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Abstract. We give a correction to Theorem 1.2 in a previous paper [Mediterr.
J. Math. (2018) 15:227]. Two examples are given to explain the corrected
conclusion.
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1. Introduction and main result

Recently, the present authors originally considered solutions of complex par-
tial differential-difference equations of the Fermat type by making use of
Nevanlinna theory. Unfortunately, there was an error in the proof of [1, The-
orem 1.2] (that is lines -1 to -3 on the Page 11), and thus its conclusion was
stated wrong. Here we correct it as follows.s

Theorem 1.1. Let c = (c1, c2) be a constant in C
2. Then any transcendental

entire solution with finite order of the partial difference-differential equation
of the Fermat type(

∂f(z1, z2)
∂z1

)2

+ f2(z1 + c1, z2 + c2) = 1 (1)
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has the form of f(z1, z2) = sin (Az1 + Bz2 + H(z2)) , where A,B are con-
stants on C satisfying A2 = 1 and Aei(Ac1+Bc2) = 1, and H(z2) is a poly-
nomial in one variable z2 such that H(z2) ≡ H(z2 + c2). In the special case
whenever c2 �= 0, we have f(z1, z2) = sin (Az1 + Bz2 + Constant) .

We show the details of the proof as follows.

Proof. Assume the f is a transcendental entire solution with finite order of
equation (1), then[

∂f(z1, z2)
∂z1

+ if(z1 + c1, z2 + c2)
] [

∂f(z1, z2)
∂z1

− if(z1 + c1, z2 + c2)
]

= 1.

From the equation we see that both ∂f(z1,z2)
∂z1

+ if(z1 + c1, z2 + c2) and
∂f(z1,z2)

∂z1
− if(z1 + c1, z2 + c2) have no zeros in C

2. Hence similarly as the
proof of [1, Theorem 1.4], we may also assume that

∂f(z1, z2)
∂z1

+ if(z1 + c1, z2 + c2) = eip(z)

and
∂f(z1, z2)

∂z1
− if(z1 + c1, z2 + c2) = e−ip(z)

where p is a nonconstant entire function on C
2, which gives

f(z1 + c1, z2 + c2) =
eip(z) − e−ip(z)

2i
= sin p(z).

Furthermore, it follows immediately from [1, Lemma 3.3] for any variable
zj (j ∈ 1, 2) that p should be a polynomial function on C

2. Hence, p is a
nonconstant polynomial on C

2. From these equations above, we get from [1,
Lemma 3.2] that

∂f(z1 + c1, z2 + c2)
∂z1

=
eip(z1+c1,z2+c2) + e−ip(z1+c1,z2+c2)

2

=
∂p(z1, z2)

∂z1
· eip(z1,z2) + e−ip(z1,z2)

2
,

that is
∂p(z1, z2)

∂z1
eip(z1,z2)+ip(z1+c1,z2+c2) +

∂p(z1, z2)
∂z1

eip(z1+c1,z2+c2)−ip(z1,z2)

−ei2p(z1+c1,z2+c2) = 1. (2)

From the assertion that p is a nonconstant polynomial, we see that
ip(z1, z2) + ip(z1 + c1, z2 + c2) can not be a constant. This implies that both
ei2p(z1+c1,z2+c2) and eip(z1,z2)+ip(z1+c1,z2+c2) must be nonconstant and tran-
scendental on C

2, and that
∂p(z1, z2)

∂z1
eip(z1,z2)+ip(z1+c1,z2+c2)

can not be a constant. Furthermore, note that

N(r, ei2p(z1+c1,z2+c2)) = N(r,
1

ei2p(z1+c1,z2+c2)
) = 0
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N(r,
∂p(z1, z2)

∂z1
eip(z1,z2)+ip(z1+c1,z2+c2)) = 0

N(r,
1

∂p(z1,z2)
∂z1

eip(z1,z2)+ip(z1+c1,z2+c2)
) = o(T (r, f)).

Hence, we can get from [1, Lemma 3.1] that

∂p(z1, z2)
∂z1

eip(z1+c1,z2+c2)−ip(z1,z2) ≡ 1. (3)

Rewrite it to be
∂p(z1, z2)

∂z1
≡ eip(z1,z2)−ip(z1+c1,z2+c2),

which implies ip(z1, z2)−ip(z1+c1, z2+c2), and thus eip(z1,z2)−ip(z1+c1,z2+c2),
must be a constant. Otherwise, we obtain a contradiction from the fact that
the left of the above equation is nontranscendental but the right is transcen-
dental. Assume that

∂p(z1, z2)
∂z1

≡ eip(z1,z2)−ip(z1+c1,z2+c2) ≡ A,

where A is a nonzero constant in C. Submitting (3) into (2) gives

∂p(z1, z2)
∂z1

≡ eip(z1+c1,z2+c2)−ip(z1,z2) ≡ 1
A

.

Hence A2 = 1. Further, by ∂p(z1,z2)
∂z1

≡ A, we know that p(z1, z2) is only a
nonconstant polynomial of the form

p(z1, z2) = Az1 + g(z2),

where g(z2) should be a polynomial function in one variable z2 (Note that
the present authors made a mistake of p(z1, z2) = Az1 + B with a constant
B in the original proof in [1], and thus the following is different from the
original proof). Since p(z1, z2) − p(z1 + c1, z2 + c2) = −iLnA, we get that

g(z2) − g(z2 + c2) = Ac1 − iLnA.

We may write g(z2) = Bz2 + h(z2) such that A2 = 1 and

Aei(Ac1+Bc2) = 1,

where h(z2) is a polynomial in one variable z2. This implies Ac1 + Bc2 =
−kπ(k ∈ N) and h(z2) ≡ h(z2 + c2). Hence,

f(z1, z2) = sin(Az1 − Ac1 + Bz2 − Bc2 + h(z2 − c2))
= sin(Az1 + Bz2 − (Ac1 + Bc2) + h(z2))
= sin(Az1 + Bz2 + kπ + h(z2))
:= sin(Az1 + Bz2 + H(z2)),

where H(z2) is a polynomial in one variable z2 satisfying H(z2) ≡ H(z2+c2).
It is clear that H(z2) should be a constant whenever c2 �= 0. �

We give two examples to explain the conclusion of the theorem.
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Example 1.2. Let A = 1, B = 2, and let two constants c1 and c2 satisfy
eic1 = 1 and c2 = 0. Then Aei(Ac1+Bc2) = 1. The entire function f(z) =
sin(z1 + 2z2 + z32 + 1) satisfies the Fermat type partial differential difference
equation (

∂f(z1, z2)
∂z1

)2

+ f2(z1 + c1, z2 + c2) = 1

in C
2, where c = (c1, c2). This shows that the function H(z2) in the conclusion

of Theorem 1.1 may be a nonconstant polynomial whenever c2 = 0.

Example 1.3. Let A = 1, B = 2i, and let two constants c1 and c2 satisfy
c1+2ic2 = 0. Then Aei(Ac1+Bc2) = 1. The entire funcion f(z) = sin(z1+2iz2)
satisfies the Fermat type partial differential difference equation(

∂f(z1, z2)
∂z1

)2

+ f2(z1 + c1, z2 + c2) = 1

in C
2, where c = (c1, c2). This shows that the function H(z2) in the conclusion

of Theorem 1.1 may be a constant whenever c2 �= 0 or not.

If there are no differences, that is c = (0, 0), then Theorem 1.1 implies
the following corollary.

Corollary 1.4. Any transcendental entire solution with finite order of the par-
tial differential equation of the Fermat type(

∂f(z1, z2)
∂z1

)2

+ f2(z1, z2) = 1 (4)

has the form of f(z1, z2) = sin (z1 + g(z2)) , where g(z2) is a polynomial in
one variable z2.
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