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Aharonov–Bohm Effect in Scattering by Point-like
Magnetic Fields at Large Separation

H. T. Ito, H. Tamura

Abstract.The aim is to study the Aharonov–Bohm effect in the scattering by two
point–like magnetic fields at large separation in two dimensions. We analyze the
asymptotic behavior of scattering amplitude when the distance between the centers
of two fields goes to infinity. The obtained result heavily depends on the fluxes of
fields and on incident and final directions.

1 Introduction

Magnetic potentials have a direct significance to the motion of particles in quantum
mechanics. This property is known as the Aharonov–Bohm effect ([3]) and a lot of
physical literatures can be found in the recent book [2]. In this work we consider the
scattering by two δ-like magnetic fields at large separation in two dimensions and
we analyze the asymptotic behavior of scattering amplitude when the distance
between the centers of two fields goes to infinity. Even if a field is compactly
supported, the corresponding magnetic potential is not expected to fall off rapidly.
In general, it has the long–range property at infinity. We study how the Aharonov–
Bohm effect is reflected in the scattering by magnetic fields at large separation.

We work in the two dimensional space R2 throughout the entire discussion.
We denote by x = (x1, x2) a generic point, and we write

H(A) = (−i∇−A)2 =
2∑

j=1

(−i∂j − aj)2, ∂j = ∂/∂xj ,

for the Schrödinger operator with magnetic potentialA(x) = (a1(x), a2(x)) : R2 →
R2. The magnetic field b(x) is defined as b = ∇×A = ∂1a2−∂2a1, and the quantity

α = (2π)−1
∫

b(x) dx is called the total flux of field b, where the integration with

no domain attached is taken over the whole space. We often use this abbreviation.

We begin by making a brief review on the scattering theory for the Hamil-
tonian with magnetic field supported on a single point. Such a Hamiltonian is
regarded as one of solvable models in quantum mechanics and the explicit form
of scattering amplitude has been already calculated ([3,17]). In section 2 we are
going to discuss the subject in some detail. Let 2παδ(x) be the magnetic field with
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flux α and center at the origin. The magnetic potential Aα(x) associated with the
field is given by

Aα(x) = α
(
−x2/|x|2, x1/|x|2

)
= α (−∂2 log |x|, ∂1 log |x|) .

In fact, a simple calculation yields ∇× Aα = α∆log |x| = 2παδ(x). If we denote
by γ(x) the azimuth angle from the positive x1 axis, then Aα is written in the
different form

Aα(x) = α∇γ(x) = α
(
−x2/|x|2, x1/|x|2

)
. (1.1)

This representation is important. The same relation remains true for the azimuth
angle γ(x;ω) from direction ω ∈ S1, where S1 is the unit circle.

Let H0 = −∆ be the free Hamiltonian and define Hα by Hα = H(Aα).
The potential Aα(x) has a strong singularity at the origin and it is known ([1,7])
that the operator formally defined is not essentially self–adjoint in C∞

0 (R
2 \ {0}).

We have to impose some boundary conditions at the origin. The operator Hα

becomes self–adjoint in L2 = L2(R2) under the condition lim|x|→0 |u(x)| < ∞,
and it is called the Aharonov–Bohm Hamiltonian. If, in particular, α �∈ Z is not
an integer, the limit is convergent to zero lim|x|→0 |u(x)| = 0. We now denote
by f(ω → ω̃;E,Hα,H0) the scattering amplitude for the scattering from initial
direction ω to final one ω̃ at energy E > 0. If we identify the coordinates over S1

with the azimuth angles from the positive x1 axis, then the amplitude is given by

f(ω → ω̃) = c(E)
(
(cos απ− 1)δ(ω̃−ω)− (i/π) sinαπ ei[α](ω̃−ω)F0(ω̃−ω)

)
(1.2)

with c(E) = (2π/i
√
E)1/2, where the Gauss notation [α] denotes the maximal

integer not exceeding α and F0(θ) = v.p. eiθ/(eiθ − 1).

We move to the scattering by two δ–like magnetic fields. Let 2πα1δ(x) and
2πα2δ(x − d) be given magnetic fields with centers at the origin and d ∈ R2

respectively. We consider the Hamiltonian

Hd = H(Aα1 +Aα2,d), Aα2,d(x) = Aα2(x− d),

where
Aαj (x) = αj∇γ(x) = αj

(
−x2/|x|2, x1/|x|2

)
(1.3)

is the magnetic potential associated with the field 2παjδ(x). In section 7, we
will study the basic spectral problems such as the self–adjointness, the absence of
bound states, the principle of limiting absorption and the asymptotic completeness
of wave operators for Hd. According to the result there, Hd becomes self–adjoint
with domain

D(Hd) = {u ∈ L2 : Hdu ∈ L2, lim
|x|→0

|u(x)| < ∞, lim
|x−d|→0

|u(x)| < ∞}, (1.4)
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where Hdu is understood in the distributional sense. We set

Hj = H(Aαj ), j = 1, 2,

and we denote by fd(ω → ω̃;E) and fj(ω → ω̃;E) the scattering amplitude for
the pair (Hd,H0) and (Hj ,H0) respectively. By (1.2), the scattering amplitude for
(Hj ,H0) is explicitly calculated as

fj(ω → ω̃;E) = −c(E)(i/π) sinαjπe
i[αj ](ω̃−ω)F0(ω̃ − ω)

for ω �= ω̃.

The aim here is to study the asymptotic behavior as |d| → ∞ of fd(ω →
ω̃;E). If we make a change of variables x → |d|y, then this becomes the problem
on the asymptotic behavior at high energy |d|2E of scattering amplitude for the
Hamiltonian H(Aα1 + Ãα2), where Ãα2(x) = α2∇γ(x− d̂) and d̂ = d/|d| ∈ S1. We
fix the notation. We define τ(x;ω, ω̃) by

τ(x;ω, ω̃) = γ(x;ω)− γ(x;−ω̃)

and we interpret exp(iαγ(x;ω)) with ω = x/|x| as

exp(iαγ(x;ω)) := (1 + exp(i2απ))/2 = cos απ × exp(iαπ).

The obtained result is formulated as the following theorem.

Theorem 1.1 Let the notation be as above and let

f2,d(ω → ω̃;E) = exp(−i
√
Ed · (ω̃ − ω))f2(ω → ω̃;E)

be the scattering amplitude for the pair (H2,d,H0), H2,d = H(Aα2,d). Fix the
direction d̂ = d/|d|. If ω �= ω̃, then fd(ω → ω̃;E) behaves like

fd(ω → ω̃;E) = exp(iα2τ(−d;ω, ω̃))f1(ω → ω̃;E)
+ exp(iα1τ(d;ω, ω̃))f2,d(ω → ω̃;E) + o(1)

as |d| → ∞. In particular, the backward scattering amplitudes obey

fd(ω → −ω;E) = f1(ω → −ω;E) + f2,d(ω → −ω;E) + o(1)

for ω �= ±d̂, and

fd(d̂ → −d̂;E) = f1(d̂ → −d̂;E) + (cosα1π)
2
f2,d(d̂ → −d̂;E) + o(1),

fd(−d̂ → d̂;E) = (cosα2π)
2
f1(−d̂ → d̂;E) + f2,d(−d̂ → d̂;E) + o(1).
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As stated at the beginning, the motion of quantum particles is subject to
the influence of magnetic potentials as well as of magnetic fields. This quantum
property can be found in the asymptotic formula above. In fact, the first field
2πα1δ(x) has an influence upon the scattering by the second one through the
phase factor exp(iα1τ(d;ω, ω̃)) in front of f2,d(ω → ω̃;E), although the centers
of two fields are far away from each other. This can be seen more clearly in the
backward scattering amplitude fd(d̂ → −d̂;E) or fd(−d̂ → d̂;E). If, in particular,
the flux α1 is a half–integer, then the scattering by the second field does not make
any contribution to the leading term of the asymptotic formula for fd(d̂ → −d̂;E).

Many literatures can be found in the book [4] for the spectral and scattering
theory of Schrödinger operators with potentials supported on a discrete set of
points, and the work [11] has recently dealt with the problem on the asymptotic
behavior of scattering amplitude for the Schrödinger operator −∆+V1(x)+V2(x−
d) with potentials falling off rapidly at infinity. In the case of potential scattering,
we do not have to modify phase factors and the asymptotic formula is completely
split into the sum of two scattering amplitudes corresponding to potentials V1 and
V2(· − d). However the case is quite different in the scattering by magnetic fields.
Roughly speaking, the difficulty comes from the long–range property of magnetic
potentials. Several new devices are required at many stages of the argument. The
micro-local resolvent estimates for Hd and the asymptotic behavior at infinity of
the eigenfunction of H1 = H(Aα1) or H2 play an important role in proving the
theorem. We end the section by making a brief comment on the extension to the
case of scattering by point–like magnetic fields supported on several points. This
is a natural problem. The analysis heavily depends on the location of centers and
on initial and final directions. Some new difficulties may arise. However the idea
developed here is thought to be useful to such a generalization. We are going to
discuss the detailed matter elsewhere.

2 Scattering by δ–like magnetic field

The present section is devoted to the scattering theory for the Schrödinger operator
with point–like magnetic field supported on a single point. Such an operator is
called the Aharonov–Bohm Hamiltonian.
2.1. We first make a review on the results from [3,17]. We consider the Hamilto-
nian

Hα = H(Aα), Aα(x) = α∇γ(x) = α
(
−x2/|x|2, x1/|x|2

)
,

which has the δ–like field 2παδ(x) at the origin. We know ([1,7]) that Hα is self–
adjoint with domain

D(Hα) = {u ∈ L2 : Hαu ∈ L2, lim
|x|→0

|u(x)| < ∞},
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Hαu being understood in D′, and that the wave operator

W±(Hα,H0) = s− lim
t→±∞

exp(itHα) exp(−itH0) : L2 → L2

exists and is asymptotically complete : RanW±(Hα,H0) = L2. Hence the scatter-
ing operator

S(Hα,H0) =W ∗
+(Hα,H0)W−(Hα,H0) : L2 → L2

can be defined as a unitary operator. We use the notation · to denote the scalar
product in R2. Let ϕ0(x;λ, ω) = exp(i

√
λx · ω) be the generalized eigenfunction

of the free Hamiltonian H0 = −∆, where λ > 0 and ω ∈ S1. The unitary mapping
F : L2 → L2((0,∞); dλ)⊗ L2(S1) defined by

(Fu) (λ, ω) = 2−1/2(2π)−1
∫

ϕ̄0(x;λ, ω)u(x) dx (2.1)

decomposes S(Hα,H0) into the direct integral

S(Hα,H0) � FS(Hα,H0)F ∗ =
∫ ∞

0
⊕S(λ;Hα,H0) dλ,

where the fiber S(λ;Hα,H0) : L2(S1)→ L2(S1) is called the scattering matrix at
energy λ > 0 and it acts as

(S(λ;Hα,H0)(Fu)(λ, · )) (ω) = (FS(Hα,H0)u) (λ, ω)

for u ∈ L2.

We calculate the generalized eigenfunction ϕ∓(x;λ, ω) of Hα to derive the
integral kernel of S(λ;Hα,H0). The operatorHα is rotationally invariant. We work
in the polar coordinate system (r, θ). Let Λl, l ∈ Z, be the eigenspace associated
with eigenvalue l of operator −i∂/∂θ acting on L2(S1). Then

L2((0,∞); dr)⊗ L2(S1) =
∑
l∈Z

⊕
(
L2((0,∞); dr)⊗ Λl

)
.

We define the unitary mapping

(Uu)(r, θ) = r1/2u(rθ) : L2 → L2((0,∞); dr)⊗ L2(S1).

The mapping U yields the partial wave expansion

Hα � UHαU
∗ =

∑
l∈Z

⊕ (Hlα ⊗ Id),

where Id is the identity operator and

Hlα = −∂2
r + (ν

2 − 1/4)r−2, ν = |l − α|,
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is self–adjoint with domain

D(Hlα) = {u ∈ L2((0,∞); dr) : Hlαu ∈ L2((0,∞); dr), lim
r→0

r−1/2|u(r)| < ∞}.

The eigenfunction ϕ∓ is formally defined as ϕ∓ = W±(Hα,H0)ϕ0 by using the
intertwining property of wave operators. However this does not have the precise
meaning, because ϕ0(x;λ, ω) is not in L2. The precise definition requires the ex-
pansion formula

ϕ0(x;λ, ω) =
∑
l∈Z

exp(i|l|π/2) exp(ilγ(x;ω))J|l|(
√
λ|x|) (2.2)

in terms of the Bessel functions Jp(r). The function Jp(r) satisfies the asymptotic
formula

Jp(r) = (2/π)1/2r−1/2 cos(r − (2p+ 1)π/4)
(
1 + gN (r)

)
+O(r−N ), r → ∞,

for any N � 1 large enough, where gN (r) obeys (d/dr)kgN (r) = O(r−1−k). If we
set

e∓l(r) = exp(±i|l|π/2)J|l|(r)− exp(±iνπ/2)Jν(r),

then
e∓l(r) = exp(∓ir)

(
C∓lr

−1/2 +O(r−3/2)
)
+ exp(±ir)O(r−3/2)

for some constant C∓l �= 0. Hence e−l(r) satisfies the incoming radiation condition
e′−l + ie−l = O(r−3/2) at infinity, while e+l(r) satisfies the outgoing radiation
condition e′+l − ie+l = O(r−3/2). The simple relation

exp(ilγ(x;−ω)) = exp(i|l|π + ilγ(x;ω))

holds between the azimuth angles γ(x;ω) and γ(x;−ω). If we take account of (2.2),
then the eigenfunction ϕ∓ is given by

ϕ∓(x;λ, ω) =
∑
l∈Z

exp(±iνπ/2) exp(ilγ(x;±ω))Jν(
√
λ|x|) (2.3)

with ν = |l−α| again. We can easily see that the series converges locally uniformly
and that ϕ∓ satisfies Hαϕ∓ = λϕ∓.

We often identify the coordinates over the unit circle S1 with the azimuth
angles from the positive x1 axis. The scattering matrix S(λ;Hα,H0) has the prop-
erty

S(λ;Hα,H0) : ϕ+(x;λ, ·)→ ϕ−(x;λ, ·).
A simple computation yields

exp(iνπ/2) exp(−ilγ(x;−ω)) = exp(i(ν − l)π) exp(−iνπ/2) exp(−ilγ(x;ω))
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and hence the kernel of S(λ;Hα,H0) is calculated as

S(θ′, θ;λ,Hα,H0) = (2π)−1
∑
l∈Z

exp(i(l − ν)π) exp(il(θ′ − θ)).

According to [17], the sum on the right side equals∑
l∈Z

exp(i(l − ν)π) exp(ilθ) = 2π
(
cosαπ δ(θ)− (i/π) sinαπei[α]θF0(θ)

)
,

where F0(θ) = v.p. eiθ/(eiθ − 1). Thus we can obtain the representation (1.2) of
amplitude

f(ω → ω̃;E,Hα,H0) = c(E)
(
S(ω̃, ω;E,Hα,H0)− δ(ω̃ − ω)

)
for the scattering from initial direction ω into final one ω̃ at energy E > 0, where
c(E) = (2π/i

√
E)1/2.

2.2. The asymptotic behavior as |x| → ∞ of eigenfunction ϕ∓(x;λ, ω) plays an
important role in proving the main theorem. It has been already known in the
physical literatures [3,5,14]. However we shall prove the following proposition in
section 6 because of its importance.

Proposition 2.1 The eigenfunction ϕ∓(x;λ, ω) has the following asymptotic prop-
erties at infinity.

(1) Assume that |x/|x| − ω| > c > 0. Then ϕ+(x;λ, ω) behaves like

ϕ+(x;λ, ω) = exp (iα (γ(x;ω)− π)) exp(i
√
λx · ω)

+ ei
√
λ|x||x|−1/2

(N−1∑
j=0

c+j(x)|x|−j
)
+O(|x|−(N+1/2)),

where the coefficient c+j(x) obeys the bound |∂β
x c+j | = O(|x|−|β|).

(2) If |x/|x|+ ω| > c > 0, then a similar formula

ϕ−(x;λ, ω) = exp (iα (γ(x;−ω)− π)) exp(i
√
λx · ω)

+ e−i
√
λ|x||x|−1/2

(N−1∑
j=0

c−j(x)|x|−j
)
+O(|x|−(N+1/2))

holds true for the incoming eigenfunction ϕ−(x;λ, ω).

(3) Assume that 1/2 < q ≤ 1. If 0 < |x/|x| − ω| < c|x|−q for some c > 0,
then

ϕ+(x;λ, ω) = cosαπ × exp(i
√
λx · ω) +O(|x|−ν)
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with ν = 2(q − 1/2)/3 > 0, and if 0 < |x/|x|+ ω| < c|x|−q, then

ϕ−(x;λ, ω) = cosαπ × exp(i
√
λx · ω) +O(|x|−ν)

for the same ν as above.

(4) ϕ∓(x;λ, ω) is bounded uniformly in x.

2.3. We represent the amplitude f(ω → ω̃;E,Hα,H0) in terms of resolvent R(E+
i0;Hα). We know that the boundary values

R(λ± i0;Hα) = lim
ε↓0

R(λ± iε;Hα), R(ζ;Hα) = (Hα − ζ)−1,

to the positive real axis exist (principle of limiting absorption) and

R(λ± i0;Hα) : L2
s(R

2) = L2(R2; 〈x〉2sdx)→ L2
−s(R

2) (2.4)

is bounded for s > 1/2, where 〈x〉 = (1 + |x|2)1/2. This is verified by use of the
commutator method due to Mourre [13] (see Proposition 7.3 in section 7).

We now introduce a basic cut–off function. Let χ ∈ C∞
0 [0,∞) be a smooth

function such that χ(s) ≥ 0 and

χ(s) = 1 for 0 ≤ s ≤ 1, χ(s) = 0 for s > 2. (2.5)

We fix E > 0 and we choose δ, 0 < δ � 1, sufficiently small. We define

β0(ξ) = χ(2|ξ −
√
Eω|/δ2)

for initial direction ω. We further take a nonnegative function j0 ∈ C∞(R2) such
that

supp j0 ⊂ Σ(R,−ω, δ), j0 = 1 on Σ(2R,−ω, δ/2), (2.6)

and ∂β
x j0(x) = O(|x|−|β|) at infinity, where

Σ(R,ω, δ) = {x : |x| > R, |x/|x| − ω| < δ}, R > 0.

Recall that the azimuth angle γ(x;ω) satisfies (1.1). Hence we have

exp(−iαγ(x;ω))Hα exp(iαγ(x;ω)) = H(Aα − α∇γ) = H0 (2.7)

on Σ(R,−ω, δ).

The next lemma is well known ([15]). We skip the proof.

Lemma 2.1 Let f ∈ L2. Then the free solution exp(−itH0)f behaves like

(exp(−itH0)f)(x) = (2it)−1 exp(i|x|2/4t)f̂(x/2t) + o(1), |t| → ∞,

in L2, where f̂(ξ) = (2π)−1
∫

e−ix·ξf(x) dx is the Fourier transform.
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Let K1 and K2 be two self–adjoint operators in L2. We introduce the new
notation

W±(K2,K1;J) = s− lim
t→±∞

exp(itK2)J exp(−itK1)

for a bounded operator J on L2. Let β0(ξ) and j0(x) be as above. We set J =
j2
0β0(Dx)2. Then

W−(Hα,H0)β0(Dx)2 =W−(Hα,H0;J)

by Lemma 2.1, so that we have the decomposition

W−(Hα,H0)β0(Dx)2 =W−(Hα,H0;J0)W−(H0,H0;J1), (2.8)

where

J0 = j0 exp(iαγ(x;ω))β0(Dx), J1 = j0 exp(−iαγ(x;ω))β0(Dx).

The existence of W−(H0,H0;J1) follows from Lemma 2.1, while the existence of
W−(Hα,H0;J0) is verified by use of (2.7). The same argument applies to final
direction ω̃. We define

β̃0(ξ) = χ(2|ξ −
√
Eω̃|/δ2)

and we take a function j̃0 ∈ C∞(R2) such that

supp j̃0 ⊂ Σ(R, ω̃, δ), j̃0 = 1 on Σ(2R, ω̃, δ/2). (2.9)

If we set

J̃0 = j̃0 exp(iαγ(x;−ω̃))β̃0(Dx), J̃1 = j̃0 exp(−iαγ(x;−ω̃))β̃0(Dx),

then we obtain

W+(Hα,H0)β̃0(Dx)2 =W+(Hα,H0; J̃0)W+(H0,H0; J̃1). (2.10)

We combine (2.8) and (2.10) to obtain that

β̃0(Dx)2S(Hα,H0)β0(Dx)2 =W ∗
+(H0,H0; J̃1)S0(Hα,H0)W−(H0,H0;J1), (2.11)

where
S0(Hα,H0) =W ∗

+(Hα,H0; J̃0)W−(Hα,H0;J0).

The operator S0(Hα,H0) also has the direct integral decomposition, because it
commutes with H0. We denote by S0(λ;Hα,H0) : L2(S1)→ L2(S1) the fiber and
by S0(θ′, θ;λ,Hα,H0) the kernel of S0(λ;Hα,H0). By Lemma 2.1,W−(H0,H0;J1)
acts as the multiplication

FW−(H0,H0;J1)F ∗ = exp(−iαγ(−θ;ω))β0(
√
λθ)×
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on L2((0,∞); dλ)⊗L2(S1), where F : L2 → L2((0,∞); dλ)⊗L2(S1) is the unitary
mapping defined by (2.1). Similarly

FW+(H0,H0; J̃1)F ∗ = exp(−iαγ(θ;−ω̃))β̃0(
√
λθ)× .

Since e−iαγ(−ω;ω)β0(
√
Eω) = e−iαπ and e−iαγ(ω̃;−ω̃)β̃0(

√
Eω̃) = e−iαπ, we have

S(ω̃, ω;E,Hα,H0) = S0(ω̃, ω;E,Hα,H0) (2.12)

by (2.11). We derive the representation for S0(θ′, θ;E,Hα,H0) on the right side.
The derivation is based on the idea due to [10]. We calculate T = HαJ0 −J0H0 as

T = exp(iαγ(x;ω)) (H0j0 − j0H0)β0(Dx) = exp(iαγ(x;ω))[H0, j0]β0(Dx)

by use of (2.7). Similarly we have

T̃ = HαJ̃0 − J̃0H0 = exp(iαγ(x;−ω̃))[H0, j̃0]β̃0(Dx).

Since W+(Hα,H0;J0) = 0 by Lemma 2.1, it follows that

W−(Hα,H0;J0) = −i

∫
exp(itHα)T exp(−itH0) dt.

If we make use of this relation, then we obtain the representation

S0(λ;Hα,H0) = 2πiF (λ)
(
−J̃∗

0T + T̃ ∗R(λ+ i0;Hα)T
)
F ∗(λ) (2.13)

in exactly the same way as [10, Theorem 3.3], where F (λ) : L2
s(R

2)→ L2(S1), s >
1/2, is the trace operator defined by

(F (λ)u) (θ) = (Fu) (µ, θ)|µ=λ.

We write ϕ0(ω, λ) for ϕ0(x;ω,E) = exp(i
√
λx · ω) and denote by ( , ) the L2

scalar product. The next lemma immediately follows from (2.12).

Lemma 2.2 Assume that ω �= ω̃. Then

f(ω → ω̃;E,Hα,H0) = −(ic(E)/4π)(Tϕ0(ω,E), J̃0ϕ0(ω̃, E))
+ (ic(E)/4π)(R(E + i0;Hα)Tϕ0(ω,E), T̃ ϕ0(ω̃, E)).

We fix σ, 0 < σ � 1, small enough and take R = |d|σ, |d| � 1, in (2.6)
and (2.9). We may assume that j0 obeys ∂β

x j0(x) = O(|x|−|β|) uniformly in d ;
similarly for j̃0. The operators J̃0, T and T̃ are all pseudo-differential operators.
If ω �= ω̃, then we can choose δ so small that the support of symbols T (x, ξ) and
J̃0(x, ξ) does not intersect with each other. Hence it follows that

(Tϕ0(ω,E), J̃0ϕ0(ω̃, E)) = O(|d|−N ), |d| → ∞,
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for any N � 1. Thus we have

f(ω → ω̃;E,Hα,H0) = (ic(E)/4π)(R(E + i0;Hα)Tϕ0(ω,E), T̃ ϕ0(ω̃, E)) + o(1)

as |d| → ∞. We continue to analyze the behavior as |d| → ∞ of the term on the
right side. We decompose T = T (x,Dx) into

T = χ0T + (1− χ0)T = T0 + T1,

where
χ0(x) = χ(|x|/2|d|σ) (2.14)

for cut–off function χ ∈ C∞
0 (0,∞) with property (2.5). By (2.6), ∇j0 vanishes on

Σ(2R,−ω, δ/2) with R = |d|σ. Hence the symbol T1(x, ξ) has the support in the
outgoing region

suppT1 ⊂ {(x, ξ) : |x| > 2|d|σ, |ξ −
√
Eω| < δ2, x · ξ > (−1 + δ/3)|x||ξ|}.

The particle with initial state (x, ξ) ∈ suppT1 at t = 0 moves like the free particle
and it does not pass in a neighborhood of the origin for t ≥ 0. In fact, we have

|x+ tξ|2 ≥ |x|2 − 2t(1− δ/3)|x| |ξ|+ t2|ξ|2 ≥ c (|x|+ t|ξ|)2 , c > 0.

Thus the outgoing particle does not take momentum around
√
Eω̃, so that

(R(E + i0;Hα)T1ϕ0(ω,E), T̃ ϕ0(ω̃, E)) = O(|d|−N )

by the micro-local resolvent estimate ([9, Theorems 1 and 2]). Similarly we decom-
pose T̃ into T̃ = T̃0 + T̃1. Then we obtain

(R(E + i0;Hα)T0ϕ0(ω,E), T̃1ϕ0(ω̃, E)) = O(|d|−N ).

A similar argument has been used in the semi–classical analysis on scattering
amplitudes ([16]). The magnetic potential Aα(x) has a singularity at the origin,
but the classical particle starting from (x, ξ) ∈ suppT1 or (x, ξ) ∈ supp T̃1 does not
pass over the origin. Thus the argument there applies to Hα without any essential
changes. The next lemma is obtained as a consequence of Lemma 2.2.

Lemma 2.3 Let j0, j̃0 be as in (2.6) and (2.9) respectively and let χ0 be defined
by (2.14). Assume that ω �= ω̃. Then

f(ω → ω̃;E,Hα,H0) = (ic(E)/4π)(R(E + i0;Hα)T0ϕ0(ω,E), T̃0ϕ0(ω̃, E)) + o(1)

as |d| → ∞, where T0 acts as

T0ϕ0(ω,E) = eiαγ(x;ω)χ0[H0, j0]ϕ0(ω,E)

on ϕ0(ω,E) = ϕ0(x;ω,E) = exp(i
√
Ex · ω), and T̃0 acts as

T̃0ϕ0(ω̃, E) = eiαγ(x;−ω̃)χ0[H0, j̃0]ϕ0(ω̃, E).
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2.4. The main idea to prove the theorem is to represent the scattering am-
plitude fd(ω → ω̃;E) in terms of the eigenfunction of H1 = H(Aα1) or H2. This
subsection is devoted to a preliminary step towards the representation.

The eigenfunction ϕ∓(x;λ, ω) of Hα is defined by (2.3). We denote by F± :
L2 → L2((0,∞); dλ)⊗ L2(S1) the unitary mapping

(F±u) (λ, θ) = 2−1/2(2π)−1
∫

ϕ̄±(x;λ, θ)u(x) dx

and by F±(λ) : L2
s(R

2)→ L2(S1), s > 1/2, the trace operator

(F±(λ)u) (θ) = (F±u) (µ, θ)|µ=λ.

According to the stationary scattering theory, we know that

W∓(Hα,H0) = F ∗
±F (2.15)

and hence it follows that

F±(λ)W∓(Hα,H0)u = F (λ)u, a. e. λ > 0, (2.16)

for u ∈ L2. We now consider a function of the form

vl(x) = fl(r)eilθ, (Fvl) (λ, θ) = gl(λ)eilθ, (2.17)

for l ∈ Z, where fl ∈ S[0,∞) (Schwartz space) and

gl(λ) = 2−1/2e−i|l|π/2
∫ ∞

0
J|l|(

√
λr)fl(r)r dr.

We assume that gl ∈ C∞
0 (0,∞) is supported away from the origin.

Lemma 2.4 Let vl be as above. Then

〈x〉NW±(Hα,H0)vl ∈ L2

for any N � 1.

Proof. By (2.15), we have

(W+(Hα,H0)vl) (x) =
(
F ∗
−Fvl

)
(x) = f−l(r)eilθ,

where
f−l(r) = 2−1/2eiνπ/2

∫ ∞

0
Jν(

√
λr)gl(λ) dλ

with ν = |l − α|. The Bessel function Jp(r) obeys the asymptotic formula

Jp(r) = eirh+p(r) + e−irh−p(r) (2.18)

at infinity, where ∂m
r h±p(r) = O(r−1/2−m). By assumption, gl ∈ C∞

0 (0,∞) has
compact support away from the origin. Hence the lemma follows by repeated use
of partial integration. ✷
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Lemma 2.5 One has

‖〈x〉−m exp(−itHα)W±(Hα,H0)vl‖L2 = O(|t|−m), |t| → ∞,

for m ≥ 0.

Proof. We divide R2 into the two regions {x : |x| > c |t|} and {x : |x| < c |t|} for
some c > 0. It is easy to see that the term in the lemma satisfies the desired bound
O(|t|−m) over the region {x : |x| > c |t|}. It follows from (2.15) that(

exp(−itHα)W+(Hα,H0)vl
)
(x) = 2−1/2eiνπ/2

∫ ∞

0
Jν(

√
λr)e−itλgl(λ) dλeilθ.

Assume that |x| < c |t|. Then we can take c > 0 so small that the integral above
obeys the bound O(|t|−N ) for any N � 1. This is again obtained by repeated use
of partial integration. Thus the proof is complete. ✷

Lemma 2.6 Let β0(ξ) = χ(2|ξ−
√
Eω|/δ2) be as before and let j±(x) be a bounded

function vanishing in a conical neighborhood of ±ω. Then one can choose δ > 0
so small that

‖j+β0(Dx) exp(−itHα)W±(Hα,H0)vl‖L2 = O(|t|−N ), t → ∞,

‖j−β0(Dx) exp(−itHα)W±(Hα,H0)vl‖L2 = O(|t|−N ), t → −∞,

for any N � 1.

Proof. We give only a sketch for a proof. The proof is again done by repeated use
of partial integration. We show that the term

I = j+β0(Dx) exp(−itHα)W−(Hα,H0)vl

obeys the bound O(|t|−N ) as t → ∞. A similar argument applies to the other
terms. If we take account of (2.18), then I is expressed as the sum of two oscillatory
integrals of the form

I± =
∫ ∫ ∫ ∞

0
exp(iψ±(x, ξ, y, λ; t))f±(x, ξ, y, λ) dλ dy dξ eilθ,

where
ψ±(x, ξ, y, λ; t) = (x− y) · ξ ±

√
λ|y| − tλ, t � 1.

We consider the integral I+ only. The amplitude function f+ is supported in a
small neighborhood of

√
Eω in variables ξ and has compact support away from

the origin in variable λ, while the stationary point (ξ, y, λ) of the phase function
ψ+ has to fulfill the relations

y = x, ξ =
√
λy/|y|, |y| = 2

√
λt
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for x ∈ supp j+. If we take δ > 0 small enough, then we see that such a stationary
point does not exist. This yields the desired bound. ✷

Remark 2.1 If vl ∈ L2 takes the form vl =
(
F ∗
−ge

ilθ
)
(x) or vl =

(
F ∗

+ge
ilθ
)
(x)

for g(λ) ∈ C∞
0 (0,∞) supported away from the origin, then we can show in exactly

the same way as above that ‖〈x〉−m exp(−itHα)vl‖L2 = O(|t|−m) and

‖j+β0(Dx) exp(−itHα)vl‖L2 = O(|t|−N ), t → ∞,

‖j−β0(Dx) exp(−itHα)vl‖L2 = O(|t|−N ), t → −∞.

The totality of such vl is dense in L2. As an immediate consequence, we have
W+(Hd,Hα;J+) = 0 for J+ = j+β0(Dx).

3 Proof of main theorem : reduction to basic lemmas

In this section we prove the main theorem (Theorem 1.1) by reduction to three
lemmas (Lemmas 3.2 ∼ 3.4). The proof of these lemmas is given in section 4, and
section 5 is devoted to proving the estimates for resolvent R(E + i0;Hd) which
play a central role in the proof of the lemmas. As previously stated, we prove the
self–adjointness, the absence of bound states, the principle of limiting absorption
and the asymptotic completeness of wave operators for Hd in section 7. We use
these facts without further references.

3.1. The perturbation Hd−H0 between Hd and H0 = −∆ is of long–range class.
However we can show that the ordinary wave operator

W±(Hd,H0) = s− lim
t→±∞

exp(itHd) exp(−itH0) : L2 → L2

exists and it is asymptotically complete

RanW−(Hd,H0) = RanW+(Hd,H0) = L2.

Hence the scattering operator

S(Hd,H0) =W ∗
+(Hd,H0)W−(Hd,H0) : L2 → L2

can be defined as a unitary operator and it has the direct integral decomposition

S(Hd,H0) � FS(Hd,H0)F ∗ =
∫ ∞

0
⊕S(λ;Hd,H0) dλ.

If we denote by S(θ′, θ;λ,Hd,H0) the kernel of fiber S(λ;Hd,H0) : L2(S1) →
L2(S1), then the scattering amplitude fd(ω → ω̃;E) in question is defined by

fd(ω → ω̃;E) = c(E) (S(ω̃, ω;E,Hd,H0)− δ(ω̃ − ω))
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with c(E) = (2π/i
√
E)1/2 again. If, in particular, ω �= ω̃, then

fd(ω → ω̃;E) = c(E)S(ω̃, ω;E,Hd,H0).

The first step toward the proof of Theorem 1.1 is to represent fd(ω → ω̃;E) in a
convenient form. We always assume that ω �= ω̃. We keep the same notation as in
section 2. Let j0 and j̃0 be as in (2.6) and (2.9), where R is taken as R = |d|σ for
0 < σ � 1 fixed small enough. We set

χ∞(x) = 1− χ(2|x|/|d|σ),

so that χ∞(x) = 1 for |x| > |d|σ. We further define the following operators :

J0d = exp(iα2γ(x− d;ω))j0dχ∞β0(Dx)χ∞,

J1d = exp(−iα2γ(x− d;ω))j0dβ0(Dx),

where j0d(x) = j0(x− d). Then W−(Hd,H0)β0(Dx)2 is decomposed into

W−(Hd,H0)β0(Dx)2 =W−(Hd,H1;J0d)W−(H1,H0)W−(H0,H0;J1d).

By Lemma 2.1, W−(H0,H0;J1d) is realized as the multiplication

FW−(H0,H0;J1d)F ∗ = e−iα2γ(−θ;ω)β0(
√
λθ)×

on L2((0,∞); dλ)⊗ L2(S1). A similar relation

W+(Hd,H0)β̃0(Dx)2 =W+(Hd,H1; J̃0d)W+(H1,H0)W+(H0,H0; J̃1d)

holds for the wave operator W+(Hd,H0), where

J̃0d = exp(iα2γ(x− d;−ω̃))j̃0dχ∞β̃0(Dx)χ∞,

J̃1d = exp(−iα2γ(x− d;−ω̃))j̃0dβ̃0(Dx).

The eigenfunction ϕ∓1(x; θ, λ) of H1 = H(Aα1) is defined by (2.3) with α replaced
by α1. We write F±1 : L2 → L2((0,∞); dλ) ⊗ L2(S1) for the unitary mapping
associated with ϕ±1 and F±1(λ) : L2

s(R
2) → L2(S1), s > 1/2, for the trace

operator. Then it follows from (2.15) and (2.16) that W∓(H1,H0) = F ∗
±1F and

F±1(λ)W∓(H1,H0)u = F (λ)u, a. e. λ > 0, (3.1)

for u ∈ L2. We now define S0 : L2 → L2 as

S0 =W ∗
+(H1,H0)W ∗

+(Hd,H1; J̃0d)W−(Hd,H1;J0d)W−(H1,H0).

Since S0 commutes with H0, it has the direct integral decomposition. We denote
by S0(λ) : L2(S1)→ L2(S1) the fiber of S0.
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Lemma 3.1 Let the notation be as above. Then the fiber S0(λ) is represented as

S0(λ) = 2πiF−1(λ)
(
−J̃∗

0dTd + T̃ ∗
dR(λ+ i0;Hd)Td

)
F ∗

+1(λ),

where
Td = HdJ0d − J0dH1, T̃d = HdJ̃0d − J̃0dH1.

Before going into the proof, we calculate Td and T̃d in the lemma. Both the
operators are realized as a pseudo-differential operator. We write γd = γ(x− d;ω)
and β0 = β0(Dx) for brevity. Since

e−iα2γdHde
iα2γd = e−iα2γdH(Aα1 +Aα2,d)e

iα2γd = H(Aα1) = H1

on the support of j0d, we have

Td = eiα2γd ([H1, j0d]χ∞β0χ∞ + j0d[H1, χ∞β0χ∞]) .

We set Q = H1 −H0. The coefficients of Q have a singularity at the origin only.
Since χ∞ = χ∞(|x|) is rotationally invariant, it is easy to see that [Q,χ∞] = 0.
Hence we can calculate the second commutator as

[H1, χ∞β0χ∞]= [H0, χ∞β0χ∞] + [Q,χ∞β0χ∞]
= [H0, χ∞]β0χ∞ + χ∞β0[H0, χ∞] + χ∞[Q,β0]χ∞

=[H0, χ∞]β0χ∞ + χ∞β0[H0, χ∞] + [χ∞Q,β0]χ∞ + [β0, χ∞]Qχ∞.

Thus Td admits the decomposition

Td = Γ1d + Γ2d + Γ3d, (3.2)

where

Γ1d = eiα2γ(x−d;ω)j0d ([H0, χ∞]β0χ∞ + χ∞β0[H0, χ∞]) ,
Γ2d = eiα2γ(x−d;ω)[H1, j0d]χ∞β0χ∞,

Γ3d = eiα2γ(x−d;ω)j0d ([χ∞Q,β0]χ∞ + [β0, χ∞]Qχ∞)

with Q = H1 −H0. Similarly

T̃d = Γ̃1d + Γ̃2d + Γ̃3d, (3.3)

where

Γ̃1d = eiα2γ(x−d;−ω̃)j̃0d

(
[H0, χ∞]β̃0χ∞ + χ∞β̃0[H0, χ∞]

)
,

Γ̃2d = eiα2γ(x−d;−ω̃)[H1, j̃0d]χ∞β̃0χ∞,

Γ̃3d = eiα2γ(x−d;−ω̃)j̃0d

(
[χ∞Q, β̃0]χ∞ + [β̃0, χ∞]Qχ∞

)
.
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We see in the course of the proof of Theorem 1.1 in this section that

F−1(λ)Γ̃∗
kdR(λ+ i0;Hd)ΓjdF ∗

+1(λ) : L
2(S1)→ L2(S1), 1 ≤ j, k ≤ 3,

are all bounded, and hence the relation in Lemma 3.1 makes sense. In fact, each
operator is implicitly shown to have a bounded kernel as an integral operator.

Proof of Lemma 3.1. The dependence on d does not matter throughout the proof.
We use the following simplified notation :

W± =W±(H1,H0), V± =W±(Hd,H1;J0d), Ṽ± =W±(Hd,H1; J̃0d)

and
U1(t) = exp(−itH1), U(t) = exp(−itHd).

The proof is based on the same idea as used to derive (2.13) (see [10,15]). We
consider the integral

(S0u, v) =
∫ ∞

0
< S0(λ)F (λ)u, F (λ)v > dλ

for u, v ∈ L2, where < , > denotes the L2 scalar product in L2(S1). According to
the notation above, we have

(S0u, v) = (V−W−u, Ṽ+W+v).

We assume for the moment that u and v take the form

u(x) = fl(r)eilθ, v(x) = fm(r)eimθ (3.4)

as in (2.17). Then Lemma 2.4 implies that 〈x〉NW±u ∈ L2, and it follows from
Lemmas 2.5 and 2.6 that ‖TdU1(t)W±u‖L2 = O(|t|−2) as |t| → ∞. These facts
enable us to justify the rather formal computation below.

Since V+ = 0 (see Remark 2.1), we can write V− in the integral form

V− = −i

∫
U(−t)TdU1(t) dt

and hence we obtain

(S0u, v) = −i

∫
(TdU1(t)W−u, Ṽ+U1(t)W+v) dt

by the intertwining property U(t)Ṽ+ = Ṽ+U1(t). If we further make use of the
relation

Ṽ+ = J̃0d + i

∫ ∞

0
U(−s)T̃dU1(s) ds,



326 H. T. Ito, H. Tamura Ann. Henri Poincaré

then we have

(S0u, v) = −i

∫
(J̃∗

0dTdU1(t)W−u,U1(t)W+v) dt

−
∫ ∫ ∞

0
(T̃ ∗

dU(s)TdU1(t)W−u,U1(t+ s)W+v) dt ds.

We denote by I1 the first integral on the right side and by I2 the second one. We
calculate I1 as

I1=−i

∫ ∫ ∞

0
< F−1(λ)J̃∗

0dTdU1(t)W−u, F−1(λ)U1(t)W+v > dλ dt

=−i

∫ ∫ ∞

0
< F−1(λ)J̃∗

0dTd

(
eitλU1(t)

)
W−u, F−1(λ)W+v > dλ dt

=−i lim
ε↓0

∫ ∫ ∞

0
< F−1(λ)J̃∗

0dTd

(
e−ε|t|eitλU1(t)

)
W−u, F−1(λ)W+v > dλ dt.

The formula

lim
ε→0

∫
e−ε|t|eitλU1(t) dt = i (R(λ− i0;H1)−R(λ+ i0;H1)) = 2πF±1(λ)∗F±1(λ)

is well known in the stationary scattering theory. Hence it follows from (3.1) that

I1 = 2πi
∫ ∞

0
< −F−1(λ)J̃∗

0dTdF+1(λ)∗F (λ)u, F (λ)v > dλ.

A similar computation gives

I2 = 2πi
∫ ∞

0
< F−1(λ)T̃ ∗

dR(λ+ i0;Hd)TdF+1(λ)∗F (λ)u, F (λ)v > dλ,

where the resolvent R(λ + i0;Hd) comes from the integration in variable s. We
combine the two relations above to obtain that∫ ∞

0
< S0(λ)F (λ)u, F (λ)v > dλ =

2πi
∫ ∞

0
< F−1(λ)

(
−J̃∗

0dTd + T̃ ∗
dR(λ+ i0;Hd)Td

)
F+1(λ)∗F (λ)u, F (λ)v > dλ

for u, v as in (3.4). The Fourier expansion and the limit procedure show that
this relation remains true for u, v ∈ L2 such that (Fu)(λ, θ) = g(λ)η(θ) and
(Fv)(λ, θ) = g̃(λ)η̃(θ), where η, η̃ ∈ C∞(S1), and g, g̃ ∈ C∞

0 (0,∞) have compact
support away from the origin. This completes the proof. ✷

We write S0(θ′, θ;λ) for the kernel of fiber S0(λ). As is easily seen,

S(ω̃, ω;E,Hd,H0) = S0(ω̃, ω;E)
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and hence it follows from Lemma 3.1 that

fd(ω → ω̃;E) = −(ic(E)/4π)(Tdϕ+1(ω,E), J̃0dϕ−1(ω̃, E))
+ (ic(E)/4π)(R(E + i0;Hd)Tdϕ+1(ω,E), T̃dϕ−1(ω̃, E)),

where ϕ±1(ω,E) = ϕ±1(x;ω,E). By Proposition 2.1, ϕ±1(x;ω,E) is bounded
uniformly in x ∈ R2. Roughly speaking, the support of symbols Td(x, ξ) and
J̃0d(x, ξ) does not intersect with each other, provided that ω �= ω̃. A simple calculus
of pseudo-differential operators yields that

(Tdϕ+1(ω,E), J̃0dϕ−1(ω̃, E)) = O(|d|−N )

and hence we have

fd(ω → ω̃;E) = (ic(E)/4π)(R(E + i0;Hd)Tdϕ+1(ω,E), T̃dϕ−1(ω̃, E)) + o(1).
(3.5)

3.2. The second step is to study the behavior as |d| → ∞ of the term on the right
side of (3.5) by making use of estimates on resolvent R(E + i0;Hd). We introduce
the new notation to formulate the resolvent estimates. Let 0 < σ � 1 be still fixed
small enough and write x̂ for direction x/|x|. We set

B1d = {x : |x| < C|d|σ}, B2d = {x : |x− d| < C|d|σ}

and

Λd = {x : |x| > δ|d|σ, |x̂− d̂| < δ, |x− d| > δ|d|σ, | ̂(x− d) + d̂| < δ}

for some C � 1, and we denote by b1d, b2d and λd the characteristic function
of B1d, B2d and Λd respectively. We further denote by ‖ ‖ the norm of bounded
operators acting on L2, and we use the notation ‖Qd‖ � O(|d|ν) when Qd : L2 →
L2 obeys the bound ‖Qd‖ ≤ cε|d|ν+ε, |d| � 1, for any ε > 0. The proof of the
main theorem is based on the following three lemmas.

Lemma 3.2 Let rL be the pseudo-differential operator defined by

rL = rL(x,Dx) = (|x|2 + |d|2)−L/2〈Dx〉−L (3.6)

for L � 1. Then one has :

(1) ‖rLR(E + i0;Hd)b1d‖ = O(|d|−L/2) ; similarly for b2d and λd.

(2) ‖rLR(E + i0;Hd)rL‖ = O(|d|−L).
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The estimates in the lemma are very rough. This lemma is used to control
error terms which arise in constructing outgoing and incoming approximations
to the resolvent R(E + i0;Hd). According to the principle of limiting absorption
(Proposition 7.3), we know that R(E+i0;Hd) is bounded from L2

s(R
2) to L2

−s(R
2)

for s > 1/2, but we do not here intend to pursue how sharp the resolvent estimate
can be made. The proof of the theorem does not require such a sharp estimate.

Lemma 3.3 One has

‖b1dR(E + i0;Hd)b2d‖ � O(|d|−1/2+4σ)

and
‖b1d

(
R(E + i0;Hd)−R(E + i0;H1)

)
b1d‖ � O(|d|−1+7σ),

‖b2d
(
R(E + i0;Hd)−R(E + i0;H2,d)

)
b2d‖ � O(|d|−1+7σ).

Lemma 3.4 Write γd(x) for γ(x− d; d̂). Then one has

‖b2dR(E + i0;Hd)λd〈x〉−1‖ � O(|d|−1/2+3σ)

and

‖b1d
(
R(E + i0;Hd)− eiα2γdR(E + i0;H1)e−iα2γd

)
λd〈x〉−1‖ � O(|d|−1+6σ),

‖〈x〉−1λd

(
R(E + i0;Hd)− eiα2γdR(E + i0;H1)e−iα2γd

)
λd〈x〉−1‖ � O(|d|−1+5σ).

Remark 3.1 All the lemmas remain true for R(E − i0;Hd). Thus Lemma 3.2
shows

‖b1dR(E + i0;Hd)rL‖ = O(|d|−L/2)

by adjoint. In the argument below, we use such an immediate consequence without
further references.

We shall complete the proof of Theorem 1.1, accepting these lemmas as
proved. To fix the idea, we prove the theorem for fd(d̂ → −d̂;E) only. If ω =
−d̂, we represent fd(−d̂ → ω̃;E) in terms of the eigenfunction ϕ∓2(x; θ, λ) of
H2 = H(Aα2) and the other cases are more easier to deal with. If, in fact, ω �= ±d̂

and ω̃ �= ±d̂, then the situation becomes much simpler and the proof does not
require Lemma 3.4.

Let Γjd and Γ̃jd be as in (3.2) and (3.3) respectively. We set

γjk = (ic(E)/4π)(R(E + i0;Hd)Γjdϕ+1, Γ̃kdϕ−1)
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for 1 ≤ j, k ≤ 3, where ϕ+1 = ϕ+1(x; d̂, E) and ϕ−1 = ϕ−1(x;−d̂, E). To prove
the theorem, we have only to show that :

γjk = o(1), j �= k, (3.7)

γ33 = o(1) (3.8)

and

γ11 = f1(d̂ → −d̂;E) + o(1) (3.9)

γ22 = (cosα1π)2f2,d(d̂ → −d̂;E) + o(1). (3.10)

When ω = d̂ and ω̃ = −d̂, we may take the two functions j0 and j̃0 in such a way
that these functions coincide with each other. Thus we assume that j0 = j̃0. The
three lemmas above can be seen to remain true for the smooth functions

b1d(x) = χ(|x|/C|d|σ), b2d(x) = χ(|x− d|/C|d|σ)

and

λd(x) =
(
1− χ(2|x|/δ|d|σ)

)
χ(|x̂− d̂|/δ)

(
1− χ(2|x− d|/δ|d|σ)

)
χ(| ̂(x− d) + d̂|/δ)

associated with the three sets B1d, B2d and Λd respectively. We use the notation
b1d, b2d and λd with the meaning ascribed above throughout the proof of (3.7) ∼
(3.10). We begin by (3.8). The proof is based on the following lemma.

Lemma 3.5 Let rL = rL(x,Dx), L � 1, be defined by (3.6) and let λd(x) be as
above. Then Γ3dϕ+1 and Γ̃3dϕ−1 take the form

Γ3dϕ+1 = λdΓ3dϕ+1 + rLed, Γ̃3dϕ−1 = λdΓ̃3dϕ−1 + rLẽd,

where the L2 norm of remainder terms ed and ẽd is bounded uniformly in d.

Proof. The proof uses Proposition 2.1. Roughly speaking, the symbol Γ3d(x, ξ)
has support on supp j0d in variables x and on supp∇β0 in variables ξ. By (2.6),
j0d(x) = j0(x−d) has support in {x : x−d ∈ Σ(|d|σ,−d̂, δ)}, and ∇β0 has support
in {ξ : δ2/2 < |ξ−

√
Ed̂| < δ2} for the incident direction d̂. If β(ξ) vanishes around

ξ =
√
Ed̂, then β(Dx) exp(i

√
Ex·d̂) = 0, and if x ∈ supp j0d∩Λc

d and ξ ∈ supp∇β0,
then ∣∣∣∇(√

E|x| − ξ · x
)∣∣∣ = ∣∣∣√Ex̂− ξ

∣∣∣ > c > 0.

Thus the first relation follows from Proposition 2.1 (1) and (4). A similar argument
applies to the second one and the proof is complete. ✷

Lemma 3.5 implies (3.8). The symbols Γ3d(x, ξ) and Γ̃3d(x, ξ) fall off with
order O(|x|−2) at infinity uniformly in d. By Proposition 2.1 (4), 〈x〉λdΓ3dϕ+1
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and 〈x〉λdΓ̃3dϕ−1 are of order O(log |d|) in the L2 norm, and by the principle of
limiting absorption,

〈x〉−ρR(E + i0;H1)〈x〉−ρ : L2 → L2

is bounded for any ρ > 1/2. Hence (3.8) follows from Lemmas 3.2 and 3.4.

To prove (3.7), we further prove one lemma. We write β0, β̃0, β1 and β̃1 for
the pseudo-differential operators with symbols

β0(ξ) = χ(2|ξ −
√
Ed̂|/δ2), β̃0(ξ) = χ(2|ξ +

√
Ed̂|/δ2),

β1(ξ) = χ(|ξ −
√
Ed̂|/δ2), β̃1(ξ) = χ(|ξ +

√
Ed̂|/δ2),

respectively. By definition, β1β0 = β0 and β̃1β̃0 = β̃0. Let λ(x) be a smooth
function such that ∂β

xλ = O(|x|−|β|) and

suppλ ⊂ {x : |x− d| > C|d|σ, | ̂(x− d) + d̂| > δ}

for C � 1. We construct an outgoing approximation for R(E + i0;Hd)λβ0 and an
incoming one for R(E − i0;Hd)λβ̃0. To do this, we take a function j ∈ C∞(R2)
such that ∂β

x j = O(|x|−|β|) and

supp j ⊂ {x : |x− d| > |d|σ, | ̂(x− d) + d̂| > δ/4}

and j(x) = 1 on {x : |x − d| > 2|d|σ, | ̂(x− d) + d̂| > δ/2}. Hence j = 1 on the
support of λ.

Lemma 3.6 Let the notation be as above and let θd(x) be defined by

θd(x) = α1γ(x;−d̂) + α2γ(x− d;−d̂).

Then one has

R(E + i0;Hd)λβ0 = j exp(iθd)R(E + i0;H0)β1 exp(−iθd)λβ0 +R(E + i0;Hd)r̃L,
R(E − i0;Hd)λβ̃0 = j exp(iθd)R(E − i0;H0)β̃1 exp(−iθd)λβ̃0 +R(E − i0;Hd)r̃L

for L � 1, where r̃L denotes an operator such that

r̃L〈Dx〉L(|x|2 + |d|2)L/2, 〈Dx〉L(|x|2 + |d|2)L/2r̃L : L2 → L2 (3.11)

are bounded uniformly in d.

Proof. We prove only the first relation. We calculate

(Hd −E)j exp(iθd) = exp(iθd)(H0 −E)j
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by use of a relation similar to (2.7). Hence

(Hd −E)j exp(iθd)R(E + i0;H0)β1 exp(−iθd)λβ0

= λβ0 + r̃L + exp(iθd)[H0, j]R(E + i0;H0)β1 exp(−iθd)λβ0.

The resolvent R(E + i0;H0) is represented in the integral form

R(E + i0;H0) = i

∫ ∞

0
eitE exp(−itH0) dt.

If we choose δ small enough, then the free particle with initial state (x, ξ) ∈
suppλ× suppβ1 does not pass over supp∇j for t > 0, so that we can put

r̃L = exp(iθd)[H0, j]R(E + i0;H0)β1 exp(−iθd)λβ0

for the remainder term on the right side of the above relation. In fact, this can
be shown in the standard way using partial integral repeatedly. Thus the proof is
complete. ✷

We proceed to the proof of (3.7). We first consider the term γ13. Recall that
χ∞ = 1 − χ(2|x|/|d|σ), so that ∇χ∞ has support on {x : |d|σ/2 < |x| < |d|σ} ⊂
B1d. Since Γ1dϕ+1 is uniformly bounded in L2, we have

γ13 = (ic(E)/4π)(eiα2γdR(E + i0;H1)e−iα2γdΓ1dϕ+1, λdΓ̃3dϕ−1) + o(1)

by Lemmas 3.2, 3.4 and 3.5, where γd(x) = γ(x− d; d̂). We construct approxima-
tions for resolvent R(E ± i0;H1). Let

λ1d(x) =
(
1− χ(4|x|/|d|σ)

)
χ(|x|/|d|σ)χ(|x̂+ d̂|/δ)

be the smooth function associated with the set

Λ1d = {x : |d|σ/2 < |x| < |d|σ, |x̂+ d̂| < δ}.

Assume that x ∈ supp∇χ∞ satisfies |x̂+ d̂| > δ and ξ ∈ suppβ0. Then it follows
that |x+ tξ| > c (t+ |x|), c > 0, for t > 0. Hence the particle starting from initial
state (x, ξ) at t = 0 moves like the free particle and it does not take momentum
around −

√
Ed̂ ∈ supp β̃0. This enables us to construct an outgoing approximation

in the form

Γ̃∗
3dλde

iα2γdR(E + i0;H1)e−iα2γd(1− λ1d)Γ1d = r̃L + Γ̃∗
3dλde

iα2γdR(E + i0;H1)r̃L

for any L � 1. The construction is based on the same idea as in the proof of
Lemma 3.6. Thus we obtain

γ13 = (ic(E)/4π)(λ1dΓ1dϕ+1, e
iα2γdR(E − i0;H1)e−iα2γdλdΓ̃3dϕ−1) + o(1).
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We further construct an incoming approximation for R(E− i0;H1). If x ∈ Λd and
ξ ∈ supp β̃0, then the particle with initial state (x, ξ) does not pass over Λ1d for
t < 0. Hence we get γ13 = o(1) by constructing an approximation

λ1de
iα2γdR(E − i0;H1)e−iα2γdλdΓ̃3d = r̃L + λ1de

iα2γdR(E − i0;H1)r̃L.

Similarly we can show γ31 = o(1).

Next we consider the term γ23. Recall that ∇j0d, j0d = j0(x−d), has support
on

{x : x− d ∈ Σ(|d|σ,−d̂, δ) \ Σ(2|d|σ,−d̂, δ/2)}.

We construct an outgoing approximation for R(E+i0;Hd)(1−b2d)Γ2d. By Lemma
3.6, the approximation takes the form

Γ̃∗
3dR(E + i0;Hd)(1− b2d)Γ2d = r̃L + Γ̃∗

3dR(E + i0;Hd)r̃L,

and hence we have

γ23 = (ic(E)/4π)(R(E + i0;Hd)b2dΓ2dϕ+1, λdΓ̃3dϕ−1) + o(1)

by Lemmas 3.2 and 3.5. Since b2dΓ2dϕ+1 is uniformly bounded in L2, the desired
bound γ23 = o(1) follows from Lemma 3.4. A similar argument applies to the other
terms γ21, γ12 and γ32. Thus (3.7) is verified.

We prove (3.9). We first apply Lemma 3.3 to obtain

γ11 = (ic(E)/4π)(R(E + i0;H1)Γ1dϕ+1, Γ̃1dϕ−1) + o(1).

Next we construct an outgoing approximation for R(E + i0;H1)(1− λ1d)Γ1d and
an incoming one for R(E − i0;H1)(1− λ1d)Γ̃1d as in Lemma 3.6. Then we get

γ11 = (ic(E)/4π)(R(E + i0;H1)λ1dΓ1dϕ+1, λ1dΓ̃1dϕ−1) + o(1). (3.12)

The set Λ1d does not contain a conical neighborhood of direction d̂. Hence it follows
from Proposition 2.1 (1) that

ϕ+1 = ϕ+1(x; d̂, E) = eiα1(γ(x;d̂)−π)ϕ0(d̂, E) + ei
√
E|x|O(|x|−1/2)

on Λ1d, where ϕ0(d̂, E) = exp(i
√
Ex · d̂). If ξ ∈ suppβ0, then∣∣∣∇(√

E|x| − ξ · x
)∣∣∣ = ∣∣∣√Ex̂− ξ

∣∣∣ > c > 0

for x ∈ Λ1d. This implies that the remainder term is negligible. We note that
j0d = 1 and

eiα2γ(x−d;d̂) = eiα2π +O(|d|−1+σ)
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on Λ1d. Since β0(Dx)ϕ0 = ϕ0 for ϕ0 = ϕ0(d̂, E), we have

λ1dΓ1dϕ+1 = λ1d

(
ei(α2−α1)πeiα1γ(x;d̂)[H0, χ

2
∞]ϕ0(d̂, E) +O(|d|−1+σ)

)
.

Similarly

λ1dΓ̃1dϕ−1 = λ1d

(
ei(α2−α1)πeiα1γ(x;d̂)[H0, χ

2
∞]ϕ0(−d̂, E) +O(|d|−1+σ)

)
.

Hence we have

γ11 = (ic(E)/4π)(R(E + i0;H1)λ1dΦ1d(d̂, E), λ1dΦ1d(−d̂, E)) + o(1),

where
Φ1d(ω,E) = Φ1d(x;ω,E) = eiα1γ(x;d̂)[H0, χ

2
∞]ϕ0(ω,E).

We further obtain

γ11 = (ic(E)/4π)(R(E + i0;H1)Φ1d(d̂, E),Φ1d(−d̂, E)) + o(1)

by repeating the same argument as used to derive (3.12). We split [H0, χ
2
∞] into

[H0, χ
2
∞] = χ(|x|/2|d|σ)

(
[H0, j1χ

2
∞] + [H0, (1− j1)χ2

∞]
)
,

where j1 ∈ C∞(R2) is a real function such that ∂β
x j1 = O(|x|−|β|) and

supp j1 ⊂ Σ(|d|σ/4,−d̂, δ), j1 = 1 on Σ(|d|σ/2,−d̂, δ/2).

We see that only the first commutator makes a contribution. This can be shown by
constructing outgoing and incoming approximations for the second commutator.
Thus (3.9) is obtained by Lemma 2.3 with j0 = j̃0 = j1χ

2
∞.

The proof of (3.10) is similar but is slightly different. By Lemma 3.6, we
construct an outgoing approximation

Γ̃∗
2dR(E + i0;Hd)(1− b2d)Γ2d = r̃L + Γ̃∗

2dR(E + i0;Hd)r̃L

and an incoming approximation

R(E−i0;Hd)(1−b2d)Γ̃2d = jeiθdR(E−i0;H0)β̃1e
−iθd(1−b2d)Γ̃2d+R(E−i0;Hd)r̃L.

We know by the resolvent estimate of [9] that

〈x〉−s−τR(E − i0;H0)β̃1(1− b2d)〈x〉s : L2 → L2, s > 0,

is bounded for τ > 1. Hence we have

γ22 = (ic(E)/4π)(R(E + i0;Hd)b2dΓ2dϕ+1, b2dΓ̃2dϕ−1) + o(1)
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by Lemma 3.2, and it follows from Lemma 3.3 that

γ22 = (ic(E)/4π)(R(E + i0;H2,d)b2dΓ2dϕ+1, b2dΓ̃2dϕ−1) + o(1).

Let Λ2d = {x : |d|σ < |x− d| < C|d|σ, | ̂(x− d) + d̂| < δ} for C � 1, and denote
by

λ2d(x) =
(
1− χ(2|x− d|/|d|σ)

)
χ(|x− d|/C|d|σ)χ(| ̂(x− d) + d̂|/δ)

the smooth function associated with Λ2d. Then we obtain

γ22 = (ic(E)/4π)(R(E + i0;H2,d)λ2dΓ2dϕ+1, λ2dΓ̃2dϕ−1) + o(1)

in the same way as (3.12). By the principle of limiting absorption,

〈x− d〉−ρR(E + i0;H2,d)〈x− d〉−ρ : L2 → L2

is bounded uniformly in d for any ρ > 1/2, and by Proposition 2.1 (3) with
q = 1− σ, the eigenfunction ϕ±1 behaves like

ϕ+1 = ϕ+1(x; d̂, E) = cosα1π × ϕ0(x; d̂, E) +O(|d|−ν),

ϕ−1 = ϕ−1(x;−d̂, E) = cosα1π × ϕ0(x;−d̂, E) +O(|d|−ν)

on Λ2d, where ν = 2(1/2− σ)/3. Since 〈x− d〉ρ ≤ c |d|ρσ on Λ2d and 2ρσ < ν for
σ small enough, we have

γ22 = (cosα1π)2(ic(E)/4π)(R(E + i0;H2,d)

λ2dΓ2dϕ0(d̂, E), λ2dΓ̃2dϕ0(−d̂, E)) + o(1).

The commutator [H1, j0d] is calculated as

[H1, j0d] = [H(Aα1), j0d] = eiα1γ(x;−d̂)[H0, j0d]e−iα1γ(x;−d̂)

=
(
eiα1π +O(|d|−1+σ)

)
[H0, j0d]

(
e−iα1π +O(|d|−1+σ)

)

on Λ2d. We have assumed that j0(x − d) = j̃0(x − d). Note that χ∞ = 1 on
supp∇j0d. Hence we have

γ22 = (cosα1π)2(ic(E)/4π)(R(E + i0;H2,d)λ2dΦ2d(d̂, E), λ2dΦ2d(−d̂, E)) + o(1),

where
Φ2d(ω,E) = Φ2d(x;ω,E) = eiα2γ(x−d;d̂)[H0, j0d]ϕ0(ω,E).

Thus (3.10) is obtained from Lemma 2.3 after the change of variables x− d → x.



Vol. 2, 2001 Scattering by Magnetic Fields 335

4 Completion : proof of Lemmas 3.2, 3.3 and 3.4

In this section we prove the three lemmas and complete the proof of Theorem 1.1.

4.1. The proof of the lemmas requires several auxiliary operators. We first define
these operators. We fix 0 < σ1, σ2 � 1 small enough, and we define the following
two sets

Π1d = {x : |x| < C|d|σ1} ∪ {x : |x| ≥ C|d|σ1 , |x̂+ d̂| < |d|−σ1/2}, (4.1)

Π2d = {x : |x− d| < C|d|σ2} ∪ {x : |x− d| ≥ C|d|σ2 , | ̂(x− d)− d̂| < |d|−σ2/2}
for C � 1. These two sets are disjoint with each other for |d| � 1.

Let ζjd ∈ C∞(R), 1 ≤ j ≤ 2, be a real periodic function with period 2π
such that ζjd(s) = αjs for s ∈ (|d|−σj/2, 2π − |d|−σj/2) and |(d/ds)mζjd(s)| ≤
Cm|d|mσj/2 for Cm > 0 independent of d. We define a smooth real function η1d by
η1d(x) = 0 for |x| < |d|σ1/2 and by

η1d(x) = ζ1d(γ(x;−d̂))

for |x| > |d|σ1 . We may assume that η1d satisfies

|∂β
xη1d(x)| ≤ Cβ |d||β|σ1/2|x|−|β| ≤ C̃β〈x〉−|β|/2 (4.2)

uniformly in d. By definition, we have

∇η1d(x) = ζ ′1d(γ(x;−d̂))∇γ(x;−d̂) = ζ ′1d(γ(x;−d̂)) (−x2/|x|2, x1/|x|2) (4.3)

and hence
∇η1d(x) = α1 (−x2/|x|2, x1/|x|2) (4.4)

for x ∈ Πc
1d, where Π

c
1d is the complement of Π1d. Similarly we define η2d by

η2d(x) = ζ2d(γ(x− d; d̂))

for |x − d| > |d|σ2 and by η2d(x) = 0 for |x − d| < |d|σ2/2. We set p1d(x) =
exp(iη1d(x)) and q1d(x) = 1/p1d(x). By (4.2), we have

|∂β
xp1d(x)|+ |∂β

x q1d(x)| ≤ Cβ〈x〉−|β|/2 (4.5)

uniformly in d. If x ∈ Πc
1d, then

p1d(x) = exp(iα1γ(x;−d̂)), q1d(x) = exp(−iα1γ(x;−d̂)).

Similarly we define p2d(x) = exp(iη2d(x)) and q2d(x) = 1/p2d(x). Then

|∂β
xp2d(x)|+ |∂β

x q2d(x)| ≤ Cβ〈x− d〉−|β|/2
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and
p2d(x) = exp(iα2γ(x− d; d̂)), q2d(x) = exp(−iα2γ(x− d; d̂))

for x ∈ Πc
2d.

We now introduce the following three operators

K1d = p2dH1q2d = p2dH(Aα1)q2d = H(Aα1 +∇η2d),
K2d = p1dH2,dq1d = p1dH(Aα2,d)q1d = H(∇η1d +Aα2,d)

and K0d = pdH0qd = H(∇η1d + ∇η2d) as basic auxiliary operators, where pd =
p1dp2d and qd = q1dq2d. The operator K0d has the domain D(K0d) = H2(R2),
Hs(R2) being the Sobolev space of order s, while K1d and K2d have the domain

D(K1d) = {u ∈ L2 : K1du ∈ L2, lim
|x|→0

|u(x)| < ∞},

D(K2d) = {u ∈ L2 : K2du ∈ L2, lim
|x−d|→0

|u(x)| < ∞}.

We consider the difference W1d = K1d −K0d. By (4.4), Aα1 = ∇η1d on Πc
1d, and

hence W1d = 0 there. Similarly we have

Hd −K2d = H(Aα1 +Aα2,d)−K2d = 0

on Πc
1d. Since Aα2,d(x) = Aα2(x− d) = ∇η2(x− d) on Π1d, we also have

Hd −K2d = K1d −K0d =W1d

on Π1d. A similar argument applies to W2d = K2d −K0d. Thus we can obtain the
following relations

Hd = K1d +W2d, Hd = K2d +W1d. (4.6)

The difference Wjd is a differential operator of first order. For example, W1d takes
the form

W1d = 2ie1d(x) · ∇+ e0d(x) (4.7)

and the coefficients have support in Π1d and singularity at x = 0 only. By (4.2)
and (4.3), e1d and e0d satisfy

e1d(x) =
(
α1 − ζ ′1d(γ(x;−d̂))

)
∇γ = O(|d|σ1/2)∇γ (4.8)

with γ = γ(x;−d̂) and
e0d(x) = O(|d|σ1)|x|−2 (4.9)

for |x| > |d|σ1 , and by (4.5), we have

|∂β
x e0d(x)|+ |∂β

x e1d(x)| ≤ Cβ〈x〉−|β|/2 (4.10)
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for |x| > 1 uniformly in d. The coefficients of W2d have similar properties. They
have support in Π2d and singularity at x = d only.

The domain of K1d or K2d is different from that of K0d, and the ordinary
resolvent identity is not expected to hold for (Kjd,K0d). However we can derive
the following relation

ψjR(E + i0;Kjd) = R(E + i0;K0d)ψj −R(E + i0;K0d)UjdR(E + i0;Kjd) (4.11)

for j = 1, 2, where ψ1 and ψ2 are smooth bounded functions vanishing around
x = 0 and x = d respectively, and

Ujd = −[Kjd, ψj ] +Wjdψj . (4.12)

We often use the relation with

ψ1(x) = 1− χ(|x|/δ|d|σ1), ψ2(x) = 1− χ(|x− d|/δ|d|σ2) (4.13)

in later application. We shall show (4.11) in a rather formal way. We write the
solution u to equation (K0d −E)u = ψ1f as

u = ψ1R(E + i0;K1d)f + v.

Since K0d = K1d −W1d, the remainder v obeys

(K0d −E) v = (−[K1d, ψ1] +W1dψ1)R(E + i0;K1d)f.

This yields the desired relation. Similarly we can show that

R(E + i0;Hd)ψ2 = ψ2R(E + i0;K1d)−R(E + i0;Hd)V2dR(E + i0;K1d), (4.14)

R(E + i0;Hd)ψ1 = ψ1R(E + i0;K2d)−R(E + i0;Hd)V1dR(E + i0;K2d), (4.15)

where
V2d = [K1d, ψ2] +W2dψ2, V1d = [K2d, ψ1] +W1dψ1. (4.16)

If ψj is taken as in (4.13), then Vjd has properties similar to Wjd. The only dif-
ference is that the coefficients of Vjd are all smooth and bounded uniformly in d.
The operator Ujd defined by (4.12) has also similar properties.

The argument below requires the Green kernel Gd(x, y;E) of R(E+ i0;K0d).
The resolvent R(E + i0;H0) has the kernel

G0(x, y : E) = (i/4)H
(1)
0 (

√
E |x− y|),

where H(1)
0 (z) is the Hankel function of first kind and order zero. As is well known,

H
(1)
0 (z) behaves like

H
(1)
0 (z) = (2/π)1/2 exp(i(z − π/4))z−1/2 (1 +O(|z|−1)

)
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at infinity. Hence Gd(x, y;E) behaves like

Gd = c0(E)pd(x) exp(i
√
E|x− y|)|x− y|−1/2qd(y)

(
1 +O(|x− y|−1)

)
(4.17)

as |x− y| → ∞, where c0(E) = (1/8π)1/2 exp(iπ/4)E−1/4.

4.2. Let σ, 0 < σ � 1, be fixed small enough as in Lemmas 3.2, 3.3 and 3.4.
Throughout the argument in this subsection, K1d, K2d and K0d are defined with
σ1 = σ2 = σ. We prove several lemmas on the resolvent estimates for these oper-
ators before going into the proof of the three lemmas. The functions b1d, b2d and
λd again denote the characteristic functions of sets B1d, B2d and Λd respectively.

Lemma 4.1
‖b2dR(E + i0;K0d)b1d‖ = O(|d|−1/2+2σ),

‖b2dR(E + i0;K0d)λd〈x〉−1‖ � O(|d|−1/2+σ).

Proof. To prove the first bound, we evaluate the Hilbert–Schmidt norm of the
operator. Since the kernel Gd(x, y;E) of R(E + i0;K0d) obeys (4.17), this bound
follows at once. To prove the second bound, we decompose λd into the sum

λd(x) = λd(x)
(
χ(|x− d|/δ|d|) + (1− χ(|x− d|/δ|d|))

)
= µ2d(x) + µ1d(x).

By the principle of limiting absorption, we have

〈x− d〉−ρR(E + i0;K0d)〈x− d〉−ρ : L2 → L2

is bounded for any ρ > 1/2. Since |x| > c |d| on the support of µ2d for some c > 0,
we can choose ρ so close to 1/2 that

‖b2dR(E + i0;K0d)µ2d〈x〉−1‖ = O(|d|−1+ρ+ρσ) � O(|d|−1/2+σ/2).

On the other hand, we obtain

‖b2dR(E + i0;K0d)µ1d〈x〉−1‖ � O(|d|−1/2+σ)

by evaluating the Hilbert–Schmidt norm. This yields the desired bound. ✷

Lemma 4.2 Let

V1d = [K2d, ψ1] +W1dψ1, ψ1(x) = 1− χ(|x|/δ|d|σ),

be defined by (4.16) with σ1 = σ. Take ρ > 1/2 close enough to 1/2. Then

‖〈x〉ρV1dR(E + i0;K0d)rL‖ = O(|d|−L/2),

where rL is the pseudo-differential operator defined by (3.6).



Vol. 2, 2001 Scattering by Magnetic Fields 339

Proof. The proof is based on the fact that the free Hamiltonian H0 and ∂/∂θ
commute each other. By definition, we have R(E + i0;K0d) = pdR(E + i0;H0)qd,
where pd = p1dp2d and qd = 1/pd. By (4.7), (4.8) and (4.9), V1d takes the form

V1d = O(|d|σ/2)∇γ · ∇+O(|d|σ)|x|−2, γ = γ(x;−d̂),

in {x : |x| > |d|σ}. The differential operator ∇γ · ∇ can be written as

∇γ · ∇ = |x|−2
(
−x2∂1 + x1∂2

)
= |x|−2 ∂/∂θ

and pd satisfies the estimate

∇pd = |d|σ/2
(
O(|x|−1) +O(|x− d|−1)

)
.

If we take account of these facts, the lemma is easily verified. ✷

We work in the phase space R2
x ×R2

ξ . We introduce a smooth nonnegative
partition of unity over R2

ξ . The partition {β±, β∞} is normalized by

β+(ξ) + β−(ξ) + β∞(ξ) = 1 (4.18)

and has the following properties : suppβ∞ ⊂ {ξ : |ξ|2 < E/2 or |ξ|2 > 2E} and

suppβ+ ⊂ {ξ : E/3 < |ξ|2 < 3E, ξ̂ · d̂ > −1/4}
suppβ− ⊂ {ξ : E/3 < |ξ|2 < 3E, ξ̂ · d̂ < 1/4}.

The proof of the two lemmas below is based on the micro-local estimates for the
resolvent of auxiliary operators. We make repeated use of a similar idea in the
future discussion.

Lemma 4.3

‖b2dR(E + i0;K1d)b1d‖ � O(|d|−1/2+3σ),
‖b1dR(E + i0;K2d)b2d‖ � O(|d|−1/2+3σ)

and
‖b2dR(E + i0;K1d)λd〈x〉−1‖ � O(|d|−1/2+2σ).

Proof. We prove the first bound only. The second and third bounds are obtained
in a similar way. Let ψ1 be as in Lemma 4.2. We use (4.11) for the function ψ1.
Since ψ1b2d = b2d, we have

b2dR(E + i0;K1d)b1d = b2dR(E + i0;K0d)ψ1b1d

− b2dR(E + i0;K0d)U1dR(E + i0;K1d)b1d.
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By Lemma 4.1, the first operator on the right side obeys the bound O(|d|−1/2+2σ).
To evaluate the second operator, we decompose U1d into the sum of four operators

U1d = g2
1dU1d + U∞(x,Dx) + U+(x,Dx) + U−(x,Dx), (4.19)

where g1d(x) = χ(|x|/M |d|σ) for M � 1, and

U±(x,Dx) = (1− g2
1d)U1dβ±(Dx), U∞(x,Dx) = (1− g2

1d)U1dβ∞(Dx).

We have
‖b2dR(E + i0;K0d)g1d‖ = O(|d|−1/2+2σ)

in the same way as in the proof of Lemma 4.1. By the principle of limiting absorp-
tion,

〈x〉−ρR(E + i0;K1d)〈x〉−ρ : L2 → L2

is bounded for any ρ > 1/2. Since the coefficients of U1d vanish around x = 0 and
are bounded uniformly in d, we have

‖g1dU1dR(E + i0;K1d)b1d‖ � O(|d|σ)

by elliptic estimate. Thus

‖b2dR(E + i0;K0d)g2
1dU1dR(E + i0;K1d)b1d‖ � O(|d|−1/2+3σ).

We now assume that x ∈ Π1d and |x| > M |d|σ, where Π1d is defined by (4.1) with
σ1 = σ. Then the symbol of K0d − E takes the form |ξ|2 − E approximately. If
ξ ∈ suppβ∞, then it has a bounded inverse. Since Π1d and B2d do not intersect
with each other, we have by the standard calculus of pseudo-differential operators
that

b2dR(E + i0;K0d)U∞ = r̃N + b2dR(E + i0;K0d)r̃N

for any N � 1, where r̃N again denotes a bounded operator having the property
(3.11). Hence

‖b2dR(E + i0;K0d)U∞R(E + i0;K1d)b1d‖ = O(|d|−N ).

We still assume that x ∈ Π1d and |x| > M |d|σ. If ξ ∈ suppβ−, then the free
particle with initial state (x, ξ) at t = 0 never passes over B2d for t > 0. Hence we
have

‖b2dR(E + i0;K0d)U−R(E + i0;K1d)b1d‖ = O(|d|−N )

by use of the micro-local estimate on the resolvent R(E+ i0;K0d). If, on the other
hand, ξ ∈ suppβ+, then we can take M � 1 so large that the incoming particle
with state (x, ξ) at t = 0 never passes over B1d for t < 0. This enables us to
construct an incoming approximation for

U+R(E + i0;K1d)b1d =
(
b1dR(E − i0;K1d)U∗

+

)∗
.
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We use an argument similar to that in the proof of Lemma 3.6. Then the approx-
imation is constructed in the form

U+R(E + i0;K1d)b1d = r̃N + r̃NR(E + i0;K1d)b1d

and hence we get

‖b2dR(E + i0;K0d)U+R(E + i0;K1d)b1d‖ = O(|d|−N ).

Thus the desired bound is obtained. ✷

Lemma 4.4 Let ρ > 1/2 and V1d be as in Lemma 4.2. Then

‖〈x〉ρV1dR(E + i0;K2d)rL‖ = O(|d|−L/2).

Proof. We use (4.11) with ψ2 = 1−χ(|x− d|/δ|d|σ). Since V1dψ2 = V1d, we have

〈x〉ρV1dR(E + i0;K2d)rL = 〈x〉ρV1dR(E + i0;K0d)ψ2rL

− 〈x〉ρV1dR(E + i0;K0d)U2dR(E + i0;K2d)rL.

By Lemma 4.2, the first operator obeys O(|d|−L/2). We decompose U2d into the
sum of three operators

U2d = U2d

(
β∞(Dx) + β+(Dx) + β−(Dx)

)
.

The coefficients of U2d have support in {x : |x− d| > δ|d|σ}. If we repeat the same
argument as in the proof of Lemma 4.3, then we obtain

‖〈x〉ρV1dR(E + i0;K0d)U2dβ∞R(E + i0;K2d)rL‖ = O(|d|−L),
‖〈x〉ρV1dR(E + i0;K0d)U2dβ+R(E + i0;K2d)rL‖ = O(|d|−L)

by Lemma 4.2. We know by the micro-local resolvent estimate ([9, Theorem 1])
that

〈x− d〉sU2dβ−(Dx)R(E + i0;K2d)〈x− d〉−s−τ : L2 → L2, s ≥ 0,

is bounded for τ > 1. Hence this, together with Lemma 4.2, yields

‖〈x〉ρV1dR(E + i0;K0d)U2dβ−R(E + i0;K2d)rL‖ = O(|d|−L/2).

Thus the proof is complete. ✷

The following two propositions play a basic role in proving the three lemmas.
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Proposition 4.1 Define Π1d and Π2d with σ1 = σ2 = σ and denote by πjd(x),
j = 1, 2, the characteristic function of Πjd. Let ρ > 1/2. Then one has :

(1) ‖rLR(E + i0;Hd)π1d〈x〉−ρ‖ = O(|d|−L/2).

(2) ‖rLR(E + i0;Hd)π2d〈x− d〉−ρ‖ = O(|d|−L/2).

Proposition 4.2
‖b2dR(E + i0;Hd)b1d‖ = O(|d|3σ).

4.3. We proceed to proving the three lemmas in question, accepting the two
propositions above as proved. The proof of the propositions is done in section 5.
Throughout the proof of the lemmas, ψ1(x) and ψ2(x) are defined by (4.13) with
σ1 = σ2 = σ.

Proof of Lemma 3.2. First it is clear from Proposition 4.1 that rLR(E+i0;Hd)bjd
obeys the desired bound. We consider the operator Q = rLR(E + i0;Hd)rL. We
decompose Q into the sum

Q = rLR(E + i0;Hd)ψ1rL + rLR(E + i0;Hd)(1− ψ1)rL = Q1 +Q2.

The function 1 − ψ1(x) = χ(|x|/δ|d|σ) has support around x = 0, and it satisfies
W2d(1− ψ1) = 0. We use (4.15) for Q1 and (4.14) for Q2. Then

Q1 = rLψ1R(E + i0;K2d)rL − rLR(E + i0;Hd)V1dR(E + i0;K2d)rL,
Q2 = rL(1− ψ1)R(E + i0;K1d)rL − rLR(E + i0;Hd)Ṽ2dR(E + i0;K1d)rL,

where Ṽ2d = −[K1d, ψ1]. We decompose V1d into V1d = (π1d〈x〉−ρ) (〈x〉ρV1d), and
we use Lemma 4.4 and Proposition 4.1. Then we obtain ‖Q1‖ = O(|d|−L). Since
the coefficients of Ṽ2d have support around x = 0, we have also ‖Q2‖ = O(|d|−L)
by Proposition 4.1 again. Thus

‖rLR(E + i0;Hd)rL‖ = O(|d|−L) (4.20)

and (2) is proved. Next we consider the operator R = rLR(E + i0;Hd)λd. By
(4.14), R is represented as

R = rLψ2R(E + i0;K1d)λd − rLR(E + i0;Hd)V2dR(E + i0;K1d)λd.

The first operator is easy to evaluate. This obeys the boundO(|d|−L/2). To evaluate
the second operator, we decompose V2d into the sum of four operators

V2d = g2
2dV2d + V∞(x,Dx) + V+(x,Dx) + V−(x,Dx), (4.21)

where g2d(x) = χ(|x− d|/M |d|σ) for M � 1, and

V±(x,Dx) = (1− g2
2d)V2dβ±(Dx), V∞(x,Dx) = (1− g2

2d)V2dβ∞(Dx).
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According to the decomposition above, we set

R0 = rLR(E + i0;Hd)g2
2dV2dR(E + i0;K1d)λd,

R∞ = rLR(E + i0;Hd)V∞R(E + i0;K1d)λd,

R± = rLR(E + i0;Hd)V±R(E + i0;K1d)λd.

Since g2d = O(|d|)〈x〉−1, it follows that ‖g2dR(E+ i0;K1d)λd‖ = O(|d|ν) for some
ν > 0, and hence ‖R0‖ = O(|d|−L/2) by Proposition 4.1. We use the micro-local
analysis for the operators R∞ and R±. A simple calculus of pseudo-differential
operators yields

V∞R(E + i0;K1d)λd = r̃N + r̃NR(E + i0;K1d)λd.

Hence it follows from (4.20) that ‖R∞‖ = O(|d|−L). Assume that x ∈ Π2d and
|x| > M |d|σ. If ξ ∈ suppβ−, then we can take M � 1 so large that the incoming
free particle with state (x, ξ) at t = 0 does not pass over Λd for t < 0. Hence we
can construct an incoming approximation

V−R(E + i0;K1d)λd = r̃N + r̃NR(E + i0;K1d)λd.

If we again use (4.20), then we get ‖R−‖ = O(|d|−L). To deal with R+, we con-
struct an outgoing approximation in the form

R(E + i0;Hd)V+ = j exp(iθd)R(E + i0;H0)β̃+ exp(−iθd)V+ +R(E + i0;Hd)r̃N

by an argument similar to that in the proof of Lemma 3.6, where β̃+ ∈ C∞
0 (R

2
ξ)

satisfies β̃+β+ = β+, and j(x) and θd(x) are used with the meaning ascribed in
Lemma 3.6. The first operator obeys

‖rLR(E + i0;H0)β̃+ exp(−iθd)V+‖ = O(|d|−L/2)

by the micro-local resolvent estimate ([9, Theorem 1]), and the remainder opera-
tor is evaluated as O(|d|−L) by (4.20). Hence we have ‖R+‖ = O(|d|−L/2). This
completes the proof. ✷

For later reference, we here note that the proof of Lemma 3.2 does not use
Proposition 4.2. Hence we can use Lemma 3.2 to prove Proposition 4.2.

Proof of Lemma 3.3. By (4.14) and (4.15), we have the following three relations :

b2dR(E + i0;Hd)b1d = b2dψ2R(E + i0;K1d)b1d
− b2dR(E + i0;Hd)V2dR(E + i0;K1d)b1d,

b1d (R(E + i0;Hd)−R(E + i0;K1d)) b1d
= −b1dR(E + i0;Hd)V2dR(E + i0;K1d)b1d,
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b2d (R(E + i0;Hd)−R(E + i0;K2d)) b2d
= −b2dR(E + i0;Hd)V1dR(E + i0;K2d)b2d.

We decompose V1d as in (4.19) with g1d = χ(|x|/M |d|σ) and V2d as in (4.21) with
g2d = χ(|x− d|/M |d|σ), and we construct outgoing and incoming approximations.
The construction is based on the same idea as in the proof of Lemma 3.6. For
example, the approximation for b2dR(E + i0;Hd)V+ is constructed in the form

b2dR(E + i0;Hd)V+ = r̃L + b2dR(E + i0;Hd)r̃L

and hence it follows from Lemma 3.2 that

‖b2dR(E + i0;Hd)V+R(E + i0;K1d)b1d‖ = O(|d|−L).

Thus we repeat the same argument as used in the proof of Lemmas 4.3, 4.4 and
3.2 to obtain the following three inequalities :

‖b2dR(E + i0;Hd)b1d‖

≤ Cε|d|−1/2+3σ+ε
(
1 + ‖b2dR(E + i0;Hd)g2d‖

)
+CL|d|−L, (4.22)

‖b1d (R(E + i0;Hd)−R(E + i0;K1d)) b1d‖
≤ Cε|d|−1/2+3σ+ε‖b1dR(E + i0;Hd)g2d‖+ CL|d|−L, (4.23)

‖b2d (R(E + i0;Hd)−R(E + i0;K2d)) b2d‖
≤ Cε|d|−1/2+3σ+ε‖b2dR(E + i0;Hd)g1d‖+ CL|d|−L (4.24)

for L � 1 and any ε, 0 < ε � 1. By Proposition 4.2, we have

‖b2dR(E + i0;Hd)g1d‖+ ‖b1dR(E + i0;Hd)g2d‖ = O(|d|3σ).

The desired bound is derived by combining this estimate with the three inequalities
above. In fact, (4.23) and (4.24) imply that

‖bjdR(E + i0;Hd)bjd‖ � O(|d|σ)

for j = 1, 2. We may assume that this is still valid for gjd, so that we have

‖b2dR(E + i0;Hd)b1d‖ � O(|d|−1/2+4σ)

by (4.22). This is also valid for g1d and g2d. Thus it again follows from (4.23) and
(4.24) that

‖bjd
(
R(E + i0;Hd)−R(E + i0;Kjd)

)
bjd‖ � O(|d|−1+7σ)
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for j = 1, 2. The operator R(E + i0;K1d) is represented as

R(E + i0;K1d) = p2dR(E + i0;H1)q2d, q2d = 1/p2d.

The function p2d behaves like

p2d(x) = eiα2γ(x−d;d̂) = eiα2γ(−d;d̂) +O(|d|−1+σ) = eiα2π +O(|d|−1+σ)

on B1d (= supp b1d). Similarly q2d(x) = e−iα2π +O(|d|−1+σ). Thus

‖b1d
(
R(E + i0;Hd)−R(E + i0;H1)

)
b1d‖ � O(|d|−1+7σ).

A similar bound is true for b2dR(E + i0;Hd)b2d, and the proof of the lemma is
complete. ✷

Proof of Lemma 3.4. The lemma is verified in almost the same way as in the
proof of Lemma 3.3. We give only a sketch for a proof. We keep the same notation
as above. The following three identities are obtained from (4.14) and (4.15) :

b2dR(E + i0;Hd)λd〈x〉−1 = b2dψ2R(E + i0;K1d)λd〈x〉−1

− b2dR(E + i0;Hd)V2dR(E + i0;K1d)λd〈x〉−1,

b1d (R(E + i0;Hd)−R(E + i0;K1d))λd〈x〉−1

= −b1dR(E + i0;Hd)V2dR(E + i0;K1d)λd〈x〉−1,

〈x〉−1λd (R(E + i0;Hd)−R(E + i0;K1d))λd〈x〉−1

= −〈x〉−1λdR(E + i0;Hd)V2dR(E + i0;K1d)λd〈x〉−1.

From these relations, we get the following three inequalities :

‖b2dR(E + i0;Hd)λd〈x〉−1‖
≤ Cε|d|−1/2+2σ+ε

(
1 + ‖b2dR(E + i0;Hd)g2d‖

)
+CL|d|−L,

‖b1d (R(E + i0;Hd)−R(E + i0;K1d))λd〈x〉−1‖
≤ Cε|d|−1/2+2σ+ε‖b1dR(E + i0;Hd)g2d‖+ CL|d|−L,

‖〈x〉−1λd (R(E + i0;Hd)−R(E + i0;K2d))λd〈x〉−1‖
≤ Cε|d|−1/2+2σ+ε‖〈x〉−1λdR(E + i0;Hd)g2d‖+ CL|d|−L.

It follows from Lemma 3.3 that

‖b2dR(E + i0;Hd)g2d‖ � O(|d|σ), ‖b1dR(E + i0;Hd)g2d‖ � O(|d|−1/2+4σ)
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and hence we have

‖b2dR(E + i0;Hd)λd〈x〉−1‖ � O(|d|−1/2+3σ) (4.25)

and
‖b1d

(
R(E + i0;Hd)−R(E + i0;K1d)

)
λd〈x〉−1‖ � O(|d|−1+6σ).

If we further make use of (4.25), then we obtain

‖〈x〉−1λd

(
R(E + i0;Hd)−R(E + i0;K1d)

)
λd〈x〉−1‖ � O(|d|−1+5σ).

Thus the lemma is proved. ✷

5 Resolvent estimates

The present section is devoted to proving Propositions 4.1 and 4.2. Throughout
the section, we fix σ1 as σ ≤ σ1 � 1 and take ρ as

1/2 < ρ < σ1/4 + 1/2. (5.1)

On the other hand, σ2 is assumed to satisfy

0 < σ2 < (σ1/4− (ρ− 1/2))/3 (5.2)

for ρ > 1/2 as above. We further use the notation h2d(x) to denote the character-
istic function of the set {x : |x − d| < C|d|κ} for some C � 1 large enough and
0 < κ � 1 small enough.

5.1. The argument here is based on the following proposition.

Proposition 5.1 Assume that ρ fulfills (5.1). Define

W̃1d = ψ1W1d, ψ1(x) = 1− χ(|x|/|d|σ1).

Then
‖〈x〉ρW̃1dR(E + i0;K0d)h2d‖ = O(|d|−ν)

with ν = σ1/4− (ρ− 1/2)− κ.

The proof of this proposition heavily depends on the special form of the
differential operator W1d. By (4.7), it takes the form W1d = 2ie1d · ∇+ e0d, where

e1d(x) =
(
α1 − ζ ′1d(γ(x;−d̂))

)
∇γ = O(|d|σ1/2)∇γ, γ = γ(x;−d̂),

and e0d(x) = O(|d|σ1)|x|−2 in {x : |x| > |d|σ1}.
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Lemma 5.1 Recall that π1d denotes the characteristic function of Π1d. Then

‖〈x〉ρ−2π1dR(E + i0;K0d)h2d‖ = O(|d|−(σ1+ν))

with ν = 1/2− σ1 − κ > 0.

Proof. Let D1 = {(x, y) : x ∈ Π1d, y ∈ supph2d}. We consider the integral

I =
∫ ∫

D1

〈x〉2(ρ−2)|Gd(x, y;E)|2 dydx,

where Gd(x, y;E) is the kernel of R(E + i0;K0d). If (x, y) ∈ D1, then |x − y| >
c(|x|+ |d|) for some c > 0. Hence it follows from (4.17) that I is evaluated as

I = O(|d|2κ)
∫

Π1d

〈x〉2(ρ−2) (|x|+ |d|)−1 dx

= O(|d|2κ)O(|d|−1)
∫ ∞

0
(1 + r)2(ρ−2)r dr = O(|d|−2(1/2−κ)).

Thus we have I = O(|d|−2(σ1+ν)) with ν in the lemma. This proves the lemma. ✷

Lemma 5.2 If g is a bounded function with support in {x : x ∈ Π1d, |x| > |d|σ1},
then one has

‖〈x〉ρg (∇γ · ∇)R(E + i0;K0d)h2d‖ = O(|d|−(σ1/2+ν)), γ = γ(x;−d̂),

with ν = σ1/4− (ρ− 1/2)− κ.

Proof. Let D2 = {(x, y) : x ∈ Π1d, |x| > |d|σ1 , y ∈ supph2d}. We calculate

I(x, y) = (∇γ · ∇) exp(i
√
E|x− y|)

for (x, y) ∈ D2. A direct calculation yields

I(x, y) = i
√
E |x|−1|x− y|−1|y| (x̂2ŷ1 − x̂1ŷ2) exp(i

√
E|x− y|),

where x̂ = (x̂1, x̂2). If (x, y) ∈ D2, then x̂ = −d̂ + O(|d|−σ1/2) and ŷ = d̂ +
O(|d|−1+κ), so that

x̂2ŷ1 − x̂1ŷ2 = O(|d|−σ1/2).

Thus we have
I(x, y) = O(|d|1−σ1/2)|x|−1|x− y|−1

uniformly in (x, y) ∈ D2. Hence the integral obeys the bound

I=
∫ ∫

D2

|x|2ρ|I(x, y)|2|x− y|−1 dydx = O(|d|2−σ1+2κ)
∫

Π1d

|x|2ρ−2(|x|+ |d|)−3 dx

=O(|d|2−σ1+2κ)O(|d|−σ1/2)
∫ ∞

0
r2ρ−1(r + |d|)−3 dr = O(|d|−(σ1+2ν))
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for ν as in the lemma. The lemma is obtained from this estimate. ✷

Proof of Proposition 5.1. The proposition follows immediately from the two lem-
mas above. ✷

Lemma 5.3 Let ψ1 be as in Proposition 5.1. Define V1d and U1d by (4.16) and
(4.12) respectively. Then

‖〈x〉ρV1dR(E + i0;K0d)h2d‖ = O(|d|−ν),
‖〈x〉ρU1dR(E + i0;K0d)h2d‖ = O(|d|−ν),

where ν = σ1/4− (ρ− 1/2)− κ.

Proof. By definition, W̃1d = V1d on {x : |x| > 2|d|σ1}. The coefficients of K0d
and V1d are smooth and bounded uniformly in d. If we denote by h1d(x) the
characteristic function of the set {x : |x| < 2|d|σ1}, then it follows from (4.17) that

‖〈x〉ρh1dR(E + i0;K0d)h2d‖ = O(|d|−µ)

with µ = 1/2− (ρ+ 1)σ1 − κ > 0, so that

‖〈x〉ρh1dV1dR(E + i0;K0d)h2d‖ = O(|d|−µ)

by elliptic estimate. It is obvious that µ > ν for σ1 small enough. Hence the first
bound follows from Proposition 5.1. The second one is verified in exactly the same
way. ✷

Lemma 5.4 One has

‖h2dR(E + i0;K1d)π1d〈x〉−ρ‖ = O(|d|−ν)

with ν = σ1/4− (ρ− 1/2)− κ.

Proof. Let ψ1 be as in Proposition 5.1. Note that h2dψ1 = h2d. By (4.11), we
have

h2dR(E + i0;K1d)π1d〈x〉−ρ = h2dR(E + i0;K0d)ψ1π1d〈x〉−ρ

− h2dR(E + i0;K0d)U1dR(E + i0;K1d)π1d〈x〉−ρ.

It follows from (4.17) that the first operator on the right side obeys

‖h2dR(E + i0;K0d)π1d〈x〉−ρ‖ = O(|d|−(σ1/4+(ρ−1/2)−κ)).

To evaluate the second operator, we decompose U1d into U1d = U1d〈x〉ρ〈x〉−ρ.
Since

〈x〉−ρR(E + i0;K1d)〈x〉−ρ : L2 → L2

is bounded uniformly in d, the lemma is obtained from Lemma 5.3. ✷
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Lemma 5.5 Let V1d be as in Lemma 5.3 and let σ2 be as in (5.2). If κ = σ2, then

‖〈x〉ρV1dR(E + i0;K2d)h2d‖ � O(|d|−ν)

with ν = σ1/4− (ρ− 1/2)− 2σ2 > 0.

Proof. The proof uses an argument similar to that in the proof of Lemma 4.3.
We use (4.11) with ψ2(x) = 1− χ(|x− d|/δ|d|σ2). Then we have

〈x〉ρV1dR(E + i0;K2d)h2d = 〈x〉ρV1dR(E + i0;K0d)ψ2h2d

− 〈x〉ρV1dR(E + i0;K0d)U2dR(E + i0;K2d)h2d.

By Lemma 5.3, the first operator on the right side is majorized by O(|d|−µ) with
µ = σ1/4 − (ρ − 1/2) − σ2. To estimate the second operator, we decompose U2d
into the sum of four operators

U2d = g2
2dU2d + U∞(x,Dx) + U−(x,Dx) + U+(x,Dx)

as in (4.21), where g2d(x) = χ(|x− d|/M |d|σ2) for M � 1, and

U∞(x,Dx) = (1− g2
2d(x))U2dβ∞(Dx), U±(x,Dx) = (1− g2

2d(x))U2dβ±(Dx).

By Lemma 5.3 again, we have

‖〈x〉ρV1dR(E + i0;K0d)g2
2dU2dR(E + i0;K2d)h2d‖ � O(|d|−ν)

for ν as in the lemma, because

‖g2dU2dR(E + i0;K2d)h2d‖ � O(|d|σ2)

by the principle of limiting absorption. If we make use of Lemma 4.2, the other op-
erators with U∞(x,Dx) and U±(x,Dx) can be shown to obey the bound O(|d|−N )
for any N � 1. This proves the lemma. ✷

Lemma 5.6 Let

V+ = V+(x,Dx) = (1− g2
2d)V2dβ+(Dx), g2d(x) = χ(|x− d|/M |d|σ2),

be as in (4.21). Then

‖〈x〉ρV1dR(E + i0;K2d)V+〈x〉ρ‖ = O(|d|−L)

for any L � 1.
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Proof. We construct an outgoing approximation for R(E+ i0;K2d)V+〈x〉ρ. If the
particle starts from x ∈ {x ∈ Π2d : |x−d| > M |d|σ2} with momentum ξ ∈ suppβ+
at time t = 0, then it does not pass over Π1d for t > 0. This enables us to construct
the approximation in the form

〈x〉ρV1dR(E + i0;K2d)V+〈x〉ρ = r̃L + 〈x〉ρV1dR(E + i0;K2d)r̃L.

Hence the lemma is implied by Lemma 4.4. ✷

5.2. We are now in a position to prove Propositions 4.1 and 4.2.

Proof of Proposition 4.1. We prove only the first statement. A similar argument
applies to the second one. Throughout the proof, we take σ1 = σ and use the
relations (4.14) and (4.15) with

ψ1(x) = 1− χ(|x|/δ|d|σ), ψ2(x) = 1− χ(|x− d|/δ|d|σ2)

for 0 < δ � 1 small enough, where σ2 is specified by (5.2) with σ1 = σ.

We write
X = rLR(E + i0;Hd)π1d〈x〉−ρ

for the operator in the proposition. Since π1dψ2 = π1d, it follows from (4.14) that

X = rLψ2R(E + i0;K1d)π1d〈x〉−ρ − rLR(E + i0;Hd)V2dR(E + i0;K1d)π1d〈x〉−ρ.

The first operator on the right side satisfies

‖rLψ2R(E + i0;K1d)π1d〈x〉−ρ‖ = O(|d|−L/2).

To estimate the second operator, we decompose V2d into the sum of four operators

V2d = g2
2dV2d + V∞(x,Dx) + V+(x,Dx) + V−(x,Dx)

as in (4.21), where g2d(x) = χ(|x− d|/M |d|σ2) for M � 1, and

V±(x,Dx) = (1− g2
2d)V2dβ±(Dx), V∞(x,Dx) = (1− g2

2d)V2dβ∞(Dx).

We set

X0 = rLR(E + i0;Hd)g2
2dV2dR(E + i0;K1d)π1d〈x〉−ρ,

X∞ = rLR(E + i0;Hd)V∞R(E + i0;K1d)π1d〈x〉−ρ,

X± = rLR(E + i0;Hd)V±R(E + i0;K1d)π1d〈x〉−ρ.

Then the operator X in question satisfies

‖X‖ ≤ CL|d|−L/2 + ‖X0‖+ ‖X∞‖+ ‖X−‖+ ‖X+‖.
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Note that ψ1V± = V± and ψ1V∞ = V∞. We can show

‖X∞‖+ ‖X−‖ ≤ CL‖rLR(E + i0;Hd)ψ1rL‖

as in the proof of Lemma 3.2. To evaluate the operator rLR(E + i0;Hd)ψ1rL, we
represent it as

rLψ1R(E + i0;K2d)rL − rLR(E + i0;Hd)V1dR(E + i0;K2d)rL

by (4.15). If we decompose V1d into V1d = π1d〈x〉−ρ〈x〉ρV1d, then it follows from
Lemma 4.4 that

‖rLR(E + i0;Hd)ψ1rL‖ = O(|d|−L) +O(|d|−L/2)‖X‖

and hence we have

‖X∞‖+ ‖X−‖ ≤ CL

(
|d|−L/2 + |d|−L/2‖X‖

)
.

We consider the operator X+. We decompose it into the product

X+ =
(
rLR(E + i0;Hd)V+〈x〉ρ

)(
〈x〉−ρR(E + i0;K1d)π1d〈x〉−ρ

)
.

The second operator is bounded uniformly in d, and the first one is represented as

rLψ1R(E + i0;K2d)V+〈x〉ρ − rLR(E + i0;Hd)V1dR(E + i0;K2d)V+〈x〉ρ

by use of (4.15) again. The micro-local resolvent estimate of [9] shows that

‖rLψ1R(E + i0;K2d)V+〈x〉ρ‖ = O(|d|−L/2),

which, together with Lemma 5.6, implies that

‖rLR(E + i0;Hd)V+〈x〉ρ‖ = O(|d|−L/2) +O(|d|−L/2)‖X‖.

Thus X satisfies

‖X‖ ≤ CL

(
|d|−L/2 + |d|−L/2‖X‖

)
+ ‖X0‖. (5.3)

We shall evaluate X0. This obeys the bound

‖X0‖ = o(1) ‖rLR(E + i0;Hd)g2d‖

by Lemma 5.4 with κ = σ2, and rLR(E + i0;Hd)g2d is written as

rLψ1R(E + i0;K2d)g2d − rLR(E + i0;Hd)V1dR(E + i0;K2d)g2d

by (4.15). Hence Lemma 5.5 yields

‖X0‖ = O(|d|−L/2) + o(1) ‖X‖.
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Thus the desired bound is obtained from (5.3) and the proof is complete. ✷

We proceed to the proof of Proposition 4.2. As previously stated, we are
allowed to use Lemma 3.2 for the proof of the proposition.

Proof of Proposition 4.2. The proof is based on the same idea as in the proof of
Proposition 4.1, although we have to modify slightly the argument there. Through-
out the proof, σ2 is fixed as σ2 = σ, and σ1 and ρ are chosen to fulfill (5.1) and
(5.2). We set

Y = b2dR(E + i0;Hd)π1d〈x〉−ρ.

Since σ1 > σ, b1dπ1d = b1d. Hence it suffices to show the bound ‖Y ‖ = O(|d|2σ)
in order to prove the proposition.

We use the relations (4.14) and (4.15) with

ψ1(x) = 1− χ(|x|/δ|d|σ1), ψ2(x) = 1− χ(|x− d|/δ|d|σ).

By (4.14), we have

Y = b2dψ2R(E + i0;K1d)π1d〈x〉−ρ − b2dR(E + i0;Hd)V2dR(E + i0;K1d)π1d〈x〉−ρ.

The first operator on the right side satisfies

‖b2dψ2R(E + i0;K1d)π1d〈x〉−ρ‖ = o(1)

by Lemma 5.4. We decompose V2d as in the proof of Proposition 4.1 and set

Y0 = b2dR(E + i0;Hd)g2
2dV2dR(E + i0;K1d)π1d〈x〉−ρ,

Y∞ = b2dR(E + i0;Hd)V∞R(E + i0;K1d)π1d〈x〉−ρ,

Y± = b2dR(E + i0;Hd)V±R(E + i0;K1d)π1d〈x〉−ρ,

where g2d(x) = χ(|x− d|/M |d|σ) for M � 1. We can show

‖Y∞‖+ ‖Y−‖+ ‖Y+‖ ≤ CL

(
‖b2dR(E + i0;Hd)rL‖+O(|d|−L)

)
= O(|d|−L/2)

by Lemma 3.2. To estimate the operator Y+, we construct an outgoing approxi-
mation for b2dR(E + i0;Hd)V+, which takes the form

b2dR(E + i0;Hd)V+ = r̃L + b2dR(E + i0;Hd)r̃L.

Thus we have ‖Y ‖ = o(1) + ‖Y0‖. The operator Y0 is also estimated in the same
way as X0. It satisfies

‖Y0‖ ≤ ‖b2dR(E + i0;K2d)g2d‖+ o(1) ‖Y ‖ ≤ C|d|2σ + o(1) ‖Y ‖

by Lemmas 5.4 and 5.5. Hence the desired bound follows at once and the proof is
complete. ✷
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6 Asymptotic behavior of eigenfunction

In this section we prove Proposition 2.1 which has played a basic role in proving
the main theorem. As already stated in section 2, the asymptotic behavior of
eigenfunction ϕ∓(x;λ, ω) has been studied in the physical literatures [3,5,14]. The
proof here is based on the idea from [14]. The original idea is due to T. Takabayashi.

Proof of Proposition 2.1. We consider only the case α �∈ Z. For brevity, we assume
that 0 < α < 1, and we set λ = 1. The proof uses the integral representation

Jp(r) =

(
i
)p
π

(∫ π

0
e−ir cos t cos pt dt− sin pπ

∫ ∞

0
e−pt+ir cosh t dt

)
, r > 0,

(6.1)
for the Bessel function Jp(r) with p > 0 ([8]).

(1) We write ϕ(x;ω) for ϕ+(x;λ, ω) with λ = 1 and denote by

ϕinc(x;ω) = exp(iα(γ(x;ω)− π)) exp(ix · ω)

the leading term in the asymptotic formula. If we make a change of variable σ =
σ(x;ω) = γ(x;ω)− π, then −π ≤ σ < π and it follows from (2.3) that

ϕ+(x;ω) =
∑
l∈Z
(−i)νeilσJν(|x|)

with ν = |l − α|. We also have

ϕinc(x;ω) = eiασ−i|x| cos σ.

By the Fourier expansion,

ϕinc(x;ω) =
1
2π

∑
l∈Z

eilσ
∫ π

−π

eiαt−i|x| cos te−ilt dt =
1
π

∑
l∈Z

eilσ
∫ π

0
e−i|x| cos t cos νt dt.

On the other hand, we have

ϕ+(x;ω) =
1
π

∑
l∈Z

eilσ
(∫ π

0
e−i|x| cos t cos νt dt− sin νπ

∫ ∞

0
e−νt+i|x| cosh t dt

)

by integral representation (6.1). Hence

ϕ+(x;ω)− ϕinc(x;ω) = − 1
π

∑
l∈Z

eilσ sin νπ
∫ ∞

0
e−νt+i|x| cosh t dt.

We calculate the sum on the right side. If γ(x;ω) �= 0, then |σ| < π and e±iσ �= −1.
A simple computation shows that∑

l∈Z
eilσe−νt sin νπ = sinαπ

(
eαt

1 + e−iσet
+

e−αt

1 + e−iσe−t

)
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for 0 < α < 1. This yields

ϕ+(x;ω)− ϕinc(x;ω) = −sinαπ
π

∫ ∞

−∞

e−αt

1 + e−iσe−t
ei|x| cosh t dt (6.2)

for |σ| < π. We apply the stationary phase method to the integral on the right
side. If x fulfills the assumption |x/|x| − ω| > c > 0, then |σ| < π − c for |x| � 1
and hence

|1 + e−iσe−t| > c1 > 0

in a neighborhood of the stationary point t = 0. Thus we can obtain the desired
asymptotic expansion.

(2) If we write ϕ∓(x;ω, α) for ϕ∓(x;ω), then

ϕ−(x;ω, α) = ϕ+(−x;ω,−α).

Hence (2) follows (1) at once.

(3) We consider ϕ+(x;ω) only. By assumption, |x/|x|−ω| < c|x|−q for some
q, 1/2 < q ≤ 1. We set δ = (q − 1/2)/3 > 0 and

η(x) = i
(
eiσ + 1

)
= i

(
eiσ(x;ω) + 1

)
for x as above. We evaluate the integral I on the right side of (6.2). If |x|−1/2+δ <
|t| < 1, then |∂t cosh t| > c2|t| and |∂t(1 + e−iσe−t)−1| < c3|t|−2, so that∫

|t|>|x|−1/2+δ

e−αt

1 + e−iσe−t
ei|x| cosh t dt = O(|x|−2δ)

by partial integration. Thus we have

I = −eiσei|x|
∫ |x|−1/2+δ

−|x|−1/2+δ

1
t+ iη

ei|x|t
2/2 dt+O(|x|−1+4δ) +O(|x|−2δ)

= −eiσei|x|
∫ |x|δ

−|x|δ

1
s+ i|x|1/2η e

i|s|2/2 ds+O(|x|−2δ).

We write σ = −π + ε or σ = π − ε. Then ε > 0 and ε = O(|x|−q). If σ = −π + ε,
then η = ε+O(ε2) and |x|1/2η = O(|x|−q+1/2). Hence it follows that

∫ |x|δ

|x|−δ

(
1

s+ i|x|1/2η − 1
s

)
ei|s|

2/2 ds = O(|x|−(q−1/2)+δ).

This yields

I = −eiσei|x|
∫ |x|−δ

−|x|−δ

1
s+ i|x|1/2η ds+O(|x|−(q−1/2)+δ) +O(|x|−2δ),
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so that
I = −iπei|x| +O(|x|−ν), ν = 2(q − 1/2)/3,

for σ = −π + ε. Similarly we have I = iπei|x| +O(|x|−ν) for σ = π − ε. Thus (3)
follows immediately from (6.2).

(4) We again evaluate the integral I. If |x/|x| − ω| > |x|−1/2, then

I =
∫
|x|−1/2<|t|<1

1
1 + e−iσe−t

ei|x| cosh t dt+O(1), |x| → ∞.

Since |∂t
(
1 + e−iσe−t

)−1 | ≤ c |t|−2 for |x|−1/2 < |t| < 1, we see by partial inte-
gration that the first term on the right side also obeys the bound O(1). If, on the
other hand, 0 < |x/|x| − ω| < |x|−1/2, then

I = −eiσ
∫
|t|<1

1
t+ iη

ei|x| cosh t dt+O(1)

for η = i(eiσ +1) again. Set σ = −π+ ε with ε > 0. Then ε = O(|x|−1/2) and also
η = O(|x|−1/2). Since∫

|x|−1/2<|t|<1

(
1

t+ iη
− 1

t

)
ei|x| cosh t dt = O(1),

it follows that

I = −eiσei|x|
∫ |x|−1/2

−|x|−1/2

1
t+ iη

dt+O(1) = O(1).

A similar argument applies to the case σ = π − ε. Thus (4) is verified. ✷

7 Magnetic Schrödinger operators with δ–like fields

In this supplementary section, we study the spectral problems for magnetic
Schrödinger operators with two δ–like fields. The argument here extends to the
case of several distinct centers without any essential changes. We consider the
Hamiltonian

H = H(A1 +A2), Aj(x) = αj∇γj(x),

where γj(x) = γ(x − ej) with e1 �= e2. The potential Aj has the δ–like magnetic
field 2παjδ(x−ej). As previously stated, the HamiltonianHj = H(Aj), 1 ≤ j ≤ 2,
is known to be self–adjoint with domain

D(Hj) = {u ∈ L2 : H(Aj)u ∈ L2, lim
|x−ej |→0

|u(x)| < ∞}.

We discuss the problems about the self–adjointness, the absence of bound states,
the principle of limiting absorption and the asymptotic completeness of wave op-
erators for H.
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Proposition 7.1 H is self–adjoint with domain

D = {u ∈ L2 : H(A1 +A2)u ∈ L2, lim
|x−ej |→0

|u(x)| < ∞, j = 1, 2}.

Proof. We consider the equation

(H + λ)u = f, λ � 1, (7.1)

for given f ∈ L2. Let {χ1, χ2, χ∞} be a smooth nonnegative partition of unity
normalized by χ1(x)2+χ2(x)2+χ∞(x)2 = 1, where χj ∈ C∞

0 (R
2) takes the value

χj(x) = 1 in a neighborhood of ej . We may assume that suppχ1 ∩ suppχ2 = ∅.
Let Bj ∈ C∞(R2 → R2) be a magnetic potential such that Bj(x) = Aj(x) on the
support of χ∞, and define H∞ as H∞ = H(B1 + B2). This is self–adjoint with
domain D(H∞) = H2(R2). We look for the solution u ∈ D in the form

u = χ1e
iα2γ2 (H1 + λ)−1

e−iα2γ2χ1v

+ χ2e
iα1γ1 (H2 + λ)−1

e−iα1γ1χ2v + χ∞ (H∞ + λ)−1
χ∞v

for some v ∈ L2. As is easily seen, u belongs to D. Note that

eiα2γ2H1e
−iα2γ2χ1 = Hχ1, eiα1γ1H2e

−iα1γ1χ2 = Hχ2

and H∞χ∞ = Hχ∞. If we make use of these relations, then we see that v must
satisfy

(Id+Kλ) v = f

for u to solve the equation (7.1), where

Kλ = eiα2γ2 [H1, χ1] (H1 + λ)−1 e−iα2γ2χ1

+ eiα1γ1 [H2, χ2] (H2 + λ)−1 e−iα1γ1χ2 + [H∞, χ∞] (H∞ + λ)−1 χ∞.

The norm obeys the bound ‖Kλ‖ = O(λ−1/2) for λ � 1. Hence there exists the
bounded inverse (Id+Kλ)

−1 : L2 → L2, so that equation (7.1) admits a unique
solution in D. Thus (H +λ)−1 : L2 → L2 is bounded with range Ran (H +λ)−1 =
D. It is easy to see that (H + λ)−1 is symmetric and hence H is self–adjoint with
domain D. ✷

We move to the problem on the absence of bound states.

Proposition 7.2 H has no bound states.

Proof. It is easy to see thatH does not have non-positive eigenvalue. We consider
the eigenvalue problem

Hu = λu, u ∈ L2,
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for λ > 0. Let α = α1 + α2 and define

g(x) = exp(i(αγ(x)− α1γ1(x)− α2γ2(x)))

for |x| > L � 1. It should be noted that g(x) is well defined as a single–valued
function. Set v = gu. Then v fulfills Hαv = λv on G = {x : |x| > L}, where

Hα = H(Aα), Aα = α∇γ(x). (7.2)

The operator above admits the partial wave expansion. If v ∈ L2(G), then v = 0
over G, and hence it follows by unique continuation that u = 0 identically on the
whole space. Thus H is shown to have no bound states. ✷

We shall prove the principle of limiting absorption.

Proposition 7.3 The resolvent R(z;H) = (H−z)−1 with Im z �= 0 has the boundary
values to the positive real axis

R(λ± i0;H) = lim
ε↓0

R(λ± iε;H) : L2
s(R

2)→ L2
−s(R

2)

for s > 1/2 in the uniform topology, where the convergence is locally uniform in
λ ∈ (0,∞).

Proof. The proof uses the positive commutator method due to Mourre [13]. Let
Hα be defined by (7.2). Define the operator C as C = −i (x · ∇+∇ · x). Then we
have

i[Hα, C] = i (HαC − CHα) = 4Hα

by formal computation. Let χ∞(x) be as in the proof of Proposition 7.1. Recall
that χ∞(x) vanishes around two centers e1 and e2. We take D = χ∞Cχ∞ as a
conjugate operator. Since h(H + i)−1 : L2 → L2 is compact for h(x) falling off at
infinity and since

Aα(x)−A1(x)−A2(x) = O(|x|−2) (7.3)

as |x| → ∞, we obtain the relation

f(H)i[H,D]f(H) = 4 f(H)Hf(H) + f(H)K0f(H)

for some compact operator K0 : L2 → L2, where f ∈ C∞
0 (0,∞) is supported away

from the origin. This enables us to repeat the same argument as in [6,13] and we
get the proposition. ✷

Finally we discuss the existence and completeness of wave operator

W±(H,H0) = s− lim
t→±∞

exp(itH) exp(−itH0) : L2 → L2.
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Proposition 7.4 The wave operator W±(H,H0) exists and is asymptotically com-
plete

RanW+(H,H0) = RanW−(H,H0) = L2.

Proof. The existence can be proved in almost the same way as in the case of
smooth magnetic fields ([12]). We skip the proof for it. To prove the completeness,
it suffices to show that the limit

W±(H0,H) = s− lim
t→±∞

exp(itH0) exp(−itH) (7.4)

exists. Let Hα be again defined by (7.2). We know from [17] that W±(Hα,H0)
exists and is asymptotically complete. This implies the existence of limit

W±(H0,Hα) = s− lim
t→±∞

exp(itH0) exp(−itHα).

On the other hand, the difference H −Hα is a perturbation of short–range class
by (7.3). Hence we can show the existence

W±(Hα,H) = s− lim
t→±∞

exp(itHα)ϕ∞ exp(−itH)

by use of Kato’s smoothness property which follows from Proposition 7.3 ([15]),
where ϕ∞(x) is a smooth real function such that ϕ∞(x) = 1 for |x| > L � 1 and
ϕ∞(x) = 0 for |x| < L/2. Thus the limit (7.4) in question can be shown to exist
and the proof is completed. ✷
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