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the approach is applicable to quarks and elementary particles including
introduction of colors and, finally, (5) suggest an analysis of three qua-
ternaries vs. four ternaries, involving duodevicenion and/or quindenion
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1. Introduction and Motivation

In order to develop further our previous idea [1]; �Lawrynowicz et al. [16]
of identification of two ternaries and three binaries with the help of non-
commutative Galois extension applied to fractals and chaos related to Ising
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[2]–Onsager [3]–Zhang [4] lattices, in this considerations we start with involv-
ing the Galois extension structure of the nonion algebra and analyzing the
ternary and binary structures of su(3). Our approach is also motivated by
unclear statements in the Zhang [4] paper and further treatise [5,6]. The
main results of this paper are summarized as Theorems 1–3. Next we analyze
the identification of construction of the collection of two ternaries with the
collection of three binaries, and observe that the approach is applicable to
quarks and elementary particles including introduction of colours. Our results
announced above provide an example of a mathematical procedure applica-
ble parallelly in the physics of condensed matter and physics of elementary
particles. In this place it seems naturally to quote the suprising results due to
[58–65] dealing with discovery of topological phase transition and topological
phases matter [57].

Finally we suggest an analysis of three quaternaries vs. four ternar-
ies, involving duodevicenion and/or quindenion algebra. More precisely, we
suggest the construction of the collection of four quaternaries and the cor-
responding Dirac-like operators in connection with the nonion algebra. We
suggest to construct then the collection of four quaternaries and the corre-
sponding Dirac-like operators in connection with the duodevicenion or quin-
denion algebra [52–54] and its ternary extension. The next steps suggested
are noncommutative Galois extensions and a study of their basic relations
and Galois extensions of ternary Clifford type [67], quaternary Galois exten-
sions and Galois extensions of quaternary Clifford type [9], the Galois exten-
sion structure of the duodevicenion and quindenion algebras, quaternary and
ternary structure of su(3), ternary and quaternary Dirac-like operators of
noncommutative Galois extensions [26,27,68] and, finally, identification of
the constructed collection of three quaternaries with the proper collection of
four ternaries.

An approach of ternary numbers, algebras, and complex analysis, com-
ing back to geometric ideas suggested in [66].

2. The Galois Extension Structure of the Nonion Algebra

We recall the concept of nonion algebra N [52–54] and discuss its Galois
extension structure.

Consider the following matrices

Q1 =

⎛
⎝

0 j 0
0 0 j2

1 0 0

⎞
⎠ , Q2 =

⎛
⎝

0 j2 0
0 0 j
1 0 0

⎞
⎠ , Q3 =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ ; (2.1)

Q1 =

⎛
⎝

0 0 1
j2 0 0
0 j 0

⎞
⎠ , Q2 =

⎛
⎝

0 0 1
j 0 0
0 j2 0

⎞
⎠ , Q3 =

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ ; (2.2)

R1 =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝

1 0 0
0 j 0
0 0 j2

⎞
⎠ , R3 =

⎛
⎝

1 0 0
0 j2 0
0 0 j

⎞
⎠ . (2.3)
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where j is one of the roots of z3 − 1 = 0 different from 1. The matrix algebra
which is generated by two of the three elements (2.1) over R[ 3

√
I3] is called

nonion algebra N.
Consider in addition the matrices of the form

T1 = I6 :=
(

I3 03

03 I3

)
, T2 =

(
T 0

1 03

03 T 0
1

)
, T3 =

(
T 0

2 03

03 T 0
2

)
, (2.4)

T4 =
(

03 I3

−I3 03

)
, T5 =

(
03 T 0

1

−T 0
1 03

)
, T6 =

(
03 T 0

2

−T 0
2 03

)
, (2.5)

where

T 0
1 =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ , T 0

2 =

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ . (2.6)

We recall that the nine elements (2.1)–(2.3) constitute linear basis of the
nonion algebra N. The matrix algebra which is generated by two of the three
elements (2.5) over the real field R will be denoted by B

′. The algebra gen-
erated by T 0

1 or T 0
2 is called cubic algebra, denoted by B. The algebra Ñ

generated by T4 is the binary extension of N,

Ñ = N[ 2
√

I3] : Ñ = {x + yT4 |x, y ∈ N}.

The three elements (2.4) are a linear basis of B. The six elements (2.4),
(2.5) form a linear basis of B′. Besides, B and B

′ are subalgebras of N and
Ñ respectively. We can prove the above assertions with the help of the two
enclosed product tables.

Now, owing to hints [13] and motivation given in references [7,8,13,15],
following some earlier demands appearing in references [11,12,16–18], we can
prove the following basic theorems on the Galois extensions.

Theorem 1. (1) The nonion algebra is a ternary Galois extension of the alge-
bra B : N = B[ 3

√
I3]. The extension can be realized by B[τ ] (τ3 = I3)

with the choice of τ = Qi, Q̄i (i = 1, 2, 3). (2) Ñ is a binary extension of
B

′ : Ñ = B
′[ 2
√

I3]. Hence we have the following commutative diagram:

Ñ

T4 Qi or Q̄j

N B
′ (i, j = 1, 2, 3)

Qi or Q̄j T4

B

�
�

���

�
�

���

�
�

���

�
�

���

(2.7)

Proof will be given in the next section.
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Theorem 2. (3) We have the following Galois extensions:
⎧⎪⎪⎨
⎪⎪⎩

A[R1, R2, R3] = {xR1 + yR2 + zR3 |x, y, z ∈ R[j]},

A[R1, Qi, Q̄i] = {xR1 + yQi + zQ̄i |x, y, z ∈ R[j]}, (i = 1, 2, 3),

A[R1, Q̄i, Qi] = {xR1 + yQ̄i + zQi |x, y, z ∈ R[j]}, (i = 1, 2, 3).

(2.8)

The extension does not depend on the choice of τ with B[τ ] (τ3 = I3): we
have

N = A[R1, Q1, Q̄1] = A[R1, Q2, Q̄2] = A[R1, Q3, Q̄3]. (2.9)
(4) Qi, Q̄j (i, j = 1, 2, 3) give a part of generators of the Galois group

of N : N = B[ 3
√

I3]. Namely putting

AU [R1, R2, R3] = {xR1 + yUR2 + zŪR3 |x, y, z ∈ R[j]},

where U = Qi, Q̄i, (i = 1, 2, 3),
(2.10)

we can obtain new Galois extensions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

AQ1 [R1, R2, R3] = A[R1, Q2, Q̄2], AQ2 [R1, R2, R3] = A[R1, Q3, Q̄3],

AQ̄1
[R1, R2, R3] = A[R1, Q3, Q̄3], AQ̄2

[R1, R2, R3] = A[R1, Q1, Q̄1],

AR2 [R1, Q1, Q̄1] = A[R1, Q2, Q̄2], AR2 [R1, Q2, Q̄2] = A[R1, Q3, Q̄3],

AR2 [R1, Q3, Q̄3] = A[R1, Q1, Q̄1], AQ̄1
[R1, R2, R3] = A[R1, Q3, Q̄3],

AQ̄2
[R1, R2, R3] = A[R1, Q1, Q̄1], AQ̄3

[R1, R2, R3] = A[R1, Q2, Q̄2].

(2.11)

(5) We have the following results for the adjoint operations:
⎧⎪⎪⎨
⎪⎪⎩

AdQi
R1 = R1, AdQi

R2 = jR2, AdQi1R3 = j2R3, (i = 1, 2, 3),

AdQi
Q1 = Q1, AdQi

Q2 = jQ2, AdQi1Q3 = j2Q3, (i = 1, 2, 3),

AdQi
Q̄1 = Q̄1, AdQi

Q̄2 = j2Q̄2, AdQi1Q̄3 = jQ̄3, (i = 1, 2, 3),

(2.12)

where j �= 1, j3 = 1.

The proof will be given in the next section.

3. Proofs of Basic Theorems 1 and 2 [Assertions (1)–(5)]

Proof. Ad (1). We notice that B is the commutative Galois extension: B =
R[ 3

√
I3].
Then we observe that, for a Clifford algebra A with generators T1, T2, . . . ,

Tn, there is a sequence of noncommutative binary Galois extensions of R

which realizes the given Clifford algebra A [19].
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Figure 1. Schemes illustrating reasoning leading to Asser-
tions (1)–(5)

Indeed, let us prove the above statement by induction with respect to
m, where A0 = R, Am = A, and

TiTj + TjTi = −δijIn ⇒ Ak = Ak−1[ 2
√

−In], k = 1, 2, . . . , m.

Complex numbers can be obtained by commutative extensions of real num-
bers. Now, setting

T̂i =
(

Ti 0
0 −Ti

)
, i = 1, 2, . . . ,m; Ĥn+1 =

(
0 In

−In 0

)
,

we get Clifford algebra which is generated by (T̂1, T̂2, . . . , T̂n, Ĥn+1) on one
hand, and the right (or left) module binary extension of An by Ĥn+1 on the
other hand.

If we choose in (1) τ = QiQi, i = 1, 2, 3, we make the Galois extension
B[ 3

√
I3]. Then we can see that it is identical with N.
Ad (2). We notice that B

′ is the noncommutative Galois extension of
B : B′ = B[ 2

√
I3], where 2

√
I3 = T4. Choosing τ = T4, we make the Galois

extension. Then we can see that it is identical with Ñ : Ñ = B
′[ 2
√

I3].
Ad (3)–(5). Clearly, for i = 1 we have

R[j, Q1] = {xR1 + yQ1 + zQ2
1|x, y, z ∈ R[j]}.

From Q2
1 = Q̄1 it follows that

R[j, Q1] = {xR1 + yQ1 + zQ̄1|x, y, z ∈ R[j]}.

Hence R[j, Q1] is a ternary Galois extension with the corresponding Galois
group 1, Q1, Q

2
1. Analogously we perform the reasoning for R[j, Q2] and R[j,

Q3].
In general, we follow the enclosed schemes (Fig. 1) which indicate how

to use in the clockwise way Tables 1 and 2. The scheme is clarified by a
detailed calculation in the case expressed in the second line of the formulae
(2.10).

4. Ternary and Binary Galois Extension Structures of su(3)

In addition to the desires followed from our programme formulated in [1], the
present section meets also the demands appearing in references [20–25]. We
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Table 1. The (Q, Q̄, R)-matrices product table

Q1 Q2 Q3 Q̄1 Q̄2 Q̄3 R1 R2 R3

Q1 Q̄1 j2Q̄3 jQ̄2 R1 j2R3 jR2 Q1 Q2 Q3

Q2 jQ̄3 Q̄2 j2Q̄1 jR2 R1 j2R3 Q2 Q3 Q1

Q3 j2Q̄2 jQ̄1 Q̄3 j2R3 jR2 R1 Q3 Q1 Q2

Q̄1 R1 R2 R3 Q1 j2Q3 jQ2 Q̄1 j2Q̄3 jQ̄2

Q̄2 R3 R1 R2 jQ3 Q2 j2Q1 Q̄2 j2Q̄1 jQ̄3

Q̄3 R2 R3 R1 j2Q2 jQ1 Q3 Q̄3 j2Q̄2 jQ̄1

R1 Q1 Q2 Q3 Q̄1 Q̄2 Q̄3 R1 R2 R3

R2 j2Q2 j2Q3 j2Q1 Q̄3 Q̄1 Q̄2 R2 R3 R1

R3 jQ3 jQ1 jQ2 Q̄2 Q̄3 Q̄1 R3 R1 R2

Table 2. The T-matrices product table

T1 T2 T3 T4 T5 T6

T1 T1 T2 T3 T4 T5 T6

T2 T2 T3 T1 T5 T6 T4

T3 T3 T1 T2 T6 T4 T5

T4 T4 T6 T5 T1 T3 T2

T5 T5 T4 T6 T2 T1 T3

T6 T6 T5 T4 T3 T2 T1

are going to discuss the structure of the Galois extension in the context of
su(3).

We recall base of su(3) (where selected generators are proportional to
the well known Gell-Mann matrices [14]):

f1 =

⎛
⎝

0 i 0
i 0 0
0 0 0

⎞
⎠ , f2 =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ , f3 =

⎛
⎝

i 0 0
0 −i 0
0 0 0

⎞
⎠ ,

f4 =

⎛
⎝

0 0 i
0 0 0
i 0 0

⎞
⎠ ,

f5 =

⎛
⎝

0 0 −1
0 0 0
1 0 0

⎞
⎠ , f6 =

⎛
⎝

0 0 0
0 0 i
0 i 0

⎞
⎠ , f7 =

⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ ,

f8 =
1√
3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠ ,
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and construct the three linear subspaces:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 : e1 =

⎛
⎝

0 i 0
i 0 0
0 0 0

⎞
⎠ , e2 =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ , e3 =

⎛
⎝

i 0 0
0 −i 0
0 0 0

⎞
⎠ ,

L2 : e′
1 =

⎛
⎝

0 0 i
0 0 0
i 0 0

⎞
⎠ , e′

2 =

⎛
⎝

0 0 1
0 0 0

−1 0 0

⎞
⎠ , e′

3 =

⎛
⎝

−i 0 0
0 0 0
0 0 i

⎞
⎠ ,

L3 : e′′
1 =

⎛
⎝

0 0 0
0 0 i
0 i 0

⎞
⎠ , e′′

2 =

⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ , e′′

3 =

⎛
⎝

0 0 0
0 −i 0
0 0 i

⎞
⎠ .

(4.1)

We notice the relation

f8 =
−1
i
√

3
(e′

3 + e′′
3),

while {e3, e
′
3, e

′′
3} is linearly dependent. Hence we can see that (e1, e2, . . . , e

′′
3)

constitute the basis omitting one of e3, e
′
3, e

′′
3 .

We can prove the following basic theorem on both binary and ternary
Galois extension structures on su(3), extremely important from the point of
view of the 4 of our research programme formulated in Section 4 of [69]:
identification of two ternaries with three binaries with the help of noncom-
mutative Galois extensions; cf. [26,27]:

Theorem 3. We have the binary and ternary extension structures on su(3):
(6) We have the following adjoint representation on Li (i = 1, 2, 3):

⎧⎪⎪⎨
⎪⎪⎩

He1H
−1 = −e2, He2H

−1 = e1, He3H
−1 = e3,

H ′e′
1H

′−1 = −e′
2, H ′e′

2H
′−1 = −e′

1, H ′e′
3H

′−1 = e′
3,

H ′e′′
1H ′−1 = e′′

2 , H ′e′′
2H ′−1 = e′′

1 , H ′e′′
3H ′−1 = e′′

3 ,

(4.2)

where

H =

⎛
⎝

1 0 0
0 i 0
0 0 1

⎞
⎠ , H ′ =

⎛
⎝

1 0 0
0 1 0
0 0 i

⎞
⎠ . (4.3)

(7) We can obtain the following commutation relations:{
e2
1 = e2

2 = e2
3 = −1

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.
(4.4)

After the central extension, we have the Clifford algebra which is isomorphic
to the quaternion algebra. For the case of e′

i and e′′
i (i = 1, 2, 3), we have the

same assertions on Li (i = 1, 2, 3). Hence we obtain the Dirac-like operators
desired.

(8) We have

G1ekG
−1
1 = e′

k (k = 1, 2, 3), G1e
′
kG

−1
1 = e′′

k(k = 1, 2), G1e
′
3G

−1
1 = −e′′

3

G1e
′′
kG−1

1 = ek (k = 1, 3), G1e
′′
2G−1

1 = −e2,
(4.5)
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Figure 2. Schematic comparison of the commutative
Galois extension structures on su(3)

where

G1 =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ . (4.6)

By this result, we can find a ternary commutative Galois extension. Hence
we can introduce the ternary Dirac-like operators.

Proof. Basic elements of our considerations are summarized as properties
(1) of su(3), (2) of su(2), and (3) of su(3); as schematic comparison of the
commutative Galois extension structures on su(3) (Fig. 2), and as the diagram
(4.7):

(1) su(3) = L1 ∪ L2 ∪ L3 su(3)

↓ 3
√

I3

(2) Li(i = 1, 2, 3) is isomorphic to su(2) and it is a binary su(2)

Galois extension Li = B0[ 2
√

I3] over B0 = R[e3] ↓ 2
√

I3

(3) su(3) is a ternary Galois extension B′[ 3
√

I3] over B′ = su(2) su(3)
(4.7)

All the formulae (4.2), (4.4) and (4.5) can be checked directly from the
definitions concerned. A comparison of the commutative Galois extension
structures on su(3) is visualized in Fig. 2. As we can see, G1 is isomorphism
of (sub)algebras induced by the fact that they are isomorphic to su(2) and
H1 is binary extension different for each (sub)algebra by the different choice
of element τ, that τ2 = I3.

5. Identification of Construction of the Collection of Two
Ternaries with the Collection of Three Binaries

Starting with definitions [1]

x1 + x2i = x1 + x2

√−1 ⇔
(

x1 x2

−x2 x1

)
,



Vol. 29 (2019) Fractals and Chaos Related to Ising–Onsager–Zhang Lattices... Page 9 of 22 45

Figure 3. Examples of binary and ternary particles

y1 + jy2 + j2y3 ⇔
⎛
⎝

y1 y2 y3

y3 y1 y2

y2 y3 y1

⎞
⎠ (= Y1) (5.1)

and

Y2 =

⎛
⎝

y4 y5 y6

y6 y4 y5

y5 y6 y4

⎞
⎠ (⇔y4 + jy5 + j2y6)

with x1, x2, y1, . . . , y6 ∈ R,
we observe that⎛

⎝
X1 X2 X3

X3 X1 X2

X2 X3 X1

⎞
⎠ ⇔

(
Y1 Y2

−Y2 Y1

)

follows from the definitions of X1,X2,X3 and Y1, Y2.
The identification includes a correspondence of the related ternary and

binary Galois structures in the sense precised in assertions of Theorem 1–3
regarding the Galois extension structures on the nonion algebra (enlightening,
in particular, the passage from cubic algebra B to the nonion algebra N) and
the analogous structure on su(3).

6. An Analogue for Sects. 2–5: Two Ternaries vs. Three
Binaries for Quarks and Elementary Particles

At the beginning of this and next section we shortly present the idea which
is essentially contained in [11,27] and related papers. We present it here in a
slightly altered form and order for the seek of completeness.

In the procedure (4.1)–(4.4) and Fig. 6 of [1] we may replace crys-
tallographic lattices by quarks and elementary particles with the minimal
requirements for their definition at the initial stage of model [7,8,11,19–21].
In particular, we may start with mesons and baryons as examples of binary
and ternary particles (Fig. 3).

We know that each meson constitutes a quark and an anti-quark, and
that each baryon constitutes only three quarks or anti-quarks. This generates
the duality related with the ternary Pauli exclusion principles generalized by
Kerner [11] and specifying in [27] by Th. 4 (Fig. 4).
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Figure 4. Duality related with the ternary Pauli exclusion principle

In turn we may study the quark realization of mesons and baryons by
use of the binary Galois extension on su(3) [27], Figs. 3 and 4. We come
to the quark realization of mesons and baryons by use of the binary resp.
ternary Galois extension of su(3) refering to the Kobayashi–Masukawa theory;
[27,28], Figs. 8, 9 and 10.

Following the Kobayashi–Masukawa model, we consider Galois exten-
sion of su(3) : R

[√−1,
√−1, 3

√
1,

√−1
]
. In this way we obtain six kinds of

quarks. We remark that, usually, the Kobayashi–Masukawa theory is attrib-
uted to their study of two kinds of quarks.

Introducing the extension by e0 (= diag[1, 1, 0]) we may identify the
quarks as up-quark, down-quark, strange-quark, as follows

{e0, e1, e2, e3} ⇒ u, {e′
0, e

′
1, e

′
2, e

′
3} ⇒ d, {e′′

0 , e′′
1 , e′′

2 , e′′
3} ⇒ s. (6.1)

Further, using the conjugate elements of (6.1)

{ē0, ē1, ē2, e3} ⇒ ū, {ē′
0, ē

′
1, ē

′
2, ē

′
3} ⇒ d̄, {ē′′

0 , ē′′
1 , ē′′

2 , ē′′
3} ⇒ s̄. (6.2)

we realize mesons and baryons in Gell-Mann model by use of the Golois exten-
sion. Similarly, in the Kobayashi–Masukawa model—by use of the binary
Galois extension structure of su(3) [27].

Noticing the duality for the 3-generation structures of quarks responsible
for flavour; cf. [29]:

the binary structure of u, c, b ⇐⇒ the ternary structure of u, c, b
the binary structure of d, s, t ⇐⇒ the ternary structure of d, s, t

we arrive at a cumulative scheme for elementary particles including quarks,
leptons and bozons, and generation of Matter (Fig. 5) as well as the cor-
responding 3-generations, more precisely: 3 objects consisting of 2 collec-
tions of 2 particles, constructed from 2 proper generations, more precisely
from:

• 2 objects consisting of 3 collections of 2 particles (in each case),
• 2 objects consisting of 2 collections of 3 particles (in either case),
• 1 object consisting of 3 collections of 2 particles (in each case) and 1

object consisting of 2 collections of 3 particles (in either case).

It is natural to give an example of a corresponding 3-generation (Fig. 6).
For introducing colours in terms of noncommutative Galois extensions

we use the nonion extension of su(3); cf. the next section.
Summing up, we replace the programme 13– 23 by the following
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Figure 5. A cumulative scheme for elementary particles
including quarks, leptons and bozons, and generations of
matter

�13 binary and ternary elementary particles
�14 successive extensions of the related binary and ternary extensions on

su(3)
�15 relationships with the Gell-Mann model [13,14] and Kobayashi–

Masukawa model [28]
�16 binary and ternary Pauli exclusion principles
�17 quark realization of mezons by the use of the binary Galois extension

on su(3)
�18 construction of quark models of mesons
�19 construction of quark models for baryons
�20 the 3-generations of quarks
�21 adjoint representations
�22 duality between the collections of corresponding binary and ternary

Dirac operators
�23 generation of colours and the identification problem

The steps �13–�23 may be composed in the scheme shown on Fig. 7.
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Figure 6. An example of a corresponding 3-generation con-
structed from 2 proper generations (proper in the sense
described above)

7. Introduction of Colours

If we wish to introduce the concept of colours, we may consider the succesive
ternary extension

C[ 2
√

−I2,
3
√

I3,
3
√

I3] 
 su(3)[ 3
√

I3].

Indeed, C[ 2
√−I2] is the quaternionic algebra, so making its extension by T2

as in (8) we get C[ 2
√−I2,

3
√

I3]. Next, making the extension by the nonion
algebra we arrive at C[ 2

√−I2,
3
√

I3,
3
√

I3], as desired. This means that we apply
the nonion extension of su(3); cf. Sects. 1, 2, and 3:

σ̃iekσ̃
−1
i = e′′

k , i, k = 1, 2, 3 (7.1)

with ek, e′′
k , k = 1, 2, 3, as in (17) and, in analogy to (21) and (22):

σ̃1 =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ , σ̃2 =

⎛
⎝

0 j2 0
0 0 j
1 0 0

⎞
⎠ , σ̃3 =

⎛
⎝

0 j 0
0 0 j2

1 0 0

⎞
⎠ , j3 = 1, j �= 1.
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Figure 7. Ternary approach related to the nonion algebra
for quarks and elementary particles

For σ̃1ekσ̃
−1
1 we have ek and e′′

k , k = 1, 2, 3, as in (15) and
⎧⎪⎪⎨
⎪⎪⎩

σ̃1e1σ̃
−1
1 = e′

1, σ̃1e2σ̃
−1
1 = e′

1, σ̃1e3σ̃
−1
1 = e′

3,

σ̃1e
′
1σ̃

−1
1 = e′′

1 , σ̃1e
′
2σ̃

−1
1 = e′′

2 , σ̃1e
′
3σ̃

−1
1 = e′′

3 ,

σ̃1e
′′
1 σ̃−1

1 = e1, σ̃1e
′′
2 σ̃−1

1 = −e2, σ̃1e
′′
3 σ̃−1

1 = e3.

(7.2)

For σ̃2ekσ̃
−1
2 , k = 1, 2, 3, we have

ẽ1 =

⎛
⎝

0 i 0
i 0 0
0 0 0

⎞
⎠ , ẽ2 = i

⎛
⎝

0 j 0
j2 0 0
0 0 0

⎞
⎠ , ẽ3 =

⎛
⎝

−i 0 0
0 0 0
0 0 i

⎞
⎠ = e′

3,

˜̃e1 =

⎛
⎝

0 0 j
0 0 0
j2 0 0

⎞
⎠ , ˜̃e2 = i

⎛
⎝

0 0 j
0 0 0
j2 0 0

⎞
⎠ , ˜̃e3 =

⎛
⎝

0 0 0
0 1 0
0 0 −1

⎞
⎠ = ie′′

3 ,

and ⎧⎪⎪⎨
⎪⎪⎩

σ̃2e1σ̃
−1
2 = ẽ′

1, σ̃2e2σ̃
−1
2 = ẽ2, σ̃2e3σ̃

−1
2 = ẽ3,

σ̃2ẽ1σ̃
−1
2 = ˜̃e1, σ̃2ẽ2σ̃

−1
2 = ˜̃e2, σ̃2ẽ3σ̃

−1
2 = ˜̃e3 = −ie′′

3 ,

σ̃2
˜̃e1σ̃

−1
2 = e1, σ̃2

˜̃e2σ̃
−1
2 = e2, σ̃2

˜̃e3σ̃
−1
2 = ie3.

(7.3)
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Figure 8. Generation of transformations σ̃1, σ̃2, σ̃3 by the
nonion extension of su(3)

For σ̃3ekσ̃
−1
3 , k = 1, 2, 3, we have

e∗
1 = i

⎛
⎝

0 0 j
0 0 0
j2 0 0

⎞
⎠ , e∗

2 = i

⎛
⎝

0 0 j
0 0 0

−j2 0 0

⎞
⎠ , e∗

3 =

⎛
⎝

−i 0 0
0 0 0
0 0 i

⎞
⎠ = e′

3,

e∗∗
1 = i

⎛
⎝

0 0 0
0 0 j
0 j2 0

⎞
⎠ , e∗∗

2 = i

⎛
⎝

0 0 j
0 0 0
j2 0 0

⎞
⎠ , e∗∗

3 =

⎛
⎝

i 0 0
0 −i 0
0 0 0

⎞
⎠ = ie3,

and
⎧⎪⎪⎨
⎪⎪⎩

σ̃3e1σ̃
−1
3 = e∗

1, σ̃3e2σ̃
−1
3 = e∗

2, σ̃3e3σ̃
−1
3 = e∗

3,

σ̃3e
∗
1σ̃

−1
3 = e∗∗

1 , σ̃3e
∗
2σ̃

−1
3 = e∗∗

2 , σ̃3e
∗
3σ̃

−1
3 = e∗∗

3 = e3,

σ̃3e
∗∗
1 σ̃−1

3 = e1, σ̃3e
∗∗
2 σ̃−1

3 = e2, σ̃3e
∗∗
3 σ̃−1

3 = e3.

(7.4)

the rules (7.1) or (7.2)–(7.4) for the transformations σ̃1, σ̃2, σ̃3 are illustrated
by the schemes in Fig. 8.

The Dirac-like operators for

(e′
0, e

′
1, e

′
2, e

′
3), (e′′

0 , e′′
1 , e′′

2 , e′′
3), (ẽ0, ẽ1, ẽ2, ẽ3),

(˜̃e0, ˜̃e1, ˜̃e2, ˜̃e3), (e∗
0, e

∗
1, e

∗
2, e

∗
3), (e∗∗

0 , e∗∗
1 , e∗∗

2 , e∗∗
3 )
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Figure 9. The concept of introducing colours for elemen-
tary particles via the transformations σ̃1, σ̃2, σ̃3 governing
the nonion extension of su(3)

can be introduced in an analogous way as shown in Fig. 9. The proposed
approach can be naturally modified for more general quark models what is
planned for a future paper.

It is worth-while to notice several other important applications of Galois
extensions and noncommutative Galois theory in contemporary physics [30–
37]. Also, because of an experimental confirmation of the existence of the
Higgs boson [38–41], it is natural to extend our approach combining the
Kobayashi–Masukawa model with the BEH-mechanism (here B stands for
Robert Brout, E for Franois Englert, Nobel Prize 2013, and H for Peter
W. Higgs, Nobel Prize 2013) [42–47]. In this context we can see an ele-
gant interpretation of considering our approach parallelly in the theories of
condensed matter and elementary particles—the appearance of the Nambu
[48–50]–Goldstone [51] boson and the Meissner effect in superconductivity
within the Ginzburg–Landau model: temperature-dependent vector poten-
tial and photons getting the mass. Around 1960 Yôichirô Nambu (Nobel
Prize 2008) extended some ideas from superconductivity to particle physics.
Jeffrey Goldstone introduced a complex massive scalar field and gave a theo-
rem on appearance of a new massless scalar (Nambu–Goldstone) boson. Note
that Murray Gell-Mann (Nobel Prize 1969) and Yuval Ne’eman in connection
with the symmetry group SU(3) introduced the new quantum number called
flavour [13].

8. Conclusions

For conclusions, we combine the step •6 of Sect. 2 in our previous paper [1]
and the steps •13–•23 formulated there in Sect. 6 with the steps 13– 23:

↓ •13
binaries and ternaries; construction of the collection of two ternar-
ies

13
ternaries and quaternaries; construction of the collection of three
quaternaries
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↓ •14
the corresponding Dirac-like operators in connection with the
cubic algebra

14
the corresponding Dirac-like operators in connection with the non-
ion algebra

↑ •16

the Dirac-like operators corresponding to the collection of three
binaries in connection with the nonion algebra and its binary
extension

↓ •15 construction of the collection of three binaries
15 construction of the collection four ternaries

↓ •6
Jordan–von Neumann–Wigner elements, complete elements, per-
fect elements; an example of perfect 15-element system

16

the corresponding Dirac-like operators in connection with the
duodevicenion or quindenion algebra [52,53] and its ternary exten-
sion

↓ •16 noncommutative Galois extensions for •16 and their basic relations
17 noncommutative Galois extensions for 16 and their basic relations

↓ •18
binary Galois extensions and Galois extensions of binary Clifford
type for •16

18
ternary Galois extensions and Galois extensions of ternary Clifford
type for 16

↓ •19
ternary Galois extensions and Galois extensions of ternary Clifford
type for •16

19
quaternary Galois extensions and Galois extensions of quaternary
Clifford type for 16

↓ •6
Jordan–von Neumann–Wigner elements, complete elements, per-
fect elements; an example

20
the Galois extension structure of the duodevicenion and quinde-
nion algebras

↑ •20 the Galois extension structure of the nonion algebra

↓ •21 ternary and binary Galois extension structure for su(3)
21 quaternary and ternary Galois extension structure for su(3)

↓ •22
binary and ternary Dirac-like operators of noncommutative Galois
extensions

22
ternary and quaternary Dirac-like operators of noncommutative
Galois extensions

↓ •23
identification of the constructed collection of two ternaries with
the proper collection of three binaries

23
identification of the constructed collection of three quaternaries
with the proper collections of four ternaries

The steps •6, •13–•23, 13– 23 may be composed in the scheme shown on
Fig. 10.

Other new ideas are provided by Perk [55] and Au-Yang and Perk [56],
kindly communicated to us in a private letter of Prof. Perk (21.08.,2014).
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Figure 10. Quaternary approach related to the quindenion
algebra, for crystallographic lattices
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