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Aharonov-Bohm Effect in Scattering by Point-like
Magnetic Fields at Large Separation

H. T. Ito, H. Tamura

Abstract.The aim is to study the Aharonov—Bohm effect in the scattering by two
point-like magnetic fields at large separation in two dimensions. We analyze the
asymptotic behavior of scattering amplitude when the distance between the centers
of two fields goes to infinity. The obtained result heavily depends on the fluxes of
fields and on incident and final directions.

1 Introduction

Magnetic potentials have a direct significance to the motion of particles in quantum
mechanics. This property is known as the Aharonov—Bohm effect ([3]) and a lot of
physical literatures can be found in the recent book [2]. In this work we consider the
scattering by two ¢-like magnetic fields at large separation in two dimensions and
we analyze the asymptotic behavior of scattering amplitude when the distance
between the centers of two fields goes to infinity. Even if a field is compactly
supported, the corresponding magnetic potential is not expected to fall off rapidly.
In general, it has the long-range property at infinity. We study how the Aharonov—
Bohm effect is reflected in the scattering by magnetic fields at large separation.

We work in the two dimensional space R? throughout the entire discussion.
We denote by x = (x1,22) a generic point, and we write

H(A) = (—iV - A)®* =

2
(—7;(9]' - CLj)Z, 8j = 3/89@,

=1

for the Schrédinger operator with magnetic potential A(x) = (a;(x), az(z)) : R* —

R?. The magnetic field b(x) is defined as b = V x A = 01a2—D2a1, and the quantity

a=(2m)"! /b(x) dx is called the total flux of field b, where the integration with

no domain attached is taken over the whole space. We often use this abbreviation.

We begin by making a brief review on the scattering theory for the Hamil-
tonian with magnetic field supported on a single point. Such a Hamiltonian is
regarded as one of solvable models in quantum mechanics and the explicit form
of scattering amplitude has been already calculated ([3,17]). In section 2 we are
going to discuss the subject in some detail. Let 2rad(x) be the magnetic field with
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flux a and center at the origin. The magnetic potential A, (x) associated with the
field is given by

Aa(@) = a (=2/|2], 21/]2]*) = a (=02 log]z|, 01 log |x]) .

In fact, a simple calculation yields V x A, = a Alog|z| = 2rad(x). If we denote
by v(x) the azimuth angle from the positive x; axis, then A, is written in the
different form

Ao(z) = aVy(z) = a (—z2 /|2, 21 /|2|?) . (1.1)

This representation is important. The same relation remains true for the azimuth
angle y(z;w) from direction w € S, where S* is the unit circle.

Let Hy = —A be the free Hamiltonian and define H, by H, = H(A,).
The potential A, (z) has a strong singularity at the origin and it is known ([1,7])
that the operator formally defined is not essentially self-adjoint in C§°(R?\ {0}).
We have to impose some boundary conditions at the origin. The operator H,
becomes self-adjoint in L? = L?(R?) under the condition lim,—o [u(z)] < oo,
and it is called the Aharonov—Bohm Hamiltonian. If, in particular, o € Z is not
an integer, the limit is convergent to zero lim|g ¢ |u(z)| = 0. We now denote
by f(w — ©; E, H,, Hp) the scattering amplitude for the scattering from initial
direction w to final one & at energy E > 0. If we identify the coordinates over S!
with the azimuth angles from the positive z; axis, then the amplitude is given by

flw—0)=c(F) ((cos am —1)8(@ — w) — (i/7) sin am @) By (5 — w)) (1.2)

with ¢(E) = (27/ivE)'/?, where the Gauss notation [a] denotes the maximal
integer not exceeding o and Fy(#) = v.p.e?/(e?? — 1).

We move to the scattering by two 6-like magnetic fields. Let 2ra;6(z) and
2mad(x — d) be given magnetic fields with centers at the origin and d € R?
respectively. We consider the Hamiltonian

Hy = H(Aq, + Aaz,d)v Aaz,d(x) = Au, (v —d),

where
Ag,; () = V() = a; (—22/|z[*, 21 /|2]?) (1.3)

is the magnetic potential associated with the field 2ma;6(x). In section 7, we
will study the basic spectral problems such as the self-adjointness, the absence of
bound states, the principle of limiting absorption and the asymptotic completeness
of wave operators for Hy. According to the result there, H; becomes self-adjoint
with domain

D(Hy) = {u € L?: Hyu € L?, |lilm0 lu(z)] < oo, | ﬁ(ﬂl . lu(z)] < oo}, (1.4)
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where Hyu is understood in the distributional sense. We set
H; = H(As,), j=12,

J

and we denote by fi(w — @; E) and f;(w — @; E) the scattering amplitude for
the pair (Hy, Ho) and (H;, Hy) respectively. By (1.2), the scattering amplitude for
(H,j, Hy) is explicitly calculated as

fi(w— & E) = —¢(E)(i/7) sin ;w9 By (6 — w)
for w # @.

The aim here is to study the asymptotic behavior as |d| — oo of fi(w —
w; F). If we make a change of variables x — |d|y, then this becomes the problem
on the asymptotic behavior at high energy |d|>E of scattering amplitude for the
Hamiltonian H(Ay, 4 Aa, ), where Ay, (2) = o Vy(z—d) and d = d/|d| € S*. We
fix the notation. We define 7(z;w,®) by

T(w;0,0) = y(7;w) = (25 -0)
and we interpret exp(iay(z;w)) with w = x/|z| as
exp(iay(z;w)) := (1 4+ exp(i2am))/2 = cos am X exp(iam).

The obtained result is formulated as the following theorem.

Theorem 1.1 Let the notation be as above and let
foa(lw — & E) = exp(—iVEd - (& — w)) fa(w — @; E)

be the scattering amplitude for the pair (Haq, Ho), Hoq = H(Aa,,a). Fiz the
direction d = d/|d|. If w # @, then f4(w — @; E) behaves like

falw = GiE) = expliogr(—d:w,&))fi(w — & E)
+ exp(ion7(d;w,®)) fo.alw — &; E) + o(1)

as |d| — oco. In particular, the backward scattering amplitudes obey
falw — —w E) = filw = —w; E) + foa(w — —w; E) + o(1)

for w # +d, and

fald— —d; BE) = fi(d— —d; E) + (cos oy 7)? faq(d — —d; E) + o(1),
fi(—d — d;E) = (cosaom)’ fi(—d — d; E) + fo.q(—d — d; E) + o(1)
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As stated at the beginning, the motion of quantum particles is subject to
the influence of magnetic potentials as well as of magnetic fields. This quantum
property can be found in the asymptotic formula above. In fact, the first field
2map6(z) has an influence upon the scattering by the second one through the
phase factor exp(ia17(d;w,®)) in front of fo q(w — @; E), although the centers
of two fields are far away from each other. This can be seen more clearly in the
backward scattering amplitude fd((f — —d; E) or fd(fcf —d; E). If, in particular,
the flux oy is a half-integer, then the scattering by the second field does not make
any contribution to the leading term of the asymptotic formula for fd(ci — —d; E).

Many literatures can be found in the book [4] for the spectral and scattering
theory of Schrodinger operators with potentials supported on a discrete set of
points, and the work [11] has recently dealt with the problem on the asymptotic
behavior of scattering amplitude for the Schrédinger operator —A+ Vi (x) + Va(x —
d) with potentials falling off rapidly at infinity. In the case of potential scattering,
we do not have to modify phase factors and the asymptotic formula is completely
split into the sum of two scattering amplitudes corresponding to potentials V; and
Va(- — d). However the case is quite different in the scattering by magnetic fields.
Roughly speaking, the difficulty comes from the long-range property of magnetic
potentials. Several new devices are required at many stages of the argument. The
micro-local resolvent estimates for Hy and the asymptotic behavior at infinity of
the eigenfunction of Hy = H(A,,) or Hs play an important role in proving the
theorem. We end the section by making a brief comment on the extension to the
case of scattering by point-like magnetic fields supported on several points. This
is a natural problem. The analysis heavily depends on the location of centers and
on initial and final directions. Some new difficulties may arise. However the idea
developed here is thought to be useful to such a generalization. We are going to
discuss the detailed matter elsewhere.

2 Scattering by ¢-like magnetic field

The present section is devoted to the scattering theory for the Schrédinger operator
with point—like magnetic field supported on a single point. Such an operator is
called the Aharonov—-Bohm Hamiltonian.

2.1. We first make a review on the results from [3,17]. We consider the Hamilto-
nian

Ho= H(As), Aa(e) = aVy(x) = a (~aa/[2f x1/]af?).

which has the é-like field 2rad(x) at the origin. We know ([1,7]) that H, is self—
adjoint with domain

D(H,) ={u € L*: Hyu € L?, llilmo lu(z)| < oo},
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H,u being understood in D’, and that the wave operator
Wy (H,, Hp) = s — , lirin exp(itH,) exp(—itHy) : L* — L?
exists and is asymptotically complete : Ran W4 (H,, Hy) = L?. Hence the scatter-
ing operator
S(Ha, Ho) = Wi (Ha, H)W_(Hq,, Hp) : L* — L?

can be defined as a unitary operator. We use the notation - to denote the scalar
product in R?. Let @o(z; A\, w) = exp(iv/Az - w) be the generalized eigenfunction
of the free Hamiltonian Hy = —A, where A > 0 and w € S*. The unitary mapping
F:L? — L*((0,00);d\) ® L?(S') defined by

(Fu) (\w) = 2-/2(27)~1 / ol A w)u(z) do (2.1)
decomposes S(H,, Hp) into the direct integral
(o)
S(Ho, Ho) ~ FS(H,, Ho)F* :/ ® S(\; Ha, Ho) dA,
0

where the fiber S(\; Hy, Ho) : L?(S1) — L?(S1) is called the scattering matrix at
energy A > 0 and it acts as

(S(A; Ha, Ho) (Fu)(A, +)) (w) = (FS(Ha, Ho)u) (A, w)
for u € L.

We calculate the generalized eigenfunction ¢+ (z; A, w) of H, to derive the
integral kernel of S(A; Hy, Ho). The operator H, is rotationally invariant. We work
in the polar coordinate system (r,6). Let A;, | € Z, be the eigenspace associated
with eigenvalue ! of operator —id/96 acting on L?(S'). Then

L*((0,00);dr) @ L*(S') =Y @ (L*((0,00);dr) ® Ay) .
ez
We define the unitary mapping
(Uu)(r,0) = r'/?u(r) : L? — L*((0,00);dr) @ L?(S).

The mapping U yields the partial wave expansion

Hy ~UHU" =Y & (Hi ® Id),
lez

where Id is the identity operator and

Hyy= -0+ =1/4)r"2 v=|l—-al,
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is self-adjoint with domain

D(H,,) = {u € L*((0,00);dr) : Hiou € L*((0,00);dr), lir%rfl/2|u(7’)| < oo}

The eigenfunction ¢+ is formally defined as 3 = Wi(Hq, Ho)po by using the
intertwining property of wave operators. However this does not have the precise
meaning, because ¢o(z;\,w) is not in L2, The precise definition requires the ex-
pansion formula

wo(T; A, w) = Z exp(i|l|m/2) exp(ily(z;w))Jy (\/X|J}D (2.2)

lez

in terms of the Bessel functions J,(r). The function J,(r) satisfies the asymptotic
formula

Jo(r) = 2/m) 212 cos(r = (2p + 1)n/4) (14 gn (1)) + 06 ™), 7 = ox,

for any N > 1 large enough, where gn(r) obeys (d/dr) gy (r) = O(r=17F). If we
set
exi(r) = exp(£ill|m/2)Jy (1) — exp(xivm/2)J, (1),
then
exi(r) = exp(Fir) (C;Flr_l/Q + O(r_3/2)) + exp(£ir)O(r—3/2)

for some constant Cy; # 0. Hence e_;(r) satisfies the incoming radiation condition
¢, +ie_; = O(r~3/?) at infinity, while e,;(r) satisfies the outgoing radiation
condition €/, —ie4; = O(r=3/2). The simple relation

exp(ily(z; —w)) = exp(i[l|r + ily(z;w))

holds between the azimuth angles v(z;w) and v(x; —w). If we take account of (2.2),
then the eigenfunction ¢+ is given by

or(z; N w) = Z exp(Livm/2) exp(ily(z; 2w))J, (VA|z]) (2.3)
ez

with v = |l — a| again. We can easily see that the series converges locally uniformly
and that ¢+ satisfies Hop+ = Ap.

We often identify the coordinates over the unit circle S' with the azimuth
angles from the positive 27 axis. The scattering matrix S(\; Hy, Hy) has the prop-
erty

S(Aa Hom HO) : ¢+(.’13, >‘7 ) - @_(I, /\a )

A simple computation yields

exp(ivm/2) exp(—ily(z; —w)) = exp(i(v — I)7) exp(—ivn/2) exp(—ily(x; w))
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and hence the kernel of S(\; H,, Hp) is calculated as
S(0',0; X, Hy, Ho) = (2m) ™1 > " exp(i(l — v)m) exp(il(0' — 0)).
1€z
According to [17], the sum on the right side equals

Z exp(i(l — v)m)exp(ilf) = 27 (cos am 6(0) — (i/m) sin omei[”‘wFO(O)),
lez

where Fy(6) = v.p.e?/(e? — 1). Thus we can obtain the representation (1.2) of
amplitude

f(w — & E, Ha, Ho) = ¢(E) (S(Ca,w; E, Ha, Hy) — (@ — w))

for the scattering from initial direction w into final one @ at energy E > 0, where

c(E) = (2n/ivV/E)Y/2.

2.2. The asymptotic behavior as |z| — oo of eigenfunction ¢4 (z; A, w) plays an
important role in proving the main theorem. It has been already known in the
physical literatures [3,5,14]. However we shall prove the following proposition in
section 6 because of its importance.

Proposition 2.1 The eigenfunction o+ (x; \,w) has the following asymptotic prop-
erties at infinity.

(1)  Assume that |z/|x| —w| > ¢ > 0. Then o1 (x; A\, w) behaves like
pr(@Aw) = exp(ia(y(z;w) —m)) exp(iviz - w)
N-1
+ P2 72 (N e (@)l ) + O(fal V),
7=0
where the coefficient c,j(z) obeys the bound |0%c ;| = O(|z|~17!).
(2) If |z/|z| +w| > c >0, then a similar formula

p(wAw) = exp(z‘a(v(m—w)—w))exp('f N w)

z\/_|m|‘$| 1/2(20 )|z|~ 7)+O(|x| (N+1/2))

holds true for the incoming eigenfunction p_(x; A\, w).

(3) Assume that 1/2 < ¢ < 1. If 0 < |z/|z| — w| < c|z|~? for some ¢ > 0,
then
o (23N, w) = cosar X exp(ivAz - w) + O(|z|™)
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with v =2(q —1/2)/3 >0, and if 0 < |z/|z| + w| < c|z|~9, then
o_(z; A\, w) = cosar X exp(ivVAz - w) + O(|z|™)

for the same v as above.

(4)  ox(z; N, w) is bounded uniformly in x.
2.3.  We represent the amplitude f(w — @; E, H,, Hp) in terms of resolvent R(E+
10; H,,). We know that the boundary values
R(A£i0; Hy) :hlrglR(Aii{f;Ha)v R(¢; Ho) = (Ho _C)_la
€

to the positive real axis exist (principle of limiting absorption) and
R(\£1i0; H,) : L*(R?) = L*(R?; (z)*dz) — L (R?) (2.4)

is bounded for s > 1/2, where (z) = (1 + |z|?)"/2. This is verified by use of the
commutator method due to Mourre [13] (see Proposition 7.3 in section 7).

We now introduce a basic cut-off function. Let x € C§°[0,00) be a smooth
function such that x(s) > 0 and

x(s)=1 for 0<s<1, x(s) =0 for s> 2. (2.5)
We fix £ > 0 and we choose 8, 0 < § < 1, sufficiently small. We define
Bo(€) = x(2¢ — VEw|/6%)

for initial direction w. We further take a nonnegative function jo € C*°(R?) such
that
supp jo C B(R, —w, d), jo=1 on (2R, —w,8/2), (2.6)

and 02jy(x) = O(|z|~17) at infinity, where
Y(R,w,8) ={x:|z| > R, |z/lx] —w| <6}, R>0.
Recall that the azimuth angle v(z;w) satisfies (1.1). Hence we have
exp(—iay(zr;w))Hy expiay(z;w)) = H(Ay — aVy) = Hy (2.7)
on X(R, —w,d).
The next lemma is well known ([15]). We skip the proof.

Lemma 2.1 Let f € L%. Then the free solution exp(—itHy)f behaves like
(exp(—itHo) f)(x) = (2it) ™" exp(ilz[*/4t) f(x/2t) + o(1), |t| = o0,

in L2, where f(£) = (2m) " /e_m{f(x) dx is the Fourier transform.



Vol. 2, 2001 Scattering by Magnetic Fields 317

Let K; and K> be two self-adjoint operators in L2. We introduce the new
notation
Wi(Ko, K1;J) =5 — , ligtn exp(itKq)J exp(—itK1)

for a bounded operator J on L2. Let 3y(£) and jo(z) be as above. We set J =
J3Bo(Dy)?. Then

W_(Ho, Ho)Bo(Dz)* = W_(Ha, Ho; J)
by Lemma 2.1, so that we have the decomposition
W_(Ha, Ho)Bo(Dx)* = W_(Ha, Ho; Jo)W- (Ho, Ho; J1), (2.8)
where
Jo = joexp(iay(z;w))Bo(Dz),  J1 = joexp(—iay(z;w))Bo(Ds).

The existence of W_(Hy, Ho; J1) follows from Lemma 2.1, while the existence of
W_(H, Ho; Jo) is verified by use of (2.7). The same argument applies to final
direction @. We define

Bo(€) = x(2[¢ — VE®|/¢%)
and we take a function jo € C*°(R?) such that
suppjo C 2(R,@,8),  jo=1 on (2R, &,6/2). (2.9)

If we set

Jo = joexp(iay(z;—@))Bo(Dy), J1 = joexp(—iay(z; —@))Bo(Dy),
then we obtain
W (Hy, Ho)Bo(Dy)? = W (Hy, Ho; Jo)W.y (Ho, Ho; Jb). (2.10)
We combine (2.8) and (2.10) to obtain that
Bo(Dy)*S(Hey, Ho)Bo(Dy)? = Wi (Ho, Ho; J1)So(He, Ho)W—(Ho, Ho; J1), (2.11)

where .
So(Ha, Ho) = Wi (He, Ho; Jo)W_(Hq, Ho; Jo).

The operator Sy(H,, Hy) also has the direct integral decomposition, because it
commutes with Hy. We denote by So(\; Ha, Ho) : L?(S') — L?(S') the fiber and
by So(0',0; \, Hy, Hy) the kernel of So(A; Hy, Ho). By Lemma 2.1, W_(Hy, Ho; J1)
acts as the multiplication

FW_(Hy, Hy; J1)F* = exp(—iay(—0;w))Bo(VA0) x
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on L2((0,00);d\) ® L?(SY), where F': L? — L?((0,00); d\) @ L?(S!) is the unitary
mapping defined by (2.1). Similarly

FW,(Ho, Ho; J1)F* = exp(—iay(0; =) 6o (V) x .
Since e~ 7(=w) 3y (/Ew) = e~ and e~ "V(@~¥) 3y (v/ED) = e we have
S(@,M;E,HQ,H()) :So((:),w;E7Ha,H0) (212)

by (2.11). We derive the representation for So(¢',6; E, H,, Hy) on the right side.
The derivation is based on the idea due to [10]. We calculate T' = H,Jy — JoHy as

T = exp(ioy(z;w)) (Hojo — joHo) Bo(Dz) = exp(ioy(x;w))[Ho, jolBo(Da)
by use of (2.7). Similarly we have
T = HyJo — JoHo = exp(iory(w; —@))[Ho, jo] Bo (Dx)-

Since W, (Hy, Ho; Jo) = 0 by Lemma 2.1, it follows that
W_(H, Hy; Jo) = —i /exp(itHa)TeXp(—itHo) dt.
If we make use of this relation, then we obtain the representation
So(\; Ha, Ho) = 2w F()) (—ng + T*R(A + i0; Ha)T) F*(\) (2.13)

in exactly the same way as [10, Theorem 3.3], where F()\) : L2(R?) — L?*(S'), s >
1/2, is the trace operator defined by

(F(Nu) (0) = (Fu) (1, 0)|u=x-
We write og(w, ) for ¢o(z;w, E) = exp(iv/Az - w) and denote by ( , ) the L?

scalar product. The next lemma immediately follows from (2.12).

Lemma 2.2 Assume that w # &. Then

f(w— & B, Ha, Ho) = —(ie(B)/4m)(Tolw, ), Jopo(@, E))
+ (ic(E)/47r)(R(E—|—iO;Ha)Tgoo(w,E),Tgpo(&,E)).

We fix 0, 0 < ¢ < 1, small enough and take R = |d|?, |d| > 1, in (2.6)
and (2.9). We may assume that jo obeys 92jo(x) = O(|z|~1°!) uniformly in d ;
similarly for jo. The operators Jo, T and T are all pseudo-differential operators.
If w # @, then we can choose 6 so small that the support of symbols 7'(z,) and
Jo(z, &) does not intersect with each other. Hence it follows that

(T‘pO(va)a jO(PO(‘D?E)) = O(|d|_N>> |d| — 00,
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for any N > 1. Thus we have
F(w — @ B, Ho, Ho) = (ic(E)/4m) (R(E + i0; Ho) To(w, E), Too(@, E)) + o(1)

as |d| — oo. We continue to analyze the behavior as |d| — oo of the term on the
right side. We decompose T'= T'(z, D) into

T:X0T+(17X0)T:T0+T1,

where

xo(x) = x(|z|/2|d|”) (2.14)
for cut—off function y € C§°(0, 00) with property (2.5). By (2.6), Vjo vanishes on
Y(2R, —w, §/2) with R = |d|?. Hence the symbol Tj(z,&) has the support in the
outgoing region

supp Ty C {(2,€) : x| > 2[d|7, [¢ — VEw| <&, z-&> (—1+8/3)[z||¢]}.

The particle with initial state (x,€) € supp T at t = 0 moves like the free particle
and it does not pass in a neighborhood of the origin for ¢t > 0. In fact, we have

@+ 6% > [af® — 26(1 — 6/3) [l |€] + 21 > e (o] +1[€))*, > 0.
Thus the outgoing particle does not take momentum around v E®, so that
(R(E + 10; Ha)leo(wa E)v TQD()((D, E)) = O(|d|7N)

by the micro-local resolvent estimate ([9, Theorems 1 and 2]). Similarly we decom-
pose T into T'= Ty + T1. Then we obtain

(R(E +i0; Ho)Topo (w, E), Typo(@, E)) = O(|d| ™).

A similar argument has been used in the semi—classical analysis on scattering
amplitudes ([16]). The magnetic potential A, (z) has a singularity at the origin,
but the classical particle starting from (x, £) € supp T} or (x,€) € supp T} does not
pass over the origin. Thus the argument there applies to H, without any essential
changes. The next lemma is obtained as a consequence of Lemma 2.2.

Lemma 2.3 Let jo, jo be as in (2.6) and (2.9) respectively and let xo be defined
by (2.14). Assume that w # ©. Then

f(w = &; B, Ha, Ho) = (ic(E) /47)(R(E + i0; Ha)Togo(w, E), Towo(&, E)) + o(1)
as |d| — oo, where Ty acts as
Towo(w, E) = €7@ xo[Ho, jolpo(w, E)
on wo(w, ) = po(z;w, E) = exp(ivEz - w), and T, acts as
Topo(@, B) = €&~ xo[Ho, jolpo(@, E).
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2.4. The main idea to prove the theorem is to represent the scattering am-
plitude f4(w — @©; E) in terms of the eigenfunction of Hy = H(A,,) or Hsy. This
subsection is devoted to a preliminary step towards the representation.

The eigenfunction ¢ (z; A, w) of H, is defined by (2.3). We denote by Fy :
L? — L?((0,00);d)\) ® L?*(S') the unitary mapping

(Pew) (\6) =2772(2m) 7 [ (X Ou(e) do
and by Fi(\) : L2(R?) — L?(S"), s > 1/2, the trace operator
(Fe(Mu) (0) = (Fru) (1, 0)|pu=x-
According to the stationary scattering theory, we know that
Wi (Ho, Ho) = FLF (2.15)

and hence it follows that

FL(\)Wx(Hqa, Hy)u = F(ANu, a.e.X>0, (2.16)
for u € L?. We now consider a function of the form

u(@) = i, (Fu) (A8 = a(N)e, (2.17)
for I € Z, where f; € §[0,00) (Schwartz space) and

a(\) = 2*1/26*“””/2/ Ty (V) fi(r)r dr.
0
We assume that g; € C§°(0, 00) is supported away from the origin.

Lemma 2.4 Let v; be as above. Then
(x)NWy(Hy, Ho)v, € L*
for any N > 1.

Proof. By (2.15), we have
(W (Ha How) (@) = (FFu) (2) = fi(r)e™,

where

foi(r) =271/ 2evm/2 / - J,(VAr)gi(N) dA

0
with v = |l — a|. The Bessel function J,(r) obeys the asymptotic formula

To(r) = éThy(r) + e TRy (r) (2.18)

at infinity, where 9 hy,(r) = O(r~/27™). By assumption, g; € C§°(0, 00) has
compact support away from the origin. Hence the lemma follows by repeated use
of partial integration. o
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Lemma 2.5 One has
[(z) ™" exp(—itHa)Wi(Ha, Ho)uil[Lz = O([t|™™), [t| — oo,

form > 0.

Proof. We divide R? into the two regions {z : |z| > ¢|t|} and {z : |z| < c|t|} for
some ¢ > 0. It is easy to see that the term in the lemma satisfies the desired bound
O([t|=™) over the region {z : |z| > c|t|}. It follows from (2.15) that

(exp(—itHa)WJr(HmHo)vl>(x) = 2_1/26i””/2/ J,(VAr)e g (\) dre™.
0

Assume that |z| < c|t|. Then we can take ¢ > 0 so small that the integral above
obeys the bound O([t|~") for any N > 1. This is again obtained by repeated use
of partial integration. Thus the proof is complete. |

Lemma 2.6 Let §o(&) = x(2|¢ — VEw|/6%) be as before and let j+(z) be a bounded
function vanishing in a conical neighborhood of +w. Then one can choose § > 0
so small that

17+ 50(Dy ) exp(—it Ho)Wa (Ha, Ho)u|| 2 = O(Jt| ™), & — o0,
H]*ﬁO(Daz) exp(_itHa)W:I:(Hav I——’O)UZHL2 = O(|t|_N)7 t— —o0,
for any N > 1.

Proof. We give only a sketch for a proof. The proof is again done by repeated use
of partial integration. We show that the term

I = jiBo(Dy)exp(—itHy)W_(H,, Ho)vy

obeys the bound O(|t| ") as t — oo. A similar argument applies to the other
terms. If we take account of (2.18), then I is expressed as the sum of two oscillatory
integrals of the form

I:I::///O exp(iths (z, &y, \; 1)) fa (2, &y, N) dX\ dy d €™,

where

We consider the integral I, only. The amplitude function f is supported in a
small neighborhood of v/Ew in variables £ and has compact support away from
the origin in variable A, while the stationary point (£,y, ) of the phase function
14+ has to fulfill the relations

y==z E=Vy/lyl, ly =2V
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for © € supp j+. If we take § > 0 small enough, then we see that such a stationary
point does not exist. This yields the desired bound. O

Remark 2.1 If v; € L? takes the form v, = (F*ge'?) (z) or v; = (Fjge'?) (z)
for g(A) € C§°(0, 00) supported away from the origin, then we can show in exactly
the same way as above that ||(z) ™™ exp(—itHy)v||r2 = O(Jt|”™) and

17+50(Da) exp(—itHo)ui| 2 = O(|t] ™), ¢ — oo,
17-Bo(Da) exp(—itHa)vil| 2 = O(t] ), t — —oc.
The totality of such v; is dense in L?. As an immediate consequence, we have

W, (Ha, Ha; J1) = 0 for Ji = ji fo(Da).

3 Proof of main theorem : reduction to basic lemmas

In this section we prove the main theorem (Theorem 1.1) by reduction to three
lemmas (Lemmas 3.2 ~ 3.4). The proof of these lemmas is given in section 4, and
section 5 is devoted to proving the estimates for resolvent R(E + i0; Hy) which
play a central role in the proof of the lemmas. As previously stated, we prove the
self-adjointness, the absence of bound states, the principle of limiting absorption
and the asymptotic completeness of wave operators for H,; in section 7. We use
these facts without further references.

3.1. The perturbation H; — Hy between Hy and Hy = —A is of long-range class.
However we can show that the ordinary wave operator

Wi (Hg, Hy) = s — tiiimoo exp(itHy) exp(—itHy) : L* — L?
exists and it is asymptotically complete
Ran W_(Hg, Hy) = Ran W (Hg, Hy) = L*.
Hence the scattering operator
S(Hq, Ho) = Wi (Hg, H))W_(Hg, Ho) : L* — L?

can be defined as a unitary operator and it has the direct integral decomposition
S(Hd7H0) EFS(Hd,H())F* :/ @S()\;Hd,Ho) dA.
0

If we denote by S(0',0;\, Hy, Hy) the kernel of fiber S(\; Hyq, Hy) : L?(S') —
L?(S1), then the scattering amplitude f;(w — @; E) in question is defined by

folw = &y E) = ¢(E) (S(@,w; E, Ha, Ho) — 6(0 — w))
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with ¢(E) = (27/iv/E)"/? again. If, in particular, w # @, then
falw — @; E) = ¢(F) S(w,w; E, Hy, Hy).

The first step toward the proof of Theorem 1.1 is to represent f;(w — @©; E) in a
convenient form. We always assume that w # ©. We keep the same notation as in
section 2. Let jo and jo be as in (2.6) and (2.9), where R is taken as R = |d|” for
0 < 0 < 1 fixed small enough. We set

Xoo(w) = 1= x(2lz[/|d|"),

so that xoo(z) = 1 for |z| > |d|”. We further define the following operators :

Joa = exp(iaay(r — d;w))jodXooBo(Dz)Xoos
Jua = exp(—iaoy(z — d;w))joaBo(Ds),

where joq(7) = jo(x — d). Then W_(Hyg, Ho)Bo(D,)? is decomposed into
W_(Hg, Ho)B0(Dy)? = W_(Ha, H1; Joa)W—(H1, Ho)W_(Ho, Ho; J1a).
By Lemma 2.1, W_(Hy, Ho; J14) is realized as the multiplication
FW_(Hy, Hy; J1g)F* = e727(=0) 5, (\/A0) x
on L2((0,00);d\) @ L?(S1). A similar relation
W (Ha, Ho)Bo(Ds)* = Wi (Hg, H; Joa) Wy (Hy, Ho)W. (Ho, Ho; J1a)
holds for the wave operator W, (H,4, Hp), where

{Od = exp(iaey(z — d; —))jo dXo?BO(Dx)Xom
Jia = exp(—iagy(z — d; —@))joafo(Dz).

The eigenfunction 1 (z;6, A) of H1 = H(A,,) is defined by (2.3) with « replaced
by ai. We write Fyq : L2 — L%((0,00);d\) ® L?(S1) for the unitary mapping
associated with @11 and Fi (\) : L2(R*) — L?*(S'), s > 1/2, for the trace
operator. Then it follows from (2.15) and (2.16) that W< (H,, Hy) = Ff,F and
Fil()\)W¢(H1,HQ)U = F(/\)U, a.e. A >0, (31)
for u € L?. We now define Sy : L? — L? as
So = Wi (Hy, Ho)W (Hg, Hi; Joa)W— (Ha, Hy; Joa)W— (Hy, Hp).

Since Sy commutes with Hy, it has the direct integral decomposition. We denote
by So(X) : L2(S1) — L?(S') the fiber of S.
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Lemma 3.1 Let the notation be as above. Then the fiber So(\) is represented as
So(N) = 2miF_1 (N) (= JgaTa+ Ty RO+ i0; Ho) T ) Fi (M),

where R R R
Ty = HqJog — JoaH1, Ty = HqJog — JoaH1.

Before going into the proof, we calculate T,; and T, in the lemma. Both the
operators are realized as a pseudo-differential operator. We write v4 = y(z — d; w)
and By = Bo(D,) for brevity. Since

e*iOAﬂdeeiaﬂd — e*iasz(Aal + Aag,d)emﬂd — H(Aal) = H,
on the support of jgq, we have

Ty = €27 ([H1, joa] XooBoXoo + Joa[H1, XooBoXoo]) -

We set @ = H; — Hy. The coefficients of @) have a singularity at the origin only.
Since Xoo = Xoo(|Z|) is rotationally invariant, it is easy to see that [Q, Xeo] = 0.
Hence we can calculate the second commutator as

[H1, XooB0Xoo] = [Ho, Xoo B0 Xoo] + (@) XooBoXoo)
= [HO, XOO]HOXOO + XooﬁO[HO» Xoo} + Xoo[Qa 50])(00
=[Ho, Xoo]BoXoo + XooBo[Hos Xoo] + [Xoo@; o) X0 + [F0s Xoo)@Xoo-

Thus T; admits the decomposition
Tqg=T14+T2q + I'sq, (3.2)

where

1 = " 27@=49) oy ([Ho, Xool BoXoo + XooB0[Hos Xoo]) »
teY (@ =) [ 504]X oo BoXoos

iazy(z—diw) ;

Jod ([Xoo@: o] X oo + [Bos Xoo] @Xoo)

Tag=ce
ng:e

with @ = H; — Hyp. Similarly
Ty=T1q+Tag+ f‘3d7 (3.3)
where

fld = 6ia27(zid;7&)jod ([H07 Xoo]BOXoo + XooBO [H07 Xoo]) ,

Tog = ™27 @O H, 5041 X 00 BoXoos

iy (z—d;—0)

Jod ([XoonBO]Xoo + [BO»XOO]QXOO) .

ng:e
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We see in the course of the proof of Theorem 1.1 in this section that
F_y(NT5 RO +i0; H)TjaF7 (V) : L2(SY) — L2(SY), 1<,k <3,

are all bounded, and hence the relation in Lemma 3.1 makes sense. In fact, each
operator is implicitly shown to have a bounded kernel as an integral operator.

Proof of Lemma 3.1. The dependence on d does not matter throughout the proof.
We use the following simplified notation :

Wi = Wa(Hy, Ho), Vi=Wax(Hy, Hy;Joa), Vi=Wi(Ha, Hy;Joa)

and
Ui(t) = exp(—itHy), U(t) =exp(—itHy).

The proof is based on the same idea as used to derive (2.13) (see [10,15]). We
consider the integral

(Sou, v) = /0 T S MFu, Fw > dA

for u, v € L?, where < , > denotes the L? scalar product in L?(S'). According to
the notation above, we have

(Sou,v) = (V_W_u, V, Wv).

We assume for the moment that v and v take the form
u(@) = fi(r)e™, (@) = fu(r)e™ (3.4)
as in (2.17). Then Lemma 2.4 implies that (z)YWiu € L2, and it follows from

Lemmas 2.5 and 2.6 that ||T;U;(t)Wxul/z2 = O(|t|2) as |t| — oo. These facts
enable us to justify the rather formal computation below.

Since V; = 0 (see Remark 2.1), we can write V_ in the integral form
Vo= / U (—t)T,U () dt
and hence we obtain

(Sou,v) = —i / (T4UL ()W _w, VL UL ()W) dt

by the intertwining property U(t)V, = V,U,(t). If we further make use of the
relation

3

Vi = Joa+i / U(—s)TyU (s) ds,
0



326 H. T. Ito, H. Tamura Ann. Henri Poincaré
then we have
(Sou,v) = —i / (Jey TaUy ()W _u, Uy ()W v) dt
- / /0 S TU ()Tl (W, Us (¢ + )W, 0) dt ds.

We denote by I; the first integral on the right side and by I> the second one. We
calculate I as

L=—i / / < PN Tl (W, oy (N U ()W ov > dAdt
0

=— // < F_y(N)J§gTa (e UL (8)) Wou, F_y (N)Wiv > dAdt
0

€ 0

The formula

lim [ e e Uy (t) dt =i (R(A — i0; Hy) — R(A +i0; Hy)) = 21 Fy1(A\)* Faq (A)

E—>

is well known in the stationary scattering theory. Hence it follows from (3.1) that
I = 2ri /0 T LR OV T V) F(\)u, F()w > dA.
A similar computation gives
I, = 2mi /0 h < F_ i (NT R +140; HY)TyF 1 (A\)*F(Nu, F(\)v > d),

where the resolvent R(A + i0; Hy) comes from the integration in variable s. We
combine the two relations above to obtain that

/ < So(NFNu, Fw > dA =

0

2m'/ < F_1()) (—jngd +TER(A A+ i0; Hd)Td) Fri(\)* F(\)u, F(\)o > dA
0

for u, v as in (3.4). The Fourier expansion and the limit procedure show that
this relation remains true for u, v € L? such that (Fu)(X,0) = g(\)n(d) and
(Fv)(X, 0) = g(N\)i(0), where n, 77 € C*°(S'), and g, § € C§°(0, ) have compact
support away from the origin. This completes the proof. O

We write So(0',0;\) for the kernel of fiber Sp(\). As is easily seen,

S’(Jz,w; E,Hd, HO) = So((:},w; E)
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and hence it follows from Lemma 3.1 that

falw =& B) = —(ic(B)/47)(Taps1(w, E), Joap-1(@, E))
© (o) Am)(R(E + i0: Hy) a1 (w, ), Tapr (&, E)).
where ¢11(w, E) = ¢41(z;w, E). By Proposition 2.1, ¢4i(z;w, E) is bounded
uniformly in = € R?. Roughly speaking, the support of symbols Tj(z,€) and

Joa(x, &) does not intersect with each other, provided that w # @. A simple calculus
of pseudo-differential operators yields that

(Tap+1(w, B), Joap—1(@, E)) = O(jd| ™)

and hence we have

falw — &; E) = (ic(E) /A7) (R(E + i0; Ha) Tap+1(w, E), Tap—1(

&
5
+
)
=

3.2.  The second step is to study the behavior as |d| — oo of the term on the right
side of (3.5) by making use of estimates on resolvent R(E + i0; H;). We introduce
the new notation to formulate the resolvent estimates. Let 0 < o < 1 be still fixed
small enough and write Z for direction x/|z|. We set

Bia={z:|z| <Cld°),  Bsa={z:|x—d < Cld°)}
and
Aa={z:|z|>68ld°, |2—d <6 |z—d >6d°, |(z—d)+d <6}

for some C > 1, and we denote by b14, bog and Ay the characteristic function
of B14, Bag and Ay respectively. We further denote by || || the norm of bounded
operators acting on L?, and we use the notation ||Qq|| ~ O(|d|") when Qg : L? —
L? obeys the bound ||Qq|| < cc|d|"™¢, |d| > 1, for any ¢ > 0. The proof of the
main theorem is based on the following three lemmas.

Lemma 3.2 Let vy, be the pseudo-differential operator defined by
r = ri(e, Dy) = (lz* + [d|*)~"/*(D,) 7" (3.6)
for L > 1. Then one has :
(1) |lrL R(E 4 0; Hy)bia|| = O(|d|~%/2) ; similarly for bag and \g.
(2) lrL R(E +i0; Hy)rp|| = O(|d|~%).
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The estimates in the lemma are very rough. This lemma is used to control
error terms which arise in constructing outgoing and incoming approximations
to the resolvent R(E + i0; Hy). According to the principle of limiting absorption
(Proposition 7.3), we know that R(E+i0; Hy) is bounded from L?(R?) to L? ,(R?)
for s > 1/2, but we do not here intend to pursue how sharp the resolvent estimate
can be made. The proof of the theorem does not require such a sharp estimate.

Lemma 3.3 One has
b1 R(E + i0; Hy)bag| ~ O(|d|~1/?+47)

and
|14 (R(E +140; Hy) — R(E + iU;H1)>b1d|| ~ O(|d|~1+7),

boa (R(E +i0; Hy) — R(E + i0; HM))deII ~ O(|d| 7).

Lemma 3.4 Write vq4(x) for v(x — d; CZ) Then one has
[b2g R(E + i0; Hy) g ()~ 1| = O(|d|~1/>+37)
and
Ibra (R(E +i0; Hy) — €92 R(E + i0; Hy)e™*20) Agla) ™" || = O(|d]~1+97),

() "' Ag (R(E +i0; Hy) — e'** " R(E + i0; Hy)e ">74) Ag(z) ™| = O(|d|~"+%7).

Remark 3.1 All the lemmas remain true for R(E — i0; Hy). Thus Lemma 3.2
shows
1b1aR(E +0; Ha)rr|| = O(|d|~"/?)

by adjoint. In the argument below, we use such an immediate consequence without
further references.

We shall complete the proof of Theorem 1.1, accepting these lemmas as
proved. To fix the idea, we prove the theorem for fq(d — —d; E) only. If w =
—d, we represent fd(fdA — @; E) in terms of the eigenfunction ¢p-o(z;6,\) of
Hy = H(A,,) and the other cases are more easier to deal with. If, in fact, w # +d
and @ # :I:cf, then the situation becomes much simpler and the proof does not
require Lemma 3.4.

Let T'jq and Tj4 be as in (3.2) and (3.3) respectively. We set

Vi = (ic(E)/Am)(R(E + i0; Hg)T jap11, Thap—1)
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for 1 < j, k < 3, where p11 = <p+1(z;ci, E) and p_1 = p_1(x; —d, E). To prove
the theorem, we have only to show that :

ik =0(1), J#k, (3.7)
Y33 = o(1) (3.8)
and
Y11 = fi(d — —d; E) + o(1) (3.9)
Yoo = (cos ay )2 fa.q(d — —d; E) 4 o(1). (3.10)
When w = d and & = —d, we may take the two functions jo and jo in such a way

that these functions coincide with each other. Thus we assume that jo = jo. The
three lemmas above can be seen to remain true for the smooth functions

bia(z) = x(|z|/C|d|7),  baa(x) = x(|lz —d|/C|d|")

and
Nalw) = (1= x(lal/ld17)) x(& — dI/6) (1 = x(2le — dI/8la1") ) x(I(z — d) + dI/6)

associated with the three sets B1g, Bag and Ay respectively. We use the notation
bid, bag and Ay with the meaning ascribed above throughout the proof of (3.7) ~
(3.10). We begin by (3.8). The proof is based on the following lemma.

Lemma 3.5 Let v, = rr(x, Dy), L > 1, be defined by (3.6) and let \g(x) be as
above. Then I'sqp11 and T'sqp_1 take the form

30041 = Aal'zap11 + 7164, Taap_1 = Mal'sap_1 + 71,4,

where the L? norm of remainder terms eq and é4 is bounded uniformly in d.

Proof. The proof uses Proposition 2.1. Roughly speaking, the symbol I'sy(x, §)
has support on supp joq in variables  and on supp V3, in variables £. By (2.6),
joa(z) = jo(x —d) has support in {z : z—d € $(|d|°, —d, 6)}, and V3, has support
in {€:6%/2 < |¢ —VEd| < 62} for the incident direction d. If 5(¢) vanishes around
¢ = VEd, then B(D,) exp(i\/Ech) =0, and if z € supp joaNAG and & € supp Vo,

then
‘V(\/E|x|—§-x)‘:‘\/ﬁfc—f‘ >c>0.

Thus the first relation follows from Proposition 2.1 (1) and (4). A similar argument
applies to the second one and the proof is complete. O

Lemma 3.5 implies (3.8). The symbols T'sq(z, &) and Tsg(z,£) fall off with
order O(|z|=2) at infinity uniformly in d. By Proposition 2.1 (4), (2)Aal3a%+1
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and (z)AgT3qp_1 are of order O(log|d|) in the L? norm, and by the principle of
limiting absorption,

() PR(E + i0; Hy){x)™" : L> — L?

is bounded for any p > 1/2. Hence (3.8) follows from Lemmas 3.2 and 3.4.

To prove (3.7), we further prove one lemma. We write (o, Bo, (1 and Bl for
the pseudo-differential operators with symbols

Bo(€) = x (216 = VEd|/8?),  Bo(€) = x(2I¢ + VEd|/8%),
Bi(€) = x(|€ = VEd|/8?),  Bi(€) = x(|€ + VEd|/6?),

respectively. By definition, 18, = B and 5150 = (o. Let A(z) be a smooth
function such that 92\ = O(|z|~!%!) and

supp A C {z : |z —d| > C|d|°, |(z — d) +d| > 6}
for C'>> 1. We construct an outgoing approximation for R(E +40; Hg)\3p and an
incoming one for R(E — i0; Hg)A\fo. To do this, we take a function j € C*(R?)
such that 92§ = O(|z|~1°l) and

suppj C {x : |z —d| > |d|°, |(x —d)+d| > 6/4}

and j(z) = 1on {z : |z —d| > 2|d|°, \(ac/—\d) +d| > §/2}. Hence j = 1 on the
support of A.

Lemma 3.6 Let the notation be as above and let 04(x) be defined by
Oa(x) = ary(w; —d) + axy(x — d; —d).
Then one has

R(E +10; Hy)\By = jexp(ifq) R(E + i0; Ho)B1 exp(—ifq)A\Bo + R(E + i0; Hy)Tr,
R(E —i0; Hg)\Bo = j exp(ifa) R(E — i0; Ho) By exp(—ifa) Ao + R(E — i0; Hy)iL

for L > 1, where 7, denotes an operator such that
L (D) (2 + [d*)"2, (Do) (jaf* + |d*) %7y L2 — L2 (3.11)

are bounded uniformly in d.

Proof. We prove only the first relation. We calculate

(Hq — E)jexp(ifq) = exp(ifq)(Hy — E)j
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by use of a relation similar to (2.7). Hence

(Hd — E)] exp(i@d)R(E + iO; Ho)ﬁl exp(—i&d))\ﬁo
= ABo + 71 + exp(i0q)[Ho, | R(E +i0; Ho) 81 exp(—ifa)ABo-

The resolvent R(E + i0; Hy) is represented in the integral form
R(E +i0; Hy) =i / e exp(—itHp) dt.
0

If we choose § small enough, then the free particle with initial state (x,&) €
supp A X supp 1 does not pass over supp Vj for £ > 0, so that we can put

71, = exp(i6q)[Ho, j]R(E + i0; Hy) 31 exp(—i0q)\Go

for the remainder term on the right side of the above relation. In fact, this can
be shown in the standard way using partial integral repeatedly. Thus the proof is
complete. O

We proceed to the proof of (3.7). We first consider the term v13. Recall that
Xoo = 1 — x(2]z]/]d|?), so that Vixe has support on {z : |d|?/2 < |z| < |d|} C
Big. Since I'igp1 is uniformly bounded in L?, we have

y13 = (ic(E)/Am) (€2 R(E 4 i0; Hy)e 2V 3, 1, Aal'sap—1) + 0(1)

by Lemmas 3.2, 3.4 and 3.5, where v4(z) = (2 — d; d). We construct approxima-
tions for resolvent R(E =+ i0; Hy). Let

Ma(@) = (1= x(@lal 1d17) ) x(ll/1dI )1 + I /6)
be the smooth function associated with the set
Mg ={z:|d°/2 < |z| < |d|°, |&+d| <6}

Assume that x € supp Vo satisfies | + (f| > 6 and £ € supp fy. Then it follows
that |z + t&] > ¢ (t + |z|), ¢ > 0, for ¢t > 0. Hence the particle starting from initial
state (z,£) at t = 0 moves like the free particle and it does not take momentum
around —VEd € supp Bo. This enables us to construct an outgoing approximation
in the form

L5 Aae 2V R(E +1i0; Hy)e ™"V (1 — A\1g)T1g = 7, + Di g€’V R(E + 40; Hy )7,

for any L > 1. The construction is based on the same idea as in the proof of
Lemma 3.6. Thus we obtain

13 = (ic(E)/4m)(Aal1a9 11, €2 R(E — i0; H1>€_ia27d)\df‘3d9071) + o(1).
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We further construct an incoming approximation for R(E —10; Hy). If x € A4 and
& € supp fy, then the particle with initial state (x,£) does not pass over Ajq for
t < 0. Hence we get 713 = o(1) by constructing an approximation

A1g€' 2V R(E — i0; Hy)e 2V \;T'gq = 7, + A\ge' 2V R(E — i0; Hy )7y,
Similarly we can show 31 = o(1).

Next we consider the term ~s3. Recall that Vjoq, joa = jo(z —d), has support
on
(oo —des(dr,—d,6)\ SCld, ~d,5/2)}.

We construct an outgoing approximation for R(E+i0; Hy)(1—b2q)'24. By Lemma
3.6, the approximation takes the form

D% R(E +i0; Hy)(1 — byg)Tag = 7, + Th,R(E + i0; Hy)7r,
and hence we have
Yoz = (ic(E) /An)(R(E + i0; Hg)boaT'2qp 11, Aal'sap—1) + o(1)

by Lemmas 3.2 and 3.5. Since bagI'24041 is uniformly bounded in L2, the desired
bound 723 = o(1) follows from Lemma 3.4. A similar argument applies to the other
terms Y21, Y12 and s2. Thus (3.7) is verified.

We prove (3.9). We first apply Lemma 3.3 to obtain
1 = (ie(E) /4m)(R(E + i0; H1)T1a¢ 41, Tra—1) + o(1).

Next we construct an outgoing approximation for R(E + 10; H1)(1 — A1g)I'14 and
an incoming one for R(E — i0; H1)(1 — A\14)'14 as in Lemma 3.6. Then we get

y11 = (ic(E) /An)(R(E + i0; H)MaT14941, Mal1ap—1) + o(1). (3.12)

The set A14 does not contain a conical neighborhood of direction d. Hence it follows
from Proposition 2.1 (1) that

o1 = pai(wd, B) = e 0@D=M 5 (J B) 4 VEO(|2|71/2)
on A4, where wg(ci, E) = exp(ivVEx - CZ) If £ € supp By, then
‘v(ﬁ\ng.z)] - ‘\/Ei’—gl S>>0
for x € A14. This implies that the remainder term is negligible. We note that

joa = 1 and
eiagfy(a:—d;ci) — eiOéQT( + O(|d|—1+0)
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on Ayg. Since Bo(Dy)po = o for po = po(d, E), we have
Malaps1 = Mg (403770 D iy io(d, )+ O(a4)).
Similarly
Aal'1a¢-1 = A (ei(aro‘l)“em”(m?d) [Ho, X2 )0 (—d, E) + O(|d|*1+")) .
Hence we have
1 = (ic(E) /A7) (R(E + i0; H1)A1a®14(d, E), A1a®14(—d, E)) + o(1),

where ) .
D1g(w, E) = Pry(z;w, E) = 7D [Hy, 2 Jpo(w, E).

We further obtain
11 = (ic(B)/4m) (R(E +i0; H1)®14(d, E), ®14(~d, E)) + o(1)
by repeating the same argument as used to derive (3.12). We split [Ho, x2,] into
[Ho, X2 = x(Jal/21d17) ([Ho, jux] + [Ho, (1= jx2]),
where j; € C™°(R?) is a real function such that 8%j; = O(|z|~1?!) and
suppji C £(|d|7/4,~d,6), j1=1 on S(|d|"/2,~d,§/2).

We see that only the first commutator makes a contribution. This can be shown by
constructing outgoing and incoming approximations for the second commutator.
Thus (3.9) is obtained by Lemma 2.3 with jo = jo = j1x%-

The proof of (3.10) is similar but is slightly different. By Lemma 3.6, we
construct an outgoing approximation

T3 R(E 4 i0; Hy) (1 — bog)Taq = 7r, + T3, R(E +140; Hy)Fr,
and an incoming approximation
R(E—i0; Hy)(1=baq)Taq = je'* R(E—i0; Hy)Bre "% (1~boa)T'ag+R(E—i0; Hy)Fp,.
We know by the resolvent estimate of [9] that
(x)*"TR(E —i0; Ho) 1 (1 — bag) (x)* : L* = L?, s >0,
is bounded for 7 > 1. Hence we have

Yoz = (ic(E) /4m)(R(E + i0; Hg)baal2q041, bzdf‘gdgﬁfl) +0(1)
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by Lemma 3.2, and it follows from Lemma 3.3 that
Yoo = (’LC(E)/47T) (R(E + 10; H27d)b2drgd(p+1, bgdf‘gd@_l) + 0(1)

Let Agg = {z : |d|? < |z —d| < C|d|?, |((E/—\d) +d| < 68} for C > 1, and denote
by

Naalw) = (1= x(2l = dl/|dI") ) x(|a — d|/Cld|")x(|(@ — d) + dl/6)
the smooth function associated with Asy. Then we obtain
Yoo = (ic(E)/4m)(R(E + 10; Ha,q)A2al'2a+1, Aaal2ap—1) + o(1)
in the same way as (3.12). By the principle of limiting absorption,
(x —d)"PR(E +i0; Hy 4){x —d) ™" : [* — L?

is bounded uniformly in d for any p > 1/2, and by Proposition 2.1 (3) with
q = 1 — o, the eigenfunction ¢4, behaves like

Yy1 = <p+1(x;ci, E) = cosaym X @O(x;cf, E)+0(d™),
1 = @ 1(z; —ci, E) =cosaym x po(x; f(z, E)+0(d|™)

on Agg, where v = 2(1/2 — 0)/3. Since (x — d)? < c|d|?? on Ay and 2po < v for
o small enough, we have

Yo = (cos oy )2 (ic(E) /4m)(R(E + i0; Ha 4)

Xaal2a00(d, E), Aal2apo(—d, E)) + o(1).

The commutator [Hy, joq] is calculated as

[H(Aq, ) Joa] = gio(@i=d) [Hoyjod]e*iawu%*i)
<6ia1ﬂ' + O(|d|*1+0)> [HO’de] (efiaur + O(|d|71+0))

[H1, jod)

on Ayy. We have assumed that jo(xz — d) = jo(ﬂc — d). Note that yoo = 1 on
supp Vjoq. Hence we have

Yoo = (cos ay )2 (ic(E) /4m)(R(E + i0; Hz,9)A2a®24(d, E), Aoa®2a(—d, E)) + o(1),

where
Dog(w, E) = Oog(r;w, B) = 274D 1 joglpo(w, E).

Thus (3.10) is obtained from Lemma 2.3 after the change of variables © — d — x.
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4 Completion : proof of Lemmas 3.2, 3.3 and 3.4

In this section we prove the three lemmas and complete the proof of Theorem 1.1.

4.1. The proof of the lemmas requires several auxiliary operators. We first define
these operators. We fix 0 < 01, 02 < 1 small enough, and we define the following
two sets

My = {z:|z] <Cld YU {z: |z| > C|d|°r, |&+d| <|d~/?}, (4.1)

Moy ={z: |z —d| < C|ld|”?}U{x: |z —d| > C|d|°?, |(9:/—\d) —d| < |d|=72/%}
for C'>> 1. These two sets are disjoint with each other for |d| > 1.

Let (jq € C*(R), 1 < j < 2, be a real periodic function with period 2w
such that (ja(s) = ays for s € (|d|=9/2,2n — |d|=73/2) and |(d/ds)™;a(s)| <
Cm|d|m”-7'/ 2 for C,, > 0 independent of d. We define a smooth real function 1,4 by
ma(z) =0 for |z| < |d|*/2 and by

ma(z) = CGa(y(z; —Ci))
for |z| > |d|7*. We may assume that 714 satisfies
|02 ma(@)| < Cpld|/?171/2|z| =) < Cg(ar) =117 (4.2)
uniformly in d. By definition, we have
Vina(x) = (a(v(@; =d)Vy(z; —d) = (a(v(@; =) (~az/ |2, 21 /|2?) - (4.3)
and hence
Via(z) = a1 (=z2/|z]*, 21/|2]?) (4.4)
for x € II{,;, where II; is the complement of II;4. Similarly we define 724 by
n2d(z) = Caa(y(z — d; CZ))

for |z — d| > |d|?? and by na4(z) = 0 for |z — d| < |d|?2/2. We set piqa(x) =
exp(iniq(x)) and grqa(x) = 1/p1a(z). By (4.2), we have

100 pra(e)| + 108 qua()| < Cilr) 1412 (45)
uniformly in d. If x € II{ ;, then
pra(x) = exp(icry(z; —d)),  qra(z) = exp(—iony(z; —d)).
Similarly we define pag(x) = exp(inzq(x)) and goq(x) = 1/p2q(x). Then

102 p2a(z)| + 102 gaa(z)| < Cala — d) 191/



336 H. T. Ito, H. Tamura Ann. Henri Poincaré

and
pad(x) = exp(icey(z — d;d)), qoa(x) = exp(—iaey(x — d;d))
for z € II,.

We now introduce the following three operators

Kig = peaHi9ea = p2aH(Aa,)2a = H(Aa, + V12q),
Kag = praHzaqia = praH(Aay,d)q1a = H(V1a + Aay.d)
and Kog = pgHoqqa = H(Vmia + Vieq) as basic auxiliary operators, where pgy =

praped and ¢4 = qraqeq- The operator Kog has the domain D(Ky,) = H2(R2),
HS(RQ) being the Sobolev space of order s, while K14 and K34 have the domain

D(Kiy) = {u€l?:KyqueclL? ‘l}mo lu(z)| < oo},
D(Kag) = {u€L?: Koque L? ‘ 11;1‘0 O|u(m)| < oo}
r—da|—

We consider the difference W14 = K14 — Koq. By (44), Ao, = Vg on II;, and
hence W14 = 0 there. Similarly we have

Hy— Koqg=H(An, + Ay d) —Koqg=0
on II§,. Since Aq, 4(z) = Aa, (z — d) = Vna(x — d) on 114, we also have
Hy — Koqg = K14 — Koa = Wha

on Il 4. A similar argument applies to Wyy = Koy — Kpq. Thus we can obtain the
following relations

Hg = Kiq+ Wagq, Hi = Kog + Wig. (4.6)

The difference Wjq4 is a differential operator of first order. For example, W4 takes
the form
Wig = 2i61d(a'3) -V + 60,1(.7;) (4.7)

and the coefficients have support in II;4; and singularity at « = 0 only. By (4.2)
and (4.3), e1q4 and egq satisfy

e1a(@) = (a1 = CLa(r (w5 —d)) ) Vy = O(dI™/*)Vy (4.8)

with v = v(z; —d) and
eoa(w) = O(|d|™ ||~ (4.9)

for |z| > |d|°*, and by (4.5), we have

|0F eoa(@)| + 107 era(x)| < Cplz) =112 (4.10)
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for |z| > 1 uniformly in d. The coefficients of Ws4 have similar properties. They
have support in Iy and singularity at * = d only.

The domain of K14 or K4 is different from that of K4, and the ordinary
resolvent identity is not expected to hold for (K4, Koq). However we can derive
the following relation

¢jR(E + 10; Kjd) = R(E +10; K()d)’(/Jj — R(E + 10; KOd)Ude(E + 10; Kjd) (4.11)

for 7 = 1,2, where ¥; and 15 are smooth bounded functions vanishing around
x = 0 and x = d respectively, and

Uja = —[Kja, ;] + Wja;. (4.12)
We often use the relation with
Yi(z) = 1—x(|=|/6ld|7"),  tha(x) =1 —x(|lz —d|/6]d|"?) (4.13)

in later application. We shall show (4.11) in a rather formal way. We write the
solution u to equation (Koq — E)u =11 f as

u=11R(E +1i0; K1q4)f +v.
Since Koq = K14 — W14, the remainder v obeys
(Koa — E)v = (—[Ki4,¥1] + Wiap1) R(E + i0; K14) f.
This yields the desired relation. Similarly we can show that
R(E +1i0; Hy)s = Y2 R(E +i0; K14) — R(E +i0; Hg)Vaa R(E +i0; K1a), (4.14)
R(E +1i0; Hy)y1 = 1 R(E +i0; Kaq) — R(E +140; Hg)VigR(E + i0; Kaq), (4.15)

where
Vog = [K1d,¥2] + Wagtha,  Via = [Kaq, 1] + Wiathr. (4.16)

If ¢; is taken as in (4.13), then Vj4 has properties similar to W;q. The only dif-
ference is that the coefficients of Vj4 are all smooth and bounded uniformly in d.
The operator Ujq defined by (4.12) has also similar properties.

The argument below requires the Green kernel G4(z,y; E) of R(E +1i0; Koq).
The resolvent R(E + i0; Hy) has the kernel

Go(z,y : E) = (i/4)H" (VE |z — y)),

where H, él) (z) is the Hankel function of first kind and order zero. As is well known,
Hél)(z) behaves like

H$V(2) = 2/m)? exp(i(z — w/4))2"2 (1 + O(J2| ™))
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at infinity. Hence G4(x,y; E) behaves like
Ga = co(E)pa(x) exp(iVElx — yl)le =y qaly) (1 + O(lx —y|71))  (4.17)
as |z —y| — oo, where co(E) = (1/87)'/2 exp(im/4)E~1/*.

4.2. Let 0, 0 < 0 < 1, be fixed small enough as in Lemmas 3.2, 3.3 and 3.4.
Throughout the argument in this subsection, K14, Koq and Ky are defined with
01 = 09 = 0. We prove several lemmas on the resolvent estimates for these oper-
ators before going into the proof of the three lemmas. The functions b4, bog and
Mg again denote the characteristic functions of sets B1g4, Bag and Ay respectively.

Lemma 4.1
b2a R(E + i0; Koq)bial| = O(|d|~1/?F27),

|b2g R(E + 40; Kod))\d<x>—1“ ~ O(|d|—1/2+a).

Proof. To prove the first bound, we evaluate the Hilbert—Schmidt norm of the
operator. Since the kernel G4(z,y; E) of R(E + i0; Koq) obeys (4.17), this bound
follows at once. To prove the second bound, we decompose A4 into the sum

Nale) = Maf) (x((e — dI/81d]) + (1~ x(lz — d|/6ld])) = poa(z) + prale).
By the principle of limiting absorption, we have
(x —d)"PR(E +1i0; Koq)(x —d)~" : L* — L*

is bounded for any p > 1/2. Since |z| > ¢|d| on the support of ua4 for some ¢ > 0,
we can choose p so close to 1/2 that

[baaR(E +0; Koa)puza(w) ™| = O(ld|~+7+77) = O(|d|~1/3+7/2),
On the other hand, we obtain
lboa R(E + i0; Kog)pralz) || ~ O('d‘—1/2+a)

by evaluating the Hilbert—Schmidt norm. This yields the desired bound. a

Lemma 4.2 Let
Via = [Kaa, 1] + Wiar,  ti(x) =1 — x(|z[/6]d|7),
be defined by (4.16) with o1 = 0. Take p > 1/2 close enough to 1/2. Then
I{z)?ViaR(E +i0; Koa)re|| = O(|d|~*/2),

where 1, is the pseudo-differential operator defined by (3.6).
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Proof. The proof is based on the fact that the free Hamiltonian Hy and 9/00
commute each other. By definition, we have R(E + i0; Koq) = paR(E + i0; Ho)qq,
where pg = p1apaq and g4 = 1/pg. By (4.7), (4.8) and (4.9), V34 takes the form

Vig = O(|d|”/*)Vy -V + O(ld|”)|e| 72, 7 = y(2;—d),
in {z : |z| > |d|?}. The differential operator V-~ - V can be written as
VvV = |x\-2(—x231 + xlag) = |2|"20/00
and p, satisfies the estimate

Vpa = 1d|7/2(O(2| ™) + O(le — d ™).

If we take account of these facts, the lemma is easily verified. O

We work in the phase space Ri X Rg. We introduce a smooth nonnegative
partition of unity over Rg. The partition {4, B} is normalized by

B (§) + B-(8) + B(§) =1 (4.18)
and has the following properties : supp 8o C {£: [£]? < E/2 or |¢|> > 2E} and
supp By C {£: B/3 <|¢§]* <3E, £ d>—1/4}
supp f_ C {€: E/3 < |€| < 3B, £-d < 1/4}.

The proof of the two lemmas below is based on the micro-local estimates for the
resolvent of auxiliary operators. We make repeated use of a similar idea in the
future discussion.

Lemma 4.3

b2 R(E + i0; K14)bia|| =~ O(|d|71/?+3),
b1 R(E + i0; K24)ba4l| O(|d|~/2+37)

12

and
”deR(E + ZO, Kld)Ad<z>71H ~ O(|d|*1/2+20')'

Proof. We prove the first bound only. The second and third bounds are obtained
in a similar way. Let 1 be as in Lemma 4.2. We use (4.11) for the function ;.
Since ¥1baq = bag, we have

boaR(E 4i0; K14)big = b2aR(E + i0; Koq)p1b14
— deR(E + 10; Kod)UldR(E =+ 10; Kld)b1d~



340 H. T. Ito, H. Tamura Ann. Henri Poincaré

By Lemma 4.1, the first operator on the right side obeys the bound O(|d|~/2+27).
To evaluate the second operator, we decompose Ui 4 into the sum of four operators

Ura = 914U1d + Uso(w, Da) + U (2, Da) + U— (2, Da), (4.19)
where g1q4(x) = x(|z|/M|d|?) for M > 1, and

U:t(vafL’) = (1 - g%d)Uldﬁﬂ:(Dm), Uoo(vax) = (1 - g%d)UldﬁOO(DI)'

We have
[b2g R(E + i0; Koq)g1al| = O(|d|~/2+29)

in the same way as in the proof of Lemma 4.1. By the principle of limiting absorp-
tion,

() PR(E +i0; K14){z) ™" : L* — L*

is bounded for any p > 1/2. Since the coefficients of U14 vanish around = = 0 and
are bounded uniformly in d, we have

llgraUraR(E + i0; K1q)b1a|| ~ O(|d|”)
by elliptic estimate. Thus
D24 R(E + i0; Koq)g?qU1aR(E + i0; K14)bya|| =~ O(|d|~1/2+37),

We now assume that « € II;4 and || > M|d|?, where I1;4 is defined by (4.1) with
o1 = 0. Then the symbol of Koq — E takes the form |(|?> — E approximately. If
& € supp B, then it has a bounded inverse. Since I1;4 and Bsy do not intersect
with each other, we have by the standard calculus of pseudo-differential operators
that

baaR(E +1i0; Koq)Uso = Fn + bogR(E + i0; Koa)Tn

for any N > 1, where 7 again denotes a bounded operator having the property
(3.11). Hence

624 R(E + i0; Kog)Uso R(E +i0; K14)b14|| = O(|d|™™).

We still assume that € ;4 and |z| > M|d|?. If £ € suppf_, then the free
particle with initial state (z,£) at t = 0 never passes over By, for ¢ > 0. Hence we
have

[b2a R(E + i0; Koa)U- R(E +i0; K1a)bial| = O(1d| =)

by use of the micro-local estimate on the resolvent R(E +i0; Koq). If, on the other
hand, ¢ € supp B+, then we can take M > 1 so large that the incoming particle
with state (z,£) at t = 0 never passes over By for ¢ < 0. This enables us to
construct an incoming approximation for

*

UL R(E +i0; K1q)bra = (bldR(E - z'o;Kld)Uj;) .
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We use an argument similar to that in the proof of Lemma 3.6. Then the approx-
imation is constructed in the form

UtR(E +i0; K19)b1g = v + FNR(E +10; K14)b14
and hence we get
|24 R(E + i0; Koq)Uy R(E 4 i0; K19)bia| = O(|d|~N).

Thus the desired bound is obtained. O

Lemma 4.4 Let p > 1/2 and V14 be as in Lemma 4.2. Then

[(z)PVigR(E + i0; Kag)rp || = O(|d|~ /).

Proof. We use (4.11) with ¢ =1 — x(|z — d|/6|d|?). Since V1412 = V14, we have

(x>pV1dR(E + 10; KQd)TL = <l‘>pV1dR(E + 10; KOd)’(/JQTL
<1‘>pV1dR(E + 20; K()d)UQdR(E + 10; Kgd)’rL.

By Lemma 4.2, the first operator obeys O(|d|~%/?). We decompose Usg into the
sum of three operators

Uzg = Usaqg (ﬂoo(Dz) + B4 (D) + B- (Dx))

The coefficients of Usq have support in {z : | —d| > 6|d|?}. If we repeat the same
argument as in the proof of Lemma 4.3, then we obtain

[(x)?VigR(E + i0; Koq)UsqBes R(E + i0; Kog)rr|| = O(|d| 1),
[{z)PVigR(E + i0; Koq)Uza B+ R(E + i0; Koq)rr|| = O(|d| 1)

by Lemma 4.2. We know by the micro-local resolvent estimate ([9, Theorem 1])
that

(x — d)*UsgB_(Dy)R(E +i0; Kog)(x —d)™*"7 : L* = L?, s>0,
is bounded for 7 > 1. Hence this, together with Lemma 4.2, yields
() ViaR(E + i0; Koq)Uzaf- R(E + i0; Kog)r || = O(|d|~%/?).

Thus the proof is complete. ]

The following two propositions play a basic role in proving the three lemmas.
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Proposition 4.1 Define II14 and Ilyg with 01 = 02 = o and denote by m;q(x),
j =1,2, the characteristic function of Il;q. Let p > 1/2. Then one has :

(1) lrLR(E + i0; Hy)ma{x)~P|| = O(|d|—L/2)'
() IrLR(E +i0; Hamaa{w — d)=0l| = O(1d|~"/?).

Proposition 4.2
124 R(E +0; Hg)bral| = O(|d]*7).

4.3. We proceed to proving the three lemmas in question, accepting the two
propositions above as proved. The proof of the propositions is done in section 5.
Throughout the proof of the lemmas, 1, (x) and s (x) are defined by (4.13) with
01— 09 = O.

Proof of Lemma 3.2.  First it is clear from Proposition 4.1 that v, R(E+10; Hg)b;
obeys the desired bound. We consider the operator @ = rp R(E + i0; Hg)rr,. We
decompose @ into the sum

Q=71 R(E +i0; Hy)rrp +rpR(E +10; Hg)(1 — ¥1)rp = Q1 + Q2.

The function 1 — 91 (z) = x(|x|/6|d|?) has support around x = 0, and it satisfies
Waa(1 — 1) = 0. We use (4.15) for @1 and (4.14) for Q2. Then

Q1 = 1L R(E 41i0; Kog)ry — rp R(E +i0; Hg)VigR(E +i0; Kaq)rr,
QQ = TL(]. — wl)R(E + 20; Kld)rL — ’I"LR(E + 10; Hd)%dR(E + 10; Kld)rLa

where Vag = —[K14,11]. We decompose Vi4 into Vig = (m14(x) ") ((x)?V14), and
we use Lemma 4.4 and Proposition 4.1. Then we obtain [|Q1]| = O(|d|~%). Since
the coefficients of Vag have support around z = 0, we have also [|Qz| = O(|d|~F)
by Proposition 4.1 again. Thus

|rR(E +i0; Hy)rp|| = O(|d|~ %) (4.20)

and (2) is proved. Next we consider the operator R = r R(E + i0; Hy)Aq. By
(4.14), R is represented as

R = TL'poR(E + 10; Kld))\d — T‘LR<E + 10; Hd>‘/2dR(E + 10; Kld))\d.

The first operator is easy to evaluate. This obeys the bound O(|d|~*/2). To evaluate
the second operator, we decompose Va4 into the sum of four operators

Vag :ggd‘/Qd‘FVoo(anx) +V+(x7Dx)+V—(x7Dx)7 (421)
where goq(x) = x(|Jz — d|/M|d|?) for M > 1, and

Vi(z,Dy) = (1 — g2))V2aB+(Ds),  Veo(w, Da) = (1 — g34)Vaafoo(Dy).
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According to the decomposition above, we set

Ry = 7LR(E +i0; Hy)gs,VaaR(E +i0; K1) \a,
R, = T‘LR(E + 10; Hd)VOOR(E + 10; Kld))\d;
Ry = TLR(E+i0;Hd)ViR(E+iO;K1d))\d.

Since gog = O(|d|){z) ™1, it follows that ||gaq R(E + i0; K14)\a|| = O(|d|") for some
v > 0, and hence ||Ro|| = O(|d|~%/?) by Proposition 4.1. We use the micro-local
analysis for the operators R, and R.. A simple calculus of pseudo-differential
operators yields

Voo R(E +i0; K19)\g = *n + N R(E +i0; K14) A\g.

Hence it follows from (4.20) that |Ruo|| = O(|d|~F). Assume that z € Iloq and
|z| > M|d|?. If £ € supp B, then we can take M > 1 so large that the incoming
free particle with state (z,£) at t = 0 does not pass over A4 for ¢ < 0. Hence we
can construct an incoming approximation

V_R(E + 10; Kld)/\d =7y + ’I:NR(E + 10; Kld)/\d-

If we again use (4.20), then we get ||R_| = O(|d|~%). To deal with R, we con-
struct an outgoing approximation in the form

R(E 4 1i0; Hy)Vy = jexp(ifq) R(E +i0; Hy) B+ exp(—ifq)Vy + R(E +i0; Hy)T'n

by an argument similar to that in the proof of Lemma 3.6, where 3, € C§° (Rg)

satisfies 3,8, = B4, and j(x) and 64(x) are used with the meaning ascribed in
Lemma 3.6. The first operator obeys

7L R(E + 0; Ho) A4 exp(—ifa) Vi || = O(|d|~*/?)

by the micro-local resolvent estimate ([9, Theorem 1]), and the remainder opera-
tor is evaluated as O(]d|~%) by (4.20). Hence we have ||Ry| = O(|d|~*/?). This
completes the proof. ]

For later reference, we here note that the proof of Lemma 3.2 does not use
Proposition 4.2. Hence we can use Lemma 3.2 to prove Proposition 4.2.

Proof of Lemma 3.3. By (4.14) and (4.15), we have the following three relations :

deR(E + 10; Hd)bld = bgﬂ/)gR(E + 40; Kld)bld
— bagR(E + i0; Hg)Vog R(E + i0; K14)b14,

bia (R(E +1i0; Ha) — R(E +i0; K1a)) b14
= —bldR(E + 10; Hd)VQdR(E + 20; Kld)b1d7
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bad (R(E +i0; Hy) — R(E + 10; K2q)) b2a
= —bpaR(E +i0; Hy)ViaR(E + i0; Koa)boa.
We decompose Vg as in (4.19) with gi14 = x(|z|/M]d|?) and Vaq as in (4.21) with
924 = X(|z — d|/M|d|?), and we construct outgoing and incoming approximations.

The construction is based on the same idea as in the proof of Lemma 3.6. For
example, the approximation for byyR(F + i0; Hg)V, is constructed in the form

deR(E + 10; Hd)V+ =7+ deR(E +1i0; Hy)7p,
and hence it follows from Lemma 3.2 that
1boa R(E +i0; Ha) Vi R(E +i0; K1a)bial| = O(1d] ")

Thus we repeat the same argument as used in the proof of Lemmas 4.3, 4.4 and
3.2 to obtain the following three inequalities :

Hbng(E + 10; Hd)b1d||
< CLld|"YFHo+e (1 + [|bogR(E + i0; Hd)ggd”) +Cpld|7E, (4.22)

Hbld (R(E + 10; Hd) — R(E + 10; K1d)) bld”
< CL|d|7Y2H39%E b1y R(E + i0; Hy)goal + Crld| ™%, (4.23)

||b2d (R(E + 40; Hd) — R(E + 40; Kgd)) b2d||
< Celd| 7V |bga R(E +40; Ha)grall + Crld| ™" (4.24)
for L > 1 and any ¢, 0 < ¢ < 1. By Proposition 4.2, we have
[b2a R(E +i0; Ha)guall + |b1aR(E + i0; Ha)gaall = O(|d]*?).

The desired bound is derived by combining this estimate with the three inequalities
above. In fact, (4.23) and (4.24) imply that

lbjaR(E + 10; Hg)bjql| =~ O(|d|”)
for j = 1,2. We may assume that this is still valid for g;4, so that we have
|b2a R(E + i0; Ha)b1al| = O(|d|~+/2+47)

by (4.22). This is also valid for g14 and gogq. Thus it again follows from (4.23) and
(4.24) that

[bia( R(E +i0; Ha) = R(E +i0; Kja) )bjall ~ O(1d|~+77)
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for j = 1,2. The operator R(E + i0; K14) is represented as
R(E +1i0; K14) = p2a R(E +i0; H1)qoa,  q2a = 1/p2a-
The function pyy behaves like
Ppaalz) = plazy(@—did) _ jioay(—d;d) + O(|d|—1+a) — eloam 4 O(|d|—l+0')
on Big (= supp byg). Similarly goq(z) = e=%2™ + O(|d|~**7). Thus
[b1a(R(E +i0: Ha) = R(E + i0: Hy) ) bual| = O(1d]~+77),

A similar bound is true for byyR(E + i0; Hy)bog, and the proof of the lemma is
complete. O

Proof of Lemma 3.4. The lemma is verified in almost the same way as in the
proof of Lemma 3.3. We give only a sketch for a proof. We keep the same notation
as above. The following three identities are obtained from (4.14) and (4.15) :

bogR(E +i0; Hy)Ag(x) ™! = bogiha R(E +i0; K1g)Ag(z) ™
— b2aR(E +i0; Hg)V2a R(E 4 i0; K14) Aa(z) ",

bia (R(E +i0; Hy) — R(E +i0; K14)) Ag(x) ™
= —b1gR(E 4 i0; Hy)VagR(E + i0; K1) Ag(x) 1,

()N (R(E +i0; Hy) — R(E +1i0; K14)) Ag{z) ™
= —(2) T'\NgR(E +i0; Hy)Vag R(E + i0; K1g)Aa{z) L.
From these relations, we get the following three inequalities :

HdeR(E + 10; Hd)>\d<l'>71”
< Celd|E (14 b2 R(E + i0; Ha)gaall) + Crld|

1b1d (R(E 4 i0; Hg) — R(E + i0; K14)) Aa{z) ||
< CLld|TYAT20HE by g R(E + 90; Hy)goal) + Crld| ™%,

()"t A\g (R(E + i0; Hy) — R(E + i0; K24)) Aa(z) |
< CL|d)TYA20HE (1) TENGR(E 4 i0; Hy)gag| + Cr|d|~E.
It follows from Lemma 3.3 that

b2 R(E + i0; Hy)goal =~ O(|d|7),  ||braR(E + i0; Hg)gaq|| ~ O(|d|~ /1)
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and hence we have
lb2a R(E + i0; Ha)Aa{z) || = O(|d|~1/2+5) (4.25)

and
610 (ROE + 05 Ha) = R(E +i0; K1a) ) Aale) ™| = O(ld)~1+).

If we further make use of (4.25), then we obtain
@)~ Aa (ROE + 05 Ha) = R(E +i0; K10) ) Aale) ™| = O(la)~1+5).

Thus the lemma is proved. ]

5 Resolvent estimates

The present section is devoted to proving Propositions 4.1 and 4.2. Throughout
the section, we fix 01 as 0 < 017 < 1 and take p as

1/2<p<oy/4+1/2. (5.1)
On the other hand, o7 is assumed to satisfy
0<oa<(o1/4—(p—1/2))/3 (5.2)

for p > 1/2 as above. We further use the notation hag(x) to denote the character-
istic function of the set {z : |x — d| < C|d|*} for some C' > 1 large enough and
0 < k < 1 small enough.

5.1. The argument here is based on the following proposition.

Proposition 5.1 Assume that p fulfills (5.1). Define
Wia = 1 Wha, Pi(x) =1 = x(|z|/[d]™).

Then ~
(&) WraR(E + i0; Kog)haall = O(ld|~")

withv =01/4— (p—1/2) — k.

The proof of this proposition heavily depends on the special form of the
differential operator W14. By (4.7), it takes the form Wiy = 2ie14- V + g4, where

e1d(r) = (oq — Cla(v(z; d))) Vy =0(d|”/*)Vy, v = y(z;—d),

and epq(z) = O(|d|")|z| 72 in {x : |z| > |d|"*}.
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Lemma 5.1 Recall that w14 denotes the characteristic function of Il14. Then
|(x)P 2714 R(E + i0; Koq)hagl| = O(|d|~ (7))

withv =1/2— 01 — Kk > 0.
Proof. Let Dy = {(x,y) : x € 14, y € supp hag}. We consider the integral
1= [ [ (02 iGulw,ys ) dy,
D,

where Gq4(z,y; E) is the kernel of R(E + i0; Koq). If (z,y) € D1, then |z —y| >
¢(|z| + |d|) for some ¢ > 0. Hence it follows from (4.17) that I is evaluated as

I = o(dP) /H (2)202) (2] +|d)~" de

O(‘d‘QrL) O(|d|71) / (1+ 7,)2(/3*2)Tdr — O(|d|72(1/27/<)).
0
Thus we have I = O(|d|~2(“1*")) with v in the lemma. This proves the lemma. O

Lemma 5.2 If g is a bounded function with support in {x : x € 14, |z| > |d|7*},
then one has

(@) g (Vo - V) R(E + i0; Koa)haal| = O(|d|~/24)) |y = y(a; —d),
withv=01/4—(p—1/2) — k.

Proof. Let Dy = {(z,y) : © € II14, |z| > |d|?*, y € supp haq}. We calculate
I(z,y) = (V- V) exp(iVE|z - y))
for (x,y) € D2. A direct calculation yields
I(w,y) = iVE|a| o =yl yl (@201 — 2192) exp(iVE|z — y)),

where & = (&1,#,). If (z,y) € Dy, then 2 = —d + O(|d|=°"/2) and § = d +
O(|d|=**%), so that
Zafi — 2192 = O(|d|~7*/?).

Thus we have
I(z,y) = O(ld|'~/*)|a| o — y| !

uniformly in (z,y) € Dy. Hence the integral obeys the bound

I= / / 2P| (2, )Pl — |~ dyda = O(d>~1+2%) / 22072 (j2| + |d])? da
Do

Iha

:O(|d|2—o1+2n) O(|d|—a1/2)/0 7“2p—1(7“ + |d‘)_3 dr = O(‘d|_(01+2”))
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for v as in the lemma. The lemma is obtained from this estimate. O

Proof of Proposition 5.1. 'The proposition follows immediately from the two lem-
mas above. a

Lemma 5.3 Let 1)1 be as in Proposition 5.1. Define Vig and Uyq by (4.16) and
(4.12) respectively. Then

[{2)?ViaR(E +i0; Koa)hoall = O(|d[™"),
()P Ura R(E + 10; Koa)haall o(dI™),

where v =01/4— (p—1/2) — k.

Proof. By definition, W14 = Vig on {x : |z| > 2|d|°*}. The coefficients of Koq
and V4 are smooth and bounded uniformly in d. If we denote by hi4(z) the
characteristic function of the set {x : |z| < 2|d|?*}, then it follows from (4.17) that

[{2)?h1a R(E + i0; Koa)haal = O(|d|™*)
with 4 =1/2 — (p+1)o1 — k > 0, so that
[{x)?h1aVia R(E + i0; Koa)haal| = O(|d|™")
by elliptic estimate. It is obvious that pu > v for o; small enough. Hence the first
bound follows from Proposition 5.1. The second one is verified in exactly the same
way. 0O
Lemma 5.4 One has
[h2a R(E +i0; Kya)ma(z) " || = O(|d|™")
withv=01/4—(p—1/2) — k.
Proof. Let 11 be as in Proposition 5.1. Note that hogtpy = hag. By (4.11), we
have
haa R(E +10; K14)m14(x) " = hoa R(E + i0; Koa)Y1714() "
— hng(E + 10; Kod)UldR(E + 10; K1d)71'1d<33>7p.
It follows from (4.17) that the first operator on the right side obeys
|hea R(E + i0; Koa)mia(z) || = O(|d|~ {7/ (e=1/2)=m),

To evaluate the second operator, we decompose Uiy into Uy = Upg(z)?{x)~".
Since
() PR(E +i0; K14){z) " : L? — L?

is bounded uniformly in d, the lemma is obtained from Lemma 5.3. ]
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Lemma 5.5 Let V14 be as in Lemma 5.3 and let oo be as in (5.2). If kK = o9, then
[{2)?Via R(E + i0; Kaa)haall ~ O(|d|™)

with v =01/4— (p—1/2) — 209 > 0.

Proof. The proof uses an argument similar to that in the proof of Lemma 4.3.

We use (4.11) with ¢9(z) =1 — x(|z — d|/6]d|??). Then we have

()P VigR(E 4 10; Kog)hoa = {(x)?V1iaR(E + i0; Koq)2hoq
— <$>pV1dR(E + 10; KOd)UQdR(E + 20; Kgd)hgd.

By Lemma 5.3, the first operator on the right side is majorized by O(|d|™*) with
uw=o1/4—(p—1/2) — oa. To estimate the second operator, we decompose Usq
into the sum of four operators
Uza = g5qUd + Uoo (€, D) + U— (2, D) + Uy (2, D,)
as in (4.21), where gog(x) = x(|x — d|/M|d|?) for M > 1, and
Uso(@, Dy) = (1 = g34(2))U2aB0(Dz),  Us(x,Dy) = (1 — g34(2))Uzafs(Dx)-
By Lemma 5.3 again, we have
1{z)*ViaR(E + i0; Koa)g34U2a R(E + i0; Kaq)haal ~ O(|d|™")
for v as in the lemma, because
l92aU2a R(E + i0; K2a)haal| ~ O(|d|”*)
by the principle of limiting absorption. If we make use of Lemma 4.2, the other op-

erators with U, (z, D,.) and U4 (z, D,) can be shown to obey the bound O(|d|~™)
for any N > 1. This proves the lemma. O

Lemma 5.6 Let
Vi =Vi(z,Ds) = (1= g30)VaaB+ (Do), g2a(w) = x(|z — d|/M|d|),
be as in (4.21). Then
[(2)*VigR(E + i0; K2a)Vy (2)?|| = O(|d| ™)

for any L > 1.
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Proof. We construct an outgoing approximation for R(E +i0; Koq)Vy (x)?. If the
particle starts from x € {z € lyq : |z —d| > M|d|??} with momentum & € supp G4
at time ¢ = 0, then it does not pass over IIy4 for ¢ > 0. This enables us to construct
the approximation in the form

<x>pV1dR(E + 10; sz)V+ <:c>p =7+ <SC>pV1dR(E + 10; KQd)fL.
Hence the lemma is implied by Lemma 4.4. ]

5.2.  We are now in a position to prove Propositions 4.1 and 4.2.

Proof of Proposition 4.1. We prove only the first statement. A similar argument
applies to the second one. Throughout the proof, we take 07 = o and use the
relations (4.14) and (4.15) with

Y1(x) =1—x(|z/6]d|7), ta(x) =1 = x(|lz —d[/6]d|??)
for 0 < 6 < 1 small enough, where o5 is specified by (5.2) with o1 = o.

We write
X = TLR(E + 10; Hd)7T1d<$> -r

for the operator in the proposition. Since w1412 = 14, it follows from (4.14) that
X =rpaR(E +i0; K19)m4(x) ™" — r R(E 4 i0; Hy)VagR(E + i0; K14)m14{x) ~".
The first operator on the right side satisfies
lrv2R(E + i0; Kig)mia(z) =" = O(ld|=*2).
To estimate the second operator, we decompose Va4 into the sum of four operators
Vaa = 954V2a + Voo (w, Dz) + Vi (2, D) + Vo (, Dy
as in (4.21), where goq(z) = x(|z — d|/M|d|??) for M > 1, and
Vi (2, Dy) = (1= g30)VaaBx (Ds), - Voo (@, D) = (1= g34) VaaBoo (D).

We set

Xo = rLR(E +1i0; Hy)gs;VoaR(E +i0; K14)m1a(x) ™",
Xoo = rpR(E+1i0; Hy)VooR(E 4 i0; Kq4)m14{x) ™",
Xy = TLR(E—‘rZ'O;Hd)ViR(E+i0;K1d)7T1d<x>_p.

Then the operator X in question satisfies

1X < Cldl ™2 + | Xo|| + | Xooll + 1 X[ + | X[
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Note that ¥, V4 = Vi and 91 Vo = V. We can show
[ Xooll + I X-[| < CrllrL R(E +i0; Ha)prre ||

as in the proof of Lemma 3.2. To evaluate the operator ri R(E + i0; Hy)y17, we
represent it as

T‘[ﬂ/)lR(E + 10; KQd)T‘L — TLR(E + 40; Hd)VldR(E + 10; KQd)TL

by (4.15). If we decompose V14 into Vig = m14(x) ?(x)?V14, then it follows from
Lemma 4.4 that

Ire R(E +i0; Ha)prz || = O(d| =) + O(ld)~2/2)| X
and hence we have
X+ 1 < O (11 =22 + 1| =2/2) X ).
We consider the operator X . We decompose it into the product
Xy = (reR(E +i0; Ho) Vi ()7 ) () P R(E + i0; Kra)mia(e) ™).
The second operator is bounded uniformly in d, and the first one is represented as
rr R(E +i0; Kog) Vi (2)? — rp R(E + i0; Hy)VigR(E + i0; Kog) Vi (z)?
by use of (4.15) again. The micro-local resolvent estimate of [9] shows that
Ir LA R(E + i0; Kza)Vy ()7 = O(ld]~*/2),
which, together with Lemma 5.6, implies that
lrL R(E +i0; Ha) Vs (2)°|| = O(|d|~"/2) + O(|d| /%) || x|
Thus X satisfies
1X1 < € (a2 + 1| =2) X ) + | Xl (5.3)
We shall evaluate Xy. This obeys the bound
[ Xoll = o(1) [IrL R(E + i0; Ha) gzl
by Lemma 5.4 with k = o9, and r, R(E + i0; H)ga4 is written as
rL1R(E +i0; K24)g2q — ri R(E + i0; Hg) Vi R(E + i0; K24)g24
by (4.15). Hence Lemma 5.5 yields
1Xoll = O(ld|~"/?) + o(1) || X]|-
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Thus the desired bound is obtained from (5.3) and the proof is complete. a

We proceed to the proof of Proposition 4.2. As previously stated, we are
allowed to use Lemma 3.2 for the proof of the proposition.

Proof of Proposition 4.2. The proof is based on the same idea as in the proof of
Proposition 4.1, although we have to modify slightly the argument there. Through-
out the proof, oy is fixed as 09 = o, and 01 and p are chosen to fulfill (5.1) and
(5.2). We set

Y = deR(E + 10; Hd)ﬂ'ld<17>_p.

Since 01 > o, bigmia = big. Hence it suffices to show the bound [|Y]| = O(]d|?*?)
in order to prove the proposition.

We use the relations (4.14) and (4.15) with
Gi(2) = 1= x(al/6ld1"),  wale) = 1 - x(|z — d|/6]d°).
By (4.14), we have
Y = bogpo R(E +i0; K14)m14(x) ™" — bogR(E + i0; Hg)Vag R(E + i0; K14)m14(x) ",
The first operator on the right side satisfies
1b2qp2 R(E + i0; K14)m14(z) "] = o(1)

by Lemma 5.4. We decompose Va4 as in the proof of Proposition 4.1 and set

Yo = baR(E +i0; Hq)g3,VoaR(E + i0; K1q)m1a(z) ",
Yo = deR(E + 20; Hd)VOOR(E + 10; Kld)ﬂ'ld<x>_p,
Yi = bogR(E +i0; Hy)VLR(E +i0; K1q)m14(x) ",

where goq(x) = x(|Jz — d|/M|d|?) for M > 1. We can show
Yool + IVl + Y4l < Cp (1020 R(E +i0; Ha)rr | + O(d| ) = O(|d|~*/?)

by Lemma 3.2. To estimate the operator Y, we construct an outgoing approxi-
mation for bagR(E + i0; Hgq) V4, which takes the form

deR(E + 10; Hd)V+ =75+ deR(E + 10; Hd)fL.

Thus we have ||Y]| = o(1) + ||Yo||. The operator Yj is also estimated in the same
way as Xo. It satisfies

Yol < [Ib2aR(E + i0; K2a)gaall + o(1) [Y]| < C|d** + o(1) |Y]

by Lemmas 5.4 and 5.5. Hence the desired bound follows at once and the proof is
complete. O
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6 Asymptotic behavior of eigenfunction

In this section we prove Proposition 2.1 which has played a basic role in proving
the main theorem. As already stated in section 2, the asymptotic behavior of
eigenfunction ¢+ (x; A\, w) has been studied in the physical literatures [3,5,14]. The
proof here is based on the idea from [14]. The original idea is due to T. Takabayashi.

Proof of Proposition 2.1. 'We consider only the case o« ¢ Z. For brevity, we assume
that 0 < a < 1, and we set A = 1. The proof uses the integral representation

A\ P T [e'¢)
i , ,
Jo(r) = Q (/0 e oSt cos pt dt — sin pr /0 e_pt+"COShtdt> , r>0,

7r
(6.1)
for the Bessel function J,(r) with p > 0 ([8]).

(1) We write ¢(x;w) for ¢y (x; A\, w) with A =1 and denote by
Pinc(w;w) = exp(ia(y(z;w) — 7)) exp(iz - w)
the leading term in the asymptotic formula. If we make a change of variable o =
o(z;w) = y(z;w) — m, then —7 < o < 7 and it follows from (2.3) that
pr(wsw) = (=)™ J, (J2])
ez

with v = |l — a|. We also have
Qﬁinc(x; OJ) — eia07i|m\ coso
By the Fourier expansion,

1 ) . ) . 1 ) (L
@inc(x;w) — % Zezlo‘/ 6zat—1|z\cost6—zlt di = ; Zelld/ e—z|m|costcos vt dt.
0

ez - lez

s

On the other hand, we have
1 ) L o )
oy(r;w) == Ze”” (/ e ilzleost cogpt dt — sinvr / e_”t“lxlco‘ghtdt)
T ez 0 0
by integral representation (6.1). Hence
1 . o0 ,
P+ (Tw) — Pinc(T3W) = —= Ze”" sin v / e vitilefcosht gy
T ez 0

We calculate the sum on the right side. If y(x;w) # 0, then |o| < 7 and e # —1.
A simple computation shows that

. eat efat
g e eVt sin v = sinar — + —
= 1+ e e 1+e e




354 H. T. Ito, H. Tamura Ann. Henri Poincaré

for 0 < a < 1. This yields

sinar [ e~ ot -
04 (T3w) = Pinc(T3W) = — - [m I efwefte”“mhtdt (6.2)

for |o| < m. We apply the stationary phase method to the integral on the right
side. If z fulfills the assumption |z/|z| —w| > ¢ > 0, then |o| < 7 — ¢ for |z| > 1
and hence

1+e e >c >0

in a neighborhood of the stationary point ¢ = 0. Thus we can obtain the desired
asymptotic expansion.

(2) If we write p(z;w, a) for ¢ (z;w), then
p(v;w,0) =B, (—15w, —a).
Hence (2) follows (1) at once.

(3) We consider ¢4 (z;w) only. By assumption, |z/|z| —w| < ¢|x| 2 for some
q, 1/2<q¢<1.Weset = (¢g—1/2)/3 >0 and

n(x) =1 (ei" +1) =1 (ei“(”;“’) + 1)

for x as above. We evaluate the integral T on the right side of (6.2). If |z|~1/?+¢ <
|t| < 1, then |0; cosht| > co|t| and |9;(1 + e~ 7e~*) 71 < c3|t| 72, so that

e—at .
/ ez|x|cosht dt = O(|l‘|_26)
[t

[>|a|—1/2+8 1+ e toet

by partial integration. Thus we have

|—1/2+6

o | 1 .
I = _ezaez|:p|/ i ez|w\t2/2dt+0(|x|—1+4§)_’_O(|x|—2«5)
— ||~ 1/248 t+in
o ol [ 1 512/2 26
— o iz i|s d 9] —26y
© /_zﬁ s+ i1 SO

We write 0 = —m+eor o =7 —e. Thene >0 and ¢ = O(Jz|79). lf 0 = —7 + ¢,
then n = & + O(?) and |z|'/?n = O(|z|~%+1/2). Hence it follows that

||® 1 1 -
/m|5 (m - ;) elsl/2 gg — O(|x|*(q71/2)+§).
This yields

|| ~° 1
__ io iz —(q—1/2)+6 —26
I=—d7e /m 7 s+ Ol )+ 022,
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so that ‘
[=—ime™l 4+ O(|2] ™), v =2(q—1/2)/3,

for 0 = —m 4 . Similarly we have I = imel*! + O(|z|~¥) for 0 = m — &. Thus (3)
follows immediately from (6.2).

(4) We again evaluate the integral I. If |2/|z| — w| > |2|~1/2, then

1 ol eos
I:/| V2l 1W6”1‘C°Shtdt+0(1)a |z — oc.
x|~ <[t <

Since |9, (1 +e’i"e’t)71| < clt|=2 for |z|~/? < |t| < 1, we see by partial inte-
gration that the first term on the right side also obeys the bound O(1). If, on the
other hand, 0 < |z/|z| — w| < |z|~1/2, then

I = —¢i° / : 61|z\cosh tdt + 0(1)
[tj<1 b+

for n = i(e'” + 1) again. Set 0 = —7 + ¢ with ¢ > 0. Then £ = O(|z|~*/?) and also
n = O(|z|~'/?). Since

/ ( 1' _1) ei\x\coshtdtzo(l),
|z|—1/2<|t|<1 t+ZT} t

|I|—1/2

. 1
Iz—e“’e””'/ —dt +O(1) = O(1).
s Tr (1) (1)

it follows that

A similar argument applies to the case 0 = m — e. Thus (4) is verified. m|

7 Magnetic Schrodinger operators with 6—like fields

In this supplementary section, we study the spectral problems for magnetic
Schrédinger operators with two 6—like fields. The argument here extends to the
case of several distinct centers without any essential changes. We consider the
Hamiltonian

H:H(A1+A2), AJ(.T) :Oéj'V’)/j(l'),
where v;(z) = y(z — e;) with e; # es. The potential A; has the 6-like magnetic
field 2ma;6(x—e;). As previously stated, the Hamiltonian H; = H(A;), 1 <j <2,
is known to be self-adjoint with domain
D(Hj) ={uec L?: H(Aj)u € L?, lin‘l . lu(z)| < oo}
We discuss the problems about the self-adjointness, the absence of bound states,

the principle of limiting absorption and the asymptotic completeness of wave op-
erators for H.
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Proposition 7.1 H is self-adjoint with domain

D={uecl?: HA +A)uecL? lim |u(z) <oco, j=1,2}.

|z—e;|—0

Proof.  We consider the equation
(H+MNu=f, A>1, (7.1)

for given f € L2. Let {x1,X2, Xoo} be a smooth nonnegative partition of unity
normalized by x1(z)? + x2(2)? + X (2)? = 1, where x; € C§°(R?) takes the value
X;(z) = 1 in a neighborhood of e;. We may assume that supp x1 N supp x2 = 0.
Let B; € C°(R? — R?) be a magnetic potential such that B;(z) = A;(z) on the
support of X, and define Hy, as Ho, = H(B; + Bs). This is self-adjoint with
domain D(H) = H?(R?). We look for the solution u € D in the form

u = ypeen (Hy +)\)*1 e~y g
+ X2 (Hy + )71 e 90 + Xoo (Hoo + A) 7 Xoo

for some v € L2. As is easily seen, u belongs to D. Note that
e Hie "y = Hyy, €7 Hye "™V xy = Hy

and HooXoo = HXoo- If we make use of these relations, then we see that v must
satisfy
(Id+ K\)v=f

for u to solve the equation (7.1), where

Ky = €°[Hy,xa] (H+\) ey
+ €N [Hy, xo] (Hy 4+ A) ™ e ™ g + [Hoo, Xoo] (Hoo + A) ™ Xoo-

The norm obeys the bound [|[Ky| = O(A~'/2) for A > 1. Hence there exists the
bounded inverse (Id + Ky)~ ' : L? — L2, so that equation (7.1) admits a unique
solution in D. Thus (H +A)~!: L? — L? is bounded with range Ran (H + \)~1 =
D. It is easy to see that (H + A\)~! is symmetric and hence H is self-adjoint with
domain D. a

We move to the problem on the absence of bound states.
Proposition 7.2 H has no bound states.

Proof. 1t is easy to see that H does not have non-positive eigenvalue. We consider
the eigenvalue problem
Hu = M\u, u € L2,



Vol. 2, 2001 Scattering by Magnetic Fields 357

for A > 0. Let &« = a1 + a9 and define

g(x) = exp(i(ay(z) — arm(x) — azy2(2)))
for |z| > L > 1. It should be noted that g(z) is well defined as a single-valued
function. Set v = gu. Then v fulfills H,v = Av on G = {z : |x| > L}, where
H, = H(A.), Ay = aVry(x). (7.2)

The operator above admits the partial wave expansion. If v € L?(G), then v = 0
over (G, and hence it follows by unique continuation that v = 0 identically on the
whole space. Thus H is shown to have no bound states. O

We shall prove the principle of limiting absorption.

Proposition 7.3 The resolvent R(z; H) = (H—z)~! with Im z # 0 has the boundary
values to the positive real axis

R(\+1i0; H) = hfg R(\+ig;H) : L*(R?*) — L* ,(R?)

for s > 1/2 in the uniform topology, where the convergence is locally uniform in
A € (0,00).

Proof.  The proof uses the positive commutator method due to Mourre [13]. Let
H, be defined by (7.2). Define the operator C as C = —i (z - V + V - z). Then we
have

i[Hy,C) =14 (H,C — CH,) =4H,

by formal computation. Let xoo(x) be as in the proof of Proposition 7.1. Recall
that xoo(z) vanishes around two centers e; and es. We take D = xooCxoo as a
conjugate operator. Since h(H +i)~1 : L? — L? is compact for h(z) falling off at
infinity and since

Aa(w) — As(z) — Az(z) = O(|2[7?) (7.3)
as |xz| — oo, we obtain the relation
f(H)i[H,D|f(H) =4 f(H)Hf(H) + f(H)Kof (H)

for some compact operator Ky : L? — L? where f € C§°(0,00) is supported away
from the origin. This enables us to repeat the same argument as in [6,13] and we
get the proposition. O

Finally we discuss the existence and completeness of wave operator

W(H, Ho) = s — lim exp(itH)exp(—itHy) : L? — L2
— 00
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Proposition 7.4 The wave operator Wy (H, Hy) exists and is asymptotically com-
plete
Ran W+(H, HO) = RanW_ (H’ HO) = L2.

Proof.  The existence can be proved in almost the same way as in the case of
smooth magnetic fields ([12]). We skip the proof for it. To prove the completeness,
it suffices to show that the limit

Wy (Ho,H) =5 — . lirin exp(itHy) exp(—itH) (7.4)

exists. Let H, be again defined by (7.2). We know from [17] that Wi (H,, Ho)
exists and is asymptotically complete. This implies the existence of limit

Wi(Ho,Hy) = s — . ligzn exp(itHy) exp(—itH,).

On the other hand, the difference H — H,, is a perturbation of short-range class
by (7.3). Hence we can show the existence

Wy(Hy, H) =5— , 1irin exp(itHy ) poo exp(—itH)

by use of Kato’s smoothness property which follows from Proposition 7.3 ([15]),
where o () is a smooth real function such that ¢ (x) =1 for |z| > L > 1 and
¢Yoo(x) = 0 for |x| < L/2. Thus the limit (7.4) in question can be shown to exist
and the proof is completed. m]
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