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The problem of the most visited site in random
environment
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Abstract. We prove that the process of the most visited site of Sinai’s simple random walk in
random environment is transient. The rate of escape is characterized via an integral criterion.
Our method also applies to a class of recurrent diffusion processes with random potentials.
It is interesting to note that the corresponding problem for the usual symmetric Bernoulli
walk or for Brownian motion remains open.

1. Introduction

The simple Random Walk in Random Environment (RWRE) is defined as follows:
let 4 = {ξj }j∈Z be a sequence of independent and identically distributed random

variables taking values in(0, 1). Define the RWRE{Sn}n≥0 by S0
def= 0 and for

n ≥ 1 andi ∈ Z,

P
[
Sn+1 = i+1

Sn = i, 4
]
= ξi, and P

[
Sn+1 = i−1

Sn = i, 4
]
= 1− ξi .

Note that4 and {Sn}n≥0 are both random underP, and that given4 (which is
called the “environment”),{Sn}n≥0 performs a nearest-neighbour random walk on
the line. For notational simplification, we write throughout the paper

ηj
def= log

(1− ξj

ξj

)
, j ∈ Z . (1.1)

The study of RWRE is motivated by modelisation of some random phenomena in
physics and biology (see Hughes [19]). For recent progress, see for example [1,
3–5, 7, 9–10, 13–18, 20–21, 23–24, 28, 32–33, 35–37, 39], as well as the book of
Révész [30].

We shall assume the following “usual” condition for the random environment:

η0 is bounded almost surely, withE(η0) = 0 , (1.2)
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and write
σ 2 def= E(η2

0) . (1.3)

It is worth noting that ifσ = 0, {Sn}n≥0 becomes the usual simple symmetric
random walk (Bernoulli walk). By a slight abuse of notation, we keep using the
terminology “RWRE” even in caseσ = 0.

According to a general recurrence/transience criterion of Solomon [36], under
(1.2), the random walk{Sn}n≥0 is recurrent, i.e. it visits any given point infinitely
often. An important result of Sinai [35] tells that if (1.2) holds, and ifσ > 0 (which
excludes the Bernoulli walk), thenSn/(logn)2 converges to a non-degenerate limit-
ing distribution (the computation of this distribution is later independently achieved
by Kesten [23] and Golosov [14]). This contrasts the case of the Bernoulli walk,
for which the usual central limit theorem says thatSn/

√
n converges to a Gaussian

distribution.
The main concern of this paper is to study the favourite points. Forn ≥ 0 and

x ∈ Z, define

L(n, x)
def=

n∑
i=0

1l{Si=x} , (1.4)

the number of visits of RWRE atx up to timen, which is also referred to as the
local time of RWRE. Let

F(n)
def=

{
x ∈ Z+ : L(n, x) = max

y∈Z+
L(n, y)

}
,

which, following Erdos and Ŕevész [11] and Bass and Griffin [2], is called the set
of thefavourite sitesor themost visited sites(in Z+) of RWRE. SinceF(n) is not
necessarily a singleton, we consider

F(n) = max
x∈F(n)

x , (1.5)

the maximal favourite site (though all the results presented in the paper forF(n)

still hold if in (1.5), “max” is replaced say by “min”).
Let us first recall two results ofF(n) for the Bernoulli walk.

Theorem A (Erdös and Ŕevész [11], Bass and Griffin [2]). Under(1.2), if σ = 0,

lim sup
n→∞

F(n)

(2n log logn)1/2
= 1, a.s. (1.6)

Theorem B (Bass and Griffin [2]). Under (1.2), if σ = 0, then with probability
one,

lim inf
n→∞

(logn)a

n1/2
F(n) =

{
0 if a < 2,
∞ if a > 11.

(1.7)

It is seen from (1.6) thatF(n) satisfies the same law of the iterated logarithm (LIL)
as the Bernoulli walk. However, it is also proved by Erdös and Ŕevész [11] that
they havedifferentupper functions, i.e. the usual Kolmogorov test (also referred to
as the Erd̈os–Feller–Kolmogorov–Petrowsky or EFKP test, see Révész [30, p. 35])
does not apply toF(n).
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Theorem B is somewhat surprising, which a fortiori tells thatF(n) is transient.
The exact rate of escape ofF(n) in (1.7) is unknown, and is believed to be a very
challenging problem.

We now present the main results of the paper, concerning the behaviours of
F(n) when the environment is random.

Theorem 1.1. Assuming(1.2) andσ > 0,

lim sup
n→∞

F(n)

(logn)2 log log logn
= 8

π2σ 2
, a.s.

Theorem 1.2. Assume(1.2) andσ > 0. For any non-decreasing sequencean > 1,

lim inf
n→∞

an

(logn)2
F(n) =

{
0
∞ , a.s. ⇐⇒

∑
n

logan

n
√

an logn

{= ∞
<∞ .

In particular, almost surely,

lim inf
n→∞

(log logn)a

(logn)2
F(n) =

{
0 if a ≤ 2,
∞ otherwise.

Remark 1.3.Theorem 1.1 is not deep. It merely confirms that in random environ-

mentF(n) satisfies again the same LIL (see Section 6 for the exact statement) as
the random walk, which is easily guessed in view of the corresponding result (i.e.
Theorem A) for the Bernoulli walk. Theorem 1.2 tells thatF(n) is also transient in
random environment. Usually, the presence of the random environment consider-
ably complicates the situation, and the results obtained are often less complete than
those for the Bernoulli walk. The problem of the escape rates of the most visited site
is theonly example we are aware of so far, which is solved in random environment
but remains open for the Bernoulli walk.

The rest of the paper is as follows. In Section 2, we study some properties of
the location of the minimum of one-dimensional Brownian motion. Section 3 is
devoted to introduction of a continuous-time model in random environment. Some
preliminary estimates are presented in Section 4, which will be used in Section 5
to prove Theorem 1.2. The proof of Theorem 1.1 is provided in Section 6. Finally,
in Section 7, we give the corresponding results for a class of recurrent diffusion
processes with random potentials, including the example of Brox’s diffusion with
Brownian potential.

Throughout the paper, we write indifferentlyZ(t) andZt for any stochastic
processZ. Since we only deal with (possibly random) indicesr, n, t, . . . which
ultimately go to infinity, our statements, sometimes without further mention, are to
be understood for the situation when the appropriate index is sufficiently large. The
usual symbola(x) ∼ b(x) (x → x0) denotes limx→x0 a(x)/b(x) = 1. We also
adopt the abbreviation “i.o.” for “infinitely often” (when the relevant index goes to
infinity).

Unimportant finite positive constants will be denoted byci (1≤ i ≤ 29).
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2. Brownian motion

Let {W(t); t ≥ 0} be one-dimensional Brownian motion, withW(0) = 0. Define
the processes of first hitting times forW : for r > 0,

Hr
def= inf

{
t > 0 : W(t) > r

}
, (2.1)

H−r
def= inf

{
t > 0 : W(t) < −r

}
. (2.2)

Consider

βr
def= inf

{
t > 0 : W(t) = inf

0≤s≤Hr

W(s)
}
, r > 0 , (2.3)

which is the (first) location of the minimum ofW over [0, Hr ].

Lemma 2.1. Let0 < θ < 2(ν−1). Almost surely for all larger and allt ∈ [0, Hr ],

|t − βr | ≥ r2

(logr)θ
H⇒ W(t) ≥ inf

0≤s≤Hr

W(s)+ r

(logr)ν
.

Roughly, the lemma says that asymptotically, Brownian motion can realize a value
which is close to its minimum only in a neighbourhood of the location of the
minimum. This is intuitively clear. The proof is based on the following well-known
path decomposition theorem, see Revuz and Yor [31, Proposition VI.3.13]:

Fact 2.2. For any r > 0, the variable| inf 0≤s≤Hr W(s)| has densityr(x + r)−2

1l{x>0}. Moreover, given| inf 0≤s≤Hr W(s)| = x > 0,{
r −W(t); 0 ≤ t ≤ βr

}
and

{
r −W(Hr − t); 0 ≤ t ≤ Hr − βr

}
are independent three-dimensional Bessel processes, the first starting fromr and
killed when hittingx + r for the first time, the second starting from0 and killed
when hittingx + r.

Proof of Lemma 2.1.Fix u > 0 andv > 0, whose values will be chosen later. For
r > u, define

Eu,v(r)
def=

{
inf

0≤t≤Hr, |t−βr |≥v
W(t) < inf

0≤s≤Hr

W(s)+ u
}

,

(inf ∅ def= ∞). By conditioning on inf0≤s≤Hr W(s) = −x, and using Fact 2.2,

P(Eu,v(r)) =
∫ ∞

0
I(2.4) × II (2.4)

r dx

(r + x)2
, (2.4)

with
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I(2.4)
def= Pr

(
sup

0≤t≤τ(r+x)−v

R(t) > r + x − u, τ(r + x) > v
)
,

II (2.4)
def= P0

(
sup

0≤t≤τ(r+x)−v

R(t) > r + x − u, τ(r + x) > v
)

,

where{R(t); t ≥ 0} is a three-dimensional Bessel process,τ(s)
def= inf {t > 0 :

R(t) > s}, andPs denotes the probability under whichR starts froms (s ≥ 0).
By the strong Markov property,

II (2.4) = Pr+x−u

(
τ(r + x) > v

) = Pr+x−u

(
sup

0≤t≤v

R(t) < r + x
)

.

UnderPr+x−u, the Bessel processR can be written as

R(t) = (r + x − u)+ B(t)+
∫ t

0

ds

R(s)
,

whereB is standard Brownian motion. Therefore,

II (2.4) ≤ P
(

sup
0≤t≤v

B(t) < u
)
≤ u√

v
.

Since I(2.4) ≤ 1, in view of (2.4), we have

P(Eu,v(r)) ≤ u√
v
, for all r > u . (2.5)

Now fix 0 < θ < 2(ν − 1) andk ≥ 1. Let rn
def= en (for all n ≥ 1). We choose

u
def= rk+1/(logrk)

ν , v
def= r2

k /(logrk+1)
θ , and define

3(k)
def= inf

{
r ≥ rk : ω ∈ Eu,v(r)

}
.

ClearlyH3(k) is an(Fr )r≥0-stopping time, where(Ft )t≥0 is the natural filtration

of W . On {3(k) < ∞}, we consider̂W(t)
def= W(t + H3(k)) − 3(k) (for t ≥ 0)

which is Brownian motion independent ofFH3(k)
. Define

Gk
def=

{
Ŵ hits (rk+1− rk) before hitting(−rk)

}
.

Observe that(
{rk < 3(k) ≤ rk+1} ∩Gk ∩ { inf

0≤s≤Hrk

W(s) < −u}
)
⊂ Eu,v(rk+1) ,

which implies

P
(
Eu,v(rk+1)

) ≥ P
(
rk < 3(k) ≤ rk+1

)
P(Hrk+1−rk < H−rk )

−P
(

inf
0≤s≤Hrk

W(s) ≥ −u
)

= P
(
rk < 3(k) ≤ rk+1

) rk

rk+1
− u

u+ rk
.
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SinceP(3(k) = rk) = P(Eu,v(rk)), it follows from (2.5) that

P
(
rk ≤ 3(k) ≤ rk+1

)
≤ P

(
Eu,v(rk)

)+ rk+1

rk

(
P

(
Eu,v(rk+1)

)+ u

u+ rk

)
≤ rk + rk+1

rk

u√
v
+ u rk+1

rk(u+ rk)
,

which yields
∑

k P(rk ≤ 3(k) ≤ rk+1) < ∞. Lemma 2.1 is proved by an appli-
cation of the Borel–Cantelli lemma. ut
Lemma 2.3. Letβ1 be as in(2.3),

P
(
β1 < λ

) ∼ √
2λ

π
λ→ 0+ . (2.6)

As a consequence, for all0 < λ ≤ 1,

c1
√

λ ≤ P
(
β1 < λ

) ≤ c2
√

λ .

Proof. We again apply the path decomposition theorem in Fact 2.2, to see the
Laplace transform ofβ1: for all u > 0,

E
(
e−uβ1

) = ∫ ∞
0

E1
(
e−uτ(1+x)

) dx

(1+ x)2
,

where, as before,R denotes a three-dimensional Bessel process, starting from 1

underP1 (E1 standing for the associated expectation), andτ(1+ x)
def= inf {t > 0 :

R(t) > 1+ x}. According to Kent [22],

E1
(
e−uτ(1+x)

) = (1+ x) sinh
√

2u

sinh((1+ x)
√

2u )
,

which implies

E
(
e−uβ1

) = ∫ ∞
√

2u

sinh
√

2u

y sinhy
dy ∼ 1√

2u
, u→∞ .

This yields (2.6) by means of a Tauberian theorem, see for example Feller [12, p.
445]. ut

Define, forr > 0,

Ur
def=

 inf
0≤s≤Hr

W(s)

+r , (2.7)

which is the range ofW over [0, Hr ]. Let {Ũr ; r > 0} be a process having the same
law as{Ur ; r > 0}, independent of{W(s); s ≥ 0}. Define,

U∗r
def= max

(
Ur, Ũr

)
, r > 0 . (2.8)

Lemma 2.4. For anyθ > 1, there exist positive constantsc3, c4 andc5, depending
on θ , such that for all0 < ε ≤ 1/2,
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P
(
β1 < ε(U∗θ )2) ≤ c3

√
ε log

(1

ε

)
, (2.9)

P
(
β1 < ε Ũ2

1 , Ũ1 < ε−1/3, U1 < 2
) ≥ c4

√
ε log

(1

ε

)
, (2.10)

P
(
βθ < ε(U∗1 )2) ≥ c5

√
ε log

(1

ε

)
. (2.11)

Proof. We only have to treat the case whenε is sufficiently small. Writea ∨ b for
max(a, b). By independence and scaling,(

β1, U
∗
θ

) = (
β1, Uθ ∨ Ũθ

) law= (
β1, Uθ ∨ θŨ1

)
,

where “
law= ” stands for identity in law. Let̂U andŨ denote two independent copies

of the processU , and independent of{W(s); 0 ≤ s ≤ H1}, then by the strong
Markov and scaling properties,(

β1, U
∗
θ

) law= (
β1, (U1+ θ − 1) ∨ ( Ûθ−1) ∨ θŨ1

)
law= (

β1, (U1+ θ − 1) ∨ (θ − 1) Û1 ∨ θŨ1
)

,

which, in view of the relationU1+ θ − 1≤ θU1, implies that

P
(
β1 < ε(U∗θ )2) ≤ P

( √β1

θ
√

ε
≤ U1 ∨ Û1 ∨ Ũ1

)
≤ 2P

( √β1

θ
√

ε
≤ U1 ∨ Ũ1

)
.

Observe that the probability expression on the right hand side is

≤ P
(
U1 ∨ Ũ1 >

1

θ
√

ε log(1/ε)

)
+ P

(
β1 <

1

log(1/ε)
, U1 > 2

)

+P
( √β1

θ
√

ε
≤ 2+ Ũ1, Ũ1 ≤ 1

θ
√

ε log(1/ε)

)
.

The first probability term is easy to estimate. Indeed, sinceP(U1 > x) = 1/x for
all x > 1, we have,

P
(
U1 ∨ Ũ1 > x

) ≤ 2P
(
U1 > x

) ≤ 2

x
, x > 1 .

To estimate the second probability expression, note thatU1 = 1− inf 0≤s≤β1 W(s),
which implies, for all 0< u < 1,

P
(
β1 < u, U1 > 2

) ≤ P
(
− inf

0≤s≤u
W(s) > 1

)
≤ exp

(
− 1

2u

)
. (2.12)

Finally, thanks to the independence ofβ1 andŨ1, we have, by conditioning oñU1
and using Lemma 2.3, for all 0< u < 1 andv > 2 such thatu(2+ v) < 1,
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P
( √

β1 ≤ u(2+ Ũ1), Ũ1 ≤ v
) ≤ c2 E

[
u(2+ U1)1l{U1≤v}

]
= c2 u

∫ v

1
(2+ x)

dx

x2

≤ c6 u logv .

Assembling these pieces and we obtain:

P
(
β1 < ε(U∗θ )2) ≤ 4θ

√
ε log(1/ε)+ 2

√
ε + c7

√
ε log

(1

ε

)
,

which readily yields (2.9).
To check (2.10), observe that the probability term on the left hand side of (2.10)

is greater than (or equal to)

P
(
β1 < ε Ũ2

1 , Ũ1 < ε−1/3)− P
(
β1 < ε1/3, U1 > 2

)
,

which, by means of Lemma 2.3 and (2.12) (and recalling thatP(U1 > x) = 1/x

for x > 1), is

≥ c1 E
[√

ε U1 1l{U1<ε−1/3 }
]
− exp

(
− 1

2ε1/3

)
≥ c8
√

ε log
(1

ε

)
− exp

(
− 1

2ε1/3

)
,

proving (2.10).
We actually have already proved (2.11), implicitly. Indeed, by independence

and scaling,

P
(
βθ < ε(U∗1 )2) ≥ P

(
βθ < εŨ2

1 , Ũ1 <
θ√
ε

)
= P

(
β1 < θ−2 εŨ2

1 , Ũ1 <
θ√
ε

)
,

which leads to (2.11) again by conditioning oñU1 and using Lemma 2.3. ut
Lemma 2.5. Fix θ > 1. Letf > 1 be a non-decreasing function, and let

J(f )
def=

∫ ∞ logf (r)

r
√

f (r)
dr .

(i) If J(f ) <∞, then

lim inf
r→∞ f (r)

βr

(U∗θr )
2
= ∞, a.s. (2.13)

(ii) If J(f ) = ∞, then along the subsequence rn
def= θn,

lim inf
n→∞ f (rn)

βθrn

(U∗rn)
2
= 0, a.s. (2.14)

Remarks 2.6. SinceU∗θr ≥ θr, an immediate consequence of (2.13) is that, almost
surely for all larger,
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βr >
r2

(logr)3
.

Proof of Lemma 2.5.Let f > 1 be non-decreasing, andrn
def= θn. It is easily seen

that

J(f ) <∞ ⇐⇒
∑
n

logf (rn)√
f (rn)

<∞ . (2.15)

To prove (2.13), let us assumeJ(f ) < ∞, which implies thatf goes to infinity.
Fix λ > 0 and consider the events

En
def=

{
f (rn) βr(n) < λ (U∗θr(n+1))

2
}

,

for sufficiently largen, sayn ≥ n0. (For typesetting reason, we have writtenr(n)

andr(n+ 1) for rn andrn+1 respectively). It follows from (2.9) that forn ≥ n0,

P(En) ≤ c3

√
λ

f (rn)
log

f (rn)

λ
,

which, according to (2.15), is summable forn. Applying the Borel–Cantelli lemma
and using monotonicity, we obtain:

lim inf
r→∞ f (r)

βr

(U∗θr )
2
≥ λ, a.s.

This yields (2.13) by sendingλ to infinity.
It remains to show (2.14). Suppose that the integral in (2.15) diverges. In view

of the form of the test, we can assume, without loss of generality, that (for all
larger),

logr ≤ f (r) ≤ (logr)3 . (2.16)

(This is well-known, and can be checked by a deterministic argument, see for
example Cśaki [6]). Fix λ > 0, and define

En
def=

{
f (rn) βr(n+1) < λ Ũ2

r(n)

}
Gn

def=
{

Ũr(n) <
rn
√

f (rn)

logf (rn)
, Ur(n+1) ≤ 2rn+1

}
,

Dn
def= En ∩Gn .

By independence, scaling and (2.10), for alln ≥ n0,

P(Dn) = P
(

f (rn) β1 <
λ r2

n

r2
n+1

Ũ2
1 , Ũ1 <

√
f (rn)

logf (rn)
, U1 ≤ 2

)
≥ P

(
f (rn) β1 < λθ−2 Ũ2

1 , Ũ1 <
( λθ−2

f (rn)

)−1/3
, U1 ≤ 2

)
≥ c9

logf (rn)√
f (rn)

. (2.17)
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This implies
∑

n P(Dn) = ∞. In order to apply the Borel–Cantelli lemma, we
have to estimate the second momentP(Di ∩Dj), for j > i. RecallH from (2.1),
and define

Ŵ (t)
def= W(t +Hr(i+1))− ri+1; t ≥ 0 ,

which is Brownian motion independent ofFHr(i+1)
. We can definêH andβ̂ for Ŵ ,

exactly in the same way asH andβ are forW .
There are three possible situations:

Case 1:βr(j+1) < Hr(i+1),

Case 2:βr(j+1) > Hr(i+1), j − i < 3(log i)/ logθ,

Case 3:βr(j+1) > Hr(i+1), j − i ≥ 3(log i)/ logθ .

Case 1 is equivalent to

inf
0≤t≤Ĥr(j+1)−r(i+1)

Ŵ (t) > −Ur(i+1) .

SinceDi ⊂ {Ur(i+1) ≤ 2ri+1}, we have

P
(

Di, Dj , Case 1
)
≤ P

(
Di, inf

0≤t≤Ĥr(j+1)−r(i+1)

Ŵ (t) > −2ri+1

)
= P(Di) P

(
inf

0≤t≤Hr(j+1)−r(i+1)

W(t) > −2ri+1

)
= P(Di)

2ri+1

rj+1+ ri+1

≤ 2θ−(j−i) P(Di) ,

which gives

∑
n0≤i<j≤n

P
(
Di, Dj , Case 1

) ≤ c10

n∑
i=n0

P(Di) . (2.18)

In Cases 2 and 3,
βr(j+1) = Hr(i+1) + β̂r(j+1)−r(i+1) . (2.19)

Observing thatDj ⊂ {βr(j+1) < λr2
j /(logf (rj ))

2}, and recalling (2.16),

P
(
Di, Dj , Case 2

) ≤ P
(

Di, β̂r(j+1)−r(i+1) <
λ r2

j

(logf (rj ))2

)
= P(Di) P

(
βr(j+1)−r(i+1) <

λ r2
j

(logf (rj ))2

)
≤ P(Di) P

(
βr(j+1)−r(i+1) <

λ r2
j

(log logrj )2

)
.

Sincer(j + 1)− r(i + 1) ≥ (θ − 1) rj , we have, by means of Lemma 2.3,

P
(
Di, Dj , Case 2

) ≤ P(Di)
c11

log logrj
≤ c12

logj
P(Di) .
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Therefore, ∑
n0≤i<j≤n

P
(
Di, Dj , Case 2

) ≤ c13

n∑
i=n0

P(Di) . (2.20)

To treat Case 3, we first make a general observation:

Ũr(j) = max
(
rj − ri + Ũr(i), Zr(j)−r(i)

)
,

whereZr(j)−r(i) is distributed asUr(j)−r(i), independent of{W(t); t ≥ 0} and
Ũr(i). Since by (2.16),Di ⊂ { Ũr(i) ≤ ri(logri)

2}, and sinceri(logri)
2 ≤ rj − ri

in Case 3, we have, onDi (and in Case 3),

Ũr(j) ≤ rj − ri + ri(logri)
2+ Zr(j)−r(i)

≤ 2(rj − ri)+ Zr(j)−r(i)

≤ 3Zr(j)−r(i) .

In light of (2.19), this leads to:

P
(
Di, Dj , Case 3

) ≤ P
(

Di, β̂r(j+1)−r(i+1) <
9Z2

r(j)−r(i)

f (rj )

)
= P(Di) P

(
βr(j+1)−r(i+1) <

9 Ũ2
r(j)−r(i)

f (rj )

)
= P(Di) P

(
β1 <

9(rj − ri)
2

(rj+1− ri+1)2f (rj )
Ũ2

1

)
.

In Case 3,(rj − ri)/(rj+1− ri+1) ≤ c14. By (2.9), for 0< ε ≤ 1/2,

P
(
β1 < ε Ũ2

1

) ≤ P
(
β1 < ε (U∗1 )2) ≤ c3

√
ε log

(1

ε

)
.

Therefore,

P
(
Di, Dj , Case 3

) ≤ c15 P(Di)
logf (rj )√

f (rj )
,

which, in view of (2.17), yields

∑
n0≤i<j≤n

P
(
Di, Dj , Case 3

) ≤ c16

( n∑
i=n0

P(Di)
)2

. (2.21)

Since
∑

n P(Dn) = ∞, combining (2.18), (2.20) and (2.21) together with Kochen
and Stone’s Borel–Cantelli lemma ([26]) givesP(lim supn Dn) > 0. A fortiori,
with positive probability,

lim inf
n→∞ f (rn)

βθrn

(U∗rn)
2
≤ λ .

The above clearly is a tail event, which, by means of a 0–1 argument (and by
ultimately sendingλ to 0+), completes the proof of (2.14). ut



284 Y. Hu, Z. Shi

3. Diffusions with random potentials

Let {V (t); t ≥ 0} and{V (−t); t ≥ 0} be adapted and locally bounded processes
with V (0) = 0, independent of the standard Brownian motion{B(t); t ≥ 0}.
Consider the processX defined byX(0) = 0 and

dX(t) = dB(t)− 1

2
V ′(X(t)) dt . (3.1)

We callX diffusion with random potential V .
However, we even do not assumeV to be continuous. Therefore, instead of

writing the formal derivative ofV in (3.1), we really should regardX as a diffusion
process whose generator is

1

2
eV (x) d

dx

(
e−V (x) d

dx

)
.

A more convenient way in the study ofX is to use diffusion theory to arrive at the
following representation (see Brox [3]):

X(t) = A←(B(T←(t))), t ≥ 0 . (3.2)

Here,B is standard Brownian motion independent of{V (x); x ∈ R},

A(x)
def=

∫ x

0
eV (y) dy, x ∈ R , (3.3)

T (r)
def=

∫ r

0
exp

[
−2V (A←(B(s)))

]
ds, r ≥ 0 , (3.4)

andA← andT← denote the respective inverse functions ofA andT . (Of course,
we have to assume that almost surelyA(±∞) = ±∞ andT (∞) = ∞, which will
be satisfied by the examples ofV considered in the paper). We point out thatA is
the scale function ofX.

Let {LB(t, x); t ≥ 0, x ∈ R} denote the jointly continuous local time process
of B. For any bounded Borel functionf , by (3.2),∫ t

0
f (X(s)) ds =

∫ t

0
f (A←(B(T←(s)))) ds

=
∫ T←(t)

0
f (A←(B(u))) exp

(−2V (A←(B(u)))
)

du

=
∫ ∞
−∞

f (A←(y)) exp
(−2V (A←(y))

)
LB

(
T←(t), y

)
dy

=
∫ ∞
−∞

f (x) e−V (x) LB

(
T←(t), A(x)

)
dx .

Consequently,

LX(t, x)
def= e−V (x) LB(T←(t), A(x)), t ≥ 0, x ∈ R , (3.5)

is the local time process ofX.
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The reason for whichX interests us is that if the random potential is carefully
chosen, thenX behaves very much like Sinai’s RWRE. Here is a brief description
of the choice of this particular random potential (the main idea goes back at least
to Schumacher [32]): given4 = {ξj }j∈Z a random environment satisfying (1.2),
and recallingηj andσ from (1.2)–(1.3) (withσ > 0), there exists a unique choice
of (random) step function{V (x); x ∈ R} with V (0) = 0, which is flat on each
interval [n, n+ 1), with jumpsV (n)− V (n−) = ηn (for n ∈ Z). More precisely,

V (x)
def=


η1+ · · · + ηk, if x ∈ [k, k + 1) for k ∈ Z∗+,

0, if x ∈ [0, 1),

−(η0 + η−1+ · · · + ηk+1), if x ∈ [k, k + 1) for k ∈ Z∗−.

(3.6)

For this choice ofV , we can define a diffusion processX via (3.2). It can be seen

thatX is recurrent. Defineµ0
def= 0 and

µn
def= inf

{
t > µn−1 : |X(t)−X(µn−1)| = 1

}
, n = 1, 2, . . . (3.7)

It is now possible to compareLX with local time of Sinai’s RWRE. The following
is borrowed from [16, (4.12)–(4.13) and Fact 4.3].

Fact 3.1. Let4 satisfy(1.2), with σ > 0. In a rich probability space, there exists
a coupling for RWRE{Sn}n≥0 in random environment4 and diffusion process
{X(t); t ≥ 0}whose random potential is defined by(3.6), such that with probability
one,

lim sup
n→∞

sup
k∈Z

1√
1+ L(n, k) logn

sup
µn≤s≤µn+1

|LX(s, k)−2ξk L(n, k)| ≤ 29 , (3.8)

whereL andLX are the local times ofSn andX respectively. Moreover,

lim
n→∞

µn

n
= 1, a.s. (3.9)

Our approach essentially goes like this: instead of directly handlingL (local time of
RWRE), we shall be working onLX (local time of diffusion with random potential),
by exploiting the representation (3.5). Thanks to Fact 3.1, this is sufficient for our
needs, at the cost of an extra precision of orderO(

√
maxk∈Z L(n, k) logn).

4. Partial sum potential and Brownian movement

This section is devoted to the study of two subjects: (i) partial sum potentialV ; (ii)
Brownian motionB which drives the movement of our diffusionX (see Section 3).
For the sake of clarity, they are discussed in distinct subsections.
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4.1. Partial sum potential

Let 4 = {ξj }j∈Z be an iid sequence of variables satisfying (1.2), and letηj =
log((1− ξj )/ξj ) (see (1.1)). Therefore, there exists a finite constantK > 0 such
that for allj ∈ Z,

|ηj | ≤ K . (4.1)

We assumeσ > 0 (see (1.3)), to ensure the randomness of the environment.
Let {V (x); x ∈ R} denote the partial sum potential introduced in (3.6). Accord-

ing to the classical Komlós–Major–Tusńady strong approximation theorem ([27]),
possibly in an enlarged probability space, there exists a standard two-sided Brow-
nian motion{W(x); x ∈ R} and finite constantsc17 > 0 andc18 > 0 (depending
on the distribution ofη0) such that for allt ≥ 1,

P
(

sup
−t≤x≤t

|V (x)− σW(x)| ≥ c17 log t
)
≤ c18

t2
. (4.2)

We first recall a well-known estimate for the modulus of continuity ofW , which
is a particular case of Lemma 1.1.1 of Csörgő and Ŕevész [8, p. 24] (takingε = 1,
h = 1/r4 andv = logr in their notation).

Fact 4.1. There exists a universal constantc19 such that for anyr > 1,

P
(

sup
0≤s≤t≤1, t−s≤1/r4

|W(t)−W(s)| > logr

r2

)
≤ c19 r4 exp

(
− (logr)2

3

)
.

RecallHr from (2.1), and define

βr
def= inf

{
t > 0 : W(t) = inf

0≤s≤Hr

W(s)
}

, (4.3)

αr
def= inf

{
t > 0 : W(t)− inf

0≤s≤Hr

W(s) <
8c17+ 4+ σ

σ
logr

}
, (4.4)

γr
def= sup

{
t ≤ Hr : W(t)− inf

0≤s≤Hr

W(s) <
8c17+ 4+ σ

σ
logr

}
.

(4.5)

Observe thatαr , βr andγr are well-defined for allr ≥ r0 (so thatr > (8c17+ 4+
σ)σ−1 logr), and that (4.3) is nothing else but (2.3).

We point out that, despite some ressemblance, our triplet(αr , βr , γr ) is not
a “valley” in the sense of Sinai [35] and Tanaka [37]. The reason for which we
are interested in(αr , βr , γr ) is that the favourite site of the diffusion processX

with random potentialV , at some suitably chosen random times, lies eventually in
[αr, γr ] (see Lemma 5.1 in Section 5).

Lemma 4.2. LetA be as in(3.3). For all r ≥ r0,

P
(
r4 A(γr) > A(Hr)

) ≤ c20 logr

r
. (4.6)



The problem of the most visited site in random environment 287

Proof. Define

E1
def=

{
sup

0≤s≤γr

W(s) ≤ r − 8c17+ 8+ σ

σ
logr

}
,

E2
def=

{
sup

0≤s≤r4
|V (s)− σW(s)| < 4c17 logr

}
,

E3
def= {

1 < Hr < r4} ,

wherec17 is the absolute constant in (4.2). By the definitions ofA and γr , on
E2 ∩ E3,

A(γr) ≤ exp
(

σ sup
0≤s≤γr

W(s)+ 4c17 logr
)
γr

≤ r4 exp
(

σ sup
0≤s≤γr

W(s)+ 4c17 logr
)

.

Therefore, onE1 ∩ E2 ∩ E3,

A(γr) ≤ r4 exp
(

σr − (σ + 4c17+ 8) logr
)

.

On the other hand, onE2 ∩ E3,

A(Hr) ≥
∫ Hr

Hr−1
eV (s) ds

≥ exp
(

σr − 4c17 logr − σ sup
0≤s≤t≤r4, t−s≤1

|W(t)−W(s)|
)

.

Consequently, by writing I(4.6) for the probability term on the left hand side of (4.6),

I(4.6) ≤ P
(

sup
0≤s≤t≤r4, t−s≤1

|W(t)−W(s)| > logr
)
+

3∑
i=1

P(Ec
i )

= P
(

sup
0≤s≤t≤1, t−s≤1/r4

|W(t)−W(s)| > logr

r2

)
+

3∑
i=1

P(Ec
i ) . (4.7)

The first probability term on the right hand side is estimated in Fact 4.1. We have
to boundP(Ec

i ) for 1≤ i ≤ 3. According to (4.2),

P(Ec
2) ≤

c18

r8
. (4.8)

By the usual estimates for Gaussian tails,

P(Ec
3) = P

(
Hr ≤ 1

)+ P
(
Hr ≥ r4) ≤ exp

(
− r2

2

)
+ 1

r
. (4.9)

Finally, to estimateP(Ec
1), let G(r)

def= sup{t ≤ Hr : W(t) = 0}. Observe that

P(Ec
1) ≤ P

(
γr > G(r)

)+ P
(

sup
0≤s≤G(r)

V (s) > r − 8c17+ 8+ σ

σ
logr

)
.



288 Y. Hu, Z. Shi

According to Williams’s path decomposition theorem ([38]), sup0≤s≤G(r) W(s)

is uniformly distributed in(0, r). This confirms that the second probability term
on the right hand equalsr−1(8c17+ 8+ σ)σ−1 logr. Since{γr > G(r)} means
W(t) > −(8c17+ 4+ σ)σ−1 logr for all 0≤ t ≤ Hr , it follows that

P(Ec
1) ≤

(8c17+ 4+ σ)σ−1 logr

r + (8c17+ 4+ σ)σ−1 logr
+ 8c17+ 8+ σ

σ

logr

r
. (4.10)

Assembling (4.7)–(4.10) and using Fact 4.1 yields the lemma. ut

4.2. Brownian movement

Let B be standard one-dimensional Brownian motion, whose jointly continuous
local time process is denoted by{LB(t, x); t ≥ 0, x ∈ R}. Forr > 0, define

%(r)
def= inf

{
t > 0 : B(t) > r

}
. (4.11)

The following is the classical Ray–Knight theorem, see Ray [29], Knight [25] or
Revuz and Yor [31, Theorem XI.2.2].

Fact 4.3. For r > 0, {LB(%(r), r − x); 0 ≤ x ≤ r} is a squared Bessel process of
dimension2, starting from0.

Lemma 4.4. Write

LB(t, R+)
def= sup

x≥0
LB(t, x), t ≥ 0 . (4.12)

For all v > u > 0 andλ ≥ 2,

P
(

sup
%(u)≤t≤%(v)

sup
0≤x≤u/λ2

LB(t, R+)

LB(t, x)
> λ

)
≤ c21

logλ

λ

(
1+ log

v

u

)
. (4.13)

Proof. Let N = N(u, v) be the integer part of(log(v/u))/ log 2, and let I(4.13)
denote the probability expression on the left hand side of (4.13), then

I(4.13) ≤
N∑

k=0

P
(

sup
%(2ku)≤t≤%(2k+1u)

sup
0≤x≤u/λ2

LB(t, R+)

LB(t, x)
> λ

)
=

N∑
k=0

P
(

sup
%(1)≤t≤%(2)

sup
0≤x≤2−k/λ2

LB(t, R+)

LB(t, x)
> λ

)
≤ (N + 1) P

(
sup

%(1)≤t≤%(2)

sup
0≤x≤λ−2

LB(t, R+)

LB(t, x)
> λ

)
≤ (N + 1) P

(
LB(%(2), R+) > 6 logλ

)
+(N + 1) P

(
inf

0≤x≤λ−2
LB(%(1), x) <

6 logλ

λ

)
def= (N + 1) I(4.14) + (N + 1) II (4.14), (4.14)
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with obvious notation. Let{<(t); 0 ≤ t ≤ 1} denote a 2-dimensional Bessel
process with<(0) = 0. According to Fact 4.3 and the scaling property,

I(4.14) = P
(

sup
0≤t≤1

<(t) >
√

3 logλ
)
≤ c22

λ
, (4.15)

the last inequality following from the usual Gaussian tail estimate: logP(sup0≤t≤1

<(t) > x) ∼ −x2/2 (asx goes to infinity).
To estimate II(4.14), observe that, by Fact 4.3,

II (4.14) = P
(

inf
1−λ−2≤t≤1

<(t) <

√
6 logλ√

λ

)
≤ P

(
<(1) <

√
logλ√

λ

)
+ P

(
sup

1−λ−2≤t≤1
|<(1)−<(t)| >

√
logλ√

λ

)
.

The random variable<2(1) being exponential, with mean 2, its density function is
bounded above by 1/2. Therefore for anyy > 0,

P(<(1) < y) ≤ y2

2
.

On the other hand, since< can be realized as the Euclidean modulus of anR2-
valued Brownian motion, say(W1, W2), by triangular inequality and time reversal,
for anyy > 0,

P
(

sup
1−λ−2≤t≤1

|<(1)−<(t)|>y
)
≤2P

(
sup

0≤s≤λ−2
|W1(s)|> y√

2

)
≤4 exp

(
−y2λ2

4

)
.

Consequently,

II (4.14) ≤ logλ

2λ
+ 4 exp

(
−λ logλ

4

)
.

Combining this with (4.15) and (4.14) yields the lemma. ut

5. Proof of Theorem 1.2

Let 4 = {ξj }j∈Z be iid random variables satisfying (1.2) (withσ > 0), and letV
be the partial sum process defined by (3.6). We are interested in{X(t); t ≥ 0}, the
diffusion process with partial sum potentialV , driven by the Brownian motionB
(see (3.2) for definition).

Let {W(x); x ∈ R} be the Komĺos–Major–Tusńady two-sided Brownian mo-
tion satisfying (4.2), independent ofB. RecallA andT from (3.3)–(3.4). For nota-
tional simplification, we write

2(r)
def= T (%(A(Hr))), r > 0 , (5.1)

where% andH are as in (4.11) and (2.1) respectively. The following lemma con-
firms that, the favourite site ofX, at time2(r), eventually lies in [αr, γr ], where
(αr , βr , γr ) is defined via (4.3)–(4.5).



290 Y. Hu, Z. Shi

Lemma 5.1. LetLX denote the local time ofX as in(3.5). For all s > r ≥ r0,

P
(

sup
2(r)≤t≤2(s)

max
0≤k≤αr

LX(t, k)

LX(t, [βr ])
>

1

r2

)
≤ c23

s logr

r2
, (5.2)

P
(

max
k≥γr

LX(2(r), k)

LX(2(r), [βr ])
>

1

r2

)
≤ c24

logr

r
, (5.3)

where[βr ] stands for the integer part ofβr .

Proof. Let

E2
def=

{
sup

0≤s≤r4
|V (s)− σW(s)| < 4c17 logr

}
,

E3
def= {

1 < Hr < r4},
E4

def=
{

sup
0≤s≤t≤r4, t−s≤1

|W(t)−W(s)| ≤ logr
}

,

wherec17 is the constant in (4.2). By (3.5), onE2∩E3∩E4, for all2(r) ≤ t ≤ 2(s)

and 0≤ k ≤ αr ,

LX(t, k)

LX(t, [βr ])
= e−(V (k)−V ([βr ])) LB(T

←
(t), A(k))

LB(T
←

(t), A([βr ]))

≤ e8c17 logr e−σ(W(k)−W(βr ))+σ logr LB(T
←

(t), A(k))

LB(T
←

(t), A([βr ]))

≤ e8c17 logr e−(8c17+4) logr LB(T
←

(t), A(k))

LB(T
←

(t), A([βr ]))
(5.4)

≤ 1

r4

LB(T
←

(t), R+)

LB(T
←

(t), A([βr ]))
,

whereLB( · , R+) is defined in (4.12). We have used the definition ofαr (see (4.4))
in (5.4).

Let I(5.2) denote the probability term on the left hand side of (5.2). Sincet 7→
T
←

(t) is continuous, withT
←

(2(v)) = %(A(Hv)), we arrive at (noting that [βr ] ≤
γr ):

I(5.2) ≤
4∑

i=2

(Ec
i )+ P

(
sup

%(A(Hr ))≤u≤%(A(Hs))

LB(u, R+)

LB(u, A([βr ]))
> r2

)
≤

4∑
i=2

(Ec
i )+ P

(
r4 A(γr) > A(Hr)

)
+P

(
sup

%(A(Hr ))≤u≤%(A(Hs))

sup
0≤x≤A(Hr )/r4

LB(u, R+)

LB(u, x)
> r2

)
.

We can apply Lemmas 4.2 and 4.4 respectively to the last two probability expres-
sions on the right hand side, to see that

I(5.2) ≤
4∑

i=2

(Ec
i )+ c20

logr

r
+ c21

2 logr

r2

(
1+ E log

A(Hs)

A(Hr)

)
.
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SinceE logA(Hr) ≥ 0 for larger, and sinceA(Hs) ≤ esHs , we have

E log
A(Hs)

A(Hr)
≤ s + E logHs ≤ c25 s ,

the last inequality following from the scaling property. Consequently,

I(5.2) ≤
4∑

i=2

(Ec
i )+ c26

s logr

r2
.

This, jointly considered with (4.8), (4.9) and Fact 4.1, yields (5.2).
The proof of (5.3) is along the same lines, using the fact thatW(t)−W(βr) ≥

(8c17+ 4+ σ)σ−1 logr for all γr ≤ t ≤ Hr (as for all 0≤ t ≤ αr ). ut

Now let us look at the supremum ofX. By (3.2) and the occupation time formula,
for anyt > 0 andv > 0,{

sup
0≤s≤t

X(s) > v
}
=

{ ∫ %(A(v))

0
exp

(
−2V (A

←
(B(s)))

)
ds < t

}
=

{ ∫ A(v)

−∞
e−2V (A

←
(y))LB(%(A(v)), y) dy < t

}
=

{ ∫ v

−∞
e−V (z)LB(%(A(v)), A(z)) dz < t

}
,

using a change of variabley = A(z). Writing

I(5.5)(v)
def=

∫ v

0
e−V (s)LB(%(A(v)), A(s)) ds,

II (5.5)(v)
def=

∫ ∞
0

e−V (−s)LB(%(A(v)), A(−s)) ds , (5.5)

we have, {
sup

0≤s≤t

X(s) > v
}
=

{
I(5.5)(v)+ II (5.5)(v) < t

}
. (5.6)

For brevity, we write

W(t)
def= sup

0≤s≤t

W(s) , (5.7)

W#(t)
def= sup

0≤u≤v≤t

(
W(v)−W(u)

)
, t ≥ 0 . (5.8)

Define, forr > 0,

H−r
def= inf

{
t > 0 : W(−t) > r

}
,

which is the first hitting time at(r,∞) by {W(−t); t ≥ 0}. Let

U−(r)
def=

 inf
0≤s≤H−r

W(−s)

+r . (5.9)

The following estimate can be found in [17, Lemmas 4.1 and 4.2].
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Fact 5.2. Under (1.2) with σ > 0, for all sufficiently largev, we can find a
measurable eventE(v), with P(E(v)) ≥ 1 − exp

(−(logv)3/2
)
, such that on

E(v) ∩ {W(v) ≥ 2(logv)4},
σW#(v)− (logv)4 ≤ log I(5.5)(v) ≤ σW#(v)+ (logv)4,

σU−
(
W(v)− (logv)4) ≤ log II(5.5)(v) ≤ σU−

(
W(v)+ (logv)4) .

Lemma 5.3. Assume(1.2) andσ > 0. Almost surely for all largev,

σW#(v)− (logv)5 ≤ log I(5.5)(v) ≤ σW#(v)+ (logv)5 , (5.10)

σU−
(
W(v)− (logv)5) ≤ log II(5.5)(v) ≤ σU−

(
W(v)+ (logv)5) . (5.11)

Proof. Apply Fact 5.2 and the Borel–Cantelli lemma (noting thatW(v) ≥ 2(logv)4

is almost surely realized for all largev), to see that for all large integern,

σW#(n)− (logn)4 ≤ log I(5.5)(n) ≤ σW#(n)+ (logn)4 .

Let v ∈ [n, n+ 1). By monotonicity,

log I(5.5)(v) ≥ log I(5.5)(n) ≥ σW#(n)− (logn)4 .

It is well-known (see Cs̈orgő and Ŕevész [8, p. 31]) that

lim sup
n→∞

(2 logn)−1/2 max
0≤k≤n

sup
0≤s≤1

|W(k + s)−W(k)| = 1, a.s.

Therefore, for largev ∈ [n, n+ 1), W#(v)−W#(n) ≤ (3 logn)1/2, which implies

log I(5.5)(v) ≥ σW#(v)− σ(3 logn)1/2− (logn)4 ≥ σW#(v)− (logv)5 .

This yields the lower bound in (5.10). The rest of the lemma can be proved exactly
in the same way. ut

Proof of Theorem 1.2.RecallHr andUr from (2.1) and (2.7) respectively. By
definition,W#(Hr) = Ur . SinceUb − Ua ≥ b − a for all b > a > 0, by the first
part of Lemma 5.3, almost surely for all larger,

σUr/2 ≤ log I(5.5)(Hr) ≤ σU2r . (5.12)

On the other hand,W(Hr) = r, which, in view of (5.11), yields that for larger,

σU−r/2 ≤ log II(5.5)(Hr) ≤ σU−2r . (5.13)

By the occupation time formula and (5.6),

I(5.5)(v)+ II (5.5)(v) = T (%(A(v))) , (5.14)

which, in view of (5.1), implies

I(5.5)(Hr)+ II (5.5)(Hr) = 2(r) .



The problem of the most visited site in random environment 293

Using max(a, b) ≤ a + b ≤ 2 max(a, b) (for positivea andb), and in light of
(5.12)–(5.13), we arrive at: almost surely for all larger,

σ max
(
Ur/2, U−r/2

) ≤ log2(r) ≤ σ max
(
U3r , U−3r

)
. (5.15)

Another observation is that by Lemma 2.1, for all larger,

|αr − βr | ≤ r2

(logr)4
, |γr − βr | ≤ r2

(logr)4
. (5.16)

Let uj
def= j2 for all j ≥ 1. Applying Lemma 5.1 tor = uj ands = uj+1, and by

virtue of the Borel–Cantelli lemma, we have, almost surely for all largej ,

max
0≤k≤α(uj )

LX(t, k) ≤ u−2
j LX(t, Z+), t ∈ [2(uj ), 2(uj+1)] , (5.17)

max
k≥γ (uj )

LX(2(uj ), k) ≤ u−2
j LX(2(uj ), Z+) , (5.18)

whereLX(t, Z+)
def= supx∈Z+ LX(t, x). Let {µn}n≥0 be the sequence defined in

(3.7). For largen, there exists a uniquej=j (n, ω)such thatµn∈ [2(uj ), 2(uj+1)).
By (3.8),

max
0≤k≤α(uj )

2ξkL(n, k) ≤ 30
√

1+ L(n, Z+) logn+ max
0≤k≤α(uj )

LX(µn, k)

≤ 30
√

1+ L(n, Z+) logn+ u−2
j LX(µn, Z+) ,

the second inequality following from (5.17), with the notationL(n, Z+)
def= supx∈Z+

L(n, x). Applying (3.8) once more to see that the above is smaller than (noting that
ξk ≤ 1)

60
√

1+ L(n, Z+) logn+ 2u−2
j L(n, Z+) .

It is known (see Ŕevész [30, p. 292]) that

lim
n→∞

(log logn)2

logn
logL(n, Z+) = ∞, a.s. (5.19)

By (1.2),ξk is bounded below by a positive constant, this yields

max
0≤k≤α(uj )

L(n, k) < L(n, Z+) , (5.20)

i.e. forµn ∈ [2(uj ), 2(uj+1)),

F(n) > α(uj ) .

Therefore, by (3.9),

F(n)

(logn)2
≥ 1

2

α(uj )

(logµn)2
≥ 1

2

α(uj )

(log2(uj+1))2
.
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According to (5.16) and (5.15), this yields

F(n)

(logn)2
≥ 1

2

β(uj )− u2
j /(loguj )

4

σ 2
(
max(U3uj+1, U

−
3uj+1

)
)2

≥ 1

2σ 2

β(uj )− u2
j /(loguj )

4(
max(U4uj

, U−4uj
)
)2

≥ 1

3σ 2

β(uj )(
max(U4uj

, U−4uj
)
)2

, (5.21)

the last inequality following from Remark 2.6.
Letan > 1 be a non-decreasing sequence such that

∑
n(logan)/(n

√
an logn) <

∞. Let ε > 0, and define the function

g(r)
def= ε a[exp(σ r/3)], r ≥ 1 .

Then
∫∞

(logg(r))/(r
√

g(r) ) dr <∞. By Lemma 2.5, for all larger,

β(r)(
max(U4r , U−4r )

)2
≥ 3σ 2

g(r)
,

which, in view of (5.21), yields that, for all largen with µn ∈ [2(uj ), 2(uj+1)),

F(n)

(logn)2
≥ 1

g(uj )
.

Since logµn ≥ log2(uj ) which, according to (5.15), is greater thanσuj/2, it
follows from (3.9) that logn ≥ σuj/3. Therefore,

F(n)

(logn)2
≥ 1

g(3σ−1 logn)
= 1

ε an

.

This yields the convergent part of Theorem 1.2.
To prove the divergent part of the theorem, consider a non-decreasing sequence

an > 1 such that
∑

n(logan)/(n
√

an logn) = ∞. Let ε > 0, and define the
function

h(r)
def= 3

ε
a[exp(32r2)], r ≥ 1 .

Then
∫∞

(logh(r))/(r
√

h(r) ) dr = ∞. Applying Lemma 2.5 toθ = 4 yields that,
there are infinitely manym satisfying

β(2m+2)(
max(U2m, U−2m)

)2
≤ 1

h(2m)
. (5.22)

We are now working only with thesem satisfying (5.22). Letj = j (m) be such
thatuj ∈ [2m+1, 2m+2). There exists a random indexn = n(m) such that2(uj ) ∈
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[µn, µn+1). As in the proof of (5.20), using (5.18) instead of (5.17), we can see
that

max
k≥γ (uj )

L(n, k) < L(n, Z+) .

Therefore, by (3.9),

F(n)

(logn)2
≤ γ (uj )

(logn)2
≤ 2

γ (uj )

(logµn+1)2
≤ 2

γ (uj )

(log2(uj ))2
.

Applying (5.16), (5.15) and Remark 2.6 yields

F(n)

(logn)2
≤ 3

β(uj )

σ 2
(
max(Uuj /2, U

−
uj /2)

)2
,

which, according to (5.22), yields

F(n)

(logn)2
≤ 3

h(uj /4)
. (5.23)

By (2.7) and the laws of the iterated logarithm (see Révész [30, p. 53]), almost
surely for all larger,

U(r) ≤ r + (3Hr log logHr)
1/2 ≤ r(logr)2 , (5.24)

which, in light of (5.15), implies log2(r) ≤ r2. Since2(uj ) ≥ µn, andµn/n→ 1
(see (3.9)), this yields logn ≤ 2u2

j . Going back to (5.23), we have,

F(n)

(logn)2
≤ 3

h(2−1/2(logn)1/2/4)
= ε

an

,

completing the proof of the divergent part of Theorem 1.2. ut

6. Proof of Theorem 1.1

Throughout the section,{Sn}n≥0 denotes a simple RWRE, whose associated random
environment4 = {ξj }j∈Z satisfies (1.2), see Section 1. Letσ be as in (1.3), with
σ > 0. We first recall the following law of the iterated logarithm (see [17, Theorem
1.3]):

Fact 6.1. Under(1.2), if σ > 0,

lim sup
n→∞

max0≤k≤n Sk

(logn)2 log log logn
= 8

π2σ 2
, a.s.

Let L(n, x) be the local time process of RWRE, withF(n) the favourite site up
to timen (see (1.5)). In view of the trivial relationF(n) ≤ max0≤k≤n Sk, the upper
bound in Theorem 1.1 immediately follows from Fact 6.1.

To show the lower bound, we again make use of the diffusion model. From the
random environment4 = {ξj }j∈Z, we can define a partial sum process{V (x);
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x ∈ R} via (3.6), and a diffusion process{X(t); t ≥ 0} with potentialV , driven by
a Brownian motionB which is independent of4, see (3.2).

Let {W(x); x ∈ R} be the Komĺos–Major–Tusńady Brownian motion satisfy-
ing (4.2), independent ofB. Let (A, T ) be as in (3.3)–(3.4). Recall that% is the
first hitting time process associated withB, and thatLX is the local time ofX, see
(4.11) and (3.5) respectively. Fixε > 0, and define, for largev,

E5(v)
def=

{
sup

0≤x≤(1−ε)v

LX(T (%(A(v))), x)< 1
v

max
x∈Z+

LX(T (%(A(v))), x)
}

(6.1)

E6(v)
def=

{
logT (%(A(v))) ≤ (1+4ε)σπ√

8

√
v√

log logv

}
(6.2)

Assume for the moment that we could show

P
(
E5(v) ∩ E6(v), i.o.

)
= 1 . (6.3)

Letω ∈ E5(v). There exists a unique indexn = n(v, ω)such thatµn ≤ T (%(A(v)))

< µn+1, where{µk}k≥0 is the sequence defined in (3.7).

By (3.8) and (6.1) (writing againL(n, Z+)
def= maxx∈Z+ L(n, x)),

max
0≤k≤(1−ε)v

2ξkL(n, k) ≤ 30
√

1+ L(n, Z+) logn+ max
0≤k≤(1−ε)v

LX(µn, k)

≤ 30
√

1+ L(n, Z+) logn+ v−1LX(µn+1, Z+) .

Using (3.8) once more gives

max
0≤k≤(1−ε)v

2ξkL(n, k) ≤ 60
√

1+ L(n, Z+) logn+ 2v−1L(n, Z+) .

In view of (5.19) and of the boundedness ofξk guaranteed by (1.2), we would have

max
0≤k≤(1−ε)v

L(n, k) < L(n, Z+) ,

i.e. we would haveF(n) ≥ (1− ε)v. (These lines really are rewritings of the proof
leading to (5.20)).

By (3.9), onE6(v),

logn ≤ (1+ ε) logµn ≤ (1+ ε) logT (%(A(v))) ≤ (1+ 6ε)σπ
√

v√
8 log logv

.

Therefore, ifω ∈ E5(v)∩E6(v), we would have, for the random indexn = n(v, ω),

F(n) ≥ 1− ε

(1+ 6ε)2

8

σ 2π2
(logn)2 log log logn ,

i.e. by assuming (6.3), we would obtain the the lower bound in Theorem 1.1.
The rest of this section is devoted to the proof of (6.3). For brevity, write

W#(u, v)
def= sup

0≤x≤u; x≤y≤v

(W(y)−W(x)), 0 ≤ u ≤ v .

Recall the definitions ofW(t) andW#(t) from (5.7) and (5.8) respectively (thus
W#(u) = W#(u, u)). The proof of (6.3) is based on the following two lemmas.
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Lemma 6.2. Assume(1.2) with σ > 0. Fix ε ∈ (0, 1). Almost surely for all
sufficiently largev,∣∣∣log sup

0≤x≤(1−ε)v

LX(T (%(A(v))), x)− σW#((1− ε)v, v)

∣∣∣ ≤ (logv)5 , (6.4)∣∣∣log max
x∈Z+

LX(T (%(A(v))), x)− σW#(v)

∣∣∣ ≤ (logv)5 . (6.5)

Proof of Lemma 6.2.Write I(6.4) and I(6.5) respectively for the expressions on the
left hand side of (6.4) and (6.5). According to [17, Remark 6.2], for anyε ∈ (0, 1),
there existsc27 > 0 such that for all largev,

P
(
I(6.4) ≥ (logv)4) ≤ c27 exp

(−(logv)2),
P

(
I(6.5) ≥ (logv)4) ≤ c27 exp

(−(logv)2) .

The lemma now follows from the Borel–Cantelli lemma and the monotonicity,
using the same argument as in the proof of Lemma 5.3. ut
Lemma 6.3. Fix 0 < ε < 1/30. There exists a constantc28 > 0, depending onε,
such that for allt > 0 and0 < x <

√
t ,

P
(

W#((1− ε)t, t) < (1− ε)x; (1− ε

3
)x < W#(t) < x; W(t) <

x

5

)
≥ c28 exp

(
− (1+ 5ε)π2t

8x2

)
.

Proof of Lemma 6.3.By scaling, it suffices to treat the caset = 1. We clearly only
have to deal with smallx. Let

Ŵ (t)
def= W(t + 1− ε)−W(1− ε), t ≥ 0 ,

which is again a Brownian motion, independent of{W(s); 0 ≤ s ≤ 1− ε}. We can

defineŴ# andŴ for Ŵ exactly in the same way asW# andW for W . Observe that

W#(1− ε, 1) = max
(
W#(1− ε), Ŵ (ε)+W(1− ε)− inf

0≤s≤1−ε
W(s)

)
,

W(1) = max
(
W(1− ε), Ŵ (ε)+W(1− ε)

)
.

Therefore,

P
(

W#(1− ε, 1) < (1− ε)x; (1− ε

3
)x < W#(1) < x; W(1) <

x

5

)
≥ P

(
W#(1− ε) < (1− 2ε)x; W(1− ε) ≤ x

6
;

(1− ε

3
)x < Ŵ#(ε) < x; Ŵ (ε) < εx

)
= P

(
W#(1− ε) < (1− 2ε)x; W(1− ε) ≤ x

6

)
×P

(
(1− ε

3
)x < W#(ε) < x; W(ε) < εx

)
. (6.6)
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The joint law of(W#, W ) at fixed time has been studied in [17]. In particular, for
fixed 0< a < 1 ands > 0,

P
(

W#(s) < y, W(s) < ay
)
∼ 4

π
sin(

πa

2
) exp

(
−π2s

8y2

)
, y → 0 .

Applying this to both probability expressions on the right hand side of (6.6) (and
noting that(1− ε)(1− 2ε)−2 < 1+ 4ε) yields the lemma. ut

Proof of (6.3).Fix a smallε > 0. LetU− be the process introduced in (5.9), and
define

E7(v)
def=

{
W#((1− ε)v, v) < W#(v)− (logv)6; W#(v) <

(1+ 3ε)π
√

v√
8 log logv

;

U−( W(v)+ (logv)5) < W#(v)
}

.

It is an immediate consequence of (5.14), Lemmas 5.3 and 6.2 that almost surely
for all largev,

E7(v) ⊂ E5(v) ∩ E6(v) . (6.7)

Let

vj
def= exp(j1+ε),

xj
def= (1+ 3ε)π

√
vj√

8 log logvj

,

G(j)
def=

{
W#((1− ε)vj , vj ) < (1− ε)xj ; (1− ε

3
)xj ≤ W#(vj ) < xj ;

W(vj ) <
xj

4
; U−

(xj

3

)
<

xj

2

}
.

SinceG(j) ⊂ E7(vj ), and in view of (6.7), the proof of (6.3) is reduced to showing
the following:

P
(
G(j), i.o.

) = 1 . (6.8)

To this end, writeFj
def= σ {W(s), 0 ≤ s ≤ vj ; W(−t), 0 ≤ t ≤ xj /3}.

Observe thatG(j) is Fj –measurable. By (5.9),

U−(
xj

3
) = max

(
U−(

xj−1

3
)+ xj − xj−1

3
, Zj

)
, (6.9)

whereZj is a variable having the same distribution asU−((xj − xj−1)/3), and is
independent ofFj−1 and{W(t); t ≥ 0}. Let

W̃ (t)
def= W(t + vj−1)−W(vj−1), t ≥ 0 ,
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which is again a Brownian motion. We can definẽW andW̃# in the obvious way.

Write 1j
def= vj − vj−1. Sincevj−1 < (1− ε)vj , we have

W#((1− ε)vj , vj ) ≤ max
(
W#(vj−1)+ W̃ (1j ), W̃#((1− ε)vj − vj−1, 1j )

)
≤ max

(
W#(vj−1)+ W̃ (1j ), W̃#((1− ε)1j , 1j )

)
,

and also
W(vj ) ≤ W(vj−1)+ W̃ (1j ) .

In light of (6.9), this gives

G1(j) ∩G2(j) ⊂ G(j) ,

where

G1(j)
def=

{
W#(vj−1) <

ε xj

5
; U−(

xj−1

3
) ≤ xj

6

}
,

G2(j)
def=

{
W̃#((1− ε)1j , 1j ) < (1− ε)xj ; W̃ (1j ) <

xj

5
;

(1− ε

3
)xj < W̃#(1j ) < xj ; Zj <

xj

2

}
.

Observe thatG1(j) isFj−1–measurable, and that both̃W andZj are independent
of Fj−1. Accordingly,

P
(
G(j) |Fj−1

) ≥ 1lG1(j) P(G2(j))

= 1lG1(j) P
(

Zj <
xj

2

)
× I(6.10) , (6.10)

where

I(6.10)
def= P

(
W#((1− ε)1j , 1j ) < (1− ε)xj ; W(1j) <

xj

5
;

(1− ε

3
)xj < W#(1j ) < xj

)
.

Applying Lemma 6.3 tot = 1j andx = xj gives

I(6.10) ≥ c28 exp
(
− 1+ 5ε

(1+ 3ε)2

vj − vj−1

vj

log logvj

)
≥ c28 exp

(
− log logvj

1+ ε

)
= c28

j
.

On the other hand,P(U−(a) < b) = (b − a)/b for all 0 < a < b, andZj is
distributed asU−((xj − xj−1)/3). Therefore, (6.10) leads to:

P
(
G(j) |Fj−1

) ≥ c29 j−1 1lG1(j) . (6.11)
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By the usual law of the iterated logarithm, almost surely for all largej ,

W#(vj−1) ≤ 2
√

3vj−1 log logvj−1 <
ε xj

5
,

whereas by (5.24) (noting thatU− has the same law asU ),

U−(
xj−1

3
) ≤ xj−1

3

(
logxj−1

)2
<

xj

6
.

Consequently,1lG1(j) = 1 almost surely for all largej . Going back to (6.11), we
have ∑

j

P
(
G(j) |Fj−1

) = ∞, a.s. ,

which, according to Ĺevy’s Borel–Cantelli lemma (see [34, p. 518]), implies (6.8).
This completes the proof of (6.3). ut

7. Favourite sites of diffusions with random potentials

Our proofs of Theorems 1.1 and 1.2 clearly work directly for favourite sites of
diffusions with random potentials. Let{X(t); t ≥ 0} be a diffusion process with
random potentialV , as in (3.1)–(3.4). Its local timeLX is defined in (3.5). As for
RWRE, we can define

FX(t)
def=

{
x ∈ R+ : LX(t, x) = sup

y∈R+
LX(t, y)

}
,

and the favourite site

FX(t) = max
x∈FX(t)

x .

The arguments in Sections 5 and 6 yield the following counterparts of Theorems
1.1 and 1.2 forX:

Theorem 7.1. If (4.2) is satisfied with some constantσ > 0, then

lim sup
t→∞

FX(t)

(log t)2 log log logt
= 8

π2σ 2
, a.s.

Theorem 7.2. Under(4.2), for any non-decreasing functionf > 1,

lim inf
t→∞

f (t)

(log t)2
FX(t) =

{
0
∞ , a.s. ⇐⇒

∫ ∞ logf (t)

t
√

f (t) log t
dt

{= ∞
<∞ .

Remark 7.3.In the particular case whenX is Brox’s diffusion process with Brow-
nian potential (i.e. whenV is Brownian motion), (4.2) trivially holds withσ = 1,
and hence Theorems 7.1 and 7.2 apply.
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