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Abstract. We consider d-dimensional Brownian motion in a scaled Poissonian potential and
the principal Dirichlet eigenvalue (ground state energy) of the corresponding Schrödinger
operator. The scaling is chosen to be of critical order, i.e. it is determined by the typical size
of large holes in the Poissonian cloud. We prove existence of a phase transition in dimen-
sions d ≥ 4: There exists a critical scaling constant for the potential. Below this constant
the scaled infinite volume limit of the corresponding principal Dirichlet eigenvalue is linear
in the scale. On the other hand, for large values of the scaling constant this limit is strictly
smaller than the linear bound. For d < 4 we prove that this phase transition does not take
place on that scale. Further we show that the analogous picture holds true for the partition
sum of the underlying motion process.

0. Introduction and results

In this article, we consider standard Brownian motion in �d , d ≥ 1, which evolves
in a scaled random potential. The scaled random potential is obtained by translating
a fixed shape functionW to all the points of a Poissonian cloud with constant inten-
sity ν = 1. Let � stand for the law of the Poissonian point process ω =∑i δxi ∈ 	
(where 	 is the set of all simple pure locally finite point measures on �d ). The
random scaled Poissonian potential is then defined as follows, for x ∈ �d , β > 0,
t > 0 and ω ∈ 	:

Vβ,t (x, ω)
def= β

(log t)2/d
V (x, ω)

def= β

(log t)2/d
∑
i

W(x − xi), (0.1)

where we assume that the shape functionW ≥ 0 is measurable, bounded, compact-
ly supported and

∫
W(x)dx = 1. For z ∈ �d let Pz stand for the standard Wiener

measure on C(�+,�d) starting from z (its canonical process is denoted by Z.).
Let us for the moment restrict to the unscaled Poissonian potential V . The

Feynman-Kac functional u(t, z) = Ez

[
exp
{
− ∫ t0 V (Zs, ω)ds

}]
represents the
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bounded weak solution of the random parabolic equation

{
∂tu = 1

2�u− V u,

ut=0 = 1.
(0.2)

Sznitman [7], Theorem 4.5.1, has proved that there is a set of full �-measure such
that for all z ∈ �d

− log u(t, z) ∼ c(d, 1)
t

(log t)2/d
, as t →∞, (0.3)

where c(d, 1), defined in (4.4.20) of [7], is the constant

c(d, 1)
def= λd

(vd
d

)2/d
, (0.4)

here λd denotes the principal Dirichlet eigenvalue on the d-dimensional unit ball to
the potential 0, and vd is the volume of the d-dimensional unit ball. A crucial role
in the proof of (0.3) is played by the principal Dirichlet eigenvalues to the poten-
tial V on the boxes (−t, t)d . Analysing the asymptotic behavior of these principal
Dirichlet eigenvalues, one sees that the main contribution comes from the large
holes in the (random) Poissonian potential V . The box (−t, t)d typically contains
a ball having a radius of order d1/dv

−1/d
d (log t)1/d which receives no point of ω

(see Sznitman [7], Formula (4.4.38) and Theorem 4.4.6). In this article we examine
whether such large holes are still dominant when we rescale the Poissonian poten-
tial in an appropriate way (see (0.1)): the costs of confining a Brownian particle to
large Poissonian holes now compete with the costs arising in an averaged scaled
Poissonian potential; the scaling is chosen such that these two costs are of the same
“order”.

The main role in this context is played by the principal Dirichlet eigenvalue.
It is defined as follows: Choose a measurable potential Ṽ which is bounded from
below. Then the principal Dirichlet eigenvalue on the non-empty open set U ⊂ �d

to Ṽ is defined as:

λ
Ṽ
(U)

def= inf

{
1

2
‖∇φ‖2

2 +
∫
U

Ṽ φ2dx : φ ∈ C∞c (U), ‖φ‖2
2 = 1

}
. (0.5)

Rescaling the Poissonian potential properly has the following effect: Consider test
functions varying on the scale of large holes of the Poissonian cloud. Then the
gradient term (kinetic energy) and the potential term live on the same scale. There-
fore we ask, which term “wins” in this setting. Our main results are the following
theorems:

Theorem 0.1. For all d ≥ 1 and β > 0,

�-a.s. lim sup
t→∞

(log t)2/d λVβ,t ((−t, t)d) < c(d, 1). (0.6)
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In fact we prove a slightly stronger quantitative asymptotic bound for β →∞ (see
(3.37)). Theorem 0.1 proves that in our context we obtain an eigenvalue which is
strictly smaller than in the unscaled case (see [7], Theorem 4.4.6). In the unscaled
case one observes that the eigenfunctions essentially live in the large Poissonian
holes. In our model, the eigenfunctions prefer large connected regions where the
number of Poissonian particles is less than its expectation. These regions are typical-
ly larger (by a β-dependent factor) than the holes in Sznitman’s context. Henceforth
the contribution from the potential term can be compensated by the gradient term
in such a way that we obtain a smaller value than in the unscaled picture.

Theorem 0.2. For d ≥ 4 there exists βc > 0 such that for all β < βc

�-a.s. lim
t→∞ (log t)2/dλVβ,t ((−t, t)d) = β. (0.7)

Theorems 0.1 and 0.2 prove that for d ≥ 4 we observe a phase transition on the
scale (log t)2/d : There exists a critical scaling constant. Below this constant the
asymptotic behavior of the principal Dirichlet eigenvalue is linear in the scaling:
we can choose as test function a C∞c -approximation to the normalized constant
function on (−t, t)d to evaluate (0.5); this test function provides already the cor-
rect asymptotic behavior in (0.7). This picture changes for largeβ: we have an upper
bound which is strictly smaller than the linear one (see (0.6)); this improved upper
bound is obtained using other test functions: these test functions are supported on
regions having a volume proportional to log t . The number of particles in these
regions has to be less than its expected value.

For d < 4 the situation is completely different, namely:

Theorem 0.3. Let d < 4 and β > 0. Then

�-a.s. lim sup
t→∞

(log t)2/dλVβ,t ((−t, t)d) < β. (0.8)

In Lemma 3.4 we provide a more quantitative bound. Theorem 0.3 was in the
beginning quite surprising: Our main tool to prove Theorem 0.2 is the Cwickel–
Lieb–Rosenbljum Theorem (see Theorem 9.3 in Simon [6]); it suggests that the
critical dimension might be d = 3. However a closer look at the below used “grey–
scale technique” (proof of Lemma 2.5) shows that for d = 3 not the small deep
holes cause problems but the large shallow ones. These large shallow holes can not
be treated by that Theorem; their effect is in fact so strong that we observe in three
dimensions a similar picture as for d = 1, 2.

Next we consider the partition sum of Brownian motion in the scaled Poissonian
potential (starting at the origin),

Sωt,β
def= E0

[
exp

{
− β

(log t)2/d

∫ t

0
V (Zs, ω)ds

}]
. (0.9)

The time scale t is the natural one, because on this space-time scale the Brownian
motion with killing has enough time to experience the whole box (−t, t)d , respec-
tively the large holes in the box (−t, t)d (whenever such a strategy is favorable for
the survival of the Brownian particles). We have the following results:
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Theorem 0.4. For all d ≥ 1 and β > 0,

�-a.s. lim inf
t→∞

(log t)2/d

t
log Sωt,β > −c(d, 1). (0.10)

For d ≥ 4 there exists βc > 0 such that for all β < βc

�-a.s. lim
t→∞

(log t)2/d

t
log Sωt,β = −β. (0.11)

For d < 4 and β > 0

�-a.s. lim inf
t→∞

(log t)2/d

t
log Sωt,β > −β. (0.12)

One should compare these results with (0.3). It would also be interesting to examine
the path behavior of Brownian motion in a scaled Poissonian potential. However,
this question goes beyond the scope of this article. So far, our picture suggests that
for d ≥ 4 and small β the motion process should be diffusive, whereas for large β
or d < 4 we expect a superdiffusive behavior.

Statements similar to Theorems 0.1–0.4 also hold true for general W ≥ 0
(measurable, bounded, compactly supported) with

∫
W(x)dx > 0 and general

Poissonian intensity ν > 0. We restrict ourselves to the case
∫
W(x)dx = 1 and

ν = 1 since it already covers the whole flavor of the problem and since the general
case can be recovered by a simple scaling argument.

This article is organised as follows: In Section 1 we give some general results
and definitions that we use in the whole article.

In Section 2 we provide the lower bound on the principal Dirichlet eigenvalue
in the low-β-regime (d ≥ 4). This consists of three parts: Part 1: We apply the
Cwickel–Lieb–Rosenbljum Theorem (Theorem 9.3 in Simon [6]) to our situation,
where we do not have one big hole in the Poissonian cloud but many holes which
are separated by large distances (see Lemma 2.2 below). The main tool here is a
comparison theorem by Sznitman for principal Dirichlet eigenvalues on different
domains (see [7], Theorem 3.1.11). Part 2: We define the notion of big holes. We
introduce a “stuffing” function to “repair” the potential in regions, where there are
too large holes ((2.28)–(2.30)). In Lemma 2.5 we prove that we can compare the
principal Dirichlet eigenvalue of the original potential with the eigenvalue of the
repaired potential. The main tools in this part are large deviation estimates for hav-
ing a big hole in the Poissonian cloud configuration on all “grey-scale” levels. Part
3: Finally we estimate the principal Dirichlet eigenvalue of the repaired potential
from below by classical methods.

In Section 3 we give the upper bounds on the principal Dirichlet eigenvalues.
The upper bounds are based on a variational principle (Lemma 3.2). This is ob-
tained by the Gärtner-Ellis large deviation theorem (Theorem 2.3.6, [3]) applied to
integrals of test functions with respect to the Poissonian cloud configuration. We
derive all our upper bounds by optimising this variational principle (for the accord-
ing β’s). This is done in Lemmas 3.3, 3.4 and 3.5. The remarkable thing here is that
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the relevant optimisation problems on [0, 1] behave qualitatively very differently
for d ≤ 3, d = 4, and d > 4. This emphasizes that d = 4 is the critical dimension;
it also corresponds to the fact that the “grey–scale” estimates for the lower bound
(proof of Lemma 2.5) become easier in dimensions d ≥ 5 (see the remark after the
proof of Lemma 2.5).

In Section 4 we finally give the translation of the results concerning the princi-
pal Dirichlet eigenvalue to results about partition sums for Brownian motion in a
scaled Poissonian potential.

1. Preliminaries

In this section we do all the preparatory work to prove our results. We start with
the following definitions: For t > 0, we define

Tt
def= (−t, t)d , (1.1)

W∞
def= supx∈�d W(x), and a denotes the minimal radius such that suppW ⊆

B̄a(0), where Ba(0) is the open ball with center 0 and radius a. We state the fol-
lowing measurability result:

Lemma 1.1. λVβ,t (Tt ) is measurable in ω and decreasing in t .

Proof of Lemma 1.1. The measurability follows from the fact that it suffices to
consider a countable collection of test functions φ ∈ C∞c (Tt ) with ‖φ‖2 = 1 to
evaluate the principal Dirichlet eigenvalue. The decrease in t can easily be seen
from (3.1.4) in [7]. ✷

The following lemma estimates large deviations for Poisson random variables:

Lemma 1.2. Let N
�∼ Poisson(µ), 0 < ε < 1. Then

�[N < (1− ε)µ] ≤ e−ε
2µ/2. (1.2)

Proof of Lemma 1.2. We use the exponential Chebyshev-inequality for s ≥ 0:

�[N < (1− ε)µ] ≤ es(1−ε)µ�[e−sN ]

= exp([s(1− ε)+ e−s − 1]µ) = exp(−g(ε)µ), (1.3)

where we have set s = − log(1 − ε) > 0, i.e. e−s − 1 = −ε, and g(ε) =
(1 − ε) log(1 − ε) + ε. We have g′(ε) = − log(1 − ε), g′′(ε) = 1/(1− ε) ≥ 1,
g(0) = 0, and g′(0) = 0; therefore g(ε) ≥ 1

2ε
2. Inserting this into (1.3) proves

Lemma 1.2. ✷
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2. Lower bound in the low-�-regime

2.1. Adaptation of the Cwickel–Lieb–Rosenbljum Theorem

At the heart of the proof of the lower bound in Theorem 0.2 lies a nice theorem
which is due to Cwickel–Lieb–Rosenbljum (CLR) (see Theorem 9.3 in [6]). Here
is also an important step where the calculations in dimensions d = 1, 2 break down

(see Simon [5]). First we quote the CLR Theorem: We define V−
def= max(0,−V ).

Theorem 2.1 (Theorem 9.3, [6]). Let d ≥ 3. There exists a constant ad such that
for all potentials V (not necessarily positive) with V ∈ Ld/2(�d) and

ad

∫
V−(x)d/2dx < 1, (2.1)

we have λV (�d) ≥ 0.

We only need the above theorem for potentials V which are bounded from below
(see (0.5)), but indeed it is valid in a more general setting. Our first goal is to adapt
this result to a situation where one has many holes in the potential, but the distances
between the holes are large.

Let d ≥ 3, and let−1 ≤ Uj ≤ 0 be supported on Aj ⊂ �d . Further we assume

ad

∫
|Uj |d/2dx < 1, (2.2)

and

l
def= inf

j �=i
dist(Aj ,Ai) > 1. (2.3)

We set U
def= ∑j Uj . Then

Lemma 2.2. Assume d ≥ 3, and define f (l)
def= l−2 log3 l. Then there exists L =

L(d) > 1 such that if l > L then the following holds:

λU(�
d) ≥ −f (l). (2.4)

Proof of Lemma 2.2. Our main goal is to apply Theorem 3.1.11 of [7]. Therefore
we have to estimate A,B,C defined in (3.1.36) of [7]. We start with the following

definitions: A
def= ⋃j Aj , and O is the open l/4-neighborhood of A. Notice that

the disjoint holes Aj have also a disjoint l/4-neighborhood (which are denoted by

Oj ). Further we define V
def= U + 1 ≥ 0 so that we do not have to bother about

signs, i.e.

for all open sets U ⊂ �d , λV (U) ≥ 0. (2.5)

We claim

λV (O) ∧ 1− f (l) ≤ λV (�
d). (2.6)
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The inequality (2.6) implies (2.4): due to the CLR Theorem (Theorem 2.1) we
know that λUj (�

d) ≥ 0 for all j , hence we have (using (2.6) and (3.1.5) of [7])

λU(�
d) = λV (�

d)− 1

≥ λV (O) ∧ 1− f (l)− 1

= inf
j
λV (Oj ) ∧ 1− f (l)− 1 (2.7)

≥ (inf
j
λUj (�

d)+ 1) ∧ 1− f (l)− 1

≥ −f (l).

There remains to prove (2.6). To make our notations consistent with [7] we define

U1
def= O and U2

def= �d and λ
def= (λV (U1) ∧ 1− f (l))+.

Either λ = 0, then (using (2.5))

λV (U1) ∧ 1− λV (U2) ≤ λV (U1) ∧ 1 ≤ f (l), (2.8)

which finishes the proof in the case λ = 0.
Or λ > 0, hence f (l) < 1 and f (l) < λV (U1): If λV (U1) < 1, then λV (U1)−

f (l) ≤ λV (U1)(1 − f (l)), since f (l) > 0, and if λV (U1) ≥ 1, then 1 − f (l) ≤
λV (U1)(1− f (l)). Combining these two estimates, we get

0 < λ = λV (U1) ∧ 1− f (l) ≤ λV (U1) (1− f (l)) . (2.9)

We define the entrance time τ
def= inf{s ≥ 0, Zs ∈A} of Z. into the holes A, the

exit time TS
def= inf{s ≥ 0, Zs /∈S} of Z. from an open set S ⊆ �d , and

S1
def= τ ◦ θTU1

+ TU1 and Sk+1
def= S1 ◦ θSk + Sk for k ≥ 1, (2.10)

where θt is the time shift. Because on the time interval (Sk, Sk+1] the Brownian mo-
tion has to travel at least distance l/4 > 0, we have that for all x ∈ �d , limk Sk = ∞
Px-a.s. (which is Condition (3.1.38) of [7]). We use Formula (3.1.19) and Corollary
3.1.3 of [7] together with (2.9) (the assumptions of Corollary 3.1.3 of [7] are ful-
filled since f (l) < 1 (we are in the case λ > 0)): we obtain for some fixed constant
c2(d) > 0 that

A
def= sup

x∈�d

1+
∫ ∞

0
λeλuEx

[
TU1 > u, exp

{
−
∫ u

0
V (Zs)ds

}]
du

≤ c2(d)

f (l)
d
2+1

<∞. (2.11)
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Next we have, again using Corollary 3.1.3 and Formula (3.1.19) of [7] together
with (2.9) and the fact that λ ≤ 1− f (l) ≤ λV (A

c)(1− f (l)),

B
def= sup

x /∈U1

∫ ∞
0

λeλuEx

[
τ ∧ TU2 > u, exp

{
−
∫ u

0
V (Zs)ds

}]
du

≤ 1+ sup
x /∈U1

∫ ∞
0

λeλuEx

[
TAc > u, exp

{
−
∫ u

0
V (Zs)ds

}]
du (2.12)

≤ c2(d)

f (l)
d
2+1

<∞.

There remains to estimate

C
def= sup

x /∈U1

Ex

[
τ < TU2 , exp

{
λτ −

∫ τ

0
V (Zs)ds

}]
. (2.13)

On Ac we have V = 1, hence V − λ = 1− λV (U1)∧ 1+ f (l) ≥ f (l). Therefore

C ≤ sup
x /∈U1

Ex

[
exp

{
−
∫ τ

0
f (l)ds

}]

≤ E0
[
exp
{−f (l)TBl/4(0)

}]
(2.14)

≤ 2d exp
{
−(8d)−1/2lf (l)1/2

}
.

The last estimate in (2.14) can be seen as follows: Choose r ∈ � and denote
by Z

(i)
s the i-th coordinate of the process Zs (i = 1, . . . , d). Then we define

T
(i)
r

def= inf{s ≥ 0 : Z
(i)
s = r}, hence we see that P0-a.s. for r > 0: TB

d1/2r (0)
≥

mini=1,...,d

(
T
(i)
r ∧ T (i)

−r
)

. Therefore for positive r, µ:

E0

[
exp
{
−µTB

d1/2r (0)

}]
≤ E0

[
exp

{
−µ min

i=1,...,d

(
T (i)
r ∧ T (i)

−r
)}]

≤ E0

[
2

d∑
i=1

exp
{
−µT (i)

r

}]
(2.15)

= 2dE0

[
exp
{
−µT (1)

r

}]
= 2d exp

{
−
√

2µr
}
,

where the last equality can be found e.g. in [4], Proposition 8.5, p.96.
Hence there exists L(d) > 1 such that if l > L(d):

AC ≤ c3 exp

{
−
(
d

2
+ 1

)
log f (l)− (8d)−1/2 log3/2 l

}
< 1 (2.16)

with c3(d)
def= 2dc2(d). So Theorem 3.1.11 of [7] gives that λ = λV (U1) ∧ 1 −

f (l) ≤ λV (U2) for l > L(d), which finishes the proof of (2.6). ✷
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2.2. The grey-scale technique

We use different scales of volumes: td � l(t)d � log t � α(t) log t � 1 (for
large values of t); “a(t) � b(t)” means that a(t)/b(t) → ∞ as t → ∞. The
meanings of the scaling functions are roughly:

• td is the scale of the “universe box” Tt ;
• l(t) is the length scale of the minimal distance between the sets Ai in Lemma

2.2;
• log t is the scale of the largest hole in the potential on a box Tt ;
• α(t) log t is the scale on which we define the “stuffing” function;
• 1 is the scale of the support of the shape function W .

We set for large values of t (where [·] denotes the integer part):

l(t)
def= t

[(log t)−2t]
and α(t)

def= l(t)d

[l(t)(log t)−1/(2d)]d log t
. (2.17)

The asymptotic behavior of these functions as t → ∞ is l(t) ∼ (log t)2, and
α(t) ∼ (log t)−1/2. Here are the main properties of these scaling functions that we
use below: with the notation of Lemma 2.2,

(log t)2/d · f (l(t)) t→∞−→ 0 and α(t)
t→∞−→ 0, (2.18)

but α(t) converges only so slowly that

log l(t)

α(t) log t
t→∞−→ 0 and − logα(t)

α(t) log t
t→∞−→ 0. (2.19)

The numbers

1

2
n1(t)

1
d

def= t

l(t)
and n2(t)

1
d

def= l(t)

(α(t) log t)
1
d

(2.20)

are integers (we want to avoid dealing with fractions of boxes); this is why we have
introduced integer parts in the definition of the scaling functions l and α. We split
the universe box Tt = (−t, t)d into n1(t) cubes

Aj = Aj(t)
def= (−t, . . . ,−t)+ l(t)j + [0, l(t))d (2.21)

of volume l(t)d ,

j ∈ J = J (t)
def= {0, . . . , n1(t)

1
d − 1}d , (2.22)

|J (t)| = n1(t); the union over all Aj coincides with Tt only up to a null set at the
boundary of Tt (since Tt is an open box). Next we split each of these boxes Aj

into n2(t) smaller boxes

Ki,j = Ki,j (t)
def= (−t, . . . ,−t)+ l(t)j + (α(t) log t)

1
d i + [0, (α(t) log t)

1
d )d

(2.23)
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of volume α(t) log t ,

i ∈ I = I (t)
def= {0, . . . , n2(t)

1
d − 1}d , (2.24)

|I (t)| = n2(t). We partition J (t) into 2d classes Jk(t), k ∈ {0, 1}d , where Jk =
Jk(t)

def= J (t) ∩ (k + (2�)d); we observe that dist(Ai, Aj ) ≥ l(t) for i, j ∈ Jk(t),
i �= j . (See also Figure 1.)

Finally we split these boxes Ki,j into even smaller boxes on the scale of the
diameter of the potential. We choose the length ā(t) such that a ≤ ā(t) ≤ 2a, and

such that (α(t) log t)
1
d /ā(t) is an integer (for t large enough); this is again done to

avoid handling with fractions of boxes. We define the boxes

Cm
def= mā(t)+ [0, ā(t))d , (2.25)

for m ∈ �d , and the index set Ci,j
def= {m ∈ �d : Cm ⊆ Ki,j }.

We introduce a random “stuffing” function: It has the purpose to “repair” the
potential, where the truncated version V ∧ M of V is too small (caused by the

Fig. 1. The universe box Tt , and some boxes Aj , Ki,j , and Cm. One
⋃

j∈Jk Aj is shaded,
and one box Cm is drawn black.
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randomness of ω; M > 1 denotes a truncation level). The truncated potential may
be too small in the box Ki,j for two reasons:
1) The total number of points of the Poissonian point process in the box Ki,j might
be too low; this is measured by the quantity

ξi,j
def=
(

1− ω(Ki,j )

|Ki,j |
)
∨ 0. (2.26)

2) The points inside the box Ki,j might clump too much, leaving holes in other
parts of the box. To measure this, we introduce the event

F
(0)
i,j = F

(0)
i,j (t,M, η)

def=

ω ∈ 	 :

∑
m∈Ci,j

[ω(Cm)− (ω(Cm) ∧ M̄)] ≥ η

2
|Ki,j |


 ,

(2.27)

where η > 0 denotes a (small) allowed tolerance and M̄
def= M/(3dW∞).

We define the random “stuffing” function U (depending on M , η, t , and on the
Poissonian cloud configuration ω): for j ∈ J , k ∈ {0, 1}d ,

Uj(x)
def= −

∑
i∈I

[
(ξi,j1{ξi,j≥η/2}) ∨ 1

F
(0)
i,j

]
1Ki,j

(x) (supported on Aj ),

(2.28)

Ũk
def=
∑
j∈Jk

Uj (supported on
⋃

j∈Jk Aj ),

(2.29)

U(x)
def=
∑
j∈J

Uj (x) =
∑

k∈{0,1}d
Ũk (supported on Tt ).

(2.30)

The intention behind definition (2.28) is: we work with a “grey-scale picture” for
repairing the first kind of holes, but a “black-and-white picture” is sufficient to
repair the second kind of holes.

The Poissonian cloud configuration ω ∈ 	 is “repaired” by U in the following
sense:

−
∫
Ki,j

U(x) dx +
∑

m∈Ci,j

(ω(Cm) ∧ M̄) ≥ (1− η)|Ki,j |; (2.31)

this is obvious on the event F (0)
i,j , while on (F (0)

i,j )
c it follows from∑

m∈Ci,j

(ω(Cm) ∧ M̄) ≥ ω(Ki,j )− |Ki,j |η
2

≥ |Ki,j |
(

1− ξi,j − η

2

)
(2.32)

≥ |Ki,j |(1− η − ξi,j1{ξi,j≥η/2}).
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We observe the following bounds for U :

0 ≥ U ≥ −1. (2.33)

We need scaled versions of the functionsUj and Ũk too: Using p = p(d)
def= 2d+1

we define:

Uj,β,t
def= p

β

(log t)2/d
Uj and Ũk,β,t

def= p
β

(log t)2/d
Ũk. (2.34)

Finally we define the “repaired version” of the potential:

Ṽ M
β,t

def= p
β

(log t)2/d
[
(V ∧M − U)1Tt

+ 1Tc
t

]
. (2.35)

We apply the following lemma (in (2.45) below) to the inequality

Vβ,t ≥ p−1Ṽ M
β,t +

∑
k∈{0,1}d

p−1Ũk,β,t over Tt , (2.36)

with pi = p for all i in (2.37):

Lemma 2.3. Given a lower boundV ≥∑n
i=1 Ui of a potentialV over a connected

open set B ⊆ �d and weights p1, . . . , pn > 1 with
∑

i p
−1
i = 1 we have

λV (B) ≥
n∑
i=1

p−1
i λpiUi (B). (2.37)

Proof of Lemma 2.3. Let TB
def= inf{s : Zs /∈ B} denote the exit time of Z. from B.

We have for T > 0 by monotonicity of the expectation and Hölder’s inequality:

Ex

[
exp

{
−
∫ T

0
V (Zs) ds

}
, TB > T

]

≤
n∏
i=1

Ex

[
exp

{
−
∫ T

0
Ui(Zs) ds

}pi
, TB > T

] 1
pi

. (2.38)

Consequently, the Feynman-Kac representation of the principal Dirichlet eigen-
value implies for every x ∈ B:

λV (B) = − lim
T→∞

1

T
logEx

[
exp

{
−
∫ T

0
V (Zs) ds

}
, TB > T

]

≥ − lim
T→∞

1

T

n∑
i=1

p−1
i logEx

[
exp

{
−
∫ T

0
piUi(Zs) ds

}
, TB > T

]

=
n∑
i=1

p−1
i λpiUi (B). (2.39)

✷

The next lemma bounds the probability that Poissonian points clump too much
inside a box Ki,j :
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Lemma 2.4. For all η > 0 there exists M = M(η) > 1 such that for all (suffi-
ciently large) t the following bound holds:

�[F (0)
i,j ] ≤ e−(α(t) log t)/2. (2.40)

Proof of Lemma 2.4. Take a fixed λ > 1/η. The exponential Chebyshev-inequality
implies

�[F (0)
i,j (t,M, η)] ≤ e−λη|Ki,j |/2�

[
exp
{
λ[ω(C0)− (ω(C0) ∧ M̄)]

}]|Ki,j |/|C0|
.

(2.41)

By the dominated convergence theorem, the last expectation goes to 1 asM →∞;
recall that M̄ is proportional to M . We choose M so large that this expectation
is less than ea

d(λη−1)/2 ≤ e|C0|(λη−1)/2, recall (2.25). We get �[F (0)
i,j (t,M, η)] ≤

e−|Ki,j |/2 = e−(α(t) log t)/2. This proves the lemma. ✷

Lemma 2.5. Assume d ≥ 4. There is a β0 = β0(d) > 0 such that for all β ∈
(0, β0) and η > 0 there exists a tc > 0 such that the following holds for all t > tc:

�
[
λVβ,t (Tt ) ≥ p−1λ

ṼM
β,t
(Tt )− c4(d)f (l(t))

]
≥ 1− t−2, (2.42)

where c4(d)
def= 2dp−1 = 2d/(2d + 1) and M = M(η) is taken from Lemma 2.4.

Proof of Lemma 2.5. We are going to estimate λ
Ũk,β,t

(Tt ) by inserting the de-

composition Ũk,β,t =
∑

j∈Jk Uj,β,t in Lemma 2.2: Choose β0
def= [(d + 3)2d/2+3

pd/2ad
]−2/d . We observe for j �= j ′, j, j ′ ∈ Jk ,

dist(Aj ,Aj ′) ≥ l(t), (2.43)

and there exists a t0(d, β0) > 0 such that for all t > t0(d, β0), β ∈ (0, β0) and
all Poissonian cloud configurations ω the pointwise lower bound Ũk,β,t ≥ −1 is
valid; see (2.33) and (2.34). We define the event

Ej = Ej(d, η, β, t)
def=
{
ad

∫
|Uj,β,t | d2 dx < 1

}
; (2.44)

we remark that M is according to Lemma 2.4 a fixed constant depending only on
η. Lemma 2.2 implies that for l(t) > L(d) the estimate λ

Ũk,β,t
(Tt ) ≥ −f (l(t))

holds on the event
⋂

j∈J Ej ; therefore by Lemma 2.3 and (2.36):

λVβ,t (Tt ) ≥ p−1λ
ṼM
β,t
(Tt )+ p−1

∑
k∈{0,1}d

λ
Ũk,β,t

(Tt )

≥ p−1λ
ṼM
β,t
(Tt )− c4(d)f (l(t)). (2.45)
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There remains to derive a lower bound for �[
⋂

j∈J Ej ] which converges to 1 suf-

ficiently fast. Set h(ξ)
def= ξ

d
2 1{ξ≥η/2} and c5(d)

def= 2p
d
2 ad , then

Ec
j =
{
c5(d)

βd/2

log t

∑
i∈I

(h(ξi,j ) ∨ 1
F
(0)
i,j

)|Ki,j | ≥ 2

}
⊆ E

(1)c
j ∪ E(2)c

j , (2.46)

with the events

E
(1)c
j

def=
{∑
i∈I

h(ξi,j ) ≥ c6

α(t)

}
and E

(2)c
j

def=
{∑
i∈I

1
F
(0)
i,j

≥ c6

α(t)

}
;

(2.47)

here we abbreviate c6 = c6(β, d) = c5(d)
−1β−d/2; recall |Ki,j | = α(t) log t .

We divide h in different “grey-scales”:

For ξ ≤ 1 we set h1(ξ)
def= ∑N(η)

n=1 2(−n+1)d/21{2−n+1≥ξ>2−n} ≥ h(ξ) with N(η) ∈
� so large that 2−N(η) < η/2; one should note that ξi,j ≤ 1. Using this we estimate

E
(1)c
j ⊆

{∑
i∈I

h1(ξi,j ) ≥ c6

α(t)

}
(2.48)

(We introduce the abbreviations Nn = Nn(d, β, t)
def= c6

α(t)
2(n−1)d/2 and εn

def=
2−n:)

=


N(η)∑
n=1

N−1
n

∣∣{i ∈ I : 2εn ≥ ξi,j > εn}
∣∣ ≥ 1


 (2.49)

(Define the finite set Rη
def= { k

2N(η) : k ∈ [0, 2N(η)] ∩ �}, and for r ≥ 0 define

qη(r)
def= max{ρ ∈ Rη : ρ ≤ r}; i.e. qη(r) ≤ r < qη(r)+ 1

2N(η) for 0 ≤ r ≤ 1, and

qη(r) = 1 for r > 1. Consequently the assumption
∑N(η)

n=1 rn ≥ 1 with all rn ≥ 0

implies
∑N(η)

n=1 qη(rn) ≥ 1/2; this statement is trivial when there exists a rn > 1:)

⊆


N(η)∑
n=1

qη

(
N−1
n

∣∣{i ∈ I : 2εn ≥ ξi,j > εn}
∣∣) ≥ 1

2


 (2.50)

(The next union runs over the finite set

Rη
def= {ρ = (ρ1, . . . , ρN(η)) ∈ RN(η)

η :
∑N(η)

n=1 ρn ≥ 1
2 }:)

⊆
⋃
ρ∈Rη

N(η)⋂
n=1

{∣∣{i ∈ I : 2εn ≥ ξi,j > εn}
∣∣ ≥ ρnNn

}
(2.51)
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(We prepare the application of the van den Berg/Kesten-inequality: Let IN(η) de-
note the set of all families (I1, . . . , IN(η)) of pairwise disjoint subsets of I ; some
of the In may be empty:)

=
⋃
ρ∈Rη

⋃
(In)∈IN(η)

N(η)⋂
n=1

{∣∣{i ∈ In : 2εn ≥ ξi,j > εn}
∣∣ ≥ ρnNn

}

⊆
⋃
ρ∈Rη

⋃
(In)∈IN(η)

N(η)⋂
n=1

{∣∣{i ∈ In : ξi,j > εn}
∣∣ ≥ ρnNn

}
. (2.52)

Now we apply the van den Berg/Kesten-inequality; see Appendix A for the pre-
cise version of the BK-inequality that we use here. (Roughly speaking, the events
{ω ∈ 	 :

∣∣{i ∈ I : ξi,j (ω) > εn}
∣∣ ≥ ρnNn} are decreasing, since the random vari-

ables ξi,j are decreasing functions of the Poissonian cloud configuration ω, and
they “need to occur on disjoint domains”.) We get:

�


 ⋃
(In)∈IN(η)

N(η)⋂
n=1

{∣∣{i ∈ In : ξi,j > εn}
∣∣ ≥ ρnNn

}

≤
N(η)∏
n=1

�
[∣∣{i ∈ I : ξi,j > εn}

∣∣ ≥ ρnNn

]
. (2.53)

We introduce the events

F
(n)
i,j

def= {ξi,j > εn} = {ω(Ki,j ) < (1− εn)|Ki,j |}, (2.54)

for n ≥ 1, i ∈ I , j ∈ J ; one should not confuse these events F (n)
i,j , n ≥ 1 (which

take care about filling holes on a “grey-scale level”) with the event F (0)
i,j , which

was introduced in (2.27), and which takes care of “clumps” in the Poissonian cloud
configuration; however the similar notation was chosen intentionally to treat both
kinds of “repairing the potential” at the same time below. We get

�[E(1)c
j ] ≤

∑
ρ∈Rη

N(η)∏
n=1

�
[∣∣{i ∈ I : ξi,j > εn}

∣∣ ≥ ρnNn

]

=
∑
ρ∈Rη

N(η)∏
n=1

�

[∑
i∈I

1
F
(n)
i,j

≥ ρnNn

]
(2.55)

(We may drop the factors in the last product with ρn = 0, since they are 1: let

Mρ
def= {n ∈ � : 1 ≤ n ≤ N(η), ρn > 0} for ρ ∈ Rη:)

=
∑
ρ∈Rη

∏
n∈Mρ

�

[∑
i∈I

1
F
(n)
i,j

≥ ρnNn

]
. (2.56)
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Next we use Lemma 1.2 to estimate

�[F (n)
i,j ] ≤ exp

(
−1

2
ε2
n|Ki,j |

)
= exp

(
−1

2
ε2
nα(t) log t

)
. (2.57)

We now treat E(1)c
j and E

(2)c
j both at the same time; recall that these two events

correspond to the two different reasons to “repair” the potential: To get a uniform

notation, we introduce an additional point (call it∗) to the index set:R∗η
def= {∗}∪Rη;

the extra point ∗ takes care of E(2)c
j . We set M∗

def= {0}, ε0
def= 1, and

Mρ,n = Mρ,n(d, β, t)
def=


ρnNn = 2(n−1)d/2ρn

c5(d)β
d/2α(t)

for ρ ∈ Rη, n ∈Mρ,

c6
α(t)
= 1

c5(d)β
d/2α(t)

for ρ = ∗, n = 0.

(2.58)

We join (2.46), (2.47) and (2.56) to obtain

�[Ec
j ] ≤

∑
ρ∈R∗η

∏
n∈Mρ

�

[∑
i∈I

1
F
(n)
i,j

≥ Mρ,n

]
. (2.59)

We use the exponential Chebyshev-inequality, the independence of the events
(F

(n)
i,j )i∈I (n ∈Mρ , ρ ∈ R∗η), and the bounds (2.57) and (2.40) to get for σ > 0:

�

[∑
i∈I

1
F
(n)
i,j

≥ Mρ,n

]
≤ e−σMρ,n�

[
exp

(
σ
∑
i∈I

1
F
(n)
i,j

)]

= e−σMρ,n
∏
i∈I

�[exp(σ1
F
(n)
i,j

)] ≤ e−σMρ,n
∏
i∈I

(1+ eσ�[F (n)
i,j ]) (2.60)

≤ e−σMρ,n
∏
i∈I

exp(eσ�[F (n)
i,j ])

≤ exp

(
−σMρ,n + |I |eσ exp

(
−1

2
ε2
nα(t) log t

))

(We choose the optimal σ , which is determined by |I |eσ exp(− 1
2ε

2
nα(t) log t) =

Mρ,n, i.e. σ = 1
2ε

2
nα(t) log t − log |I | + logMρ,n > 0, t large; the fact σ > 0 can

be seen using (2.19) because log |I | ≤ d log l(t), for large t , and logMρ,n > 0, for
large t :)

= exp

(
−Mρ,n

2
ε2
nα(t) log t +Mρ,n log |I | −Mρ,n logMρ,n +Mρ,n

)
.

(2.61)
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Therefore we obtain the estimate

�[Ec
j ] ≤

∑
ρ∈R∗η

∏
n∈Mρ

exp

(
− Mρ,n

2
ε2
nα(t) log t

+Mρ,n log |I | −Mρ,n logMρ,n +Mρ,n

)
, (2.62)

and hence

�


⋃
j∈J

Ec
j


 ≤∑

j∈J
�[Ec

j ] (2.63)

≤
∑
ρ∈R∗η

exp


 log |J | +

∑
n∈Mρ

(
− Mρ,n

2
ε2
nα(t) log t +Mρ,n log |I |

−Mρ,n logMρ,n +Mρ,n

)

(using log |J | = d(log 2 + log t − log l(t)) and log |I | = d log l(t) − logα(t) −
log log t :)

=
∑
ρ∈R∗η

exp




d − ∑

n∈Mρ

Mρ,n(d, β, t)

2
ε2
nα(t)


 log t + oη,β,ρ,d,t


 , (2.64)

with the higher order terms

on,η,β,ρ,d,t
def=dMρ,n log l(t)−Mρ,n logMρ,n −Mρ,n logα(t)

−Mρ,n log log t +Mρ,n,

oη,β,ρ,d,t
def=d log 2− d log l(t)+

∑
n∈Mρ

on,η,β,ρ,d,t .

Recall Definition (2.58): Mρ,n(d, β, t) is proportional to α(t)−1. To estimate the
higher order terms, we use the choice of the asymptotic behavior (2.18)–(2.19) of

l(t) and α(t); we also use log log t/(α(t) log t)
t→∞−→ 0, which follows from (2.18)

and l(t)d � log t : we get oη,β,ρ,d,t / log t
t→∞−→ 0. Now we examine the leading

term in (2.64) for ρ ∈ Rη:

∑
n∈Mρ

Mρ,n

2
ε2
nα(t) =

∑
n∈Mρ

2c7(d)
2(d/2−2)n

βd/2
ρn ≥ c7(d)

βd/2
, (2.65)

we have set c7(d)
def= c5(d)

−12−d/2−2, and we have used d ≥ 4, i.e. 2(d/2−2)n ≥ 1,
and
∑

n∈Mρ
ρn ≥ 1

2 . In the case ρ = ∗ we obtain the right-hand side in (2.65)
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as a lower bound, too: M∗,0ε2
0α(t)/2 ≥ c7(d)/β

d/2. It is important to note that
this right-hand side in (2.65) does not depend on η; this allows us to choose β0 =[
(d + 3)2d/2+3pd/2ad

]−2/d
independent of the value of η. Inserting these esti-

mates, we get

�


⋃
j∈J

Ec
j


 ≤ ∑

ρ∈R∗η
exp
((
d − c7(d)β

−d/2
)

log t + oη,β,ρ,d,t

)
. (2.66)

The sum over ρ is finite; consequently we get the following result: By our choice
β0 = c

2/d
7 (d + 3)−2/d we see that for all β ∈ (0, β0) and η > 0 there is tc ≥

t0(d, β0) > 0 such that the following bound holds for all t > tc:

�


⋃
j∈J

Ej (d, η, β, t)
c


 ≤ t−2. (2.67)

This proves Lemma 2.5. ✷

Remark. The case d > 4 could be handled in a simpler way: one may choose
one specified ρ only (instead of all ρ ∈ Rη), e.g. ρn = c8(d, δ)2(d/2−δ)n for some

0 < δ < d/2− 2 and c8(d, δ)
−1 def= ∑∞n=1 2(d/2−δ)n, drop step (2.50), and replace⋃

ρ∈Rη

⋂N(η)
n=1 in (2.51) by

⋃N(η)
n=1 . So for d > 4 one does not have to apply the

van den Berg/Kesten-inequality. However, this simplification does not suffice for
d = 4. It is interesting to examine why the method does not apply for d = 3: not
the small, deep holes change the picture, but the large, shallow ones do (see (2.65)).

✷

2.3. Lower bound on the principal Dirichlet eigenvalue for the “repaired”
potential

Consider the unscaled version of the “repaired” potential

Ṽ M
t

def= (log t)2/d

pβ
Ṽ M
β,t = (V ∧M − U)1Tt

+ 1Tc
t
; (2.68)

Ṽ M
β,t is defined in (2.35). We abbreviate κ(t)

def= (α(t) log t)1/d = diam(Ki,j )/
√
d.

This is the scale on which we have defined our “stuffing” function. It scales as
follows:

1 κ(t) (log t)1/d , as t →∞. (2.69)

The following lemma estimates integrals of the “repaired” potential with respect
to (sufficiently regular) test functions:
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Lemma 2.6. Let ϕ : �d → � denote a non-negative, uniformly Lipschitz contin-
uous, compactly supported test function with Lipschitz constant Gϕ . Assume that t
is so large that κ(t) ≥ a. Let the support of ϕ be contained in a ball with a radius
R ≥ κ(t). Then there is a constant c9 = c9(d) > 0 such that∫

�d

ϕ(x)Ṽ M
t (x) dx ≥ (1− η)

(∫
�d

ϕ(x) dx − c9R
dκ(t)Gϕ

)
. (2.70)

The test function ϕ and the radius R may both depend on t ; we will choose later
the right scale R = R(t) to apply the lemma.

Proof of Lemma 2.6. We define the boxes Kl
def= κ(t)l + [0, κ(t))d , for all l ∈ �d .

We compare this with the definition (2.23) of Ki,j : each Kl with Kl ∩Tt �= ∅ is
some Ki,j . We remark that κ(t) is chosen such that we do not have to deal with
fractions of boxes at the boundary of Tt (see (2.20)). Cm (m ∈ �d ) are the boxes
defined in (2.25) (they live on the same scale as the support of W ). We estimate
Ṽ M
t from below by the following sum:

Ṽ M
t (x) ≥

∑
l∈�d

Ṽ
l,M̄
t (x), (2.71)

where (using the abbreviation b(M)
m

def= (M̄/ω(Cm))∧1 with b(M)
m = 1 forω(Cm) =

0; recall M̄ = M/(3dW∞)):

Ṽ
l,M̄
t (x)

def=



−1Kl

(x)U(x)+ ∑
m∈�d

Cm∩Kl �=∅

b
(M)
m

∫
Cm

W(x − y) ω(dy) for Kl ∩Tt �= ∅,

1Kl
(x) for Kl ∩Tt = ∅.

(2.72)

To verify (2.71) we remark that on Tc
t the inequality is clear, whereas on Tt we

observe the following: On {x ∈ Tt : V (x) ≤ M} the inequality follows from
b
(M)
m ≤ 1 and the fact that we only increase the potential if we integrate also

over the obstacles in the a-neighborhood of Tt (for “boundary” boxes Kl). On
{x ∈Tt : V (x) > M}:

b(M)
m

∫
Cm

W(x − y)ω(dy) ≤ W∞b(M)
m ω(Cm) ≤ W∞M̄. (2.73)

Since the box Cm which contains x has at most 3d − 1 neighboring boxes (all the
other boxes Cm′ do note lie within the range of W(x − ·)) the claim follows from
3dW∞M̄ = M = V (x) ∧M (we apply (2.73) to Cm and its 3d − 1 neighboring
boxes).

The function Ṽ l,M̄
t (x) is supported on the a-neighborhoodKa

l ofKl , which has

diameter diam(Ka
l ) = diam(Kl) + 2a ≤ c10κ(t) with c10 = c10(d)

def= √d + 2
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(by our assumptions on t). We claim that for all l ∈ �d

∫
�d

Ṽ
l,M̄
t (x) dx ≥ (1− η)|Kl |. (2.74)

This is clear for l with Kl ∩Tt = ∅; for l with Kl ∩Tt �= ∅ we use Fubini’s
theorem and ‖W‖1 = 1 to obtain∫

�d

Ṽ
l,M̄
t (x) dx = −

∫
Kl

U(x) dx +
∑
m∈�d

Cm∩Kl �=∅

b(M)
m

∫
�d

∫
Cm

W(x − y) ω(dy) dx

= −
∫
Kl

U(x) dx +
∑
m∈�d

Cm∩Kl �=∅

b(M)
m ω(Cm) (2.75)

≥ (1− η)|Kl |,

where in the last step we have used that b(M)
m ω(Cm) = ω(Cm) ∧ M̄ and (2.31).

Hence

∫
�d

ϕ(x)Ṽ
l,M̄
t (x) dx ≥

(
inf
y∈Ka

l

ϕ(y)

)∫
�d

Ṽ
l,M̄
t (x) dx

≥ (1− η)|Kl |
(

inf
y∈Ka

l

ϕ(y)

)
(2.76)

≥ (1− η)

(∫
Kl

ϕ(x) dx − c10κ(t)Gϕ |Kl |
)
.

LetL = L(t)
def= {l ∈ �d : Ka

l ∩suppϕ �= ∅}; the cardinality of this set of indices is
bounded by |L| ≤ |BR+diam(Ka

l )
(0)|/|Kl | = |B1(0)|(R + diam(Kl)+ 2a)d/|Kl | ≤

c11R
d/|Kl |, where c11 = c11(d)

def= |B1(0)|(3 +
√
d)d . Summing (2.76) over all

l ∈ L and using (2.71) we get

∫
�d

ϕ(x)Ṽ M
t (x) dx ≥ (1− η)

∑
l∈L

(∫
Kl

ϕ(x) dx − c10κ(t)Gϕ |Kl |
)

≥ (1− η)

(∫
�d

ϕ(x) dx − c9R
dκ(t)Gϕ

)
, (2.77)

with c9
def= c10c11. Lemma 2.6 is proved. ✷

Proof of the lower bound in Theorem 0.2. As in Lemma 2.5 we choose β < β0,
η > 0 and tc such that for all t > tc

�
[
λVβ,t (Tt ) ≥ p−1λ

ṼM
β,t
(Tt )− c4(d)f (l(t))

]
≥ 1− t−2. (2.78)
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Formula (2.35) and the bound (2.33) on U imply

0 ≤ Ṽ M
β,t ≤ p

β

(log t)2/d
(M + 1). (2.79)

We use the following estimate of the principal Dirichlet eigenvalue λ
ṼM
β,t
(Tt ) from

below; see e.g. Proposition 3.1.4 in [7]: For all T > 0,

λ
ṼM
β,t
(Tt ) ≥ 1

T

(
1− sup

x∈Tt

Ex

[
exp

(
−
∫ T

0
Ṽ M
β,t (Zs) ds

)
, T < TTt

])
.

(2.80)

We apply this estimate on a time scale T = T (t) with

κ(t)2  T (t) (log t)2/d , as t →∞. (2.81)

We start to estimate the right-hand side of (2.80): Let x ∈Tt .

Ex

[
exp

(
−
∫ T

0
Ṽ M
β,t (Zs) ds

)
, T < TTt

]
≤ Ex

[
exp

(
−
∫ T

0
Ṽ M
β,t (Zs) ds

)]

≤ 1− Ex

[∫ T

0
Ṽ M
β,t (Zs) ds

]
+ 1

2

(
Tpβ(M + 1)

(log t)2/d

)2

, (2.82)

where we have used e−z ≤ 1 − z + 1
2z

2, which is valid for all z ≥ 0, and (2.79).
We observe the following asymptotic behavior of the last summand in (2.82):

1

2

(
T (t)pβ(M + 1)

(log t)2/d

)2

 T (t)

(log t)2/d
, as t →∞, (2.83)

which is valid for fixed M and β. Let p(s, x, y)
def= (2πs)−d/2e−|y−x|2/(2s) de-

note the Brownian transition density. Set JT (y)
def= ∫ T0 p(s, 0, y) ds; this function

has the scaling propertyJT (y) = T 1−d/2J1(T
−1/2y), and it fulfills

∫
�d JT (y) dy

= T . We estimate the middle term in expression (2.82): First we use Fubini’s
theorem twice:

Ex

[∫ T

0
Ṽ M
β,t (Zs) ds

]
=
∫ T

0

∫
�d

Ṽ M
β,t (y)p(s, x, y) dy ds

=
∫

�d

Ṽ M
β,t (y)JT (y − x) dy (2.84)

(We introduce a compactly supported, uniformly Lipschitz continuous test function

0 ≤ ϕ ≤ J1 and a scaled version of it: ϕT (y)
def= T 1−d/2ϕ(T −1/2y) ≤ JT (y): )

≥
∫

�d

Ṽ M
β,t (y)ϕT (y − x) dy. (2.85)
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Let ϕ be supported in a ball of radius rϕ ≥ 1; then ϕT is supported in a ball with
radius

R = R(t)
def=
√
T (t)rϕ � κ(t), as t →∞. (2.86)

Lemma 2.6 provides a lower bound for the term in (2.85):

∫
�d

Ṽ M
β,t (y)ϕT (y − x) dy = pβ

(log t)2/d

∫
�d

Ṽ M
t (y)ϕT (y − x) dy

≥ pβ

(log t)2/d
(1− η)

(
‖ϕT ‖1 − c9T

d/2rdϕ κ(t)GϕT

)

= pβT

(log t)2/d
(1− η)

(
‖ϕ‖1 − c9T

−1/2κ(t)rdϕ Gϕ

)
,

(2.87)

where we have used the scaling behavior GϕT = T (1−d)/2Gϕ of the Lipschitz con-
stants. Using (2.80)–(2.82) we obtain

(log t)2/d

p
λ
ṼM
β,t
(Tt ) ≥ β(1− η) ‖ϕ‖1 − e1(t), (2.88)

where by our choice of T (t) (see (2.81))

e1(t)
def= β(1− η)c9T

−1/2κ(t)rdϕ Gϕ +
1

2
pβ2(M + 1)2

T

(log t)2/d
t→∞−→ 0. (2.89)

Using (2.78) we see that for all t > tc:

�
[
(log t)2/dλVβ,t (Tt ) ≥ β(1− η) ‖ϕ‖1 − e(t)

]
≥ 1− t−2, (2.90)

with (see (2.18) and (2.89))

e(t)
def= e1(t)+ c4(d)(log t)2/df (l(t))

t→∞−→ 0. (2.91)

Applying the Borel-Cantelli Lemma, Lemma 1.1 and the fact that limt→∞ log(t −
1)/ log t = 1, we find that for all β < β0, for all η > 0, and for all 0 ≤ ϕ ≤ J1
(compactly supported, uniformly Lipschitz continuous)

�-a.s. lim inf
t→∞ (log t)2/dλVβ,t (Tt ) ≥ β(1− η) ‖ϕ‖1 . (2.92)

Finally we take the supremum over ϕ and let η→ 0 to see that our claim follows
for all β < β0. This finishes the proof of the lower bound in Theorem 0.2: one may
take βc = β0 in this theorem. ✷
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3. Upper bounds

The derivation of upper bounds is based on a variational principle. This is obtained
using the large deviation theorem of Gärtner and Ellis (Theorem 2.3.6 in [3]). First
we prepare the application of this large deviation result: We apply it to integrals of
test functions with respect to Poissonian cloud configurations. For this reason we
examine the following rate functions:
Let φ be a bounded measurable test function with compact support. We define the
generating function of the Poisson process:

Kφ(σ)
def= log �

[
exp

{
σ

∫
�d

φ2 dω

}]
=
∫

�d

(eσφ
2 − 1) dx, σ ∈ �, (3.1)

and its one–dimensional Fenchel–Legendre transform

K∗φ(µ)
def= sup

σ∈�

(
σµ−Kφ(σ)

)
. (3.2)

We collect some important properties of this function:

Lemma 3.1. Assume that ‖φ‖2 = 1.

1. K∗φ is a convex, non-negative, real-analytic function on the interval (0,∞)with
the global minimum K∗φ(1) = 0. Especially, K∗φ is monotonically decreasing
on the interval (0, 1).

2. Set S
def= {x ∈ �d : φ(x) �= 0}. Then K∗φ(µ)

µ↓0−→ |S| with a vertical tangent:

d
dµ
K∗φ(µ)

µ↓0−→ −∞. More quantitatively: There are constants c12 = c12(φ) >

0 and c13 = c13(φ) such that for all 0 < µ < 1 the following upper bound
holds:

K∗φ(µ) ≤ |S| + c12µ logµ− c13µ. (3.3)

Proof of Lemma 3.1.

Proof of 1. The integrand x #→ eσφ(x)
2 − 1 depends analytically on σ , and the

upper bound x #→ supσ∈K |eσφ(x)
2 − 1| is integrable for all compact subsets K of

Fig. 2. Typical graphs for Kφ and K∗φ .
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the complex plane; hence Kφ(σ) < ∞ for all σ ∈ �, and Kφ is a real-analytic
function. We observe that

K′φ(σ ) =
∫

�d

φ2eσφ
2
dx

{
σ→−∞−→ 0
σ→+∞−→ ∞

(3.4)

by the dominated convergence theorem and the monotone convergence theorem
respectively. Furthermore K′φ(0) = ‖φ‖2

2 = 1. Kφ is strictly convex since

K′′φ(σ ) =
∫

�d

φ4eσφ
2
dx > 0. (3.5)

Consequently the inverse function K′−1
φ : (0,∞) → � of K′φ is real-analytic as

well, and we have the following description of K∗φ in terms of this function:

K∗φ(µ) = K′−1
φ (µ)µ−Kφ(K

′−1
φ (µ)), for 0 < µ <∞. (3.6)

This shows that K∗φ is real-analytic over (0,∞), too. The convexity of K∗φ follows
directly from its definition; see [3], Lemma 2.2.5. We evaluate: K∗φ(1) = −Kφ(0)
= 0. This is the global minimum of K∗φ , since we have for 0 < µ = K′φ(σ ) <∞
by (strict) convexity of Kφ :

0 = Kφ(0) ≥ Kφ(σ)+ (0− σ)K′φ(σ ) = −K∗φ(µ), (3.7)

with equality only for µ = 1, σ = 0.

Proof of 2. Differentiation of the equation (3.6) yields d
dµ
K∗φ(µ) = K′−1

φ (µ) for

µ ∈ (0,∞), and usingK′φ(σ ) ↓ 0 as σ →−∞ (see (3.4)) we getK′−1
φ (µ)→−∞

as µ ↓ 0.
Let A ⊆ �d be measurable, |A| <∞, and a > 0. We determine explicitly:

Ka1A(σ ) = (eσa
2 − 1)|A|, (3.8)

K∗a1A(µ) = |A| + a−2µ log(a−2|A|−1µ)− a−2µ
µ↓0−→ |A|. (3.9)

Let Aε
def= {x ∈ �d : |φ(x)| > ε} for ε > 0. Set s

def= sup |φ|, and assume that
ε > 0 is so small that |Aε| > 0. We get:

ε1Aε ≤ |φ| ≤ s1S, (3.10)

Kε1Aε (σ ) ≥ Kφ(σ) ≥ Ks1S (σ ) for σ ≤ 0. (3.11)

We claim for any two compactly supported test functions φ1, φ2 with ‖φ1‖2 > 0:
If Kφ1(σ ) ≥ Kφ2(σ ) holds for all σ ≤ 0, then K∗φ1

(µ) ≤ K∗φ2
(µ) holds for all

µ ∈ (0, ‖φ1‖2
2). To prove this claim for a given µ, we observe that there is a σ ∈ �

with K′φ1
(σ ) = µ as a consequence of (3.4). (One should note that ‖φ‖2 > 0 suf-

fices to derive (3.4); the precise value ‖φ‖2 = 1 is not used in that derivation.) Our
assumption µ < ‖φ1‖2

2 = K′φ1
(0) and the strict monotonicity of K′φ1

imply σ < 0.
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Consequently, using (3.6), K∗φ2
(µ) ≥ µσ −Kφ2(σ ) ≥ µσ −Kφ1(σ ) = K∗φ1

(µ),
which proves the above claim. Combining this with (3.11), we get

K∗ε1Aε
(µ) ≤ K∗φ(µ) for 0 < µ < ε2|Aε|,

K∗φ(µ) ≤ K∗s1S (µ) for 0 < µ < ‖φ‖2
2 = 1. (3.12)

We take the limit µ ↓ 0 in (3.12):

|Aε| = lim
µ↓0

K∗ε1Aε
(µ) ≤ lim inf

µ↓0
K∗φ(µ) ≤ lim sup

µ↓0
K∗φ(µ) ≤ lim

µ↓0
K∗s1S (µ) = |S|.

(3.13)

This implies limµ↓0 K
∗
φ(µ) = |S| using |Aε| ε→0−→ |S|. The quantitative bound (3.3)

is a consequence of (3.12) and (3.9). Lemma 3.1 is proved. ✷

The function K∗φ plays an essential role in the following variational principle:

Lemma 3.2. Assume that φ ∈ H 1(�d) is continuous, compactly supported, and
normalized: ‖φ‖2 = 1. Further assume that µ ∈ (0, 1) fulfills

K∗φ(µ) < d. (3.14)

Then

�–a.s. lim sup
t→∞

(log t)2/d λVβ,t (Tt ) ≤ 1

2
‖∇φ‖2

2 + βµ. (3.15)

Proof of Lemma 3.2. Assume that φ is supported in Br(0), r > 0 fixed, with a pos-
itive distance between suppφ and Br(0)c. For t > 0 we choose a pairwise disjoint

family of balls Br(log t)1/d (y) ⊆Tt , y ∈ Yt,r , where log |Yt,r |/ log t
t→∞−→ d. (To be

specific: one may choose Yt,r
def= 2r(log t)1/d�d ∩Tt−r(log t)1/d .) We define φy,t

to be a scaled and translated version of φ supported in Br(log t)1/d (y):

φy,t (x)
def= (log t)−1/2φ((log t)−1/d(x − y)); (3.16)

the normalizing factor is chosen such that
∥∥φy,t∥∥2 = 1. By the variational charac-

terisation (0.5) of the principal Dirichlet eigenvalue we know

λVβ,t (Tt ) ≤ min
y∈Yt,r

(
1

2

∥∥∇φy,t∥∥2
2 +
∫

�d

Vβ,tφ
2
y,t dx

)
; (3.17)

and by scaling:

(log t)2/dλVβ,t (Tt ) ≤ 1

2
‖∇φ‖2

2 + β min
y∈Yt,r

∫
�d

V φ2
y,t dx. (3.18)

We rewrite the last integral, using the notation (ψ−1 ∗ ψ2)(x)
def= ∫

�d ψ1(z

− x)ψ2(z) dz: ∫
�d

V φ2
y,t dx =

∫
�d

W− ∗ φ2
y,t dω. (3.19)
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Therefore the integral in (3.18) depends only on the points of the Poissonian cloud
configuration in an a–neighborhood of suppφy,t . This a–neighborhood of suppφy,t
is contained in Br(log t)1/d (y), at least for large t . Since these balls Br(log t)1/d (y),

y ∈ Yt,r , are pairwise disjoint, this implies that
∫

�d W
− ∗ φ2

y,t dω, y ∈ Yt,r , are
i.i.d. random variables, at least for large t . Using the Laplace transform of a Poisson
process we get the generating functions of these random variables; in the calcu-

lation we use a scaled version of W , defined by Wt(x)
def= (log t)W((log t)1/dx),

‖Wt‖1 = 1:

1

log t
log �

[
exp

{
(log t)σ

∫
�d

W− ∗ φ2
y,t dω

}]

= 1

log t

∫
�d

(exp{(log t)σW− ∗ φ2
0,t } − 1) dx

=
∫

�d

(exp{σW−t ∗ φ2} − 1) dx
t→∞−→ Kφ(σ); (3.20)

we have used the dominated convergence theorem: one observes (W−t ∗φ2)(x)
t→∞−→

φ2(x) for all x ∈ �d by continuity of φ; further recall that φ is compactly sup-
ported and bounded. Kφ is defined and real-analytic on the whole real line (see
before (3.4)); therefore the Gärtner–Ellis theorem is applicable (Theorem 2.3.6 in
[3]; unfortunately the theorem is stated there for integer parameter sequences only,
but this is not essential for our application: for example, one may intermediately

introduce factors [log t]/ log t
t→∞−→ 1 below):

lim inf
t→∞

1

log t
log �

[∫
�d

V φ2
0,t dx < µ

]
≥ − inf

m<µ
K∗φ(m) = −K∗φ(µ); (3.21)

we used in the last step that K∗φ is monotonically decreasing and continuous on
the interval (0, 1). We estimate the probability of the minimum in (3.18) being too

large (using some error terms o1,t
t→∞−→ 0 and o2,t

t→∞−→ 0) for large t :

log �

[
min
y∈Yt,r

∫
�d

V φ2
y,t dx ≥ µ

]
= |Yt,r | log �

[∫
�d

V φ2
0,t dx ≥ µ

]

≤ −|Yt,r |�
[∫

�d

V φ2
0,t dx < µ

]
≤ −|Yt,r | exp

{
(log t)(−K∗φ(µ)− o1,t )

}
≤ − exp

{
(log t)(d −K∗φ(µ)− o2,t )

}
≤ −tϑ/2 (t large), (3.22)

where ϑ
def= d − K∗φ(µ) > 0; see (3.14). We insert this into (3.18) and obtain for

large t :

�

[
(log t)2/dλVβ,t (Tt ) >

1

2
‖∇φ‖2

2 + βµ

]
≤ exp

{
−tϑ/2

}
. (3.23)

The Borel–Cantelli argument and Lemma 1.1 implies the upper bound (3.15), which
is the claim of Lemma 3.2 (see also (2.91)–(2.92)). ✷
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The next lemma proves the upper bound in Theorem 0.2. However, for this upper
bound the assumptions d ≥ 4 and β < βc are irrelevant:

Lemma 3.3. Let d ≥ 1 be any dimension, and β > 0. Then

�–a.s. lim sup
t→∞

(log t)2/d λVβ,t (Tt ) ≤ β. (3.24)

Proof of Lemma 3.3. Let φ denote an arbitrary test function that fulfills the assump-
tions in Lemma 3.2. For r > 0 we introduce the scaled version

φr(x)
def= r−d/2φ(x/r); (3.25)

it scales as follows:

‖φr‖2
2 = 1 and ‖∇φr‖2

2 = r−2 ‖∇φ‖2
2 , (3.26)

Kφr (σ ) = rdKφ(r
−dσ ) and K∗φr (µ) = rdK∗φ(µ). (3.27)

We choose a function µ #→ r(µ) for µ ∈ (0, 1) such that

r(µ)
µ↑1−→∞ and K∗φr(µ) (µ) = r(µ)dK∗φ(µ)

µ↑1−→ 0; (3.28)

this is possible since limµ↑1 K
∗
φ(µ) = 0. The scaling rules (3.26) imply

1

2

∥∥∇φr(µ)∥∥2
2 + βµ = ‖∇φ‖

2
2

2r(µ)2
+ βµ

µ↑1−→ β. (3.29)

The upper bound (3.24) is now a consequence of Lemma 3.2. ✷

The next lemma improves the upper bound (3.24) for low dimensions: We strength-
en Theorem 0.3 slightly by including a quantitative bound:

Lemma 3.4. Let d < 4. For every b1 > 0 there is a c14 > 0 such that for every
β ∈ (0, b1):

�–a.s. lim sup
t→∞

(log t)2/dλVβ,t (Tt ) ≤ β − c14β
4/(4−d). (3.30)

Proof of Lemma 3.4. We use the same setup as in the proof of Lemma 3.3. This
time, a more detailed analysis of K∗φ(µ) near µ = 1 is required:

The Taylor expansion of K∗φ around its global minimum at µ0 = 1 provides
an upper bound for K∗φ in some εφ–neighborhood of 1: There are constants c15 =
c15(φ) > 0 and εφ ∈ (0, 1] such that for all µ with |µ− 1| < εφ we have

K∗φ(µ) ≤ c15(µ− 1)2. (3.31)

When we plug (3.26), (3.27), and (3.31) into Lemma 3.2, we see that

�–a.s. lim sup
t→∞

(log t)2/dλVβ,t (Tt ) ≤ 1

2r2
‖∇φ‖2

2 + βµ, (3.32)
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whenever

c15r
d(1− µ)2 < d and 0 < 1− µ < εφ. (3.33)

Given b1 > 0 we choose first c16 = c16(b1, φ) > 0 so small that c16b
d/(4−d)
1 < εφ

and

c
2/d
15 d−2/d < 2 ‖∇φ‖−2

2 c
1−4/d
16 ; (3.34)

recall d < 4. Then we choose c17 = c17(b1, φ) > 0 so that

c
2/d
15 d−2/dc

4/d
16 < c−2

17 < 2 ‖∇φ‖−2
2 c16; (3.35)

the choice (3.34) of c16 guarantees that such a c17 exists. Finally we choose β ∈
(0, b1) and set 1 − µ = c16β

d/(4−d) < εφ and r = c17β
−2/(4−d). With these

choices the conditions (3.33) are fulfilled, and

1

2r2
‖∇φ‖2

2 + βµ = β − c14β
4/(4−d), (3.36)

where c14
def= c16 − 1

2 ‖∇φ‖2
2 c
−2
17 > 0. In view of bound (3.32) this finishes the

proof of Lemma 3.4. ✷

Finally we prove the upper bound in the large–β–regime: A consequence of Sznit-
man’s Theorem 4.4.6, [7], is: �-a.s. lim supt→∞ (log t)2/d λVβ,t (Tt ) ≤ c(d, 1).
We prove an upper bound which is a little bit smaller than c(d, 1) for all finite β.
We state a slightly sharpened version of Theorem 0.1: we include a quantitative
upper bound for β →∞:

Lemma 3.5. For all β > 0 the following asymptotic upper bound holds: There are
positive constants c18 = c18(d), c19 = c19(d) and b2 = b2(d), such that for all
β > b2:

�-a.s. lim sup
t→∞

(log t)2/d λVβ,t (Tt ) ≤ c(d, 1)− c18e
−c19β. (3.37)

Proof of Theorem 0.1 and Lemma 3.5. This time we analyze the variational prin-
ciple (3.14)–(3.15) for µ close to 0 and a special choice of φ: Let φ ∈ H 1(�d)

denote the (normalized) principal Dirichlet eigenfunction of− 1
2� on the unit ball;

we extend this eigenfunction by 0 outside of this ball. Lemma 3.2, the quantitative
upper bound (3.3) for K∗(φ), and the scaling properties (3.26) and (3.27) yield

�–a.s. lim sup
t→∞

(log t)2/dλVβ,t (Tt ) ≤ λd

r2
+ βµ, (3.38)

whenever

m
def= rd

d
(vd + c12µ logµ− c13µ) < 1, (3.39)
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and µ is small enough (0 < µ < 1); recall the notation λd = λV=0(B1(0)) =
1
2 ‖∇φ‖2

2 and vd = |B1(0)|. We use the definition of m in (3.39) to rewrite the
right-hand side (3.38):

λd

r2
+ βµ = m−2/dλdd

−2/d(vd + c12µ logµ− c13µ)
2/d + βµ. (3.40)

Next we use Lipschitz continuity of x #→ x2/d at x = vd : there exist constants
c20 = c20(d) > 0, c21 = c21(d), µ0 = µ0(d) > 0, and m0 = m0(d) ∈ (0, 1) such
that for all µ ∈ (0, µ0) and all m ∈ (m0, 1) (recall c(d, 1) = λdd

−2/dv
2/d
d ):

λd

r2
+ βµ ≤ m−2/dc(d, 1)+ c20µ logµ− c21µ+ βµ (3.41)

(We substitute the optimal value µ = e(−β−c20+c21)/c20 , for β > (c21 − c20(1 +
logµ0)) ∨ 0 :)

= m−2/dc(d, 1)− c20e
(−β−c20+c21)/c20 . (3.42)

Finally we let m ↑ 1. This proves the asymptotic bound (3.37) for b2 = (c21 −
c20(1 + logµ0)) ∨ 0, and an appropriate choice of c18 and c19. Theorem 0.1 is a
consequence of (3.37) and the monotonicity of β #→ λVβ,t (Tt ). ✷

4. Asymptotic behavior of the partition sum

In this section we give the relations between the principal Dirichlet eigenvalue
on Tt = (−t, t)d and the partition sum Sωt,β for Brownian motion in a scaled
Poissonian potential.

Proof of Theorem 0.4. First we prove the upper bound in (0.11). Using Theorem

3.1.2 of [7] we see that (where TTt

def= inf{s ≥ 0, Zs /∈ Tt } is the exit time from
Tt )

Sωt,β ≤ P0
[
TTt
≤ t
]+ E0

[
exp

{
−
∫ t

0
Vβ,t (Zs, ω)ds

}
, TTt

> t

]
(4.1)

≤ 4d exp {−t/2} + c22(d)
(
(λVβ,t (Tt ) t)

d/2 + 1
)

exp
{−λVβ,t (Tt ) t

}
,

where the first term on the right-hand side of (4.1) has been estimated by the stan-
dard one-dimensional estimate using the reflection principle. We remark that the
leading term is the second one, the exponent λVβ,t (Tt ) t grows slower than of or-
der t as t →∞. Choosing β small enough, we see that our upper bound in (0.11)
follows from the asymptotic behavior of λVβ,t (Tt ) (see (0.7)).

So let us come to the lower bounds of Theorem 0.4. We imitate the proof of

Theorem 6.1.1 of [7] for our scaled potential: Define s = s(t)
def= t (log t)−3/d and

choose Ts = (−s, s)d , then we denote by T̃s the open
√
d-neighborhood of Ts .
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Hence for all large t : Ts ⊂ T̃s ⊂ Tt , and |T̃s | ≤ (2t)d . Let φt be a non-nega-
tive normalized principal Dirichlet eigenfunction to the associated problem on Ts ,
λVβ,t (Ts) = inf{‖∇φ‖2

2/2 + ∫Ts
Vβ,tφ

2dx : φ ∈ C∞c (Ts),
∫
Ts

φ2 dx = 1}.
Then we choose yt ∈ Ts such that (6.1.17) of [7] holds, i.e. such that φ2

t puts
enough mass close to yt in the sense that

∫
yt+[−1,1]d φ

2
t (x)dx ≥ 1/(2|T̃s |). Such

a yt always exists, this can be seen by covering Ts with boxes of unit size and
using

∫
Ts

φ2
t dx = 1. Using Proposition 3.1.12 of [7], we obtain for t ≥ 2 and

At
def= yt + [−1, 1]d :

Sωt,β ≥ inf
At×At

r�d ,Vβ,t
(2, ·, ·)

· 1

2|T̃s |
E0

[
exp

{
−
∫ H(At )

0
Vβ,t (Zs, ω)ds

}
, H(At ) <∞

]

exp
{−λVβ,t (Ts) t

}
, (4.2)

where H(At) is the entrance time of Z. into At , and for an open set U ⊂ �d we
define

rU,Vβ,t (u, x, y)
def= p(u, x, y)Eu

x,y

[
exp

{
−
∫ u

0
Vβ,t (Zs, ω)ds

}
, TU > u

]
,

(4.3)

with p(u, x, y) the Brownian transition density and Pu
x,y the Brownian bridge mea-

sure (from x to y in time u), for a reference see [7], pp. 137–140. Estimating the
first term in (4.2) we obtain

inf
At×At

r�d ,Vβ,t
(2, ·, ·) ≥ inf

At×At

ryt+(−2,2)d ,Vβ,t (2, ·, ·)
≥ inf

[−1,1]d×[−1,1]d
r(−2,2)d ,V=0(2, ·, ·)

exp

{
−2 sup

yt+(−2,2)d
Vβ,t

}
. (4.4)

For all large t , yt + (−2, 2)d ⊂Tt ; hence we estimate the last term in (4.4), using
(4.5.12) of [7], by

�-a.s. sup
Tt

Vβ,t = o
(
(log t)1−2/d

)
, as t →∞. (4.5)

We come back to the remaining terms in (4.2): Using a shape theorem (Theorem
5.2.5, [7]) we see that there exists a constant α = α(d,W) such that for almost
every ω and for all large t (H(At) ≤ H(B̄1(yt )); see also (6.5.5) of [7])

E0

[
exp

{
−
∫ H(At )

0
Vβ,t (Zs, ω)ds

}
, H(At ) <∞

]

≥ E0

[
exp

{
−
∫ H(B̄1(yt ))

0
V (Zs, ω)ds

}
, H(B̄1(yt )) <∞

]

≥ exp {−αs} . (4.6)
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Collecting (4.2)–(4.6) we obtain �-a.s. for all large t (using |T̃s | ≤ (2t)d )

Sωt,β ≥ c23(d) exp
{
−λVβ,t (Ts) t − αs − (log t)1−2/d − d log t

}
. (4.7)

Then the claims follow from the remark that the leading orders of λVβ,t (Ts) and
λVβ,t (Tt ) are the same as t → ∞: For large t we have s ≤ t , hence using the
monotonicity of the principal Dirichlet eigenvalue λVβ,t (Ts) ≤ λVβ,s (Ts). Using

(log t/ log s)2/d → 1 as t →∞, we obtain �-a.s.

lim sup
t→∞

(log t)2/d λVβ,t (Ts) ≤ lim sup
s→∞

(log s)2/d λVβ,s (Ts) . (4.8)

This together with the asymptotic upper bounds on λVβ,s (Ts) (see (0.6), (0.7) and
(0.8)) finishes the proof of Theorem 0.4. ✷

A. Van den Berg/Kesten-inequality

In this appendix we prove that the van den Berg/Kesten-inequality applies to
our situation (the goal is to apply Theorem 4.2 (a) of [1]). We work with the
notations of Section 2. Fix j ∈ J . We consider the random variables ξi,j =(

1− ω(Ki,j )

|Ki,j |
)
∨ 0 for i ∈ I . The (ξi,j )i∈I are i.i.d. with values in the finite set

Si
def=
{(

1− l
|Ki,j |

)
∨ 0 : l ∈ �0

}
for all i ∈ I . We define the finite cartesian

product 	I
def= ∏i∈I Si . Hence the common distribution �I of the random vector

(ξi,j )i∈I is a product measure over 	I . For ξ ∈ 	I and K ⊆ I we define the
cylinder event

[ξ ]K
def= {ξ ′ ∈ 	I : ξ ′i = ξi for all i ∈ K} . (A.1)

Finally we define disjoint occurence: Choose N ∈ � and An ⊆ 	I for n =
1, . . . , N . We let IN denote the set of all families (I1, . . . , IN ) of pairwise dis-
joint subsets of I ; then we define

✷N
n=1An

def=
⋃

(In)∈IN

N⋂
n=1

{
ξ ∈ 	I : [ξ ]In ⊆ An

}
. (A.2)

In the special case N = 2 this coincides with the operation A1✷A2 defined in (2.4)
in [1].

Lemma A.1. Choose N ∈ � fixed. We assume that An ⊆ 	I (n = 1, . . . , N) are
increasing events. Then

�I

[
✷N
n=1An

]
≤

N∏
n=1

�I [An] . (A.3)
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Proof of Lemma A.1. The proof goes by induction. The case N = 1 is obvious
from ✷1

n=1An = A1. Induction step, N → N + 1: Theorem 4.2 (a) of [1] tells
us �I [A✷B] ≤ �I [A]�I [B] if A and B are both an intersection of an increasing
and a decreasing event (especially if they both are increasing events). To apply this
theorem for the induction step, we need to show

✷N
n=1An is an increasing event, (A.4)

✷N+1
n=1 An =

(
✷N
n=1An

)
✷AN+1. (A.5)

For ξ ∈ 	I and K ⊆ I , there is an (unique) minimum ξ
K

in [ξ ]K ; it is given by(
ξ
K

)
i

def= ξi1K(i). We start with the proof of (A.4): Since the An are increasing,

we can write

✷N
n=1An =

⋃
(In)∈IN

N⋂
n=1

{
ξ ∈ 	I : ξ

In
∈ An

}
. (A.6)

But then (A.4) easily follows from (A.6), using again the fact that the An’s are
increasing. So there remains to prove (A.5):(
✷N
n=1An

)
✷AN+1 =

⋃
(K,IN+1)∈I2

{
ξ ∈ 	I : ξ

K
∈ ✷N

n=1Anand ξ
IN+1

∈ AN+1

}

=
⋃

(K,IN+1)∈I2

⋃
(I1,...,IN )∈IN

N⋂
n=1

{
ξ ∈ 	I : ξ

KIn
∈ An

}

∩
{
ξ ∈ 	I : ξ

IN+1
∈ AN+1

}
, (A.7)

but since ξ
KIn
= ξ

K∩In it suffices to consider I1, . . . , IN being pairwise disjoint

subsets of K , hence they are also disjoint from IN+1, and our claim (A.5) follows.
This finishes the proof of Lemma A.1. ✷

In our application (2.53) of Lemma A.1 we setAn = {ξ ∈ 	I : |{i ∈ I : ξi > εn}| ≥
ρnNn}, which are increasing events. (One should not confuse this with {ω ∈
	 : (ξi,j (ω))i∈I ∈ An} being decreasing events: the map ω #→ (ξi,j (ω))i∈I
reverses the partial order.) The link from Lemma A.1 to formula (2.53) is given by
the identity

✷
N(η)
n=1 An =

⋃
(In)∈IN(η)

N(η)⋂
n=1

{ξ ∈ 	I : |{i ∈ In : ξi > εn}| ≥ ρnNn} . (A.8)
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