T,

ψ
(1)
p (x, y) = w + H(u1,g1,h1)(〈0, x, y; p〉) − y for (x, y) ∈ T,

respectively. Then, considering (8), (64) and (65), we obtain

ψ
(1)
p (w,w + H(u1,g1,h1)(X))

= w + H(u1,g1,h1)(X) − (w + H(u1,g1,h1)(X))

= H(u1,g1,h1)(X) − H(u1,g1,h1)(X) ≤ 0 ≤ H(u1,g1,h1)(X)

= φ
(1)
p (w,w + H(u1,g1,h1)(X)).



236 J. Chudziak AEM

Therefore, according to Lemma 2.3(c), we have g1(1 − P (B)) > u1(w)/L and
so

P (B) < 1 − g−1
1 (u1(w)/L),

which contradicts (63). In this way (62) is proved.
It follows from (62) that

P (−u2(w + H(u1,g1,h1)(X) − X) > t) ≤ 1 − g−1
1 (u1(w)/L) for t ∈ [0,∞).

Thus, in view of (4), (55) and (56), we get

Eh2 [max{−u2(w + H(u1,g1,h1)(X) − X), 0}]

=
∫ ∞

0

h2(P (−u2(w + H(u1,g1,h1)(X) − X) > t)) dt

=
β

α

∫ ∞

0

h1(P (−αu1(w + H(u1,g1,h1)(X) − X) > t)) dt

= β

∫ ∞

0

h1(P (−u1(w + H(u1,g1,h1)(X) − X) > t)) dt

= βEh1 [max{−u1(w + H(u1,g1,h1)(X) − X), 0}].

Furthermore, since the Choquet integral is positively homogeneous, making
use of (56), we obtain

Eg2 [max{u2(w + H(u1,g1,h1)(X) − X), 0}]
= βEg2 [max{u1(w + H(u1,g1,h1)(X) − X), 0}].

Thus, as g1 = g2, considering (5) and (6), we conclude that

Eg2h2 [u2(w + H(u1,g1,h1)(X) − X)]

= βEg1h1 [u1(w + H(u1,g1,h1)(X) − X)] = βu1(w) = u2(w)

and so H(u1,g1,h1)(X) = H(u2,g2,h2)(X). �
From Theorems 3.1 and 3.2 we derive the following result.

Theorem 3.3. Let w ∈ [0,∞). Assume that, for i ∈ {1, 2}, ui : R → R is a
strictly increasing continuous function with ui(0) = 0 and gi, hi : [0, 1] → [0, 1]
are strictly increasing continuous probability distortion functions. Moreover,
let H(ui,gi,hi) for i ∈ {1, 2} be the functionals of equivalent utility, defined by
(5). If (53) holds then

H(u1,g1,h1)(X) = H(u2,g2,h2)(X) for X ∈ X+.

Remark 3.4. According to Theorem 3.3, every functional of equivalent utility,
defined by (5), can be uniquely extended from the family X (3)

0 to X+. It has
been already mentioned, in the Introduction, that such a functional need not
be uniquely extended from the family of all binary risks. We complete the
paper with a suitable example.
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Example 3.5. Let w ∈ [0,∞) and let u1, u2 : R → R be of the form

u1(x) = x for x ∈ R

and

u2(x) =
{√

w − √
w − x for x ∈ (−∞, w],√

w +
√

x − w for x ∈ (w,∞),
respectively. Furthermore, let gi, hi : [0, 1] → [0, 1] for i ∈ {1, 2} be given by

g1(p) = h1(p) = p for p ∈ [0, 1]

and

g2(p) = h2(p) =
√

p√
p +

√
1 − p

for p ∈ [0, 1].

Then, according to [3, Theorems 3.1-3.2], H(u1,g1,h1) and H(u2,g2,h2) coincide
on the family of all binary risks. On the other hand, since limx→∞ u1(x) = ∞,
applying Theorem 3.1, we conclude that H(u1,g1,h1) and H(u2,g2,h2) do not
coincide on X (3)

0 .
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