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Solvability of Age-Structured
Epidemiological Models with Intracohort
Transmission

Jacek Banasiak and Rodrigue Y. M. Massoukou

Abstract. The standard version of the epidemiological model with con-
tinuous age structure (Iannelli, Mathematical Theory of Age-Structured
Population Dynamics, 1995) consists of the linear McKendrick model for
the evolution of a disease-free population, coupled with one of the clas-
sical (SIS, SIR, etc.) models for the spread of the disease. A natural
functional space in which the linear McKendrick model is well posed is
the space of integrable functions. However, in the so-called intracohort
models, the disease term contains pointwise products of the unknown
functions; that is, of the age-specific densities of susceptibles, infectives
and other classes (if applicable) which render the standard semilinear
perturbation technique of proving the well-posedness of the full model
not applicable in that space. This is due to the fact that the product of
two integrable functions need not be integrable. Therefore, most works
on the well-posedness of such problems have been done under additional
assumption that the disease-free population is stable and the equilibrium
has been reached (Busenberg et al. SIAM J Math Anal 22(4):1065–1080,
1991, Prüß, J Math Biol 11:65–84, 1981). This allowed for showing, af-
ter some algebraic manipulations, that the order interval [0, 1] in the
space of integrable functions was invariant under the action of the lin-
ear McKendrick semigroup and thus the usual iteration technique could
be applied in this interval, yielding a bounded solution. An additional
advantage of adopting the stability assumption was that it eliminated
from the model the death rate which, in all realistic cases, is unbounded
and creates serious technical difficulties. The aim of this note is to show
that a careful modification of the standard Picard iteration procedure al-
lows for proving the same result without the stability assumption. Since
in such a case we are not able to suppress the unbounded death rate, we
will briefly present the necessary linear results in a way which simplifies
and unifies some classical results existing in the literature (Inaba, Math
Popul Stud 1:49–77, 1988, Prüß, J Math Biol 11:65–84, 1981, Webb,
Theory of Nonlinear Age Dependent Population Dynamics, 1985).
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1. Introduction

In this note, we consider the age-structured SIS model with intracohort in-
fection, as introduced in [9],

(∂t + ∂a) s(a, t) = −μ(a)s(a, t) − K0(a)i(a, t)s(a, t) + δ(a)i(a, t), (1.1a)
(∂t + ∂a) i(a, t) = −μ(a)i(a, t) + K0(a)i(a, t))s(a, t) − δ(a)i(a, t), (1.1b)

s(0, t) =
∫ ω

0

β(a) {s(a, t) + (1 − q)i(a, t)} da, (1.1c)

i(0, t) = q

∫ ω

0

β(a)i(a, t) da, (1.1d)

s(a, 0) = s0(a), i(a, 0) = i0(a), (1.1e)

for 0 ≤ t ≤ T ≤ ∞, 0 ≤ a ≤ ω < +∞. Here, i and s are, respectively, the
age-specific densities of infective and susceptible individuals, μ is the death
rate, K0 is the force of infection and δ is the recovery rate. In the McKendrick
boundary conditions (1.1c) and (1.1d), β is the birth rate, whilst q ∈ [0, 1] is
the coefficient of the vertical transmission of the disease. Further, ω < ∞ is
the maximum age in the population. Denoting I = (0, ω), the natural space for
the problem is X1 = L1(I)×L1(I) with the norm ‖(p1, p2)‖X1

= ‖p1‖1+‖p2‖1,
where the norm ‖ · ‖1 refers to the norm in L1(I); in R

2 we use the norm
‖(x, y)‖ = |x| + |y| for x, y ∈ R.

Solvability results for problems of this type seem to belong to mathe-
matical folklore. However, a closer look at classical papers reveals that they
often adopt some assumptions which are not universally valid. One of the
typical problems is that if one considers a realistic finite life span of indi-
viduals ω, then necessarily μ(a) must be unbounded as a → ω−, see [3,9],
which introduces another unbounded operator into the problem. This of-
ten has been circumvented by assuming that ω = ∞, whereupon μ could
be bounded, see [17]. On the other hand, in [10] the author assumes that
the reproductive period is shorter than the life span of the individual and
uses the reducibility of the McKendrick semigroup to consider the problem
on this shorter age interval. Furthermore, as mentioned in the abstract, the
structure of the intracohort infection term creates difficulties for analysis
of the full equation in X1. Therefore, (1.1) usually is considered with the
so-called intercohort model of infections [9,17], where in contrast to (1.1),
the infections can occur amongst different age groups and thus are mod-
elled by an integral operator. A notable exception is [7] where, however, the
authors used a simplifying assumption that the total population is in equi-
librium.

In this note, we briefly indicate the necessary linear results with a novel
elementary proof that the linear McKendrick operator is densely defined and
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then we give a proof of the existence of global integrable classical solutions
of (1.1) in which we do not require that there exists a closed convex order
bounded subset of X1, which is invariant under the action of the McKendrick
semigroup, making the result more general than that in [7].

2. Definitions, Notation and Assumptions

Let us recall that our state space is X1 = L1(I) × L1(I). For any Banach
lattice we denote by X+ the positive cone of X; in our case f = (f1, f2) ≥ 0
if fi(a) ≥ 0 for almost any a ∈ [0, ω] and i = 1, 2. By B(X,Y) we denote
the space of bounded linear operators between Banach spaces X,Y; we use
notation B(X) when X = Y. Then, we make the following assumptions on
the coefficients of (1.1).

(H1) μ ∈ L∞
loc([0, ω[) and satisfies

∫ ω

0
μ(r) dr = +∞, with μ > 0;

(H2) 0 ≤ β ∈ L∞(I);
(H3) 0 ≤ δ ∈ W1,∞(I);
(H4) K0 ∈ L∞(I).

For any measurable function α on [0, ω], we introduce the notation

α = esssup
a∈I

α(a), α = essinf
a∈I

α(a).

We denote Y1 := W1,1(I) × W1,1(I) be the Sobolev space of vector-valued
functions with integrable first derivatives. Further, define S=diag {−∂a,−∂a}
on D(S) = Y1, Mμ = diag {−μ,−μ} on D(Mμ) = {ϕ ∈ X1 : μϕ ∈ X1},

Mδ =
(

0 δ
0 −δ

)
(2.1)

in B(X1) and

B =
(

β (1 − q)β
0 qβ

)
(2.2)

with

Bϕ =
∫ ω

0

B(a)ϕ(a) da;

B ∈ B(X1,R
2) with ‖B‖

B(X1,R2) ≤ β. Then, we introduce A on the domain

D (A) = {ϕ ∈ D(S) ∩ D(Mμ); ϕ(0) = Bϕ} (2.3)

by A = S + Mμ and Q by Q = A + Mδ on D(Q) = D(A). Finally, for
ϕ = (ϕ1, ϕ2) ∈ X1 we formally define

F
(
ϕ

)
=

(
0 −K0ϕ1

0 K0ϕ1

)(
ϕ1

ϕ2

)
. (2.4)

In what follows we denote u = (s, i). Using the above notation, we re-write
(1.1a)–(1.1e) in the following compact form
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∂tu = Qu + F(u), (2.5a)

u(0, t) =
∫ ω

0

B(a)u(a, t) da, (2.5b)

u(a, 0) = u0(a) = (s0(a), i0(a)). (2.5c)

3. The Linear Part

The main result of this section is:

Theorem 3.1. The linear operator Q generates a strongly continuous positive
quasi-contractive semigroup

(
etQ)

t≥0
in X1 that satisfies the estimate

∥∥etQ∥∥
B(X1)

≤ et(β−μ). (3.1)

Since Mδ is bounded, it is sufficient to prove the same result for the
operator A.

Theorem 3.2. The linear operator A generates a strongly continuous positive
semigroup

(
etA

)
t≥0

in X1 such that

‖etA‖B(X1) ≤ e(β−μ)t. (3.2)

As we noted, parts of this theorem belong to folklore of the field and
thus we only briefly sketch results which are different than in the classical
literature [10,17]. The details can be found in [14]. Theorem 3.2 is proved in
a series of lemmas in which we construct and estimate the resolvent of A,
showing that it satisfies the Hille–Yosida estimates. Then, we show the density
of the domain of D(A), hence completing the proof. First we introduce the
survival rate matrix L(a), which corresponds to the survival probability in a
single population. L(a) is a solution of the matrix differential equation:

∂aL(a) = Mμ(a)L(a), L(0) = I, (3.3)

where I is the identity matrix. The solution of (3.3) is a diagonal matrix given
by

L(a) =
(

e− ∫ a
0 μ(r) dr 0

0 e− ∫ a
0 μ(r) dr

)
= e− ∫ a

0 μ(r) dr

(
1 0
0 1

)
= e− ∫ a

0 μ(r) drI.

(3.4)

We see that L(a) invertible and hence we can define L(a, b) by

L(a, b) = L(a)L−1(b). (3.5)

The next result is an extension of [10] to the case of finite maximum life
span ω. Its proof follows the usual lines but requires more care because of
the unbounded coefficient μ(a). This can be handled thanks to the diagonal
structure of the survival rate function L(a), see [14].
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Lemma 3.3. If λ > β − μ, then (λI − A)−1 is given by

ϕ = (λI − A)−1
ψ

= e−λaL(a)
(
I −

∫ ω

0

e−λσB(σ)L(σ) dσ

)−1 ∫ ω

0

e−λτB(τ)L(τ)

×
∫ τ

0

eλσL−1(σ)ψ(σ) dσ dτ + e−λaL(a)
∫ a

0

eλσL−1(σ)ψ(σ) dσ,

(3.6)

where ψ ∈ X1. Furthermore,
∥∥ (λI − A)−1

ψ
∥∥
X1

≤ 1
λ − (β − μ)

∥∥ψ
∥∥
X1

(3.7)

and A is closed.

The following lemma shows that the operator A is densely defined on
X1. A proof of this result (with some gaps) is provided in [10, p. 60]. A correct
but more technically involved proof can be found in [17]. We present a much
simpler proof which, actually, shows that D(A)+ is dense in X1,+.

Lemma 3.4. D(A)+ = X1,+.

Proof. Fix f ∈ X1,+. For any given ε > 0 there exists a mollifier ϕ ∈
C∞
0

(
I
) × C∞

0

(
I
)
, which is positive, such that ‖f − ϕ‖X1 ≤ ε. We see that

ϕ ∈ D(Mμ), but 0 = ϕ(0) 	= Bϕ unless supports of B and ϕ are dis-
joint. Take a nonnegative function η ∈ C∞

0

(
[0, ω[

)
with η(0) = 1 and let

ηε(a) = η(a/ε), then η(a/ε) = 0 for a > εω and hence supp ηε ⊆ [0, εω].
Further, let α be an arbitrary vector and consider

ψ = ϕ + ηεα.

We see that ψ ∈ Y1 ∩D(Mμ). Now, we need to find α such that ψ sat-
isfies the compatibility condition ψ(0) = Bψ. Since supp ηε ⊆ [0, εω], α is
determined from

α =
∫ ω

0

B(a)ϕ(a) da +
(∫ εω

0

ηε(a)B(a) da

)
α, (3.8)

where

ηε(a)B(a) =
(

β(a)ηε(a) (1 − q)β(a)ηε(a)
0 qβ(a)ηε(a)

)
.

Now, the matrix l1-norm of
∫ εω

0
ηε(a)B(a) da satisfies∥∥∥∥

∫ ω

0

(
εβ(εs)η(s) ε(1 − q)β(εs)η(s)

0 εqβ(εs)η(s)

)
ds

∥∥∥∥
B(R2)

≤ εβ‖η‖1,

hence (3.8) is solvable for sufficiently small ε giving α ≥ 0 if ϕ ≥ 0, with

‖α‖ ≤
∥∥∥∥
∫ ω

0

B(a)ϕ(a) da

∥∥∥∥ (1 − εβ‖η‖1)−1 ≤ C
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for some constant C, which is independent of ε for sufficiently small ε. Hence

‖f−ψ‖X1 =‖(f − ϕ) + (ϕ − ψ)‖X1 ≤ ‖f − ϕ‖X1 + ε‖α‖‖η‖1≤ (1+C‖η‖1)ε.
�

Now we can complete proofs of Theorems 3.2 and 3.1.

Proof of Theorem 3.2. Using the above lemmas with the estimate (3.7), we
can see that A satisfies the assumptions of the Hille–Yosida theorem. Hence,
it generates a strongly continuous semigroup

(
etA

)
t≥0

satisfying (3.2). Since
the resolvent is positive, the semigroup is positive as well. �

Proof of Theorem 3.1. Since Mδ(a) may be considered as an operator in
B (X1) with

∥∥Mδ

∥∥
B(X1)

≤ 2δ, the Bounded Perturbation Theorem [15] yields

that (Q,D(A)) generates a C0-semigroup, denoted by
(
etQ)

t≥0
that satisfies

‖etQ‖B(X1) ≤ et(β−μ+2δ).

Thanks to the structure of Mδ, we can improve the above estimate and also
show that the semigroup

(
etQ)

t≥0
generated by Q is positive. Indeed, the

semigroup generated by Mδ is given by

etMδ =
(

1 1 − e−tδ(a)

0 e−tδ(a)

)

so that it is positive and ∥∥etMδ
∥∥
B(X1)

= 1.

Hence, by the Trotter product formula [15], we obtain positivity of
(
etQ)

t≥0

and

‖etQ‖B(X1) ≤ et(β−μ). (3.9)

�

Remark 3.5. The estimates (3.2) and (3.9) are not optimal. In fact, see [9],
for the scalar linear McKendrick problem

∂tu(a, t) = −∂au(a, t) − μ(a)u(a, t), t > 0, a ∈ (0, ω), (3.10a)

u(0, t) =
∫ ω

0

β(a)u(a, t) da, (3.10b)

u(a, 0) = u0(a), (3.10c)

there exists a unique real eigenvalue λ∗ of (3.10) such that

‖u(t)‖1 ≤ Netλ∗‖u0‖1,
for some constant N .

Consider now an initial condition (s0, i0) ∈ D(A)+ for (1.1). Since the
semigroup

(
etQ)

t≥0
is positive, the strict solution (s, i) of the linear part of

(1.1) is nonnegative and the total population 0 ≤ s(a, t) + i(a, t) =: u(a, t)
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satisfies (3.10). Using nonnegativity, we find s(a, t) ≤ u(a, t) and i(a, t) ≤
u(a, t) and consequently

‖etQ(s0, i0)‖X1 ≤ Netλ∗‖(s0, i0)‖X1

(provided (s0, i0) ∈ D(A)+). However, by Lemma 3.4, the above estimate
can be extended to X1,+, and by [2, Proposition 2. 67], to

‖etQ‖B(X1) ≤ Netλ∗
. (3.11)

Note that the crucial role in the above argument is played by the fact that
(s, i) satisfies the differential equation (1.1)—if it was only a mild solution,
it would be difficult to directly prove that the sum s + i is the mild solution
to (3.10).

4. The Nonlinear Problem

We recall that in the considered here intracohort infection mechanism, the
infection term F in (2.5) is defined by

F
(
u(a, t)

)
= (−K0(a)s(a, t)i(a, t),K0(a)s(a, t)i(a, t)) , u = (s, i)

with K0 satisfying assumption (H4). We adopt the notation X∞ = L∞(I) ×
L∞(I) equipped with the norm ‖(u1, u2)‖X∞ = ‖u1‖∞+‖u2‖∞, where ‖·‖∞ =
‖·‖L∞([0,ω]), and for u0 ∈ X∞, ρ > 0, i = 1,∞ we denote

Bi(u0, �) = {u ∈ Xi : ‖u − u0‖Xi
≤ �} .

Finally, we denote Zi,T = C(
[0, T ],Xi

)
for a given 0 < T < ∞ and i = 1,∞.

The main problem with the intracohort transmission is that, in general,
F(u) /∈ X1 for u ∈ X1. Multiplication is well defined in L∞(I) but then
the latter space is not suitable for the semigroup techniques—any strongly
continuous semigroup on L∞(I) is uniformly continuous [1, Theorem 3.6]. To
handle this nonlinearity, we use the fact that for ω < ∞, X∞ is densely and
continuously embedded in X1 but, on the other hand, B∞(u0, ρ) is closed in
X1 (this follows as a sequence converging in X1 has a subsequence converging
almost everywhere). We shall show that we can carry out the analysis on balls
B∞, though no ball is invariant under the action of

(
etQ)

t≥0
, the latter being

a standard requirement in nonlinear problems, e.g. [7,13].
We begin with the following result.

Proposition 4.1. For any t ≥ 0, ρ > 0,

etQ (B∞(0, ρ)) ⊂ B∞(0,max{1, βωeβt}e−μtρ).

Proof. We consider the explicit representation of the semigroup
(
etQ)

t≥0
,

see [16, p. 69], [10, p. 62]):

etQu0(a) =
{
Lδ(a, a − t)u0(a − t), a ∈ (t, ω),
Lδ(a, 0)b(t − a;u0), a ∈ (0, t), (4.1)

where Lδ(a, b) = (lij(a, b))1≤i,j≤2 is defined similarly to (3.5), but using the
solution to

∂aLδ = (Mμ + Mδ)Lδ, Lδ(0) = I. (4.2)
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and b(t;u0) is the solution of the integral equation

b(t;u0) = J(t) +
∫ t

0

B(s)Lδ(s, 0)b(t − s;u0) ds, (4.3)

with

J(t) =
∫ ω

t

B(s)Lδ(s, s − t)u0(s − t) ds (4.4)

for 0 ≤ t ≤ ω and J(t) = 0 for t > ω. Since the coefficient matrix of (4.2) is
non-negative off-diagonal, lij ≥ 0, and by adding appropriate rows,

2∑
i=1

lij(a, b) = e
−

a∫
b

μ(s)da ≤ e−μ(a−b), j = 1, 2, b < a.

Using this, and the fact that we use the l1 norm in R
2, we obtain

‖J(t)‖ ≤ βωe−μt‖u0‖X∞

(clearly also valid for t ≥ ω) which, upon substitution into (4.3), gives

‖b(t;u0)‖ ≤ βωe−μt‖u0‖X∞ + βe−μt

∫ t

0

eμs‖b(s;u0)‖ds.

Gronwall’s lemma yields

‖b(t;u0)‖ ≤ βωe(β−μ)t‖u0‖X∞

hence, by (4.1), we obtain

‖Lδ(a, 0)b(t − a;u0)‖ ≤ βωe(β−μ)te−βa‖u0‖X∞ ≤ βωe(β−μ)t‖u0‖X∞ ,

for a < t and

‖Lδ(a, a − t)u0(a − t)‖ ≤ e−μt sup
s∈[0,a]

‖u0(s)‖ ≤ e−μt‖u0‖X∞ , for a > t.

Hence, ∥∥etQu0

∥∥
X∞

≤ max{1, βωeβt}e−μt‖u0‖X∞ . (4.5)

�

In what follows we list the relevant properties of the nonlinear term F
which are straightforward to prove.

Lemma 4.2. 1. F(X∞) ⊂ X∞ with ‖F(u)‖X∞ ≤ ‖K0‖∞‖u‖2X∞ .
2. F is locally Lipschitz continuous on X∞ with∥∥F(u1) − F(u2)

∥∥
X∞

≤ 2‖K0‖∞R‖u1 − u2‖X∞ , u1,u2 ∈ B∞(0, R).

(4.6)

3. F, restricted to B∞(0, R) ⊂ X1, R > 0 is Lipschitz continuous on X1

with∥∥F(u1) − F(u2)
∥∥
X1

≤ 2‖K0‖∞R‖u1 − u2‖X1 , u1,u2 ∈ B∞(0, R).

(4.7)
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4. F is continuously Fréchet differentiable on ϕ ∈ X∞ and for any ϕ =
(ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ X∞, the Fréchet derivative at ϕ is given by

(
Fϕψ

)
(a) :=

(−K0(a)ψ1(a)ϕ2(a) − K0(a)ϕ1(a)ψ2(a)
K0(a)ψ1(a)ϕ2(a) + K0(a)ϕ1(a)ψ2(a)

)
. (4.8)

Furthermore, we have the expansion

F (ϕ + ψ) (a) = F (ϕ) (a) + Fϕ (ψ) (a) + G (ψ,ψ) (a),

where

G (ψ,ψ) (a) =
(−K0(a)ψ1(a)ψ2(a)

K0(a)ψ1(a)ψ2(a)

)
.

Note that F, even restricted to B∞(0, R), is not differentiable in X1

since convergence to 0 in X1 does not imply the same in X∞.
The above properties of F allow to consider (2.5) in X1 provided the

solution with bounded initial data stays bounded. We consider the integral
formulation of (2.5),

u(t) = etQu0 +
∫ t

0

e(t−s)QF
(
u(s)

)
ds, 0 < t < T, (4.9)

denote by BT (0, R) the closed ball in Z∞,T and introduce the integral oper-
ator J defined on BT (0, R) by

(Ju) (t) = etQu0 +
∫ t

0

e(t−s)QF
(
u(s)

)
ds, 0 < t < T. (4.10)

We aim to show that J has a fixed point in BT (0, R) for sufficiently large R
and small T . For this, let us fix an initial datum u0 ∈ X∞ we take R such
that

R

2max{L, 1} > ‖u0‖X∞ , (4.11)

where L = βω. Further, denote Ψ(t) = max{1, βωeβt}e−μt.

Lemma 4.3. Let R satisfies (4.11). Then, there exists T > 0 such that the
operator J maps BT (0, R) into itself. Moreover, for u, v ∈ BT (0, R), we
have

‖Ju − J v‖Z∞,T
≤ CRT‖u − v‖Z∞,T

, (4.12)

where CR = 2‖K0‖∞R sup0≤t≤T Ψ(t).

Proof. Let u, v ∈ Bτ (0, R) for some τ . We immediately have, for 0 ≤ t ≤ τ ,
∥∥∥(Ju

)
(t) − (J v

)
(t)

∥∥∥
X∞

≤ sup
0≤s≤t

Ψ(s)
∫ t

0

∥∥∥F(
u(s)

) − F
(
v(s)

)∥∥∥
X∞

ds

≤ 2‖K0‖∞R sup
0≤s≤t

Ψ(s)
∫ t

0

‖u(s) − v(s)‖X∞ ds.

(4.13)
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Using (4.10), we see that
∥∥∥(Ju

)
(t)

∥∥∥
X∞

≤ Ψ(t)‖u0‖X∞ + sup
0≤s≤t

Ψ(s)
∫ t

0

∥∥F(
u(s)

)∥∥
X∞

ds

≤ R sup
0≤s≤t

Ψ(s)
(

1
2max{1, L} + 2‖K0‖∞Rt

)
.

It is easy to see that limt→0 sup0≤s≤t Ψ(s) = max{1, L}; hence, there is T > 0
such that

sup
0≤s≤T

Ψ(s)
(

1
2max{1, L} + 2‖K0‖∞RT

)
≤ 1 (4.14)

so that Ju ∈ BT (0, R) for any u ∈ BT (0, R). With this T we also get (4.12)
upon taking supremum of both sides (4.13) with respect to t over [0, T ]. �

Consequently, we have the following result:

Theorem 4.4. For R and T satisfying, respectively, (4.11) and (4.14), the
integral operator J : BT (0, R) → BT (0, R) given by (4.10) has a unique fixed
point.

Proof. Let us denote by J N N compositions of J , with N a positive integer.
Taking standard Picard iterations, for u, v ∈ BT (0, R) we get the estimate

∥∥∥J Nv − J Nu
∥∥∥
Z∞,T

≤ TN

N !
CN

R

∥∥v − u
∥∥
Z∞,T

, (4.15)

where T N

N ! C
N
R < 1, provided N is sufficiently large. Hence, J N is a contraction

on BT (0, R), and so it possesses a fixed point u ∈ BT (0, R). By a standard
argument, [11, Lemma 5.4-3], this is a unique fixed point of J . �

Theorem 4.4 can be re-phrased by saying that for any u0 ∈ X∞ there is
a unique mild solution to (2.5) in X1 on some time interval [0, T ] which is also
in X∞. We observe that, by the construction, T depends on the parameters
of the problem and the selected L∞ bound R. Clearly, the solution can be
extended in X∞ to a maximal interval [0, Tmax[. Then, a standard argument
gives

Corollary 4.5. If Tmax < ∞, then ‖u(t)‖X∞ is unbounded as t → T−
max.

To prove that the solutions are global, we first have to address the
question of regularity of the solution. We observe that this is not an obvious
question as, on the one hand, F is not differentiable in X1, even when re-
stricted to B∞(0, R), and on the other hand, we do not have a C0-semigroup
in X∞. However, taking advantage of the properties of the problem in both
X1 and X∞ allows to use essentially the same steps as in the standard proof,
see e.g [5,15], to prove the regularity of the solution.

Let t → u(t) be a mild solution emanating from u0 ∈ D(A) ∩ X∞ such
that Au0 ∈ X∞ (so that also Qu0 ∈ X∞) and satisfying u(t) ∈ B∞(0, R)
on [0, T ] for some R satisfying (4.11), with T determined by (4.14). First, we
show

Lemma 4.6. u is Lipschitz continuous on [0, T ] in both X1 and X∞ norms.
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Proof. Let h > 0 and t ∈ [0, T − h]. Then

u(t + h) − u(t) = etQ(ehQu0 − u0) +
∫ h

0

e(t+h−s)QF
(
u(s)

)
ds

+
∫ t

0

e(t−s)Q(F
(
u(s + h) − F

(
u(s)

)
ds. (4.16)

Thus, using

ehQu0 − u0 =
∫ h

0

esQQu0 ds

and (4.7), and denoting Mi(t) = sup0≤s≤t ‖esQ‖B(Xi), i = 1,∞,

‖u(t + h) − u(t)‖Xi
≤ Mi(t)Mi(h)‖Qu0‖Xi

h + Mi(t + h)‖K0‖∞ciR
2h

+Mi(t)2‖K0‖∞R

∫ t

0

‖u(s + h) − u(s)‖Xi
ds,

where c1 = ω and c∞ = 1. Hence, by Gronwall’s lemma,

‖u(t + h) − u(t)‖Xi
≤ Cih, (4.17)

where Ci are constants depending on T , u0 and the coefficients of the prob-
lem. �

Unfortunately, L1 spaces do not have the Radon–Nikodym property and
thus Lipschitz continuity of u does not imply that it is differentiable almost
everywhere. Therefore, we need to prove it separately.

First, we observe that at a point ϕ ∈ B∞(0, R), we have ψ → Fϕψ ∈
B(X1) with ‖Fϕ‖B(X1) ≤ 2‖K0‖∞R. Then, it is easily seen that the equation
for the ‘formal’ derivative of u, denoted by v

v(t) = etQ[Qu0 + F(u0)] +
∫ t

0

e(t−s)QFu(s)

(
v(s)

)
ds,

has a unique continuous solution, both in X1 and X∞. Then we have:

Theorem 4.7. Let u0 ∈ D(A)∩X∞ such that Au0 ∈ X∞ and let t → u(t) be
a mild solution emanating from u0 which satisfies u(t) ∈ B∞(0, R) on [0, T ]
for some R. Then, u is a classical solution of (2.5) on [0, T [.

Proof. We refine (4.16) to include the ‘formal’ derivative v,

u(t + h) − u(t)
h

− v(t)

= etQ
(

ehQu0 − u0

h
− Qu0

+
1
h

∫ h

0

e(h−s)QF
(
u(s)

)
ds − F

(
u0

))

+
∫ t

0

e(t−s)Q
(
F

(
u(s + h)

) − F
(
u(s)

)
h

− Fu(s)

(
v(s)

))
ds.
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The X1 norm of the first two terms can be estimated as in the standard case:
since u0 ∈ D(A), for any ε > 0 we find h0 such that for all 0 < h < h0∥∥∥∥ehQu0 − u0

h
− Qu0

∥∥∥∥
X1

≤ C1ε

and ∥∥∥∥∥
1
h

∫ h

0

e(h−s)QF
(
u(s)

)
ds − F

(
u0

)∥∥∥∥∥
X1

≤
∥∥∥∥∥
∫ h

0

eσQF
(
u(h − σ)

) − F
(
u(σ)

)
h

dσ

∥∥∥∥∥
X1

+

∥∥∥∥∥
1
h

∫ h

0

eσQF
(
u(σ)

)
dσ − F

(
u0

)∥∥∥∥∥
X1

≤ C2

h

∫ h

0

|h − 2σ|dσ + C3ε ≤ C4ε,

where the estimate of the first term is due to (4.7) and Lemma 4.6, whilst
the second follows since, by the continuity of the integrand, the integral is a
differentiable function of its upper limit. Finally, by Lemma 4.2 and (4.17)∥∥∥∥∥

F
(
u(s + h)

) − F
(
u(s)

)
h

− Fu(s)

(
v(s)

)∥∥∥∥∥
X1

≤
∥∥∥∥∥
Fu(s)

(
u(s + h) − u(s)

)
h

− Fu(s)

(
v(s)

)∥∥∥∥∥
X1

+
∥∥∥∥G (u(s + h) − u(s),u(s + h) − u(s))

h

∥∥∥∥
X1

≤ 2‖K0‖∞R

∥∥∥∥u(s + h) − u(s)
h

− v(s)
∥∥∥∥
X1

+
‖K0‖∞

h

∫ ω

0

||u(a, s + h) − u(a, s)||2 da

≤ 2‖K0‖∞R

∥∥∥∥u(s + h) − u(s)
h

− v(s)
∥∥∥∥
X1

+‖K0‖∞C1C∞h.

Summarizing, for any ε > 0, there are h0 > 0 and constants L1, L2 such that
for any 0 < h < h0∥∥∥∥u(t + h) − u(t)

h
− v(t)

∥∥∥∥
X1

≤ L1ε + L2

∫ t

0

∥∥∥∥u(s + h) − u(s)
h

− v(s)
∥∥∥∥
X1

ds,

which, by Gronwall’s inequality, yields∥∥∥∥u(t + h) − u(t)
h

− v(t)
∥∥∥∥
X1

≤ L3ε
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for some constant L3. Analogous estimates hold for t > 0, h < 0 with t+h > 0,
showing that u is strongly differentiable in X1 and ∂tu = v.

To complete the proof, we observe that t → F
(
u(t)

)
is continuously

differentiable in X1 norm on [0, T [. Indeed, for u = (s, i), we have∥∥∥∥ (−K0s(t + h)i(t + h),K0s(t + h)i(t + h)) − (−K0s(t)i(t),K0s(t)i(t))
h

1
h

− (−K0(∂ts(t)i(t) + ∂ti(t)s(t)),K0(∂ts(t)i(t) + ∂ti(t)s(t)))
∥∥∥∥
X1

≤ 2‖K0‖∞

(∥∥∥∥s(t + h)
i(t + h) − i(t)

h
− s(t)∂ti

∥∥∥∥
1

+
∥∥∥∥i(t)

(
s(t + h) − s(t)

h
− ∂ts

)∥∥∥∥
1

)

and the statement follows from differentiability of (s, i) in X1 and continuity
in X∞. Thus, u is a mild solution of a nonhomogeneous Cauchy problem in
X1 with differentiable inhomogeneity, and therefore, u(t) ∈ D(A) for any
t ∈ [0, T [, see the argument in the proof [15, Theorem 6.1.5]. Hence, u is a
classical solution to (2.5). �

In the last part, we address the question whether the constructed so-
lution is global in time. We begin with the positivity of solutions. First, we
observe that the iterates of (4.9) are not necessarily nonnegative, even if we
start from u0 ≥ 0 since F is not nonnegative. However, as in [4], we can
consider an equivalent formulation of (2.5),{

∂tu = (Q − κI)u + (κI + F) (u), t > 0,
u(0) = u0.

(4.18)

Using the fact that the iterates stay in, say BT (0, R); that is, ‖u(t)‖X∞ ≤ R
for t ∈ [0, T ], the fact that Q − κI generates a positive semigroup for any
κ ∈ R and that κI+F is nonnegative on B∞(0, R) for κ > ‖K0‖∞R, we see
that the Picard iterates of the integral formulation of (4.18) stay nonnegative
provided u0 ≥ 0. Hence, we have

Corollary 4.8. Assume that u0 ∈ X∞,+ and let u : [0, Tmax[→ X∞ be the
unique mild solution of (2.5). Then, this solution is nonnegative on the max-
imal interval of its existence.

Then we have

Theorem 4.9. Let 0 ≤ u0 ∈ D(A) ∩ X∞ such that Au0 ∈ X∞. Then, the
classical solution to (2.5) originating in u0 is global in time.

Proof. Consider a classical solution u(t) =
(
s(t), i(t)

)
to (2.5), and hence of

(1.1), in X∞,+ defined on [0, Tmax]. Then we have
∥∥u(a, t)

∥∥ = s(a, t)+i(a, t) =
u(a, t), where u(a, t) is the solution to the McKendrick equation (3.10) with
the initial condition u0(a) = s0(a) + i0(a) = ‖u0(a)‖. Thus, using a scalar
version of Proposition 4.1, we obtain∥∥u(t)‖X∞ ≤ Ψ(t)‖u0‖X∞ .
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where, recall, Ψ(t) = max{1, βωeβt}e−μt. Since Ψ is bounded on finite time
intervals, Corollary 4.5 yields Tmax = ∞. �
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