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Abstract. We determine continuous bijections f , acting on a real interval into itself, whose
k-fold iterate is the quasi-arithmetic mean of all its subsequent iterates from f0 up to fn

(where 0 � k � n). Namely, we prove that if at most one of the numbers k, n is odd, then
such functions consist of at most three affine pieces.
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1. Introduction

Consider integers n � 2, 0 � k � n and a non-trivial interval I ⊂ R. The
following problem arises when studying polynomial-like iterative equations,
means of functions or convergence of means of iterates: Determine all contin-
uous functions F : I → I with the k-fold iterate F k being a mean of all its
subsequent iterates up to Fn; more precisely, find all self-mappings F ∈ C(I)
such that

F k(x) = M(x, F (x), F 2(x), . . . , Fn(x)) (1)

for every x ∈ I, where M : In+1 → I is a mean and C(I) stands for the family
of all continuous real functions acting on I.

In this paper we concentrate on Eq. (1) in the case where M is a quasi-
arithmetic mean, i.e., M being of the form

M(x0, . . . , xn) = ϕ−1

(
1

n + 1

n∑
i=0

ϕ(xi)

)
(2)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-018-0550-y&domain=pdf


22 S. Draga, J. Morawiec AEM

for all x0, . . . , xn ∈ I, where ϕ is a continuous bijection form I onto an inter-
val J ⊂ R. Observe that it is enough to consider Eq. (1) with M being the
arithmetic mean, which follows from the following remark.

Remark 1.1. Assume that J ⊂ R is an interval, ϕ : I → J is a bijection onto
J and F : I → I. Then F satisfies (1) with M given by (2) on I if and only if
f = ϕ ◦ F ◦ ϕ−1 satisfies

fk =
1

n + 1

n∑
i=0

f i (3)

on J . Moreover, f is a (continuous) bijection if and only if F is a (continuous)
bijection.

It is easy to prove that any self-mapping satisfying (3) is injective (see, e.g.
[2, Lemma 2.1]). Therefore, any continuous surjective solution to Eq. (3) is
automatically a continuous bijection; in particular it is strictly monotone.

The paper is organized as follows. In Sect. 2 we collect basic properties
of polynomial-like iterative equations and preliminary information on linear
homogeneous recurrence relations. In Sect. 3 we solve Eq. (3) in the cases
where k = 0 or k = n. The case where 0 < k < n is treated in Sect. 4. The
final section contains examples and remarks on the considered equation as well
as some further problems.

2. Polynomial-like iterative equations and recurrence relations

Equation (3) is a very special case of an iterative equation belonging to an
interesting and widely studied class of functional equations, called polynomial-
like iterative equations, of the form

n∑
i=0

aif
i(x) = 0, (4)

where fk stands for the k-fold iterate of a self-mapping unknown function f
(defined on an interval I ⊂ R) and a0, a1, . . . , an are given real coefficients. It
turns out that continuous solutions to (4) deeply depend on the roots of its
characteristic equation

n∑
i=0

air
i = 0 (5)

which is obtained by assuming that f has the form f(x) = rx.
In general, it is very difficult to find all continuous functions satisfying

Eq. (4). These difficulties follow from the non-linearity of the operator f �→ fn.
Up to now the complete solution is known only in the case where n = 2 and
I = R [12]. The problem still remains open even for n = 3 [7]. A partial solution
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in the case where n = 3 and I = R was obtained in [16] and some results in
the case where n � 3 and I �= R can be found in [3,6,10,11,13,15,17].

It is known [9] that if a polynomial
∑m

i=0 bir
i divides a polynomial

∑n
i=0 air

i

and a function f satisfies
∑m

i=0 bif
i(x) = 0 then it satisfies also (4). One of

the methods for finding solutions to (4) is based on a reverse reasoning, i.e.,
if a continuous function f satisfies Eq. (4), then we want to find a divisor of
the polynomial

∑n
i=0 air

i such that f is a solution to the corresponding equa-
tion of lower order. The first such results on the whole real line were obtained
in [8] in the case where all roots of the characteristic equation are real and
satisfy some special conditions. Further research in this direction was done in
[1,2,14,18] and some of them will be crucial tools in this paper.

Equation (5) can be considered as the characteristic equation of the recur-
rence relation

n∑
i=0

aixm+i = 0 (6)

which might be obtained by choosing x0 ∈ I arbitrarily and putting xm =
f(xm−1) for every m ∈ N. It is easy to see that if a0 �= 0 and a function f
satisfies (4), then it is injective (see, e.g., [2, Lemma 2.1.]). This observation
implies that every continuous solution to (4) is strictly monotone. It means
that the sequence (xm)m∈N0 given by x0 ∈ I and xm = f(xm−1) for m ∈ N

is either monotone (in the case of increasing f) or anti-monotone (in the case
of decreasing f). By anti-monotone we mean that the expression (−1)m(xm −
xm−1) does not change its sign when m runs through N0. In the case where f
is bijective we can consider the dual equation

n∑
i=0

aif
n−i(x) = 0. (7)

Putting f−n(x) in place of x we see that f satisfies (4) if and only if f−1

satisfies (7). We can also extend the sequence (xm)m∈N0 to the whole Z by
setting x−m = f−1(x−m+1) for m ∈ N. Then relation (6) is satisfied for m ∈ Z.

For the theory of linear recurrence relations we refer the reader, for in-
stance, to [4, §3.2]. We shall recall only the most significant theorem in this
matter. In order to do this and simplify the writing we introduce the fol-
lowing notation: For a given polynomial cnrn + · · · + c1r + c0 we denote by
R(cn, . . . , c0) the collection {(r1, k1), . . . , (rp, kp)} of all pairs of its pairwise
distinct (complex) roots r1, . . . , rp and their multiplicities k1, . . . , kp, respec-
tively. Here and throughout the paper by a polynomial we mean a polynomial
with real coefficients.

Theorem 2.1. Assume that

R(an, . . . , a0) = {(λ1, l1), . . . , (λp, lp),

(μ1,m1), (μ1,m1), . . . , (μq,mq), (μq,mq)}.
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Then a real-valued sequence (xj)j∈N0 satisfies (6) if and only if it is given by

xj =
p∑

k=1

Ak(j)λj
k +

q∑
k=1

(
Bk(j) cos jφk + Ck(j) sin jφk

)|μk|j

for every j ∈ N0, where Ak is a polynomial whose degree equals at most lk − 1
for k = 1, . . . , p and Bk, Ck are polynomials whose degrees equal at most mk−1,
with φk being an argument of μk, for k = 1, . . . , q.

3. Cases k = 0 and k = n

In the case where k = 0 Eq. (3) takes the form

x =
1
n

n∑
i=1

f i(x). (8)

Its characteristic equation is of the form
n∑

i=1

ri − n = 0 (9)

which, after multiplication by r −1, can be written as rn+1 − (n+1)r +n = 0.
Therefore, by the previous remarks, if a function f satisfies (8), then it also
satisfies the equation fn+1(x) − (n + 1)f(x) + nx = 0. Now, applying [2,
Theorem 5.7], we obtain the following result.

Theorem 3.1. If f ∈ C(I) satisfies (8), then:
(i) f(x) = x in the case where n is an odd number or in the case where n is

an even number and I �= R;
(ii) f(x) = x or f(x) = r0x + c, where c is a constant and r0 stands for

the negative root of Eq. (9), in the case where n is an even number and
I = R.

Now we shall consider the case where k = n. Then Eq. (3) takes the form

fn(x) =
1
n

n−1∑
i=0

f i(x) (10)

and its characteristic equation is of the form

nrn −
n−1∑
i=0

ri = 0. (11)

We will need the following lemma which is an elaboration of [12, Theorem
9]; the crucial point is that an unknown function acts on a subinterval of the
real line.
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Lemma 3.2. Assume that f ∈ C(I) satisfies

f2(x) − (1 + ρ)f(x) + ρx = 0. (12)

If either
(i) ρ ∈ (−1, 0)

or
(ii) ρ ∈ (−∞,−1) and f is a surjection,

then f(x) = x or f(x) = ρx + c, where c is a constant.

Proof. (i) In the case where f is increasing we can apply [2, Theorem 4.1 and
Remark 4.4] to conclude that f(x) = x. Therefore, assume f is decreasing.

Fix x ∈ I and put x0 = x and xm = f(xm−1) for m ∈ N. It is easy to see
that the sequence (xm)m∈N0 satisfies the relation

xm+2 − (1 + ρ)xm+1 + ρxm = 0 for m ∈ N0.

By Theorem 2.1 we have xm = A + Bρm for some constants A and B (de-
pending on x). Consequently, there exists a finite limit limm→∞ fm(x).

Fix x, y ∈ I. Since f is decreasing, the sequence (fm(x) − fm(y))m∈N0

is anti-monotone. Moreover, it is convergent, so it must converge to zero. It
means that the limit limm→∞ fm(x) does not depend on x.

We can rewrite Eq. (12) as f2(x) − ρf(x) = f(x) − ρx. Putting f(x) in
place of x we obtain

f3(x) − ρf2(x) = f2(x) − ρf(x) = f(x) − ρx

and, by a simple induction, we obtain

fm+1(x) − ρfm(x) = f(x) − ρx for all m ∈ N and x ∈ I.

Passing with m to ∞ gives

f(x) = ρx + (1 − ρ) lim
m→∞ fm(x) for every x ∈ I.

Setting c = (1 − ρ) limm→∞ fm(x) ends the proof of assertion (i).
(ii) It is enough to apply assertion (i) to the dual equation to (12). �

Theorem 3.3. If f ∈ C(I) satisfies (10), then:
(i) f(x) = x in the case where n is an odd number;
(ii) f(x) = x or f(x) = r0x + c, where c is a constant and r0 stands for the

negative root of Eq. (11), in the case where n is an even number.

Proof. Multiplying (11) by r − 1 gives

nrn+1 − (n + 1)rn + 1 = 0. (13)

Clearly, Eqs. (11) and (13) have the same roots, wherein the multiplicity of
root 1 is greater by 1 in the second equation. Define a function g : R → R by

g(r) = nrn+1 − (n + 1)rn + 1.
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Since g(1) = g′(1) = 0 and g′′(1) �= 0, Eq. (13) has a double root 1.
In the case of odd n, g has the only extremum at 1, so it is the only real

root of g. In the case of even n, g has extrema at 0 and 1, so it also has a
negative root r0. Since g(0)g(−1) < 0, we have r0 > −1 and since g′(r0) > 0,
it follows that r0 is a single root.

We shall show that if n is even and if z is a non-real root of (13), then
|z| > −r0. Suppose, for an indirect proof, the contrary. If |z| = −r0, then we
would have

1 = |n(−z)n+1 + (n + 1)zn| � n|z|n+1 + (n + 1)|z|n= − nrn+1
0 + (n + 1)rn

0 =1,

which means that n(−z)n+1 and (n + 1)zn are linearly dependent over R, and
consequently z ∈ R; a contradiction. If |z| < −r0, then we would have

1 = |n(−z)n+1 + (n + 1)zn| � n|z|n+1 + (n + 1)|z|n < −nrn+1
0 + (n + 1)rn

0 =1,

which is a contradiction again.
By [2, Theorem 3.6] Eq. (10) is equivalent to the equation f(x)−x = 0 in the

case of odd n, which proves assertion (i), and to the equation
f2(x) − (r0 + 1)f(x) + r0x = 0 in the case of even n. Now assertion (ii)
follows from assertion (i) of Lemma 3.2. �

4. Case 0 < k < n

In order to find continuous solutions to Eq. (3) in the case where 0 < k < n
we need information on the roots of its characteristic equation which is of the
form

(n + 1)rk =
n∑

i=0

ri. (14)

We start with a general observation on complex roots of Eq. (14).

Lemma 4.1. All complex roots of Eq. (14) are in modulus less than 2n + 1.

Proof. Assume that z ∈ C is a root of Eq. (14). Without loss of generality we
can assume that |z| > 1. Then

|z|n =

∣∣∣∣∣(n + 1)zk −
n−1∑
i=0

zi

∣∣∣∣∣ � (n + 1)|z|k +
n−1∑
i=0

|z|i,

and hence

|z| � (n + 1)|z|k−n+1 +
n−1∑
i=0

|z|i−n+1 < (n + 1) + n = 2n + 1.

This completes the proof. �
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To obtain more precise information on real roots of Eq. (14) define functions
g,G : R → R by

g(r) = rn−k+1 − (k + 1)r + k, G(r) = rn+1 − (n + 1)rk(r − 1) − 1.

It is easy to see that

G(1) = g(1) = 0, g(0) > 0 and G(0) < 0. (15)

Moreover, the set of all real roots of Eq. (14) coincides with the set of all
solutions to the equation

G(r) = 0 (16)

and

G′(r) = (n + 1)rk−1g(r).

Note also that in the case where n − k is odd the function g is strictly
convex with the global minimum at the point

rmin =
(

k + 1
n − k + 1

)1/(n−k)

and, by (15), we have

g(rmin) < 0 if and only if rmin �= 1. (17)

However, in the case where n − k is even the function g|(0,+∞) is strictly
convex with the global minimum at the point rmin and (17) holds, whereas
the function g|(−∞,0) is strictly concave with the global maximum at the point
rmax = −rmin and, by (15), we have

g(rmax) > 0. (18)

The described properties of functions g and G will play a key role in the
next lemma which will allow us to locate real roots of Eq. (14).

Lemma 4.2. Assume that 0 < k < n.
(i) If k is an odd number and n = 2k, then Eq. (14) has one real root:

r1 = 1.
(ii) If k is an odd number and n is an even number with n < 2k, then

Eq. (14) has two real roots: r1 = 1 and r2 ∈ (1, 2n + 1).
(iii) If k is an odd number and n is an even number with n > 2k, then

Eq. (14) has two real roots: r1 = 1 and r2 ∈ (0, 1).
(iv) If k and n are odd numbers with n < 2k, then Eq. (14) has three real

roots: r1 = 1, r2 ∈ (1, 2n + 1) and r3 ∈ (−2n − 1,−1).
(v) If k and n are odd numbers with n > 2k, then Eq. (14) has three real

roots: r1 = 1, r2 ∈ (0, 1) and r3 ∈ (−2n − 1,−1).
(vi) If k is an even number and n is an odd number with n < 2k, then

Eq. (14) has three real roots: r1 = 1, r2 ∈ (1, 2n + 1) and r3 ∈ (−1, 0).



28 S. Draga, J. Morawiec AEM

(vii) If k is an even number and n is an odd number with n > 2k, then
Eq. (14) has three real roots: r1 = 1, r2 ∈ (0, 1) and r3 ∈ (−1, 0).

(viii) If k is an even number and n = 2k, then Eq. (14) has three real roots:
r1 = 1, r2 ∈ (−1, 0) and r3 ∈ (−2n − 1,−1).

(ix) If k and n are even numbers with n < 2k, then Eq. (14) has four real
roots: r1 = 1, r2 ∈ (1, 2n + 1), r3 ∈ (−1, 0) and r4 ∈ (−2n − 1,−1).

(x) If k and n are even numbers with n > 2k, then Eq. (14) has four real
roots: r1 = 1, r2 ∈ (0, 1), r3 ∈ (−1, 0) and r4 ∈ (−2n − 1,−1).

Moreover, in all the above cases r1, r2, r3, r4 are single roots, except the case
n = 2k in which r1 is a double root.

Proof. We first observe that if k is odd, then for every r ∈ R\{0} we have

G′(r) > 0 ⇐⇒ g(r) > 0.

(i) The assumption n = 2k implies rmin = 1. It yields g(r) > g(rmin) = 0
for every r �= rmin. Consequently, the function G is strictly increasing, which
jointly with (15) shows that rmin is the unique real root of Eq. (14).

(ii) The assumption n < 2k implies rmin > 1. We conclude that there
exists exactly one t0 ∈ R\{1} such that g(t0) = 0 and, moreover, t0 > rmin.
Consequently, the function G has exactly one local maximum at the point
r1 = 1 and exactly one local minimum at the point t0. This jointly with (15)
shows that Eq. (14) has two real roots: r1 = 1 and r2 ∈ (t0,∞). By Lemma
4.1 we have r2 < 2n + 1.

(iii) The reasoning is similar as in (ii).
(iv) The assumption n < 2k implies rmin > 1 and rmax < −1. We conclude

that there exists exactly one t0 ∈ (0, 1) ∪ (1,∞) such that g(t0) = 0 and,
moreover, t0 ∈ (rmin,∞). Further, there exists exactly one u0 ∈ (−∞, 0) such
that g(u0) = 0 and, moreover, u0 ∈ (−∞, rmax). Consequently, the function
G has exactly one local maximum at the point r1 = 1 and exactly two local
minimums at points t0 and u0. This jointly with (15) shows that Eq. (14) has
three real roots: r1 = 1, r2 ∈ (t0,∞) and r3 ∈ (−∞, u0). By Lemma 4.1 we
have r2 < 2n + 1 and r3 > −2n − 1.

(v) The reasoning is similar as in (iv).
Now observe that if k is even, then for every r ∈ (0,∞) we have

G′(r) > 0 ⇐⇒ g(r) > 0

and for every r ∈ (−∞, 0) we have

G′(r) > 0 ⇐⇒ g(r) < 0.

(vi) The assumption n < 2k implies rmin > 1. We conclude that there
exists exactly one t0 ∈ R\{1} such that g(t0) = 0 and, moreover, t0 > rmin.
Consequently, the function G has exactly one local maximum at the point
r1 = 1 and exactly two local minimums at points 0 and t0. This jointly with
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(15) shows that Eq. (14) has three real roots: r1 = 1, r2 ∈ (t0,∞) and r3 ∈
(−∞, 0). By Lemma 4.1 we have r2 < 2n + 1 and since

G(−1) > 0 (19)

in this case, we have r3 > −1.
(vii) The reasoning is similar as in (vi).
(viii) The assumption n = 2k implies rmin = 1 and rmax = −1. We conclude

that g(r) > g(rmin) = 0 for every r ∈ (0, rmin) ∪ (rmin,∞). Furthermore,
there exists exactly one y0 ∈ (−∞, 0) such that g(y0) = 0 and, moreover,
y0 ∈ (−∞, rmax). Consequently, the function G has exactly one local maximum
at the point y0 and exactly one local minimum at point 0. This jointly with
(15) and (19) shows that Eq. (14) has three real roots: r1 = 1, r2 ∈ (−1, 0)
and r3 ∈ (−∞,−1). By Lemma 4.1 we have r3 > −2n − 1.

(ix) The assumption n < 2k implies rmin > 1 and rmax < −1. We conclude
that there exists exactly one t0 ∈ (0, 1) ∪ (1,∞) such that g(t0) = 0 and,
moreover, t0 ∈ (rmin,∞). Furthermore, there exists exactly one u0 ∈ (−∞, 0)
such that g(u0) = 0 and, moreover, u0 ∈ (−∞, rmax). Consequently, the func-
tion G has exactly two local maximums at points r1 = 1 and u0 and exactly
two local minimums at points 0 and t0. This jointly with (15) and (19) shows
that Eq. (14) has four real roots: r1 = 1, r2 ∈ (t0,∞), r3 ∈ (−1, 0) and
r4 ∈ (−∞,−1). By Lemma 4.1 we have r2 < 2n + 1 and r4 > −2n − 1.

(x) The reasoning is similar as in (ix).
To prove the ‘moreover’ part note that equality g′(r) = 0 can hold only for

r ∈ {rmin, rmax}. Thus G′′(ri) = (n + 1)rk−1
i g′(ri) �= 0 for every i ∈ {2, 3, 4}

and for i = 1 in the case where n �= 2k. If n = 2k, then G′′(r1) = 0 and
G′′′(r1) = (2k + 1)(k + 1)k �= 0. �

Now we want to obtain some information on the location of non-real roots
of Eq. (14). It will be more convenient for us to consider (16) instead of (14).

Lemma 4.3. Assume that 0 < k < n and at least one of the numbers k and
n is odd. Then for a non-real root z and a real root r0 of Eq. (14) we have
|z| �= |r0|.
Proof. Let r0 ∈ (0,∞); in this case the parity of k or n does not play any role.
Suppose, for a contradiction, |z| = r0. Then

(n + 1)rk
0 = (n + 1)|z|k =

∣∣∣∣∣
n∑

i=0

zi

∣∣∣∣∣ <

n∑
i=0

|z|i =
n∑

i=0

ri
0,

which is impossible.
Now assume r0 ∈ (−∞, 0) and as before, suppose that |z| = −r0. By

Lemma 4.2 we need to consider only the case where n is odd.
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In the case where both k and n are odd, we have

rn+1
0 = |z|n+1 =

∣∣(n + 1)zk+1 − (n + 1)zk + 1
∣∣

< (n + 1)|z|k+1 + (n + 1)|z|k + 1 = (n + 1)rk+1
0 − (n + 1)rk

0 + 1;

a contradiction. Similarly, in the case where k is even and n is odd, we have

1 =
∣∣zn+1 − (n + 1)zk+1 + (n + 1)zk

∣∣ < |z|n+1 + (n + 1)|z|k+1 + (n + 1)|z|k
= rn+1

0 − (n + 1)rk+1
0 + (n + 1)rk

0 ;

a contradiction. �

The last lemma we need is basically Theorems 8 and 10 (iii) from [12]; the
only difference is that in our lemma the unknown function acts on a subinterval
of the real line.

Lemma 4.4. Let ρ ∈ (0,∞) and assume a surjection f ∈ C(I) satisfies (12).
(i) If ρ = 1, then f(x) = x + c, where c is a constant.
(ii) If ρ ∈ (0, 1) ∪ (1,∞), then

f(x) =

⎧⎪⎨
⎪⎩

ρ(x − a) + a for x � a,

x for x ∈ (a, b),
ρ(x − b) + b for x � b,

(20)

where a, b ∈ cl I with a � b.

Proof. Since f(x) = 1
1+ρ

(
f2(x) + ρx

)
, it follows that f is strictly increasing.

(i) If ρ = 1, then the monotonicity of f and a simple induction applied to
(12) imply

0 <
fm(x) − fm(y)

x − y
= 1 + m

(
f(x) − f(y)

x − y
− 1

)
for all m ∈ Z and x, y ∈ I with x �= y. Therefore, passing with m in turn to
∞ and −∞ we conclude that f(x)−f(y)

x−y = 1 for all x, y ∈ I.
(ii) Assume that ρ ∈ (0, 1); the case when ρ ∈ (1,∞) can be proved sim-

ilarly, or else can be deduced from the dual case. Applying induction to (12)
with ρ �= 1 we obtain

fm(x) =
1

ρ − 1
(ρx − f(x)) +

ρm

ρ − 1
(f(x) − x)

for all m ∈ Z and x ∈ I. If f(x) �= x for some x ∈ I, then passing with m to
∞ we obtain

lim
m→∞ fm(x) =

1
ρ − 1

(ρx − f(x)),

which means that f(x) = ρ(x − a) + a with some a ∈ cl I. In consequence (20)
holds. �
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Note that if a = inf I and b = sup I, then (20) represents the identity
solution, while if a = b, then (20) represents an affine solution.

Theorem 4.5. Assume 0 < k < n. If f ∈ C(I) is a surjection satisfying (3),
then:

(i) f(x) = x+ c, where c is a constant, in the case where k is an odd number
and n = 2k;

(ii)

f(x) =

⎧⎪⎨
⎪⎩

r0(x − a) + a for x � a,

x for x ∈ (a, b),
r0(x − b) + b for x � b,

(21)

where a, b ∈ cl I with a � b and r0 stands for the difference from 1 positive
root of Eq. (14), in the case where k is an odd number and n is an even
number with n �= 2k;

(iii) f(x) = r0x + c, where r0 stands for the negative root of Eq. (14), or f is
of form (21), where a, b ∈ cl I with a � b and r0 stands for the difference
from 1 positive root of Eq. (14), in the case where k is an even number
and n is an odd number or both k and n are odd numbers.

Proof. The idea of the proof in each of the considered cases is the same and
run in the following way. First, we determine all real roots of Eq. (14) with
their multiplicities and localize all its non-real roots. This step is done in
Lemmas 4.2 and 4.3. Next, according to [2, Theorem 3.6, Corollary 3.7 and
Theorem 4.3], we reduce Eq. (3) to a simpler one, i.e. to an equation which
has the same surjective and continuous solutions. Finally, we solve the simpler
equation applying Lemmas 3.2 and 4.4. �

Remark 4.6. In the case where I = R the surjectivity assumption in Theorem
4.5 is satisfied automatically. However, this assumption is not essential when
considering the dual equation.

5. Examples, remarks and problems

In this section we give some examples showing how our main results work.

Corollary 5.1. Assume that p �= 0 and I ⊂ (0,∞). Then f ∈ C(I) satisfies

fn(x) =
(

xp + [f(x)]p + · · · + [fn−1(x)]p

n

)1/p

if and only if

(i) f(x) = x in the case where n is an odd number;
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(ii) f(x) = x or f(x) = (r0xp+c)1/p, where c is a constant such that f(I) ⊂ I
and r0 stands for the negative root of Eq. (11), in the case where n is an
even number.

Proof. It is enough to use Theorem 3.3 and Remark 1.1 with ϕ of the form
ϕ(x) = x1/p. �

Corollary 5.2. Assume that I ⊂ (0,∞). Then f ∈ C(I) satisfies

fn(x) = n
√

xf(x) . . . fn−1(x)

if and only if
(i) f(x) = x in the case where n is an odd number;
(ii) f(x) = x or f(x) = cxr0 , where c is a constant such that f(I) ⊂ I and

r0 stands for the negative root of Eq. (11), in the case where n is an even
number.

Proof. It is enough to use Theorem 3.3 and Remark 1.1 with ϕ = exp. �

Remark 5.3. In the case where I = R Eq. (10) is the dual equation to (8).
However, as we have shown in Corollary 5.1, there exist non-surjective solutions
to (10).

Corollary 5.4. Assume that p �= 0 and I ⊂ (0,∞). Then f ∈ C(I) satisfies

[f(x)]p + [f2(x)]p + · · · + [fn(x)]p

n
= xp (22)

if and only if f(x) = x.

Proof. It is enough to use Theorem 3.1 and Remark 1.1 with ϕ of the form
ϕ(x) = x1/p. The root r0 has no influence on solutions to (22), because the
interval {x1/p : x ∈ I} cannot be equal to the whole real line. �

Corollary 5.5. Assume that I ⊂ (0,∞). Then f ∈ C(I) satisfies

f(x)f2(x) . . . fn(x) = xn

if and only if
(i) f(x) = x in the case where n is an odd number or I �= (0,∞);
(ii) f(x) = x or f(x) = cxr0 , where c is a constant such that f(I) ⊂ I and

r0 stands for the negative root of Eq. (9), in the case where n is an even
number and I = (0,∞).

Proof. It is enough to use Theorem 3.1 and Remark 1.1 with ϕ = exp. �

Corollary 5.6. Assume that p �= 0, m ∈ N and I ⊂ (0,∞). Then f ∈ C(I)
satisfies

[fm(x)]p + [f2m(x)]p + · · · + [fnm(x)]p

n
= xp (23)

if and only if
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(i) f(x) = x in the case where m is an odd number or I is neither open nor
closed;

(ii) f(x) = x or

f(x) =

{
f0(x) for every x � a,

f−1
0 (x) for every x < a,

(24)

where a is an arbitrary interior point of I and f0 is an arbitrary con-
tinuous and strictly decreasing function defined on I ∩ (0, a] such that
limx→inf I f0(x) = sup I and f0(a) = a, in the case where m is an even
number and I is open or closed.

Proof. From Corollary 5.4 we conclude that

fm(x) = x. (25)

Now it is enough to apply [5, Theorem 15.3, Theorem 15.2 and Lemma 15.2]
jointly with the fact that there is no continuous strictly decreasing function
satisfying (25) defined on an interval which is neither open nor closed. �

Corollary 5.7. Assume m ∈ N and I is bounded. Then a bijection f ∈ C(I)
satisfies

exp (fm(x)) + exp
(
fm+1(x)

)
+ · · · + exp

(
fm+4n−2(x)

)
4n − 1

= exp
(
fm+2n−1(x)

)
if and only if

(i) f(x) = x in the case where m is an odd number or I is neither open nor
closed;

(ii) f(x) = x or f is of the form (24), where a is an arbitrary interior point
of I and f0 is an arbitrary continuous and strictly decreasing function
defined on I ∩ (−∞, a] such that limx→inf I f0(x) = sup I and f0(a) = a,
in the case where m is an even number and I is open or closed.

Proof. Applying assertion (i) of Theorem 4.5 and Remark 1.1 with ϕ = log we
conclude that (25) holds. Now we argue as in Corollary 5.6. �

We finish this paper with two problems motivated by the main results.

Problem 5.8. Can we omit the surjectivity assumption on f in Theorem 4.5?

Problem 5.9. Determine all (bijections) f ∈ C(I) satisfying (3) in the case
where both the numbers k and n are even.
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