Mediterranean Journal of Mathematics

The Natural Operators Similar to the Twisted Courant Bracket One

Włodzimierz M. Mikulski

Abstract. Given natural numbers $m \geq 3$ and $p \geq 3$, all $\mathcal{M}f_m$ -natural operators A_H sending p-forms $H \in \Omega^p(M)$ on m-manifolds M into bilinear operators $A_H : (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M)$ transforming pairs of couples of vector fields and 1-forms on M into couples of vector fields and 1-forms on M are founded. If $m \geq 3$ and $p \geq 3$, then that any (similar as above) $\mathcal{M}f_m$ -natural operator A which is defined only for closed p-forms H can be extended uniquely to the one A which is defined for all p-forms H is observed. If p = 3 and $m \geq 3$, all $\mathcal{M}f_m$ -natural operators A (as above) such that A_H satisfies the Leibniz rule for all closed 3-forms H on m-manifolds M are extracted. The twisted Courant bracket $[-,-]_H$ for all closed 3-forms H on m-manifolds M gives the most important example of such $\mathcal{M}f_m$ -natural operator A.

Mathematics Subject Classification. 58 A 99, 58 A 32.

Keywords. Natural operator, Twisted Courant bracket, Leibniz rule.

1. Introduction

The "doubled" tangent bundle $T \oplus T^*$ over m-dimensional manifolds (m-manifolds) is full of interest because it has the natural inner product, and the Courant bracket, see [1]. Besides, generalized complex structures are defined on $T \oplus T^*$, generalizing both (usual) complex and symplectic structures, see e.g. [3,4].

In Sect. 2, the description from [2] of all $\mathcal{M}f_m$ -natural bilinear operators

$$A: (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),$$

transforming pairs of couples of vector fields and 1-forms on m-manifolds M into couples of vector fields and 1-forms on M will be shortly cited. The most important example of such $\mathcal{M}f_m$ -natural bilinear operator A is given by the Courant bracket $[-,-]^C$, see Example 2.2. This Courant bracket was used in [1] to define the concept of Dirac structures being hybrid of both symplectic and Poisson structures.

In Sect. 2 we also deduce that the "trivial" Lie algebroid $(TM \oplus T^*M, 0, 0)$ is the only $\mathcal{M}f_m$ -natural Lie algebroid (EM, [[-, -]], a) with $EM := TM \oplus T^*M$.

In Sect. 3, using essentially the results from [2], if $m \geq 3$ and $p \geq 3$, we find all $\mathcal{M}f_m$ -natural operators A sending p-forms $H \in \Omega^p(M)$ on m-manifolds M into bilinear maps

$$A_H: (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M).$$

The most important example of such A is given by the H-twisted Courant bracket $[-,-]_H$ for all 3-forms H on m-manifolds M, see Example 3.2. Properties of $[-,-]_H$ (as the Leibniz rule for closed 3-forms H) were used in [7,8] to define the concept of exact Courant algebroid.

In Sect. 4, we observe that if $m \geq 3$ and $p \geq 3$, then any (similar as above) $\mathcal{M}f_m$ -natural operator A which is defined only for closed p-forms H can be extended uniquely to the one A which is defined for all p-forms H.

In Sect. 5, if p=3 we extract all $\mathcal{M}f_m$ -natural operators A as above satisfying the Leibniz rule

$$A_H(\rho_1, A_H(\rho_2, \rho_3)) = A_H(A_H(\rho_1, \rho_2), \rho_3) + A_H(\rho_2, A_H(\rho_1, \rho_3)),$$

for any closed $H \in \Omega^3(M)$, $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$ and $M \in obj(\mathcal{M}f_m)$.

From now on, (x^i) (i = 1, ..., m) denote the usual coordinates on \mathbf{R}^m and $\partial_i = \frac{\partial}{\partial x^i}$ are the canonical vector fields on \mathbf{R}^m .

All manifolds considered in this paper are assumed to be finite dimensional second countable Hausdorff without boundary and smooth (of class \mathcal{C}^{∞}). Maps between manifolds are assumed to be smooth (of class \mathcal{C}^{∞})

2. The Natural Bilinear Operators Similar to the Courant Bracket

The general concept of natural operators can be found in the fundamental monograph [5]. In the paper, we need two particular cases of natural operators presented in Definitions 2.1 (below) and 3.1 (in the next section).

Let $\mathcal{M}f_m$ be the category of m-dimensional \mathcal{C}^{∞} manifolds as objects and their immersions of class \mathcal{C}^{∞} as morphisms ($\mathcal{M}f_m$ -maps).

Definition 2.1. A natural (called also $\mathcal{M}f_m$ -natural) operator A sending pairs of couples of vector fields and 1-forms on m-manifolds M into couples of vector fields and 1-forms on M is a $\mathcal{M}f_m$ -invariant family of operators (functions)

$$A: (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),$$

for all m-manifolds M, where $\mathcal{X}(M) \oplus \Omega^1(M)$ is the vector space of couples (X,ω) of vector fields X on M and 1-forms ω on M. Such $\mathcal{M}f_m$ -natural operator A is called bilinear if A is bilinear (i.e., $A(\rho^1,-)$ and $A(-,\rho^2)$ are linear (over the field \mathbf{R} of real numbers) functions $\mathcal{X}(M) \oplus \Omega^1(M) \to \mathcal{X}(M) \oplus \Omega^1(M)$ for any fixed $\rho^1, \rho^2 \in \mathcal{X}(M) \oplus \Omega^1(M)$) for any m-manifold M. Such $\mathcal{M}f_m$ -natural operator A is called skew-symmetric if A is skew-symmetric for any m-manifold M.

The $\mathcal{M}f_m$ -invariance of A means that if $(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$ are φ -related by an $\mathcal{M}f_m$ -map $\varphi : M \to \overline{M}$ (i.e., $\overline{X}^i \circ \varphi = T\varphi \circ X^i$ and $\overline{\omega}^i \circ \varphi = T^*\varphi \circ \omega^i$ for i = 1, 2), then so are $A(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $A(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$.

The most important example of such $\mathcal{M}f_m$ -natural bilinear operator A is given by the (skew-symmetric) Courant bracket $[-,-]^C$ for any m-manifold M.

Example 2.2. On the vector bundle $TM \oplus T^*M$ there exist canonical symmetric and skew-symmetric pairings

$$\langle X^1 \oplus \omega^1, X^2 \oplus \omega^2 \rangle_{\pm} = \frac{1}{2} (i_{X^2} \omega^1 \pm i_{X^1} \omega^2)$$

for any $X^1 \oplus \omega^1, X^2 \oplus \omega^2 \in \mathcal{X}(M) \oplus \Omega^1(M)$, where *i* is the interior derivative. Further, the (skew-symmetric) Courant bracket is given by

$$\begin{split} [X^1 \oplus \omega^1, X^2 \oplus \omega^2]^C \\ &= [X^1, X^2] \oplus \left(\mathcal{L}_{X^1} \omega^2 - \mathcal{L}_{X^2} \omega^1 + \mathrm{d} \left\langle X^1 \oplus \omega^1, X^2 \oplus \omega^2 \right\rangle_- \right) \end{split}$$

for any $X^1 \oplus \omega^1, X^2 \oplus \omega^2 \in \mathcal{X}(M) \oplus \Omega^1(M)$, where [-, -] is the usual bracket on vector fields, \mathcal{L} is the Lie derivative and d is the exterior derivative.

Theorem 2.3 [2]. If $m \geq 2$, any $\mathcal{M}f_m$ -natural bilinear operator A in the sense of Definition 2.1 is of the form

$$A(\rho^{1}, \rho^{2})$$

$$= a[X^{1}, X^{2}] \oplus \left(b_{1}\mathcal{L}_{X^{2}}\omega^{1} + b_{2}\mathcal{L}_{X^{1}}\omega^{2} + b_{3}d\langle\rho^{1}, \rho^{2}\rangle_{+} + b_{4}d\langle\rho^{1}, \rho^{2}\rangle_{-}\right)$$

for (uniquely determined by A) real numbers a, b_1, b_2, b_3, b_4 , where $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for i = 1, 2 are arbitrary, and where $\langle -, - \rangle_+$ and $\langle -, - \rangle_-$ are as in Example 2.2.

Corollary 2.4 [2]. If $m \geq 2$, any $\mathcal{M}f_m$ -natural skew-symmetric bilinear operator A in the sense of Definition 2.1 is of the form

$$A(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$$

$$= a[X^1, X^2] \oplus (b(\mathcal{L}_{X^1}\omega^2 - \mathcal{L}_{X^2}\omega^1) + cd\langle X^2 \oplus \omega^1, X^1 \oplus \omega^2 \rangle_{-})$$

for (uniquely determined by A) real numbers a, b, c.

Roughly speaking, Corollary 2.4 says that if $m \geq 2$, then any $\mathcal{M}f_{m}$ -natural skew-symmetric bilinear operator A in the sense of Definition 2.1 coincides with the one given by Courant bracket $[-,-]^C$ up to three real constants.

Definition 2.5. A $\mathcal{M}f_m$ -natural bilinear operator A in the sense of Definition 2.1 satisfies the Leibniz rule if

$$A(\rho_1, A(\rho_2, \rho_3)) = A(A(\rho_1, \rho_2), \rho_3) + A(\rho_2, A(\rho_1, \rho_3))$$

for all $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$ and all m-manifolds M.

Of course, in the case of skew-symmetric bilinear A the Leibniz rule is equivalent to the Jacobi identity $\sum_{\text{cycl}(\rho_1,\rho_2,\rho_3)} A(\rho_1, A(A(\rho_2,\rho_3))) = 0$.

Example 2.6. The (not skew-symmetric) Courant bracket given by

$$[X^1 \oplus \omega^1, X^2 \oplus \omega^2]_0$$

:= $[X^1, X^2] \oplus (\mathcal{L}_{X^1}\omega^2 - i_{X^2}d\omega^1),$

where $X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$, satisfies the Leibniz rule, see [7,8].

The Courant bracket $[-,-]^C$ from Example 2.2 does not satisfy the Leibniz rule.

Theorem 2.7 [2]. If $m \geq 2$, any $\mathcal{M}f_m$ -natural bilinear operator A in the sense of Definition 2.1 satisfying the Leibniz rule is one of the following ones:

$$A^{\langle 1,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus 0,$$

$$A^{\langle 2,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a(\mathcal{L}_{X^{1}}\omega^{2} - \mathcal{L}_{X^{2}}\omega^{1})),$$

$$A^{\langle 3,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus a\mathcal{L}_{X^{1}}\omega^{2},$$

$$A^{\langle 4,a,0\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a(\mathcal{L}_{X^{1}}\omega^{2} - i_{X^{2}}d\omega^{1})),$$

where a is an arbitrary real number, and where $\rho^1 = X^1 \oplus \omega^1$ and $\rho^2 = X^2 \oplus \omega^2$.

Corollary 2.8. If $m \geq 2$, the Courant bracket $[-,-]_0$ from Example 2.6 for m-manifolds M is the unique $\mathcal{M}f_m$ -natural bilinear operator A in the sense of Definition 2.1 satisfying the conditions:

- (A1) $A(\rho_1, A(\rho_2, \rho_3)) = A(A(\rho_1, \rho_2), \rho_3) + A(\rho_2, A(\rho_1, \rho_3)),$
- (A2) $\pi A(\rho_1, \rho_2) = [\pi \rho_1, \pi \rho_2],$
- (A3) $A(\rho_1, \rho_1) = i_0 d \langle \rho_1, \rho_1 \rangle_+,$

for all $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$ and all m-manifolds M, where $\langle -, - \rangle_+$ is the pairing of Example 2.2, $\pi : TM \oplus T^*M \to TM$ is the fibred projection given by $\pi(v, \omega) = v$ and $i_0 : T^*M \to TM \oplus T^*M$ is the fibred embedding $i_0(\omega) = (0, \omega)$.

Consequently, if $m \geq 2$, then a $\mathcal{M}f_m$ -natural bilinear operator A in the sense of Definition 2.1 satisfying the conditions (A1)-(A3) satisfies the conditions:

$$(A4) \pi \rho_1 \langle \rho_2, \rho_3 \rangle_+ = \langle A(\rho_1, \rho_2), \rho_3 \rangle_+ + \langle \rho_2, A(\rho_1, \rho_3) \rangle_+,$$

(A5)
$$A(\rho_1, f\rho_2) = \pi \rho_1(f)\rho_2 + fA(\rho_1, \rho_2)$$

for all $\rho_1, \rho_2 \in \mathcal{X}(M) \oplus \Omega^1(M)$, all $f \in \mathcal{C}^{\infty}(M)$ and all m-manifolds M (i.e., putting [[-,-]] := A we get an exact Courant algebroid $E = (TM \oplus T^*M, [[-,-]], \langle -,-\rangle_+, \pi, i_0)$ in the sense of [8] for any m-manifold M).

Proof. By Theorem 2.7, the conditions (A1) and (A2) imply that $A = A^{\langle 1,1 \rangle}$ or $A = A^{\langle 2,1 \rangle}$ or $A = A^{\langle 3,1 \rangle}$ or $A = A^{\langle 4,1,0 \rangle}$. On the other hand if $\rho_1 = X \oplus \omega$, then $i_0 d \langle \rho_1, \rho_1 \rangle_+ = 0 \oplus di_X \omega$ and $A^{\langle 1,1 \rangle}(\rho_1, \rho_1) = 0 \oplus 0$ and $A^{\langle 2,1 \rangle}(\rho_1, \rho_1) = 0 \oplus 0$ and $A^{\langle 3,1 \rangle}(\rho_1, \rho_1) = 0 \oplus \mathcal{L}_X \omega$ and $A^{\langle 4,1,0 \rangle}(\rho_1, \rho_1) = 0 \oplus di_X \omega$. Then $A = A^{\langle 4,1,0 \rangle}$.

Corollary 2.9. If $m \geq 2$, any $\mathcal{M}f_m$ -natural Lie algebra brackets on $\mathcal{X}(M) \oplus \Omega^1(M)$ [i.e., $\mathcal{M}f_m$ -natural skew-symmetric bilinear operator satisfying the

Jacobi identity (Leibniz rule) is the constant multiple of the one of the following two Lie algebra brackets:

$$[[X^1 \oplus \omega^1, X^2 \oplus \omega^2]]_1 = [X^1, X^2] \oplus 0,$$
$$[[X^1 \oplus \omega^1, X^2 \oplus \omega^2]]_2 = [X^1, X^2] \oplus (\mathcal{L}_{X^1}\omega^2 - \mathcal{L}_{X^2}\omega^1).$$

At the end of this section we are going to describe completely all Lie algebroids $(TM \otimes T^*M, [[-,-]], a)$ which are invariant with respect to immersions $(\mathcal{M}f_m$ -maps). The concept of Lie algebroids can be found in the fundamental book [6].

Of course, the anchor $a:TM\oplus T^*M\to TM$ for all m-manifolds M must be $\mathcal{M}f_m$ -natural transformation [i.e., $Tf\circ a=a\circ (Tf\oplus T^*f)$ for any $\mathcal{M}f_m$ -map $f:M\to M^1$] and fibre linear. By Corollary 2.9, $[[-,-]]=\mu[[-,-]]_1$ or $[[-,-]]=\mu[[-,-]]_2$ for some $\mu\in\mathbf{R}$.

Lemma 2.10. Any $\mathcal{M}f_m$ -natural transformation $a:TM\oplus T^*M\to TM$ which is fibre linear is the constant multiple of the fibre projection $\pi:TM\oplus T^*M\to TM$.

Proof. Clearly, a is determined by the values $\langle \eta, a_x(v,\omega) \rangle \in \mathbf{R}$ for all $\omega, \eta \in T_x^*M$, $v \in T_xM$, $x \in M$, $M \in \mathrm{Obj}(\mathcal{M}f_m)$. By the standard chart arguments, we may assume $M = \mathbf{R}^m$, x = 0, $\eta = \mathrm{d}_0 x^1$. We can write $\langle \mathrm{d}_0 x^1, a_0(v,\omega) \rangle = \sum_i \alpha_i v^i + \sum_j \beta^j \omega_j$, where v^i are the coordinates of v and v_j are the coordinates of v_j and where v_j are the real numbers determined by v_j . Then using the invariance of v_j with respect to the maps v_j (v_j) and v_j) for v_j (v_j) over deduce that v_j (v_j) and v_j) for v_j (v_j) over deduce that v_j) are the real numbers determined by v_j). Then the vector space of all v_j in question is at most 1-dimensional. Thus the dimension argument completes the proof.

So, $a = k\pi$ for some real number k. It must be $a([[X^1 \oplus 0, X^2 \oplus 0]]) = [a(X^1 \oplus 0), a(X^2 \oplus 0)]$ for any vector fields X^1 and X^2 on M. This gives the condition $k\mu[X^1, X^2] = k^2[X^1, X^2]$. Then $k\mu = k^2$, and then (k = 0) and μ arbitrary) or $(k \neq 0)$ and $\mu = k$. Consider two cases:

1. $[[-,-]] = \mu[[-,-]]_1$. Let $\rho^1 = X^1 \oplus \omega^1$ and $\rho^2 = X^2 \oplus \omega^2$. It must be $[[\rho^1,f\rho^2]] = a(\rho^1)(f)\rho^2 + f[[\rho^1,\rho^2]]$. Considering the $\Omega^1(M)$ -parts of both sides of this equality we get $0 = kX^1(f)\omega^2 + 0$ for any vector fields X^1,X^2 on M any map $f:M\to \mathbf{R}$ and any $\omega^1,\omega^2\in\Omega^1(M)$. Then k=0. Then considering the $\mathcal{X}(M)$ -parts we get $\mu[X^1,fX^2] = f\mu[X^1,X^2]$. Then $\mu X^1(f)X^2 = 0$ for all vector fields X^1 and X^2 on M and all maps $f:M\to \mathbf{R}$, i.e., $\mu=0$.

2. $[[-,-]] = \mu[[-,-]]_2$. Let $\rho^1 = 0 \oplus \omega^1$ and $\rho^2 = X^2 \oplus 0$. It must be $[[\rho^1,f\rho^2]] = a(\rho^1)(f)\rho^2 + f[[\rho^1,\rho^2]]$. Considering the $\Omega^1(M)$ -parts of both sides of this equality we get $-\mu \mathcal{L}_{fX^2}\omega^1 = -\mu f\mathcal{L}_{X^2}\omega^1$. Then $\mu = 0$ or $\mathrm{d} i_{fX^2}\omega^1 + i_{fX^2}\mathrm{d}\omega^1 = f\mathrm{d} i_{X^2}\omega^1 + fi_{X^2}\mathrm{d}\omega^1$. Putting $\omega^1 = \mathrm{d} g$ we get $\mu = 0$ or $\mathrm{d} (i_{fX^2}\mathrm{d} g) = f\mathrm{d} i_{X^2}\mathrm{d} g$. Then $\mu = 0$ or $\mathrm{d} (fX^2g) = f\mathrm{d} (X^2g)$. Then $\mu = 0$ or $\mathrm{d} (fX^2g) = f\mathrm{d} (fX^2g)$. Then $\mu = 0$ or $\mathrm{d} (fX^2g) = \mathrm{d} (fX^2g)$ and $\mathrm{d} (fX^2g) = \mathrm{d} (fX^2g)$ we get $\mu = 0$ or $\mathrm{d} (fX^2g) = 0$. Then $\mu = 0$, and then $\mu = 0$.

On the other hand one can directly show that $(TM \oplus T^*M, 0[[-,-]]_1, 0\pi)$ is a Lie algebroid. Thus we have

Proposition 2.11. If $m \geq 2$, $(TM \otimes T^*M, 0, 0)$ is the only invariant with respect to $\mathcal{M}f_m$ -maps Lie algebroid (EM, [[-, -]], a) with $EM = TM \oplus T^*M$.

3. The Natural Operators Similar to the Twisted Courant Bracket

Definition 3.1. A $\mathcal{M}f_m$ -natural operator A sending p-forms $H \in \Omega^p(M)$ on m-manifolds M into bilinear operators

$$A_H: (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),$$

is a $\mathcal{M}f_m$ -invariant family of regular operators (functions)

$$A: \Omega^p(M) \to Lin_2((\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)), \mathcal{X}(M) \oplus \Omega^1(M))$$

for all m-manifolds M, where $Lin_2(U \times V, W)$ denotes the vector space of all bilinear (over \mathbf{R}) functions $U \times V \to W$ for any real vector spaces U, V, W.

The $\mathcal{M}f_m$ -invariance of A means that if $H^1 \in \Omega^p(M)$ and $H^2 \in \Omega^p(\overline{M})$ are φ -related and $(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$ are φ -related by an $\mathcal{M}f_m$ -map $\varphi : M \to \overline{M}$, then so are $A_{H^1}(X^1 \oplus \omega^1, X^2 \oplus \omega^2)$ and $A_{H^2}(\overline{X}^1 \oplus \overline{\omega}^1, \overline{X}^2 \oplus \overline{\omega}^2)$.

The regularity of A means that it transforms smoothly parametrized families $(H_t, X_t^1 \oplus \omega_t^1, X_t^2 \oplus \omega_t^2)$ into smoothly parametrized families $A_{H_t}(X_t^1 \oplus \omega_t^1, X_t^2 \oplus \omega_t^2)$.

Example 3.2. The most important example of $\mathcal{M}f_m$ -natural operator in the sense of Definition 3.1 for p=3 is given by the H-twisted Courant bracket

$$[X^1 \oplus \omega^1, X^2 \oplus \omega^2]_H := [X^1, X^2] \oplus (\mathcal{L}_{X^1}\omega^2 - i_{X^2}d\omega^1 + i_{X^1}i_{X^2}H)$$

for all 3-forms $H \in \Omega^3(M)$ and all m-manifolds M. We call this $\mathcal{M}f_m$ -natural operator the twisted Courant bracket $\mathcal{M}f_m$ -natural operator.

Example 3.3. The operator given by $[-,-]_{dH}$ for all $H \in \Omega^2(M)$ and all m-manifolds M is a $\mathcal{M}f_m$ -natural operator in the sense of Definition 3.1 for p=2.

The main result of this section is the following

Theorem 3.4. Assume $m \geq 3$. Then we have:

1. Any $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 for p=2 such that $A_H=A_{H+\mathrm{d}H^1}$ for any $H\in\Omega^2(M)$ and any $H^1\in\Omega^1(M)$ is of the form

$$A_{H}(\rho^{1}, \rho^{2}) = a[X^{1}, X^{2}]$$

$$\oplus \left(b_{1}\mathcal{L}_{X^{2}}\omega^{1} + b_{2}\mathcal{L}_{X^{1}}\omega^{2} + b_{3}d\left\langle\rho^{1}, \rho^{2}\right\rangle_{+} + b_{4}d\left\langle\rho^{1}, \rho^{2}\right\rangle_{-} + ci_{X^{1}}i_{X^{2}}dH\right),$$

for (uniquely determined by A) reals $a, b_1, ..., c$, where 2-forms $H \in \Omega^2(M)$, pairs $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for i = 1, 2 and m-manifolds M are arbitrary.

2. Any $\mathcal{M}f_m$ -natural operator (not necessarily satisfying $A_H = A_{H+dH^1}$) in the sense of Definition 3.1 for p=3 is of the form

$$A_{H}(\rho^{1}, \rho^{2}) = a[X^{1}, X^{2}]$$

$$\oplus \left(b_{1}\mathcal{L}_{X^{2}}\omega^{1} + b_{2}\mathcal{L}_{X^{1}}\omega^{2} + b_{3}d\langle\rho^{1}, \rho^{2}\rangle_{+} + b_{4}d\langle\rho^{1}, \rho^{2}\rangle_{-} + ci_{X^{1}}i_{X^{2}}H\right),$$

for (uniquely determined by A) reals $a, b_1, ..., c$, where 3-forms $H \in \Omega^3(M)$, pairs $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for i = 1, 2 and m-manifolds M are arbitrary.

3. If $p \ge 4$, any $\mathcal{M}f_m$ -natural operator (not necessarily satisfying $A_H = A_{H+\mathrm{d}H^1}$) in the sense of Definition 3.1 is of the form

$$A_{H}(\rho^{1}, \rho^{2}) = a[X^{1}, X^{2}] \oplus \left(b_{1}\mathcal{L}_{X^{2}}\omega^{1} + b_{2}\mathcal{L}_{X^{1}}\omega^{2} + b_{3}d\langle\rho^{1}, \rho^{2}\rangle_{+} + b_{4}d\langle\rho^{1}, \rho^{2}\rangle_{-}\right)$$

for (uniquely determined by A) reals $a, b_1, ..., b_4$, where p-forms $H \in \Omega^p(M)$, pairs $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for i = 1, 2 and m-manifolds M are arbitrary.

Proof. Clearly, A_0 , where 0 is the zero p-form, can be treated as the bilinear operator in the sense of Definition 2.1. Then A_0 is described in Theorem 2.3. So we can replace A by $A - A_0$. In other words, we have assumption $A_0 = 0$.

By the invariance, A is determined by the values $A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|_0}$ for all $H \in \Omega^p(\mathbf{R}^m), X^i \oplus \omega^i \in \mathcal{X}(\mathbf{R}^m) \oplus \Omega^1(\mathbf{R}^m)$. Put

$$A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|0}$$

= $(A_H^1(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|0}, A_H^2(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|0}),$

where $A_H^1(...)_{|0} \in T_0 \mathbf{R}^m$ and $A_H^2(...)_{|0} \in T^* \mathbf{R}^m$. Then A is determined by

$$\langle A_H^1(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|_0}, \eta \rangle \in \mathbf{R} \text{ and } \langle A_H^2(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|_0}, \mu \rangle \in \mathbf{R}$$

for all $H \in \Omega^p(\mathbf{R}^m), X^i \oplus \omega^i \in \mathcal{X}(\mathbf{R}^m) \oplus \Omega^1(\mathbf{R}^m), \eta \in T_0^*\mathbf{R}^m, \mu \in T_0\mathbf{R}^m, i = 1, 2.$

By the non-linear Peetre theorem, see [5], A is of finite order. It means that there is a finite number r such that from $(j_x^r H = j_x^r \overline{H}, j_x^r (\rho^i) = j_x^r (\overline{\rho}^i), i = 1, 2)$ it follows $A_H(\rho^1, \rho^2)_{|x} = A_{\overline{H}}(\overline{\rho}^1, \overline{\rho}^2)_{|x}$. So, we may assume that $H, X^1, X^2, \omega^1, \omega^2$ are polynomials of degree not more than r.

Using the invariance of A with respect to the homotheties and the bilinearity of A_H (for given H) we obtain homogeneity condition

$$\begin{split} \left\langle A^{1}_{\left(\frac{1}{t}\mathrm{id}\right)_{*}H}\left(t\left(\frac{1}{t}\mathrm{id}\right)_{*}X^{1} \,\oplus\, t\left(\frac{1}{t}\mathrm{id}\right)_{*}\omega^{1}, t\left(\frac{1}{t}\mathrm{id}\right)_{*}X^{2} \right. \\ \left. \oplus t\left(\frac{1}{t}\mathrm{id}\right)_{*}\omega^{2}\right)_{|_{0}}, \eta\right\rangle \\ &= t\left\langle A^{1}_{H}(X^{1} \,\oplus\, \omega^{1}, X^{2} \,\oplus\, \omega^{2})_{|_{0}}, \eta\right\rangle. \end{split}$$

Then, by the homogeneous function theorem, since A is of finite order and regular and $A_0 = 0$ and $p \ge 2$, we have $\langle A_H^1(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|_0}, \eta \rangle = 0$.

Using the same arguments we get homogeneity condition

$$\begin{split} \left\langle A_{\left(\frac{1}{t}\mathrm{id}\right)_{*}H}^{2} \left(t\left(\frac{1}{t}\mathrm{id}\right)_{*}X^{1} \oplus t\left(\frac{1}{t}\mathrm{id}\right)_{*}\omega^{1}, t\left(\frac{1}{t}\mathrm{id}\right)_{*}X^{2} \right. \\ \left. \oplus t\left(\frac{1}{t}\mathrm{id}\right)_{*}\omega^{2}\right)_{|_{0}}, \mu \right\rangle \\ &= t^{3} \left\langle A_{H}^{2}(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2})_{|_{0}}, \mu \right\rangle. \end{split}$$

Then, if p = 2, by the homogeneous function theorem and the bilinearity of A_H and the assumptions $A_0 = 0$ and $A_H = A_{H+dH^1}$, the value $\langle A_H^2(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|0}, \mu \rangle$ depends quadrilinearly on $X^1_{|0}$, $X^2_{|0}$, $j_0^1(H-H_{0})$ and μ , only. By $m\geq 3$ and the regularity of A, we may assume that X_{0}^{1} , X_{0}^{2} and μ are linearly independent. Then by the invariance we may assume $X_{|0}^1 = \partial_{1|0}$, $X_{|0}^2 = \partial_{2|0}$ and $\mu = \partial_{3|0}$. Then A is determined by the values $\langle A_{x^{i_1} dx^{i_2} \wedge dx^{i_3}}^2(\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_{3|0} \rangle$ for all $i_1 = 1, ..., m$ and i_2, i_3 with $1 \le i_2 < i_3 \le m$. Then using the invariance of A with respect to $\tau \mathrm{id} \ \mathrm{for} \ \tau^i > 0 \ \mathrm{we} \ \mathrm{deduce} \ \mathrm{that} \ \mathrm{only} \ v := \big\langle A^2_{x^1 \mathrm{d} x^2 \wedge \mathrm{d} x^3}(\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_{3|0} \big\rangle,$ $w := \left\langle A_{x^2 dx^1 \wedge dx^3}^2(\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_{3|0} \right\rangle, z := \left\langle A_{x^3 dx^1 \wedge dx^2}^2(\partial_1 \oplus 0, \partial_2 \oplus 0), \partial_{3|0} \right\rangle$ may be not-zero. But $x^1 dx^2 \wedge dx^3 = -x^2 dx^1 \wedge dx^3 + d(...)$. So, v=-w. Similarly, v=-z. Therefore the vector space of all A in question with $A_0 = 0$ and $A_H = A_{H+dH^1}$ is at most one-dimensional. The part (1) of the theorem is complete. If p = 3, then (by almost the same arguments as for p=2) A is determined by the values $\langle A^2_{\mathrm{d}x^{i_1}\wedge\mathrm{d}x^{i_2}\wedge\mathrm{d}x^{i_3}}(\partial_1\oplus 0,\partial_2\oplus 0),\partial_3|_0\rangle\in$ **R** for all i_1, i_2, i_3 with $1 \le i_1 < i_2 < i_3 \le m$. Then using the invariance with respect to $(\tau^1 x^1, ... \tau^m x^m)$ for $\tau^i > 0$ we deduce that only the value $\langle A_{\mathrm{d}x^1\wedge\mathrm{d}x^2\wedge\mathrm{d}x^3}^2(\partial_1\oplus 0,\partial_2\oplus 0),\partial_{3|0}\rangle\in\mathbb{R}$ may be not-zero. Therefore the vector space of all A in question with $A_0 = 0$ is one-dimensional (generated by the natural operator $0 \oplus i_{X^1}i_{X^2}H$).

If
$$p \ge 4$$
, then (similarly as for $p = 2$) $< A_H^2(X^1 \oplus \omega^1, X^2 \oplus \omega^2)_{|0}, \mu > = 0$.
Theorem 3.4 is complete.

Corollary 3.5. If $m \geq 3$, any $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 for p=3 such that A_H is skew-symmetric for any $H \in \Omega^3(M)$ and any m-manifold M is of the form

$$A_H(X^1 \oplus \omega^1, X^2 \oplus \omega^2) = a[X^1, X^2]$$

$$\oplus \left(b(\mathcal{L}_{X^1}\omega^2 - \mathcal{L}_{X^2}\omega^1) + cd \left\langle X^2 \oplus \omega^1, X^1 \oplus \omega^2 \right\rangle_- + ei_{X^1}i_{X^2}H \right)$$

for (uniquely determined by A) real numbers a, b, c, e.

Roughly speaking, Corollary 3.5 says that any $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 such that A_H is skew-symmetric for any $H \in \Omega^3(M)$ and any m-manifold M coincides with the "skew-symmetrization" of the twisted Courant bracket $\mathcal{M}f_m$ -natural operator up to four real constants a, b, c, e.

Corollary 3.6. If $m \geq 3$, then the twisted Courant bracket $\mathcal{M}f_m$ -natural operator from Example 3.2 is the unique $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 for p=3 satisfying the following properties:

(B1)
$$A_0(\rho_1, \rho_2) = [\rho_1, \rho_2]_0$$
,

$$(B2)$$
 $A_H(X \oplus 0, Y \oplus 0) = [X, Y] \oplus i_X i_Y H$

for all closed $H \in \Omega^3_{cl}(M)$, all $\rho_1, \rho_2, X \oplus 0, Y \oplus 0 \in \mathcal{X}(M) \oplus \Omega^1(M)$ and all m-manifolds M, where $[-,-]_0$ is the $\mathcal{M}f_m$ -natural bilinear operator given by the (not skew-symmetric) Courant bracket as in Example 2.6.

Proof. Clearly, the twisted Courant bracket $\mathcal{M}f_m$ -natural operator satisfies (B1) and (B2). Consider A in question satisfying (B1) and (B2). Then by Theorem 3.4, there exist uniquely determined reals $a, b_1, ..., c$ such that for all $H \in \Omega^3(M)$ and m-manifolds M

$$A_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + b_3 d \left\langle \rho^1, \rho^2 \right\rangle_+ + b_4 d \left\langle \rho^1, \rho^2 \right\rangle_- + c i_{X^1} i_{X^2} H \right),$$

where $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ are arbitrary. Putting $\omega^1 = \omega^2 = 0$ we get $A_H(\rho^1, \rho^2) = a[X^1, X^2] \oplus ci_{X^1}i_{X^2}H$. Then condition (B2) implies c = 1. Putting H = 0 we get

$$A_0(\rho^1, \rho^2) = a[X^1, X^2] \oplus \left(b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + b_3 d \left\langle \rho^1, \rho^2 \right\rangle_+ + b_4 d \left\langle \rho^1, \rho^2 \right\rangle_-\right)$$

for all $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ and all *m*-manifolds M. But A_0 is a $\mathcal{M}f_m$ -natural bilinear operator in the sense of Definition 2.1. Then a, b_1, b_2, b_3, b_4 are uniquely determined because of Theorem 2.3. Then $a, b_1, ..., c$ are uniquely determined. So, A is uniquely determined by conditions (B1) and (B2).

4. The Natural Operators Similar to the Twisted Courant Bracket and Defined for Closed *p*-Forms Only

In the previous section, we considered $\mathcal{M}f_m$ -natural operators A which are defined for all p-forms H. In this section, we observe what happens if A are defined for closed p-forms H, only. We start with the following

Definition 4.1. A $\mathcal{M}f_m$ -natural operator A sending closed p-forms $H \in \Omega^p_{cl}(M)$ on m-manifolds M into bilinear operators

$$A_H: (\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)) \to \mathcal{X}(M) \oplus \Omega^1(M),$$

is a $\mathcal{M}f_m$ -invariant family of regular operators (functions)

$$A: \Omega^p_{cl}(M) \to Lin_2((\mathcal{X}(M) \oplus \Omega^1(M)) \times (\mathcal{X}(M) \oplus \Omega^1(M)), \mathcal{X}(M) \oplus \Omega^1(M)),$$
 for all m -manifolds M .

We have the following corollary of Theorem 3.4.

Corollary 4.2. Assume $m \geq 3$. Then we have:

1. If p = 3, any $\mathcal{M}f_m$ -natural operator in the sense of Definition 4.1 is of the form

$$A_{H}(\rho^{1}, \rho^{2}) = a[X^{1}, X^{2}]$$

$$\oplus (b_{1}\mathcal{L}_{X^{2}}\omega^{1} + b_{2}\mathcal{L}_{X^{1}}\omega^{2} + b_{3}d\langle\rho^{1}, \rho^{2}\rangle_{+} + b_{4}d\langle\rho^{1}, \rho^{2}\rangle_{-} + ci_{X^{1}}i_{X^{2}}H),$$

for uniquely determined by A reals $a, b_1, ..., c$, where closed 3-forms $H \in \Omega^3_{cl}(M)$, pairs $\rho^i = X^i \oplus \omega^i \in \mathcal{X}(M) \oplus \Omega^1(M)$ for i = 1, 2 and m-manifolds M are arbitrary.

2. If $p \ge 4$, any $\mathcal{M}f_m$ -natural operator in the sense of Definition 4.1 is of the form

$$A_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + b_3 d \left\langle \rho^1, \rho^2 \right\rangle_+ + b_4 d \left\langle \rho^1, \rho^2 \right\rangle_-\right)$$

for uniquely determined by A reals $a, b_1, ..., b_4$, where closed p-forms $H \in \Omega^p_{cl}(M)$, pairs $\rho^i = X^i \oplus \omega^i$ for i = 1, 2 and m-manifolds M are arbitrary.

Proof. Let A be a $\mathcal{M}f_m$ -natural operator in the sense of Definition 4.1 for p. Define a $\mathcal{M}f_m$ -natural operator A^1 in the sense of Definition 3.1 for p-1 by $A^1_{\tilde{H}}=A_{\mathrm{d}\tilde{H}}$. Then $A^1_{\tilde{H}+\mathrm{d}H_1}=A^1_{\tilde{H}}$ for any $\tilde{H}\in\Omega^{p-1}(M)$ and $H_1\in\Omega^{p-2}(M)$. If p=3, then by Theorem 3.4, A^1 is of the form

$$A^1_{\tilde{\mu}}(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + b_3 d \left\langle \rho^1, \rho^2 \right\rangle_+ + b_4 d \left\langle \rho^1, \rho^2 \right\rangle_- + c i_{X^1} i_{X^2} d \tilde{H} \right)$$

for uniquely determined reals $a, b_1, ..., c$ and all $\tilde{H} \in \Omega^2(M)$, where $\rho^i = X^i \oplus \omega^i$ for i = 1, 2. Then

$$A_H(\rho^1, \rho^2) = a[X^1, X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + b_3 d \left\langle \rho^1, \rho^2 \right\rangle_+ + b_4 d \left\langle \rho^1, \rho^2 \right\rangle_- + c i_{X^1} i_{X^2} H \right)$$

for all exact 3-forms H, where $\rho^i = X^i \oplus \omega^i$ for i = 1, 2. But by the locality of A and the Poincare lemma we may replace the phrase "all exact 3-forms" by "all closed 3-forms".

If $p \ge 4$, then by Theorem 3.4, A^1 is of the form

$$A^1_{\tilde{H}}(\rho^1,\rho^2) = a[X^1,X^2]$$

$$\oplus \left(b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + b_3 \operatorname{d} \left\langle \rho^1, \rho^2 \right\rangle_+ + b_4 \operatorname{d} \left\langle \rho^1, \rho^2 \right\rangle_- + c i_{X^1} i_{X^2} \operatorname{d} \tilde{H} \right)$$

for uniquely determined reals $a,b_1,...,c$ (with arbitrary c if p=4 and with c=0 if $p\geq 5$) and all $\tilde{H}\in\Omega^{p-1}(M)$, where $\rho^i=X^i\oplus\omega^i$ for i=1,2. The condition $A^1_{\tilde{H}}=A^1_{\tilde{H}+\mathrm{d}H_1}$ implies $ci_{X^1}i_{X^2}\mathrm{d}H_1=0$ for any $H_1\in\Omega^{p-2}(M)$. If p=4, putting $X^1=\partial_1, X^2=\partial_2$ and $H_1=x^1\mathrm{d}x^2\wedge\mathrm{d}x^3$, we get $c(-\mathrm{d}x^3)=0$, i.e., c=0. If $p\geq 5$, then c=0, see above. Next, we proceed similarly as in the case p=3.

The above corollary and Theorem 3.4 imply

Theorem 4.3. If $m \geq 3$ and $p \geq 3$ then any $\mathcal{M}f_m$ -natural operator in the sense of Definition 4.1 can be extended uniquely to a $\mathcal{M}f_m$ -natural operator in the sense of Definition 3.1.

Roughly speaking, if $m \geq 3$ and $p \geq 3$, then any $\mathcal{M}f_m$ -natural operator in the sense of Definition 4.1 can be treated as the $\mathcal{M}f_m$ -natural operator in the sense of Definition 3.1, and vice-versa.

5. The Natural Operators Similar to the Twisted Courant Bracket and Satisfying the Leibniz Rule for Closed 3-Forms

Definition 5.1. A $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 (or equivalently in the sense of Definition 4.1) satisfies the Leibniz rule for closed p-forms if

$$A_H(\rho_1, A_H(\rho_2, \rho_3)) = A_H(A_H(\rho_1, \rho_2), \rho_3) + A_H(\rho_2, A_H(\rho_1, \rho_3))$$

for all $\rho_1, \rho_2, \rho_3 \in \mathcal{X}(M) \oplus \Omega^1(M)$, all closed *p*-forms $H \in \Omega^p_{cl}(M)$ and all *m*-manifolds M.

Example 5.2. The twisted Courant bracket $\mathcal{M}f_m$ -natural operator presented in Example 3.2 satisfies the Leibniz rule for closed 3-forms, see [3,8].

Theorem 5.3. If $m \geq 3$, any $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 (or equivalently of Definition 4.1) for p = 3 satisfying the Leibniz rule for closed 3-forms is one of the $\mathcal{M}f_m$ -natural operators:

$$A_{H}^{\langle 1,a\rangle}(\rho_{1},\rho_{2}) = a[X^{1},X^{2}] \oplus 0,$$

$$A_{H}^{\langle 2,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a(\mathcal{L}_{X^{1}}\omega^{2} - \mathcal{L}_{X^{2}}\omega^{1})),$$

$$A_{H}^{\langle 3,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a\mathcal{L}_{X^{1}}\omega^{2}),$$

$$A_{H}^{\langle 4,a,e\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a(\mathcal{L}_{X^{1}}\omega^{2} - i_{X^{2}}d\omega^{1}) + ei_{X^{1}}i_{X^{2}}H),$$

where $\rho^1 = X^1 \oplus \omega^1$ and $\rho^2 = X^2 \oplus \omega^2$, and a and e are arbitrary real numbers.

Proof. Let A be a $\mathcal{M}f_m$ -natural operator in the sense of Definition 3.1 for p=3 such that A_H satisfies the Leibniz rule for any closed $H \in \Omega^3_{cl}(M)$. By Theorem 3.4, A is of the form

$$A_{H}(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}) = a[X^{1}, X^{2}]$$

$$\oplus (b_{1}\mathcal{L}_{X^{2}}\omega^{1} + b_{2}\mathcal{L}_{X^{1}}\omega^{2} + c_{1}\operatorname{d}i_{X^{2}}\omega^{1} + c_{2}\operatorname{d}i_{X^{1}}\omega^{2} + ei_{X^{1}}i_{X^{2}}H),$$

for (uniquely determined by A) real numbers a, b_1, b_2, c_1, c_2, e . Then for any $X^1, X^2, X^3 \in \mathcal{X}(M)$ and $\omega^1, \omega^2, \omega^3 \in \Omega^1(M)$ we have

$$A_{H}(X^{1} \oplus \omega^{1}, A_{H}(X^{2} \oplus \omega^{2}, X^{3} \oplus \omega^{3})) = a^{2}[X^{1}, [X^{2}, X^{3}]] \oplus \Omega,$$

$$A_{H}(A_{H}(X^{1} \oplus \omega^{1}, X^{2} \oplus \omega^{2}), X^{3} \oplus \omega^{3}) = a^{2}[[X^{1}, X^{2}], X^{3}] \oplus \Theta,$$

$$A_{H}(X^{2} \oplus \omega^{2}, A_{H}(X^{1} \oplus \omega^{1}, X^{3} \oplus \omega^{3})) = a^{2}[X^{2}, [X^{1}, X^{3}]] \oplus \mathcal{T},$$

where

$$\begin{split} \Omega &= b_1 \mathcal{L}_{a[X^2,X^3]} \omega^1 + c_1 \mathrm{d}i_{a[X^2,X^3]} \omega^1 + ei_{X^1} i_{a[X^2,X^3]} H \\ &\quad + b_2 \mathcal{L}_{X^1} (b_1 \mathcal{L}_{X^3} \omega^2 + b_2 \mathcal{L}_{X^2} \omega^3 + c_1 \mathrm{d}i_{X^3} \omega^2 + c_2 \mathrm{d}i_{X^2} \omega^3 + ei_{X^2} i_{X^3} H) \\ &\quad + c_2 \mathrm{d}i_{X^1} (b_1 \mathcal{L}_{X^3} \omega^2 + b_2 \mathcal{L}_{X^2} \omega^3 + c_1 \mathrm{d}i_{X^3} \omega^2 + c_2 \mathrm{d}i_{X^2} \omega^3 + ei_{X^2} i_{X^3} H), \\ \Theta &= b_2 \mathcal{L}_{a[X^1,X^2]} \omega^3 + c_2 \mathrm{d}i_{a[X^1,X^2]} \omega^3 + ei_{a[X^1,X^2]} i_{X^3} H \\ &\quad + b_1 \mathcal{L}_{X^3} (b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + c_1 \mathrm{d}i_{X^2} \omega^1 + c_2 \mathrm{d}i_{X^1} \omega^2 + ei_{X^1} i_{X^2} H) \\ &\quad + c_1 \mathrm{d}i_{X^3} (b_1 \mathcal{L}_{X^2} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^2 + c_1 \mathrm{d}i_{X^2} \omega^1 + c_2 \mathrm{d}i_{X^1} \omega^2 + ei_{X^1} i_{X^2} H), \\ \mathcal{T} &= b_1 \mathcal{L}_{a[X^1,X^3]} \omega^2 + c_1 \mathrm{d}i_{a[X^1,X^3]} \omega^2 + ei_{X^2} i_{a[X^1,X^3]} H \\ &\quad + b_2 \mathcal{L}_{X^2} (b_1 \mathcal{L}_{X^3} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^3 + c_1 \mathrm{d}i_{X^3} \omega^1 + c_2 \mathrm{d}i_{X^1} \omega^3 + ei_{X^1} i_{X^3} H) \\ &\quad + c_2 \mathrm{d}i_{X^2} (b_1 \mathcal{L}_{X^3} \omega^1 + b_2 \mathcal{L}_{X^1} \omega^3 + c_1 \mathrm{d}i_{X^3} \omega^1 + c_2 \mathrm{d}i_{X^1} \omega^3 + ei_{X^1} i_{X^3} H). \end{split}$$

The Leibniz rule of A_H is equivalent to $\Omega = \Theta + \mathcal{T}$.

Putting H = 0, we are in the situation of Theorem 2.7. Then by Theorem 2.7 (i.e., by Theorem 3.2 in [2]) we get $(b_1, b_2, c_1, c_2) = (0, 0, 0, 0)$ or $(b_1, b_2, c_1, c_2) = (0, a, 0, 0)$ or $(b_1, b_2, c_1, c_2) = (-a, a, 0, 0)$ or $(b_1, b_2, c_1, c_2) = (-a, a, 0, 0)$. More, A_0 for such (b_1, b_2, c_1, c_2) satisfies the Leibniz rule.

Therefore (as $c_2 = 0$) the Leibniz rule of A_H is equivalent to the equality

$$\begin{aligned} eai_{X^1}i_{[X^2,X^3]}H + b_2e\mathcal{L}_{X^1}i_{X^2}i_{X^3}H \\ &= eai_{[X^1,X^2]}i_{X^3}H + b_1e\mathcal{L}_{X^3}i_{X^1}i_{X^2}H + c_1edi_{X^3}i_{X^1}i_{X^2}H \\ &+ eai_{X^2}i_{[X^1,X^3]}H + b_2e\mathcal{L}_{X^2}i_{X^1}i_{X^3}H. \end{aligned}$$

If $(b_1, b_2, c_1, c_2) = (0, 0, 0, 0)$, the above equality is equivalent to $eai_{X^1}i_{[X^2,X^3]}H = eai_{[X^1,X^2]}i_{X^3}H + eai_{X^2}i_{[X^1,X^3]}H.$

Putting $X^1 = \partial_1$, $X^2 = \partial_1 + x^1 \partial_3$ and $X^3 = \partial_2$ we have $[X^2, X^3] = 0$, $[X^1, X^3] = 0$ and $[X^1, X^2] = \partial_3$, and then $0 = eai_{\partial_3}i_{\partial_2}H$ for any closed H (for example for $H = dx^1 \wedge dx^2 \wedge dx^3$). Consequently e = 0 or a = 0.

If $(b_1, b_2, c_1, c_2) = (0, a, 0, 0)$, the above equality is equivalent to

$$eai_{X^1}i_{[X^2,X^3]}H + ea\mathcal{L}_{X^1}i_{X^2}i_{X^3}H$$

= $eai_{[X^1,X^2]}i_{X^3}H + eai_{X^2}i_{[X^1,X^3]}H + ea\mathcal{L}_{X^2}i_{X^1}i_{X^3}H.$

Putting $X^1 = \partial_1$, $X^2 = \partial_2$ and $X^3 = \partial_3$ and $H = x^2 dx^1 \wedge dx^2 \wedge dx^3$ (it is closed) we have $[X^2, X^3] = 0$, $[X^1, X^2] = 0$, $[X^1, X^3] = 0$, $\mathcal{L}_{X^2} i_{X^1} i_{X^3} H = \mathcal{L}_{\partial_2} x^2 dx^2 = dx^2$ and $\mathcal{L}_{X^1} i_{X^2} i_{X^3} H = \mathcal{L}_{\partial_1} (-x^2 dx^1) = 0$. Then $eadx^2 = 0$. So, a = 0 or e = 0.

If $(b_1, b_2, c_1, c_2) = (-a, a, 0, 0)$, the above equality is equivalent to

$$eai_{X^1}i_{[X^2,X^3]}H + ea\mathcal{L}_{X^1}i_{X^2}i_{X^3}H$$

$$= eai_{[X^1,X^2]}i_{X^3}H - ea\mathcal{L}_{X^3}i_{X^1}i_{X^2}H + eai_{X^2}i_{[X^1,X^3]}H + ea\mathcal{L}_{X^2}i_{X^1}i_{X^3}H.$$

Putting $X^1 = \partial_1$, $X^2 = \partial_2$ and $X^3 = \partial_3$ and $H = x^2 dx^1 \wedge dx^2 \wedge dx^3$ we have (see above) $[X^2, X^3] = 0$, $[X^1, X^2] = 0$, $[X^1, X^3] = 0$, $\mathcal{L}_{X^2} i_{X^1} i_{X^3} H = dx^2$, $\mathcal{L}_{X^1} i_{X^2} i_{X^3} H = 0$ and $\mathcal{L}_{X^3} i_{X^1} i_{X^2} H = \mathcal{L}_{\partial_3} (-x^2 dx^3) = 0$. Then $eadx^2 = 0$. So, a = 0 or e = 0.

If $(b_1, b_2, c_1, c_2) = (-a, a, a, 0)$, the above equality is equivalent to $ea \sum \{i_{X^1}i_{[X^2,X^3]}H + \mathcal{L}_{X^1}i_{X^2}i_{X^3}H\} = eadi_{X^1}i_{X^2}i_{X^3}H$,

where \sum is the cyclic sum $\sum_{cycl(X^1,X^2,X^3)}$. Then e is arbitrary real number because from dH=0 it follows

$$\sum \left\{ i_{X^1} i_{[X^2, X^3]} H + \mathcal{L}_{X^1} i_{X^2} i_{X^3} H \right\} = \mathrm{d} i_{X^1} i_{X^2} i_{X^3} H.$$

Indeed, using dH = 0 and $i_{[X^1,X^4]} = \mathcal{L}_{X^1}i_{X^4} - i_{X^4}\mathcal{L}_{X^1}$ and the well-known formula expressing $dH(X^1,X^2,X^3,X^4)$, we have

$$\begin{split} &\sum \left\{i_{X^4}i_{X^1}i_{[X^2,X^3]}H + i_{X^4}\mathcal{L}_{X^1}i_{X^2}i_{X^3}H\right\} \\ &= \sum \left\{i_{X^4}i_{X^1}i_{[X^2,X^3]}H + \mathcal{L}_{X^1}i_{X^4}i_{X^2}i_{X^3}H - i_{[X^1,X^4]}i_{X^2}i_{X^3}H\right\} \\ &= 6\sum \{H([X^2,X^3],X^1,X^4) + X^1H(X^3,X^2,X^4) \\ &\qquad \qquad -H(X^3,X^2,[X^1,X^4])\} \\ &= -24\mathrm{d}H(X^1,X^2,X^3,X^4) + 6X^4H(X^3,X^2,X^1) = i_{X^4}\mathrm{d}i_{X^1}i_{X^2}i_{X^3}H. \end{split}$$

Summing up, given a real number $a \neq 0$ we have $(b_1, b_2, c_1, c_2, e) = (0, 0, 0, 0, 0)$ or $(b_1, b_2, c_1, c_2, e) = (0, a, 0, 0, 0)$ or $(b_1, b_2, c_1, c_2, e) = (-a, a, 0, 0, 0)$ or $(b_1, b_2, c_1, c_2, e) = (-a, a, a, 0, e)$, where e may be arbitrary real number. If a = 0 we have $(b_1, b_2, c_1, c_2, e) = (0, 0, 0, 0, e)$, where e may be arbitrary. Theorem 5.3 is complete.

Corollary 5.4. If $m \geq 3$, then the twisted Courant bracket $\mathcal{M}f_m$ -natural operator from Example 3.2 is the unique $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 for p=3 satisfying the following conditions:

(C1)
$$A_H(\rho_1, A_H(\rho_2, \rho_3)) = A_H(A_H(\rho_1, \rho_2), \rho_3) + A_H(\rho_2, A_H(\rho_1, \rho_3)),$$

(C2) $A_H(X \oplus 0, Y \oplus 0) = [X, Y] \oplus i_X i_Y H$

for all $\rho_1, \rho_2, \rho_3, X \oplus 0, Y \oplus 0 \in \mathcal{X}(M) \oplus \Omega^1(M)$, all closed $H \in \Omega^3_{cl}(M)$ and all m-manifolds M.

Proof. Indeed, the condition (C1) and Theorem 5.3 imply that $A=A^{\langle 1,a\rangle}$ or $A=A^{\langle 2,a\rangle}$ or $A=A^{\langle 3,a\rangle}$ or $A=A^{\langle 4,a,e\rangle}$ for some real numbers a and e. Then (C2) implies that $A=A^{\langle 4,a,e\rangle}$ and a=1 and e=1 because $A_H^{\langle 1,a\rangle}(X\oplus 0,Y\oplus 0)=a[X,Y]\oplus 0$ and $A_H^{\langle 2,a\rangle}(X\oplus 0,Y\oplus 0)=a[X,Y]\oplus 0$ and $A_H^{\langle 3,a\rangle}(X\oplus 0,Y\oplus 0)=a[X,Y]\oplus ei_Xi_YH$. \square

Corollary 5.5. If $m \geq 3$, any $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 for p=3 such that A_H is a Lie algebra bracket (i.e., it is skew-symmetric, bilinear and satisfying the Leibniz rule) for all closed 3-forms $H \in \Omega^3_{cl}(M)$ and all m-manifolds M is one of the $\mathcal{M}f_m$ -natural operators:

$$A_H^{\langle 1,a\rangle}(\rho_1,\rho_2) = a[X^1,X^2] \oplus 0,$$

$$A_H^{\langle 2,a\rangle}(\rho^1,\rho^2) = a[X^1,X^2] \oplus (a(\mathcal{L}_{X^1}\omega^2 - \mathcal{L}_{X^2}\omega^1)),$$

$$A_H^{\langle 4,0,e\rangle}(\rho^1,\rho^2) = 0 \oplus ei_{X^1}i_{X^2}H,$$

where $\rho^1=X^1\oplus\omega^1$ and $\rho^2=X^2\oplus\omega^2$, and a and e are arbitrary real numbers.

Proof. It follows from Theorem 5.3.

Corollary 5.6. If $m \geq 3$, any $\mathcal{M}f_m$ -natural operator A in the sense of Definition 3.1 for p=3 satisfying the Leibniz rule for all 3-forms H (or for all closed 3-forms and at least one non-closed 3-form) is one of the $\mathcal{M}f_m$ -natural operators:

$$A_{H}^{\langle 1,a\rangle}(\rho_{1},\rho_{2}) = a[X^{1},X^{2}] \oplus 0,$$

$$A_{H}^{\langle 2,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a(\mathcal{L}_{X^{1}}\omega^{2} - \mathcal{L}_{X^{2}}\omega^{1})),$$

$$A_{H}^{\langle 3,a\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a\mathcal{L}_{X^{1}}\omega^{2}),$$

$$A_{H}^{\langle 4,a,0\rangle}(\rho^{1},\rho^{2}) = a[X^{1},X^{2}] \oplus (a(\mathcal{L}_{X^{1}}\omega^{2} - i_{X^{2}}d\omega^{1})),$$

$$A_{H}^{\langle 4,0,e\rangle}(\rho^{1},\rho^{2}) = 0 \oplus ei_{X^{1}}i_{X^{2}}H,$$

where $\rho^1 = X^1 \oplus \omega^1$ and $\rho^2 = X^2 \oplus \omega^2$, and a and e are arbitrary real numbers.

Proof. It follows from Theorem 5.3 and its proof.

Remark 5.7. It is well-known that given closed 3-form $H \in \Omega^3_{cl}(M)$ on a m-manifold M, the twisted Courant bracket $[-,-]_H:(\mathcal{X}(M)\oplus\Omega^1(M))\times(\mathcal{X}(M)\oplus\Omega^1(M))\to\mathcal{X}(M)\oplus\Omega^1(M)$ is bilinear and satisfies the properties (A1)–(A5) from Corollary 2.8 for all $\rho_1,\rho_2,\rho_3\in\mathcal{X}(M)\oplus\Omega^1(M)$ and all $f\in\mathcal{C}^\infty(M)$, see [3,8], but $[-,-]_H\neq[-,-]_0$ if $H\neq0$. Is it a contradiction with the uniqueness from Corollary 2.8? No, it is not. Indeed, $[-,-]_H$ is not extendable to a $\mathcal{M}f_m$ -natural bilinear operator in the sense of Definition 2.1 because it is invariant only with respect to $\mathcal{M}f_m$ -maps $\varphi:M\to M$ preserving H, in fact.

Remark 5.8. By Corollary 5.5, given a closed 3-form H on M, the skew-symmetric bracket $[[X^1 \oplus \omega^1, X^2 \oplus \omega^2]]^{(H)} := 0 \oplus i_{X^1} i_{X^2} H$ satisfies the Leibniz rule. One can easily directly verify that $(TM \oplus T^*M, e[[-,-]]^{(H)}, 0\pi)$ for arbitrary fixed $e \in \mathbf{R}$ and closed 3-form H is a Lie algebroid canonically depending on H. So, if we have a closed 3-form H on a m-manifold M, we can construct canonical (in H) Lie algebroids $(EM, [[-,-]]^{[H]}, a^{[H]})$ with $EM = TM \oplus T^*M$ different than the one from Proposition 2.11.

Acknowledgements

I would like to thank the reviewer for valuable suggestions. By one of them I was inspired to study the problem given in Proposition 2.11.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. **319**(631), 631–661 (1990)
- [2] Doupovec, M., Kurek, J., Mikulski, W.M.: The natural brackets on couples of vector fields and 1-forms. Turk. J. Math. 42(2), 1853–1862 (2018)
- [3] Gualtieri, M.: Generalized complex geometry. Ann. Math. 174(1), 75–123 (2011)
- [4] Hitchin, N.: Generalized Calabi–Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)
- [5] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)
- [6] Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Math. Soc., Lecture Note 213. Cambridge University Press, Cambridge (2005)
- [7] Liu, Z.J., Weinstein, A., Xu, P.: Main triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)
- [8] Ševera, P., Weinstein, A.: Poisson geometry with a 3-form bacground. Progr. Teoret. Phys. Suppl., 145–154 (2001)

Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University ul. Łojasiewicza 6 30-348 Kraków Poland

e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received: January 24, 2019. Revised: February 11, 2019. Accepted: June 10, 2019.