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The problem of the most visited site in random
environment

Received: 17 April 1998

Abstract. We prove that the process of the most visited site of Sinai's simple random walk in
random environment is transient. The rate of escape is characterized via an integral criterion.
Our method also applies to a class of recurrent diffusion processes with random potentials.
It is interesting to note that the corresponding problem for the usual symmetric Bernoulli
walk or for Brownian motion remains open.

1. Introduction

The simple Random Walk in Random Environment (RWRE) is defined as follows:
let 8 = {§;} ez be a sequence of independent and identically distributed random

variables taking values if0, 1). Define the RWRES,},>0 by So dzefo and for
n>1andi € Z,

PI:SrH-l =i+1

S, =i, :] =&, and IP[S,H_l —i-1

S, =i, E]:l—fi .

Note thatE and{S,},>0 are both random undéd?, and that giveng (which is
called the “environment”)S, },>0 performs a nearest-neighbour random walk on
the line. For notational simplification, we write throughout the paper

def 1-¢;
=lo
nj g( g

The study of RWRE is motivated by modelisation of some random phenomena in
physics and biology (see Hughes [19]). For recent progress, see for example [1,
3-5,7,9-10, 13-18, 20-21, 23-24, 28, 32-33, 35-37, 39], as well as the book of
Révesz [30].

We shall assume the following “usual” condition for the random environment:

), jez . (1.1)

no is bounded almost surely, wiff(ng) =0 , (1.2)
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and write
def

2 ZEMm) . (1.3)
It is worth noting that ifoc = 0, {S,},>0 becomes the usual simple symmetric
random walk (Bernoulli walk). By a slight abuse of notation, we keep using the
terminology “RWRE” even in case = 0.

According to a general recurrence/transience criterion of Solomon [36], under
(1.2), the random walkS,, },,>0 is recurrent, i.e. it visits any given point infinitely
often. An important result of Sinai [35] tells that if (1.2) holds, andl i# 0 (which
excludes the Bernoulli walk), thesy / (logn)? converges to a non-degenerate limit-
ing distribution (the computation of this distribution is later independently achieved
by Kesten [23] and Golosov [14]). This contrasts the case of the Bernoulli walk,
for which the usual central limit theorem says tat./» converges to a Gaussian
distribution.

The main concern of this paper is to study the favourite pointsuFer0 and
x € Z, define

n
def
L, x)E Y 5=y - (1.4)
i=0

the number of visits of RWRE at up to timen, which is also referred to as the
local time of RWRE. Let

F(n) d=ef[x €Z4+: L(n,x) = maxL(n, y)} ,
YEZy

which, following Erdos and Bvesz [11] and Bass and Griffin [2], is called the set
of thefavourite sitesor themost visited sitegin Z,) of RWRE. SinceF(n) is not
necessarily a singleton, we consider

F(n) = maxx , (1.5)
xelF(n)
the maximal favourite site (though all the results presented in the papérior
still hold if in (1.5), “max” is replaced say by “min”).
Let us first recall two results af (n) for the Bernoulli walk.
Theorem A (Erdos and Revesz [11], Bass and Griffin [2]) Under(1.2),if o = 0,

lim sup Fn)

o loaloanl/2 -S. 1.6
n—00 (2n|0g|ogn)1/2 » as ( )

Theorem B (Bass and Griffin [2]). Under (1.2), if c = 0, then with probability
one, |

.. . (logn)* .

liminf —— F(n) = {
Itis seen from (1.6) thak (n) satisfies the same law of the iterated logarithm (LIL)
as the Bernoulli walk. However, it is also proved by &scand Rvesz [11] that
they havdifferentupper functions, i.e. the usual Kolmogorov test (also referred to
as the Erds—Feller—Kolmogorov—Petrowsky or EFKP test, seé&d:z [30, p. 35])
does not apply t@& (n).

0 ifa<?2,

oo if a> 11, (2.7)
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Theorem B is somewhat surprising, which a fortiori tells th&t) is transient.
The exact rate of escape Bin) in (1.7) is unknown, and is believed to be a very
challenging problem.

We now present the main results of the paper, concerning the behaviours of
F(n) when the environment is random.

Theorem 1.1. Assuming1.2) ando > 0,

limsu Fin) __8 a.s
n_>oop(logn)2Iog loglogn ~— 7202”7

Theorem 1.2. Assumé&1.2) ando > 0. For any non-decreasing sequenge> 1,

liminf ——* ) F(n) = {OO, as. < anogan {ZOO

n— 00 (| an logn
In particular, almost surely
logl a i
fimint 1991997)% ) _ [0 i a<2,
n—oo  (logn)2 oo otherwise.

Remark 1.3.Theorem 1.1 is not deep. It merely confirms that in random environ-

mentF (n) satisfies again the same LIL (see Section 6 for the exact statement) as
the random walk, which is easily guessed in view of the corresponding result (i.e.
Theorem A) for the Bernoulli walk. Theorem 1.2 tells thf&t:) is also transient in
random environment. Usually, the presence of the random environment consider-
ably complicates the situation, and the results obtained are often less complete than
those for the Bernoulliwalk. The problem of the escape rates of the most visited site
is theonly example we are aware of so far, which is solved in random environment
but remains open for the Bernoulli walk.

The rest of the paper is as follows. In Section 2, we study some properties of
the location of the minimum of one-dimensional Brownian motion. Section 3 is
devoted to introduction of a continuous-time model in random environment. Some
preliminary estimates are presented in Section 4, which will be used in Section 5
to prove Theorem 1.2. The proof of Theorem 1.1 is provided in Section 6. Finally,
in Section 7, we give the corresponding results for a class of recurrent diffusion
processes with random potentials, including the example of Brox’s diffusion with
Brownian potential.

Throughout the paper, we write indifferent®(z) and Z, for any stochastic
processZ. Since we only deal with (possibly random) indiogs:, ¢, ... which
ultimately go to infinity, our statements, sometimes without further mention, are to
be understood for the situation when the appropriate index is sufficiently large. The
usual symboki(x) ~ b(x) (x — xp) denotes lim_.,a(x)/b(x) = 1. We also
adopt the abbreviation “i.0.” for “infinitely often” (when the relevant index goes to
infinity).

Unimportant finite positive constants will be denotedcpyl < i < 29).
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2. Brownian motion

Let {W(¢); t > 0} be one-dimensional Brownian motion, witi(0) = 0. Define
the processes of first hitting times faéf: for » > 0,

H, def inf{t >0: W@ > r} , (2.1)
o, % inf{z >0 W) < —r} . (2.2)
Consider
def. i .
8L Inf{t >0 W= inf W(s)}, r>0, (2.3)

which is the (first) location of the minimum &% over [0, H,].

Lemma 2.1. Let0 < 6 < 2(v—1). Almost surely for all large and allr € [0, H,],
2
-

|t_,3r|Z(|Og—r)9

,
W) > inf W .

= ® = O<s<H, (8 + (logr)¥

Roughly, the lemma says that asymptotically, Brownian motion can realize a value

which is close to its minimum only in a neighbourhood of the location of the

minimum. This is intuitively clear. The proof is based on the following well-known

path decomposition theorem, see Revuz and Yor [31, Proposition VI1.3.13]:

Fact 2.2. For anyr > 0, the variable|info<,<y, W(s)| has densityr(x + r)~?
1(,-0y. Moreover, giveninfo<s<g, W(s)| =x > 0,

{r—W(t); 05;5,3,} and {r—W(H,—t); OSISHr—ﬂr}

are independent three-dimensional Bessel processes, the first starting mch
killed when hittingx + r for the first time, the second starting frddrand killed
when hittingx + r.

Proof of Lemma 2.1.Fix u > 0 andv > 0, whose values will be chosen later. For
r > u, define

Eyo(r) ™ W) < inf W(s)+u},

<s<H,

{ O<t<H,. |i—f,|zv

(inf g 00). By conditioning on inf<;<u, W(s) = —x, and using Fact 2.2,

rdx

o0
P(Eun(r)) = /0 loa x 124

with
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l(2.4) def [P’,( sup R#t)>r+x—u, t(r+x) >v),
O<t<t(r+x)—v

Il 2.4 def P()( sup Rt)>r4+x—u, t(r +x) > v) ,

O<t=<t(r+x)—v

where{R(¢); t > 0} is a three-dimensional Bessel process,) d=efinf{t > 0:
R(r) > s}, andP, denotes the probability under whighstarts froms (s > 0).
By the strong Markov property,

124y =Prix—u (t(r +x) > v) = Pr+x_u(osup R <r +x> .
<t<v

UnderP,,_,, the Bessel proced® can be written as
R = (r+ >+Boy+/afi
=r+x—u ,
o R(s)
whereB is standard Brownian motion. Therefore,

l24 < P( sup B(t) < u) <L

O<t<v ﬁ
Since |2.4) < 1, in view of (2.4), we have
M@umsfifmwmw. (2.5)

Now fix 0 < 8 < 2(v — 1) andk > 1. Letr, defen (for all n > 1). We choose

u % 1/(0gr)?, v d=efr,f/(log re41)?, and define
Ak) définf{r > we EL,,v(r)} .

Clearly Hp ) is an(# ,),>o-stopping time, wheré# )~ is the natural filtration

of W. On{A(k) < oo}, we considerW(t)dzefW(t + Hawy) — A(k) (fort > 0)
which is Brownian motion independent &, ,, . Define

G Ol=6f[ W hits (rx+1 — i) before hitting(—rk)] .
Observe that

(I < AW = ng N Gen{int W) < —u}) € Euo(risn) -

<s< T
which implies

P(Eua(isn) = P(rk < A = 7)) P(Hyy 1o, < Hop)
—IP( inf W(s)z—u)

0<s<H,,

= P(rk < Ah) < rk+1) LI .
k41 U+ Tk

u
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SinceP(A (k) = ry) = P(E,.» (1)), it follows from (2.5) that

P(Ewor) + 7 (P(Euu(irn) +

Tk +rks1 U U k41
- Tk St

which yields) ", P(rx < A(k) < ri+1) < oo. Lemma 2.1 is proved by an appli-
cation of the Borel-Cantelli lemma. O

IA

P(rk <Ak = rk+1) u JL: Vk>

Lemma 2.3. Let 81 be as in(2.3),

P(,Bl < A) ~ \/iz r— 0T . (2.6)

As a consequence, for dl< A < 1,
v < P(,Bl < A) <cavh .

Proof. We again apply the path decomposition theorem in Fact 2.2, to see the
Laplace transform oB;: for all u > O,

B > 7(1+x) dx

E(e™“P1) = Eq(e"F ,

) = [ Ee) o

where, as beforeR denotes a three-dimensional Bessel process, starting from 1

underP; (E; standing for the associated expectation), afld+ x) d=9finf{t >0:
R(t) > 1+ x}. According to Kent [22],

(1+ x) sinhv/2u

E —ut(14+x) — i
1 ) Sinh((L+ x)v/21 )

which implies
[E(e_”ﬁl) = /OO Sinh 2u dy ~ 1 ,
V2 ysinhy V2u

This yields (2.6) by means of a Tauberian theorem, see for example Feller [12, p.
445]. O

u—> oo .

Define, forr > 0,

U, % it W(s)‘—l—r, 2.7)

0<s<H,
which is the range oW over [0, H,]. Let{U,; r > 0} be a process having the same
law as{U,; r > 0}, independent of W (s); s > 0}. Define,
Ur ©'max(u,. U,), r>0. 2.8)

Lemma 2.4. For any® > 1, there exist positive constants ¢4 andcs, depending
ong, such that forall0 < ¢ < 1/2,
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1

P(p1 < e(U)?) = s log(5) - (2.9)

P(Br<elU2 U1 <e Y3, U1 <2)>carfe Iog(;—l) . (2.10)
1

P(By < e(U)?) = cs /e Iog(E) . (2.11)

Proof. We only have to treat the case wheis sufficiently small. Writez v b for
max(a, b). By independence and scaling,

(BL. Ug) = (B1. Up v Us) 2 (B1. Up v 6T71)

where “2'” stands for identity in law. Let/ andU denote two independent copies
of the procesd/, and independent dW (s); 0 < s < Hi}, then by the strong
Markov and scaling properties,

law

(B1,U7) = (B, (U1 +6 — 1) Vv (Up—1) v 001)

law

= (B U1 +60-DVv©O-1)U1vo0) ,

which, in view of the relatior/1 + 6 — 1 < 0Uj, implies that

E

P(Br<e)?) = P(32 < UiV Oiv T)

0

=l

< 2P<t9 < Ul\’ﬁ;).

&

Observe that the probability expression o

5

the right hand side is

N 1 L
. _ 1 \ip T 2
< (Ul v U > N Iog(l/s)> + <,31 < log(1/¢)’ Ui > )

N 1
+P<m <2401 U1 < e 8|Og(l/8)> .

The first probability term is easy to estimate. Indeed, sih@é; > x) = 1/x for
all x > 1, we have,

[P’(Ul\/ﬁ1>x)§2ﬂj’(U1>x)§E, x>1.
X

To estimate the second probability expression, notelihat 1 —info<;<g, W(s),
which implies, for all O< u < 1,

P(Br <u, Up>2) < [P’(— inf W(s) > 1) < exp(—%) . (212

O<s<u

Finally, thanks to the independencegfand Uy, we have, by conditioning ofiy
and using Lemma 2.3, forall @ u < 1 andv > 2 such that«(2 + v) < 1,
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P(VBr = u@+ 00, 01 <) < c2F[ u@+ ULz

v dx
:czu/ (2+x)—2
1 X

<cgulogv .

Assembling these pieces and we obtain:

P(B1 < e(U})?) < 46 /elog(1/e) +2f+C7rog< )

which readily yields (2.9).
To check (2.10), observe that the probability term on the left hand side of (2.10)
is greater than (or equal to)

[P’(ﬂj_ < 8[712, ﬁl < 871/3) — P(ﬂl < 81/3, Uy > 2) ,

which, by means of Lemma 2.3 and (2.12) (and recalling B@f; > x) = 1/x
forx > 1),is

> c1 E[ VeUrly, -3 }] - ex%_fll/?’)

> cg/e Iog(%) - exp(—Tll/g) ,
proving (2.10).

We actually have already proved (2.11), implicitly. Indeed, by independence
and scaling,

Yy~ 0
P(Bs < e(UD?) > P(,Bg <el2, Uy < ﬁ>

Y~ 8
-2 2
:P(,B1<9 U2, U1<$),

which leads to (2.11) again by conditioning b and using Lemma 2.3. O
Lemma 2.5. Fix0 > 1. Let f > 1 be a non-decreasing function, and let

def [°°log f(r)
7HE f L

() If #(f) < o0, then

Br
I|m |nf r) =00, a.s. 2.13
10 Gy (2.13)
(iiy If Z(f) = oo, then along the subsequence ry, d=ef9",
iminf £ 22— 0, as. (2.14)
n—00 ( )2

Remarks 2.6. SinceU;j, > 6r, animmediate consequence of (2.13) is that, almost
surely for all larger,
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r2

Pr= logry -

Proof of Lemma 2.5.Let f > 1 be non-decreasing, amgidéf@". It is easily seen

that
J(f) <00 = ;mgf%<oo

To prove (2.13), let us assumé(f) < oo, which implies thatf goes to infinity.
Fix » > 0 and consider the events

EnE 10 B < 2 WUy}

for sufficiently largen, sayn > ng. (For typesetting reason, we have writign)
andr(n + 1) for r, andr, 1 respectively). It follows from (2.9) that for > ny,

A f(rn)
P(En)SCS‘/f(rn) log T

which, according to (2.15), is summable forApplying the Borel-Cantelli lemma
and using monotonicity, we obtain:

(2.15)

Br
I|m |nf (r) > A,
! (Ug.)?
This yields (2.13) by sending to infinity.

It remains to show (2.14). Suppose that the integral in (2.15) diverges. In view
of the form of the test, we can assume, without loss of generality, that (for all
larger),

logr < f(r) < (logr)® . (2.16)
(This is well-known, and can be checked by a deterministic argument, see for
example Caki [6]). Fix A > 0, and define

E, def [ S @) ﬂr(n+l) <A Ur(n)}
'/ f ()

def
G, =1Um <
[T 10g £ (r)

D, ¥ E NG,

r(n+1) 2rn+1}7

By independence, scaling and (2.10), forralk ng,

2
B(D,) = P( £ pr < S 02 0y < XL gy < 9)

] log f(”n)7
> P(f(r,,)ﬂl <207202, U < (E)‘m, Uy < 2)
N | S(rn) a
> g 29SUW) (2.17)

N frn)
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This implies) , P(D,) = oo. In order to apply the Borel-Cantelli lemma, we
have to estimate the second mome«D; N D;), for j > i. RecallH from (2.1),
and define o

WO S W+ Hegn) —rigss 120,

which is Brownian motion independent &, .., . We can defindf andg for W,
exactly in the same way d$ andg are forw.

There are three possible situations:

i+

Case 18,(j+1) < Hr(i+1),
Case 28,(j+1) > Hri+1, j—i <3(logi)/logé,
Case 38,(j+1) > Hri+1. J—i > 3(logi)/logh .

Case 1 is equivalent to

inf W(t) > —=Urit1) -

O0<t<Hy(j+1)—r(i+1)

SinceD; C {Uyi+1) < 2ri+1}, we have

[P’(Dl», D;, Casel) < P(Di, _inf W(r) > —2r,-+1)
O<t=Hp(j+1)-ri+D
— P(D;) p( inf W) > —2r,»+1)
O0<t<H;(j+1)-r(i+1)
2 .
Tj+1+Tit1

<207V P(Dy) ,

which gives

> P(Di, Dj, Casel <cioy P(Di) . (2.18)

no<i<j<n i=ng

In Cases 2 and 3,
Brij+» = Hri+1) + Br(j+D—ri+D) - (2.19)

Observing thaD; C {B.(j+1) < Ar]?/(log f(r;))?}, and recalling (2.16),

. )»rjz
[l:D(Div Dj, Casea = [F"(D,-, Brj+1—ri+1) < W)

Arjz
= P(D;) P(ﬁr(j+1)—r(i+1) < W)

P(D;) P s
< . . . —_— .
< P(Dp) (IBr(J-i-l)—f(H‘l) = (log Iogrj)z)

Sincer(j +1) —r(i +1) = (6 — 1) r;, we have, by means of Lemma 2.3,

a1 _ c12
loglogr; ~ logj

P(Di, Dj, Casea < P(D;) P(D;) .
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Therefore,
n
> P(Di. Dj. Cased <ci3y_ P(Di) . (2.20)
no<i<j<n i=ng

To treat Case 3, we first make a general observation:
Ur(jy = maxX(rj = ri + Urys Zr(jy—r))

whereZ,(]) —r(iy is distributed asU;(j)—r (), mdependent ofw(); + > 0} and
U, i) Since by (2.16)D; C {Ur(,) < ri(logry)?}, and since; (logr;)? < rj—r
in Case 3, we have, ob; (and in Case 3),

ﬁr(j) <rj—ri+ ri(logr;)? + Zr(j)—r(i)
< 2rj =)+ Zr()—ri)
= 3Zr(j)-r) -

In light of (2.19), this leads to:

- 9z2 . .
P(D,‘, Dj, Case?) < P(Di, Brijst)—risn) < r(j)— r(t))
‘ f(r])
90?2
— P(D; p( o r(j)— r(,>)
(D) P Brij+v—ra+n) < ey

9(}"1' — V,')Z ~5
=P(D;) P(p1 < :
(s (rjs1—risD2f (1)) )

In Case 3(r; —r;)/(rj+1 — ri+1) < c14. By (2.9),for 0< ¢ < 1/2,

- 1
P(BL<c¢ U12) <P(BL<c¢ (Uf)z) < csﬁlog(g) .
Therefore,
log f(r))
NI

P(Di, Dj, Case 3 < c1sP(D;)

which, in view of (2.17), yields

Y P(D;, D;. Cased < 616( Xn: [P’(D,-))Z : (2.21)

no<i<j<n i=ng

Since)_, P(D,) = oo, combining (2.18), (2.20) and (2.21) together with Kochen
and Stone’s Borel-Cantelli lemma ([26]) giv&%lim sup, D,) > 0. A fortiori,
with positive probability,

I|m |nf fr) —=

The above clearly is a tail event, which, by means of a 0-1 argument (and by
ultimately sending. to 0"), completes the proof of (2.14). O
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3. Diffusions with random potentials

Let{V(¢); t = 0} and{V (—t); r > 0} be adapted and locally bounded processes
with V(0) = 0, independent of the standard Brownian mot{@z); + > 0}.
Consider the process defined byX (0) = 0 and

dX (t) = dB(t) — ; V(X)) dr . (3.1)

We call X diffusion with random potential V.

However, we even do not assurifeto be continuous. Therefore, instead of
writing the formal derivative o¥ in (3.1), we really should regard as a diffusion
process whose generator is

Lo g )

A more convenient way in the study &f is to use diffusion theory to arrive at the
following representation (see Brox [3]):

X(t)=A“(B(T<®)), t>0. (3.2)

Here, B is standard Brownian motion independen{ Bf(x); x € R},

A(x) ":ef/ eMdy, xeR, (3.3)
0

T(r) dzef/rexp[ —2V(A“(B(s)))]ds, r>0, (3.4)
0

andA< andT < denote the respective inverse functionsAodndT. (Of course,
we have to assume that almost surélt-co) = +oco andT (co) = oo, which will
be satisfied by the examples Bfconsidered in the paper). We point out tlais
the scale function oX.

Let{Lp(t, x); t = 0, x € R} denote the jointly continuous local time process
of B. For any bounded Borel functiofy, by (3.2),

t

/Otf(X(S))dS :/o FAT(B(T™ () ds
= /OTW) FA(Bu))) exp(—2V (A (B(u)))) du
= _Z FAT () exp(—2V (A~ (y))) La(T (1), y) dy
:[Z f) eV Lg(T (1), A(x)) dx .

Consequently,

Lx(t.x)EeV® Lg(T=@). Ax)), 1>0, xeR , (3.5)

is the local time process .
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The reason for whiclX interests us is that if the random potential is carefully
chosen, therX behaves very much like Sinai's RWRE. Here is a brief description
of the choice of this particular random potential (the main idea goes back at least
to Schumacher [32]): giveB = {£;};c7 a random environment satisfying (1.2),
and recalling;; ando from (1.2)—(1.3) (withr > 0), there exists a unigue choice
of (random) step functiofV (x); x € R} with V(0) = 0, which is flat on each
interval [n, n + 1), with jumpsV (n) — V(n—) = n, (for n € Z). More precisely,

N+ -+ 0k, if x € [k, k+ 1) fork e 7%,
v %o, if x € [0, 1), (3.6)
—(mo+n-1+---+m+1), ifxelkk+1)forkez*.

For this choice o, we can define a diffusion proce&svia (3.2). It can be seen
thatX is recurrent. Defingg dzefo and

def.
o Einffe > 10 1XO = X0l =1}, n=12... @7

It is now possible to comparky with local time of Sinai's RWRE. The following
is borrowed from [16, (4.12)—(4.13) and Fact 4.3].

Fact 3.1. Let E satisfy(1.2), witho > 0. In a rich probability space, there exists
a coupling for RWRES, },>0 in random environmenE and diffusion process
{X (¢); t > 0} whose random potential is defined(8y6), such that with probability

one,

1
lim supsu su Lx(s,k)—2& L(n, k)| <29, (3.8
n—>00pkeZp 1 + L(l’l, k) lOgn MnSSS,BrH»l | X sk | ( )

whereL and Ly are the local times of,, and X respectively. Moreover,

im X2 —1  as. (3.9)

n—-oo n

Our approach essentially goes like this: instead of directly handlighocal time of
RWRE), we shall be working ohx (local time of diffusion with random potential),

by exploiting the representation (3.5). Thanks to Fact 3.1, this is sufficient for our
needs, at the cost of an extra precision of oldeymax.cz L(n, k) logn).

4. Partial sum potential and Brownian movement

This section is devoted to the study of two subjects: (i) partial sum poteritigi)
Brownian motionB which drives the movement of our diffusidh(see Section 3).
For the sake of clarity, they are discussed in distinct subsections.
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4.1. Partial sum potential

Let E = {&;}jez be an iid sequence of variables satisfying (1.2), and) Jet=
log((1 — £&;)/£;) (see (1.1)). Therefore, there exists a finite consknt 0 such
that for allj € Z,

njl <K . (4.1)

We assume > 0 (see (1.3)), to ensure the randomness of the environment.
Let{V(x); x € R} denote the partial sum potential introduced in (3.6). Accord-

ing to the classical Kondls—Major-Tusady strong approximation theorem ([27]),

possibly in an enlarged probability space, there exists a standard two-sided Brow-

nian motion{W (x); x € R} and finite constants;7 > 0 andc1g > 0 (depending

on the distribution ofjg) such that for alk > 1,

P( sup [V(x) —oW@)| > c17 Iogt) < % . (4.2)

—1<x<t

We first recall a well-known estimate for the modulus of continuityigfwhich
is a particular case of Lemma 1.1.1 ofdegd and Revész [8, p. 24] (taking = 1,
h = 1/r* andv = logr in their notation).

Fact 4.1. There exists a universal constan such that for any > 1,

logr 4 (logr)?
P sup (W) — W(s)| > — ) <cigr-expl — .
O<s<r<1, r—s<1/r r2 ) p( 3 )
RecallH, from (2.1), and define
def . . I
B = mf{t >0: W@ = 0§|Sn§er W(s)} , (4.3)
8 4
or Einfle > 0: Wy~ inf W) < st ato logr} . 4.4)
0<s<H, o

v, & sup{t < H W@ - inf W) <

<s<H,

8c17+4+0o
- = Iogr} )
o

(4.5)

Observe thai,, B, andy, are well-defined for alt > rq (so thatr > (8c17+ 4+
o)o~tlogr), and that (4.3) is nothing else but (2.3).

We point out that, despite some ressemblance, our triplets,, y,) is not
a “valley” in the sense of Sinai [35] and Tanaka [37]. The reason for which we
are interested i, , By, ) is that the favourite site of the diffusion process
with random potentialV/, at some suitably chosen random times, lies eventually in
[er, vr] (see Lemma 5.1 in Section 5).

Lemma 4.2. Let A be asin(3.3). Forall r > rg,

c20 Iogr

P(r*AGy) > A(H,)) < (4.6)
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Proof. Define

8 8
Eq dzef{ sup W(s) <r— Zurt+o+o Iogr},
o

0<s<y,
E> def { sup |V(s) —aW(s)| < 4c17|Ogr},
O<s<r4

Egdzef{1<H,<r4} ,

whereci7 is the absolute constant in (4.2). By the definitionsdofind ., on
EoN E3,

Ayy) < exp(cr sup W(s) +4617|097))/r

OSSSVr

§r4exp(o sup W(s)+4c17logr) )

OSSSVr
Therefore, orE1 N Eo N E3,
A(yr) < r4eXp(0r — (0 +4c17+8) |Ogr) )

On the other hand, o> N E3,
H,
A(H,) > / e’® ds
H.—1

> exp(or —derzlogr —o sup W) — W(s)l) .

O<s<t<r4 t—s<1

Consequently, by writing e for the probability term on the left hand side of (4.6),

3
lae) < P( sup W) — W) > |ogr) +3 P(ED)

O<s<t<r4, r—s<1 i=1

| 3
— um( sup W () — Ws)| > %) +3 PE) . (47)

O<s<r<1, t—s<1/r* i—1

The first probability term on the right hand side is estimated in Fact 4.1. We have
to boundP(E;) for 1 < i < 3. According to (4.2),

ey _ C18
P(E5) < 5 (4.8)

By the usual estimates for Gaussian tails,

2
P(ES) = P(H, < 1)+ P(H, = ') <exp(-5 ) + % . (a9

Finally, to estimate®(EY), let G(r) d=efsup{t < H, : W(t) = 0}. Observe that

8c17+ 8
P(ES) < Py, > G(r) + P(O sup V(s)>r— % Iogr) .
<s<G(r)
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According to Williams'’s path decomposition theorem ([38]), §uR () W (s)

is uniformly distributed in(0, ). This confirms that the second probability term
on the right hand equals 1(8c17 + 8 + o)o ~tlogr. Since{y, > G(r)} means
W(t) > —(8c17+4+0)oLlogr forall 0 < ¢ < H,, it follows that

8 4 -1 8 8 |
P(ES) < (8c17+4+0)o " logr c17+8+0 logr (4.10)
r+ (8ci7+4+o0)ollogr o r
Assembling (4.7)—(4.10) and using Fact 4.1 yields the lemma. O

4.2. Brownian movement

Let B be standard one-dimensional Brownian motion, whose jointly continuous
local time process is denoted by (¢, x); t > 0, x € R}. Forr > 0, define

o) Eint{t > 0: Bwy > r} . (4.11)

The following is the classical Ray—Knight theorem, see Ray [29], Knight [25] or
Revuz and Yor [31, Theorem XI.2.2].

Fact4.3. Forr > 0, {Lg(o(r),r —x); 0 < x < r}isasquared Bessel process of
dimensior?, starting from0O.

Lemma 4.4. Write

Lp(t, [Ri+)d=efsupLB(t,x), t>0. (4.12)

x>0
Forall v > u > 0andx > 2,

IP( sup sup Lp(. Ry) > A) < cgllo%)‘(lJrlogE) . (4.13)
u

o <r=o() 0<x<u/2 LB, X)

Proof. Let N = N(u, v) be the integer part oflog(v/u))/log 2, and let {413
denote the probability expression on the left hand side of (4.13), then

N
lay = Y P( sup sup LELED %)

20 e@uwy<r<o@+luy o<x<u/nz LB X)

_ al P( Lp(t, Ry) >x)

sup sup
k=0 0M=r=0(2) 0=x<27k/x2 Lp(t, x)

Lp(t, R
< (N+1)[P’< sup sup M>A>
o(=r=0(2 o<x<r-2 LB X)

= W +DP(Ls(e@,Rs) > 6logh)

. 6logx
+(N+1)P(0 inf | La(e(D).x) < kg )
<Xx<A"

def
= (N+ D@1y + N+ D1, (4.14)
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with obvious notation. Le{%i(¢); 0 < r < 1} denote a 2-dimensional Bessel
process withi(0) = 0. According to Fact 4.3 and the scaling property,

l 414 = P(Oigflm(r) > ,/3|ogx> < % : (4.15)

the last inequality following from the usual Gaussian tail estimatePI@EyR -, <1
N(r) > x) ~ —x?/2 (asx goes to infinity).
To estimate |4.14), Observe that, by Fact 4.3,

\/W>

||(4.14)=u3>( inf  9%() <

1-12<r<1 \/X
N V1oga X X V9ioga
< P(Sh(l) < >+P(li)\§l2.l§t§1|ﬂl(l) SRR ) .

The random variablgt?(1) being exponential, with mean 2, its density function is
bounded above by/2. Therefore for any > 0,

2
POI(L) < y) < % .

On the other hand, sincg can be realized as the Euclidean modulus off&n
valued Brownian motion, say¥1, W), by triangular inequality and time reversal,
foranyy > 0,

2,2
’ y YA
P sup IRQ)-NR@)|>y)<2P| sup |[Wi(s)|>—=)<dexp———) .
(1—)\*25151 ) (ngg)rZ \/E) F( 4 )
Consequently,
log A Aloga
l414) < 7 +4EX[<— 2 ) .

Combining this with (4.15) and (4.14) yields the lemma. O

5. Proof of Theorem 1.2

Let E = {£;} ez be iid random variables satisfying (1.2) (with> 0), and letV
be the partial sum process defined by (3.6). We are interested(iin; + > 0}, the
diffusion process with partial sum potenti@| driven by the Brownian motio
(see (3.2) for definition).

Let {W(x); x € R} be the Kombs—Major—Tusady two-sided Brownian mo-
tion satisfying (4.2), independent 8f RecallA andT from (3.3)—(3.4). For nota-
tional simplification, we write

def
O@r)=T(e(A(Hr)), r=>0, (5.1)
wherep and H are as in (4.11) and (2.1) respectively. The following lemma con-
firms that, the favourite site of, at time®(r), eventually lies in¢,, y,], where
(ar, Br, yr) is defined via (4.3)—(4.5).
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Lemma5.1. Let Ly denote the local time of asin(3.5). Forall s > r > rg,

Lx(t, k) 1 slogr
P su max ——— > <) <c , 5.2
<(~)(r)§t§p(~)(s) o<k<a, Lx, [Br] rz) =82 2
Lx(®©(r), k) 1 logr
P _— > — .
(z@ayf( Lx©0), B ) e (5.3)

where[ 8] stands for the integer part ¢, .

Proof. Let
E; def { sup |[V(s) —aoW(s)| < 4617|09r},
O<s<r4
Es® (1< H, <),
E, % sup (WD~ W)l <logr] ,

O<s<r<r4, t—s<1

wherecy7isthe constantin (4.2). By (3.5), diyNE3NEg, forall®(r) <t < O(s)
and 0< k < «y,

Lx(K) _ ww-vasy LsT_©, AK)
Lx(t,[BD Lg(T™ (1), A(BD)
< Ber710gr oo (WER) =W (p,)+o logr Lp(T (1), A(k))
- _Lp(T™ (1), A(BD)
Lp(T (1), A(k))
Lp(T™ (1), A[B])
1 Lp(T (), Ry)
r4 Lp(T™ (1), A(B/])
whereLp (-, Ry) is defined in (4.12). We have used the definitiowp{see (4.4))
in (5.4).
(Let)l(s,z) denote the probability term on the left hand side of (5.2). Sinee
T (¢) is continuous, with" ~ (©(v)) = o(A(H,)), we arrive at (noting thaf,] <

Yr):

< e8c17 logr e—(8617+4) logr

(5.4)

=

4

Lp(u, Ry) 2
I52) < (E-C)+[P’( sup —>r)
oo ; l oAt <uso(AHy) L, A(BD)

4
< Y ED+P(r*Aw) > AH))
i=2
+IP( sup sup L@, Re) r2> )

0(A(H,) <u=o(A(Hy)) 0<x<A(H,)/r* LB, X)
We can apply Lemmas 4.2 and 4.4 respectively to the last two probability expres-
sions on the right hand side, to see that

4

l52 < Y (E))+c
i=2

logr 2logr
+ca1——>
r r

A(HS)> '

<1+ Elog A
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Sincek log A(H,) > 0 for larger, and sinceA (Hy) < €' Hy, we have
A(H;)
A(Hy)
the last inequality following from the scaling property. Consequently,

Elog <s+ElogH; <coss ,

4
c slogr
52 < ;(E,») +c26 2
This, jointly considered with (4.8), (4.9) and Fact 4.1, yields (5.2).
The proof of (5.3) is along the same lines, using the facthad — W (58,) >
(8¢c17+4+0)otlogr forally, <t < H, (as forall 0< 1 < «,). O

Now letus look at the supremum &f By (3.2) and the occupation time formula,
foranyr > 0 andv > 0,

{ sup X (s) > v} = {/OQ(A(U)) exp(—2V(A(_(B(s)))) ds < t}

O<s<t

A(v) -
= e O Laaw). dy <]
—00
v
- {/ VO Ly (AW, Ak < 1] |
—00
using a change of variable= A(z). Writing

| 5.5(v) = /0 e VO Lp(0(AW)), A(s)) ds,

I 55 (v) & /0 e VI Ly(0(A)), A(—s))ds | (5.5)
we have,
SUp X(s) > v} = {|(545)(v) FlssW) < t] . (5.6)
<s<t

For brevity, we write

W) % sup wes) | (5.7)
O<s<t

W €' sup (W) — W), 1>0. (5.8)
O<u<v<r

Define, forr > 0,
H~ d=Efinf{t >0: W(-t) > r} ,
which is the first hitting time atr, co) by {W(—t); ¢t > 0}. Let
U E| inf w(—s) ‘ 4. (5.9)
O<s<H,”

The following estimate can be found in [17, Lemmas 4.1 and 4.2].
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Fact 5.2. Under (1.2) with o > 0, for all sufficiently largev, we can find a
measurable evenk (v), with P(E(v)) > 1 — exp(—(logv)*¥2), such that on

E@) N{W(v) = 2(logv)*},
oW (v) — (logv)* < loglss) (v) < oW () + (logv)*,
cU™ (W) — (logv)?) < loglss(v) < oU™ (W() + (logv)?) .
Lemma 5.3. Assumg1.2) ando > 0. Almost surely for all large,

o W#(v) — (logv)® < loglss) (v) < o W (v) + (logv)® (5.10)
oU™ (W) — (logv)®) < loglss) (v) < oU™ (W) + (logv)®) . (5.11)

Proof. Apply Fact5.2 and the Borel-Cantellilemma (noting thaw) > 2(logv)*
is almost surely realized for all largg, to see that for all large integer
oW¥(n) — (logn)* < loglss)(n) < o W) + (logn)” .
Letv € [n, n + 1). By monotonicity,
log (55 (v) > 10g l(5.5(7) > o W*(n) — (logn)* .
It is well-known (see G&rgd and Revesz [8, p. 31]) that

limsup (2logn) 2 max sup |[W(k+s)—Wk)| =1 as.

n—oo O<k<n 0O<s<l1
Therefore, for large < [n, n + 1), W#(v) — W#(n) < (3logn)Y/?, which implies
log 5 (v) > o W#(v) — o (3logn)¥2 — (logn)* > o W¥(v) — (logv)® .

This yields the lower bound in (5.10). The rest of the lemma can be proved exactly
in the same way. O

Proof of Theorem 1.2.Recall H, and U, from (2.1) and (2.7) respectively. By
definition, W#(H,) = U,. SinceU, — U, > b —a forall b > a > 0, by the first
part of Lemma 5.3, almost surely for all large

oUy2 <loglss (Hy) <oUs . (5.12)
On the other handy (H,) = r, which, in view of (5.11), yields that for large
crUr‘/2 <loglss (H) <oU,, . (5.13)
By the occupation time formula and (5.6),
l5.5 @) + 1550 =T(EAW))) , (5.14)
which, in view of (5.1), implies

55 (H,) + l55(H)=0() .
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Using maxa,b) < a + b < 2maxa, b) (for positivea andb), and in light of
(5.12)—(5.13), we arrive at: almost surely for all large

o max(U,/2, U, },) <log®(r) < o max(Us, Us,) - (5.15)
Another observation is that by Lemma 2.1, for all large
2 2

Ve =Bl = Gogryt (5.16)

lay — Br| < (|Og—r)4’

Letu; d:esz forall j > 1. Applying Lemma 5.1 te = u; ands = u;,1, and by
virtue of the Borel-Cantelli lemma, we have, almost surely for all Igrge

max Lx(t, k) < o 2Lx(t, Zy), tel®w;),0w;yv] ., (5.17)

O<k=<a(uj)

max Lx(©(u;), k) <u_2LX(®(u,) 74 . (5.18)
>y u/

where Lx (¢, ZJr)d:efsugceZ+ Lx(t, x). Let {un}n>0 be the sequence defined in
(3.7). Forlarge:, there exists aunique= j (n, ) suchthag, € [©(u;), © (1 11)).
By (3.8),

max 2&L(n,k) <30/1+ L(n,7Z4) Iogn+ max LX(,un,k)
O<k=<a(uj) <a(uj
<301+ Ln. Zy) Iogn+uj 2Lx(un,z+) :

the second inequality following from (5.17), with the notatiofx, 7)) d:efsugcez+
L(n, x). Applying (3.8) once more to see that the above is smaller than (noting that

& <1)
60,/1+ L(n, Z) logn + zu;zL(n, 7)) .

Itis known (see Rvesz [30, p. 292]) that

log|l 2
lim (loglogn)® logL(n,Z4) =00, a.s. (5.19)
n—>00 logn
By (1.2),&; is bounded below by a positive constant, this yields

max L, k) <Ln,Zy) , (5.20)

O<k<a(uj)
i.e.foru, € [Ou;), Oujt1)),

F(n) > a(u;) .
Therefore, by (3.9),

F(n) >1 o(uj)
(logn)? 2(Iogun)2

o(uj)
(log®(u;;1))?

1
2
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According to (5.16) and (5.15), this yields

Buj) —u5/(logu)*
Uz(ma)((U3Mj+1’ U3_uj+1))
1 Buj)— u?/(logu;)"’
" 207 (max(Ua,, UL;”))2
1 Buj)

— , (5.21)
2 — \\2
30% (max(Ua;, U, )

F(n)
(logn)? ~

1
2 2

v

the last inequality following from Remark 2.6.
Leta, > 1beanon-decreasing sequence sucthhatoga,)/(n./a, logn) <
0o. Lete > 0, and define the function

def
g(r) = Edlexpor/3], >1.
Thenfoo(logg(r))/(r«/g(r) )dr < co. By Lemma 2.5, for all large,

B(r) _ 302
(max(Us,, U;))> ~ 80~

which, in view of (5.21), yields that, for all largewith p,, € [@(u;), ®(uj4+1)),

F(n) - 1
(logn)? = g(uj)

Since logu, > log®(u;) which, according to (5.15), is greater than; /2, it
follows from (3.9) that log: > ou /3. Therefore,

F _ 1 1
(logn)2 = g(3o~tlogn) ea,

This yields the convergent part of Theorem 1.2.
To prove the divergent part of the theorem, consider a non-decreasing sequence
a, > 1 such thaty_,(loga,)/(n./a, logn) = co. Lete > 0, and define the

function

def 3
h(r) =e g a[exp(32,2)], r = 1.

Then[oo(logh(r))/(r«/h(r) )dr = oo. Applying Lemma 2.5t@ = 4 yields that,
there are infinitely many: satisfying

ﬂ(2m+2) - 1
(max(Uan, Uy))? ~ h@™)

(5.22)

We are now working only with these satisfying (5.22). Leti = j(m) be such
thatu; e [2"+1, 2"+2). There exists a random index= n(m) such tha® (u;) €
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[ns n+1)- As in the proof of (5.20), using (5.18) instead of (5.17), we can see
that
max L(n,k) <Ln,Zy) .
k>y (uj)

Therefore, by (3.9),

F) _ y@) _, y@) ., y@)
(logn)2 = (logn)2 = ~(log a+1)? =~ (log®(u;))?
Applying (5.16), (5.15) and Remark 2.6 yields
Fm) _, Buy)
(|Ogn)2 - Gz(maX(qu/z, Ul;/z))z ’

which, according to (5.22), yields
Fn) - 3
(logn)2 = h(u;/4)

By (2.7) and the laws of the iterated logarithm (sea&%z [30, p. 53]), almost
surely for all larger,

(5.23)

U(r) < r + (3H, loglog H)Y? < r(logr)? , (5.24)

which, inlight of (5.15), implieslog (r) < r2.Since®(uj) > up,andu,/n — 1
(see (3.9)), this yields log < 2u§. Going back to (5.23), we have,

Fn) - 3 _ &
(logn)2 = h(2-Y2(logn)¥/2/4) ~ a, °

completing the proof of the divergent part of Theorem 1.2. O
6. Proof of Theorem 1.1

Throughout the sectiofs, },>0 denotes a simple RWRE, whose associated random
environmentE = {£;} ;<7 satisfies (1.2), see Section 1. leebe as in (1.3), with

o > 0. We first recall the following law of the iterated logarithm (see [17, Theorem
1.3]):

Fact 6.1. Under(1.2), if o > 0O,

. ma S 8
lim sup XOksn Ok _ . as.
nooo (logn)2logloglogn 7202

Let L(n, x) be the local time process of RWRE, withn) the favourite site up
to timen (see (1.5)). In view of the trivial relatioR (n) < maxy<k<» Sk, the upper
bound in Theorem 1.1 immediately follows from Fact 6.1.

To show the lower bound, we again make use of the diffusion model. From the
random environmenE = {&;};cz, we can define a partial sum procg35(x);
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x € R} via (3.6), and a diffusion proce$X (¢); + > 0} with potentialV, driven by
a Brownian motionB which is independent o, see (3.2).

Let {W(x); x € R} be the Kombs—Major—Tusady Brownian motion satisfy-
ing (4.2), independent aB. Let (A, T) be as in (3.3)—(3.4). Recall thatis the
first hitting time process associated withand thatl x is the local time ofX, see
(4.11) and (3.5) respectively. Fix> 0, and define, for large,

Es) €| sup  Ly(T(e(A@)).x) <} maxLy(Te(Aw)). v} (6.1)

O<x<(1-e)v

def (14-4e)o Ju
Es(v) Elog T @(aw) = BH5er —f] (62)
Assume for the moment that we could show
[P’(E5(v) N Es(v), i.o.) =1. (6.3)

Letw € Es(v). There existsaunique index= n(v, w) suchthaj, < T(o(A(v)))
< in+1, Where{ug}eso is the sequence defined in (3.7).

By (3.8) and (6.1) (writing agait.(n, Z) d=Efmaxxez+ L(n, x)),
max 2&L(n, k) <30/1+ L(n,Zy) logn +0 km(ri\x : Lyx(un, k)
<k<(l—g)v

O<k=<(1l—e)v
<30/1+L(n.Z4) logn + v Ly (tns1. Z4) .
Using (3.8) once more gives

max 26 L(n, k) <601+ L(n, Z4) logn +2v" L(n, Z) .

0<k<(1—e)v
In view of (5.19) and of the boundednesspfyuaranteed by (1.2), we would have

max L, k) <L(n,Zy) ,
ocimax (n,k) < L(n,Zy)

i.e. we would haveF (n) > (1— ¢)v. (These lines really are rewritings of the proof
leading to (5.20)).
By (3.9), onEg(v),
1+ 6e)om /v
J/8loglogy
Therefore, itv € E5(v)NEg(v), we would have, for the random index= n (v, w),

1-¢ 8 2
F(n) > m m (logn)“logloglogn ,

logn < (1+e&)logu, < (1+e)logT (0(A(v))) <

i.e. by assuming (6.3), we would obtain the the lower bound in Theorem 1.1.
The rest of this section is devoted to the proof of (6.3). For brevity, write

Wi, % sup W)= W), O<u<vw .

O0<x<u; x<y<v

Recall the definitions oW (1) and W¥(¢) from (5.7) and (5.8) respectively (thus
W#u) = W#(u, u)). The proof of (6.3) is based on the following two lemmas.
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Lemma 6.2. Assume(1.2) with o > 0. Fix ¢ € (0, 1). Almost surely for all
sufficiently largev,

log  sup Lx(T((A®@)). ) —aW (L= e)v,v)| = (ogv)® . (6.4)

O<x=<(1-¢)v

log max L (T (@A), ) — o W¥(w)| < logo)® . (6.5)

Proof of Lemma 6.2.Write |(6.4) and kg 5, respectively for the expressions on the
left hand side of (6.4) and (6.5). According to [17, Remark 6.2], foraay(0, 1),
there existgp7 > 0 such that for all large,

P(l64 > (Iogv)?) < c27 exp(—(logv)?),
P(les = (ogv)*) < c27 exp(—(logv)?) .

The lemma now follows from the Borel-Cantelli lemma and the monotonicity,
using the same argument as in the proof of Lemma 5.3. O

Lemma 6.3. Fix 0 < ¢ < 1/30. There exists a constantg > 0, depending om,
such that for alr > 0and0 < x < /¢,

[P’(W#((l— o)1) < (1—e)x: (1— %)x < WH) < x: W) < %)

1+ 5¢)72t
> cog €X _ﬂ).

8x?

Proof of Lemma 6.3.By scaling, it suffices to treat the case- 1. We clearly only
have to deal with smakl. Let

TOLWe+1-—6e)—Wad—¢), >0,

whichis again_a Brownian motion, independentdf(s); 0 <s < 1—¢}. We can
defineW* andW for W exactly in the same way a&* andW for W. Observe that

WH1L—¢, 1) = max W#(1—¢), W(e)+W(l—e) — it W),

W) =maxW(l—¢), W(e)+W(L—¢)) .
Therefore,
[P’(W 11— <A—-95)x; 1- §)x < W'D <x; WQ) < g)
> [P’(W#(l e < (1—28)x; W(l—g) < %;
1- g)x < W#(é‘) < X; W(s) < sx)
=P(W'a-e) < A-20)x; Wk-o) < %)
X [P’((l— %)x < W) <x; W(e) < sx) . (6.6)
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The joint law of(W#, W) at fixed time has been studied in [17]. In particular, for
fixedO0< a < 1ands > 0,

7T28‘

[P’(W#(s) <y, W(s) < ay) ~ ;Sin(n—za) exp(—s—)}é), y—0.

Applying this to both probability expressions on the right hand side of (6.6) (and
noting that(1 — €)(1 — 2¢) 2 < 1+ 4¢) yields the lemma. O

Proof of (6.3).Fix a smalle > 0. LetU~ be the process introduced in (5.9), and
define

def

Er) & WA= £ ) < W) — (logo)®s Wh) < EEET,

/8loglogv

U~ (W) + (logv)®) < W#(v)} .

It is an immediate consequence of (5.14), Lemmas 5.3 and 6.2 that almost surely
for all largev,

E7(v) C Es(v) N Eg(v) . (6.7)
Let

def .1+
v; = exp(j ),

x<d—ef (1+38)7T\/W
7 /8loglogy;
£
G(J)) def {W#((l—e)vj, vj) < (l-e)x;; (1- §)xj < W#(vj) < Xj;

— Xj X Xj
W(vj)<zj; U (3]) <EJ} .

SinceG(j) C E7(v;), andinview of (6.7), the proof of (6.3) is reduced to showing
the following:

P(G(j), io)=1. (6.8)

To this end, writeZ ; d=efo{W(s),O <s <vj; W=1,0 <r < x;/3}
Observe thaG (/) is # j—measurable. By (5.9),

UG =ma (U (e + T2 7)) (6.9)

whereZ; is a variable having the same distributionlas((x; — x;—1)/3), and is
independent o ;_, and{W (z); ¢ > 0}. Let

WO W@ +vj_1)—Wej_1), 120,



The problem of the most visited site in random environment 299

which is again a Brownian motion. We can defifleand W# in the obvious way.
Write A ; dzefvj —vj-1.Sincev;_1 < (1 —¢)v;, we have

WH(L— e)vj, vj) < max(W¥w;_1) + W(A), WH(L—e)vj —vj_1, A)))
< max(W¥(v;_1) + W), WHA-e)A,, Ap) .

and also . . —
W) <Wo_1) + W) .
In light of (6.9), this gives

G1(j)NG2(j) € G(j) »

where
N P Bl i . )
G1() E{Whn < h um e = L
., def [ ~ - X;
G2(j) = {W#((l—s)Aj,Aj) <(@A-e)xj; W(A) < g/;
& ~ X
(1—§)Xj<W#(Aj)<Xj; Zj<Ej} .

Observe thaG1(/) is # ;_1—measurable, and that bofhandZ; are independent
of # ;_1. Accordingly,

[P’(G(j) |97j—1) > 16,(j) P(G2()))
.
= 1G1(j) P(Zj < Ej> X |(5.10) , (6.10)
where
def — Xj
l610 = P(W#((l—e)Aj,Aj) <(@—e)xj: W(A) < g’
&
1Dy < WHA)) <xj) -

Applying Lemma 6.3 ta = A; andx = x; gives

| - B 1+ 5¢ vj—vj_ll | '
(6.10) = €28 €X 1+ 36)2 0 oglogv;
J
loglogv;
=emen(—1 )
_ 28
J

On the other hand?(U~(a) < b) = (b —a)/bforall0 < a < b, andZ; is
distributed ad€/~ ((x; — xj—1)/3). Therefore, (6.10) leads to:

P(G() | Fj—1) = caaj t16y(j) - (6.11)
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By the usual law of the iterated logarithm, almost surely for all lgrge

Ww;_1) < 2\/311]'_1'09 logv,_1 < % ,

whereas by (5.24) (noting th&t~ has the same law d$),

_oXjo1. Xj_1 2 Xj
U (jT) < ’T (logxj_1)° < El )

Consequentlylg, ;) = 1 almost surely for all largg. Going back to (6.11), we
have

Y P(G()|Fj1) =00, as.,
J
which, according to Bvy’s Borel-Cantelli lemma (see [34, p. 518]), implies (6.8).
This completes the proof of (6.3). O

7. Favourite sites of diffusions with random potentials

Our proofs of Theorems 1.1 and 1.2 clearly work directly for favourite sites of
diffusions with random potentials. LK (7); ¢+ > 0} be a diffusion process with
random potential/, as in (3.1)—(3.4). Its local timé x is defined in (3.5). As for
RWRE, we can define

Fx()E]x € Ry Lx(t,x) = sup Lx (v}
yeRy
and the favourite site

Fx(t) = max x .
xeFx (1)

The arguments in Sections 5 and 6 yield the following counterparts of Theorems
1.1 and 1.2 forX:

Theorem 7.1. If (4.2) is satisfied with some constant> 0, then

lim sup Fx (@) 8 a.s.

1—oo (l0gt)2logloglogt T 7202

Theorem 7.2. Under (4.2), for any non-decreasing functiofi > 1,

o (@) [0 © log f (1) = 00
Ilmlorgf(log—t)zFX(t)_{oo’ a.s. — / 770 loar ol dt{<(>O

Remark 7.3.In the particular case whexi is Brox’s diffusion process with Brow-
nian potential (i.e. whei¥ is Brownian motion), (4.2) trivially holds witlh = 1,
and hence Theorems 7.1 and 7.2 apply.
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