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The Rate of Optimal Purification Procedures

M. Keyl, R. F. Werner

Abstract. Purification is a process in which decoherence is partially reversed by
using several input systems which have been subject to the same noise. The purity
of the outputs generally increases with the number of input systems, and decreases
with the number of required output systems. We construct the optimal quantum
operations for this task, and discuss their asymptotic behaviour as the number of
inputs goes to infinity. The rate at which output systems may be generated depends
crucially on the type of purity requirement. If one tests the purity of the output
systems one at a time, the rate is infinite : this fidelity may be made to approach 1,
while at the same time the number of outputs goes to infinity arbitrarily fast. On
the other hand, if one also requires the correlations between outputs to decrease,
the rate is zero: if fidelity with the pure product state is to go to 1, the number of
outputs per input goes to zero. However, if only a fidelity close to 1 is required, the
optimal purifier achieves a positive rate, which we compute.

1 Introduction

A central problem of quantum information processing is to ensure that devices
which have been designed to perform certain tasks still work well in the presence
of decoherence, i.e., under the combined influences of inaccurate specifications,
interaction with further degrees of freedom, and thermal noise. Decoherence typ-
ically has the effect of producing mixed states out of pure states, so it is natural
to ask whether the effects of decoherence can be partially undone, by processes
turning mixed states into purer ones. As in the classical case this is impossible
for operations working on single systems. However, if many (say N) systems are
available, all of which were originally prepared in the same unknown pure state
σ, and subsequently exposed to the same (known) decohering process R∗, then
an analysis of the combined state may well allow the reconstruction of the orig-
inal pure state. The quality of this reconstruction will increase with N . In fact,
it should approach perfection as N → ∞: in this limit one can determine the
decohered state R∗σ to an arbitrary accuracy by statistical measurements. The
question is only, whether the knowledge of the full density matrix R∗σ admits the
reconstruction of σ, i.e., whether the linear operator R∗ is invertible. Generically,
and for sufficiently small decoherence, this is the case. However, the operator R−1

∗
is usually not positive, i.e., it takes some density matrices into operators with
negative eigenvalues. Therefore, it does not correspond to a physically realizable
apparatus. But it does describe a computation we can perform to reconstruct σ
from the measured (or estimated) density matrix ρ = R∗σ.
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How well can this reversal of decoherence be done when the number N of
inputs is given, and finite? The answer depends critically on the way the purifica-
tion task is set up, and what “figure of merit” we try to optimize. In general, the
resulting variational problems may be very hard to solve. However, in the specific
model situation chosen in this paper, the solution is fairly straightforward: we take
qubit systems, and assume that decoherence is described by a depolarizing channel
of the form

R∗σ = λσ + (1− λ)
1I
2
. (1)

The purifier will be a device T taking a state of N qubits, and turning out some
number M of qubits, where M may be either fixed or itself a random quantity. In
the latter case T is given mathematically by a family TM of completely positive
maps, where TM takes a density matrix ofN qubit systems, and produces a positive
operator on the M qubit space, which is not necessarily normalized to unity: the
normalization constant wM = tr(TM (ρ)) is interpreted as the probability of getting
exactly M outputs from the input state ρ. Thus

∑
M wM = 1.

Our aim is to design T to get outputs as close as possible to the uncorrupted
input state σ, and also as many of them as possible. This is reminiscent of cloning
problems [1, 2]. However, in cloning problems the aim is to get many copies of
the input state to T , which in our case is the mixed state R∗σ, rather than the
pure state σ. In both cases there is clearly a trade-off between the quality of the
outputs and their number, which is why there are several different ways to state
the problem. In the sequel we will briefly describe the variants of the purification
problem, together with the results, which will be shown later in the paper.

1. Maximal fidelity, failure to produce any output admissible. The best fidelity of
outputs is clearly achieved, when the weakest possible demands are made on
the number of outputs. In this case we do not even insist on an output every
time the device is run, but only on some non-zero probability for getting an
output. The best achievable fidelity of these outputs goes to 1 as N → ∞,
but not substantially faster than with the following stronger requirement on
output numbers.

2. M = 1 fixed, number M never increased at expense of output purity. This
is the approach taken by [3]. At least one output qubit is required, and the
figure of merit is based on the fidelity of this one qubit. As it turns out the
optimal device for this problem can just as well produce more outputs of the
same optimal fidelity, with a certain rate. However, this rate is not part of
the optimization criterion.

3. M fixed, purity measured by one-particle restrictions. For fixed M,N , this
problem is rather similar to 2. However, with the additional parameterM we
can discuss better the trade-off between rate and quality of outputs. Suppose
we fix some dependence of the number of outputs M(N) on the number of



Vol. 2, 2001 The Rate of Optimal Purification Procedures 3

inputs. Do the states still approach σ as N → ∞? Clearly, ifM(N) increases
slowly, e.g., at the rate given by the optimal device from 2, this will be the
case. What may seem surprising at first, however, is that no matter how fast
M(N) → ∞, the state of each output qubit still approaches the uncorrupted
pure state. In this sense, optimal purification works with an infinite rate.

4. M fixed, purity measured by fidelity with respect to σ⊗N . The infinite rate
depends critically on what we use as the quality criterion for outputs. Apart
from the fidelity of the restrictions of the output state to single qubits used
in 3 we could also look at the fidelity of the outputs with respect to the M
particle pure state σ⊗M , thereby taking into account also the correlations
between different outputs. For fixed M , the difference between these two
fidelity measures does not seem so great, because one can be estimated in
terms of the other. However, the estimates are M -dependent (see below),
and hence for problems involving a limitM → ∞ the fidelity with respect to
the combined state may (and does) turn out to be a much tighter criterion.
In fact, no process with finite rate M/N achieves fidelity→ 1, and in this
sense even optimal purification works with zero rate, in sharp contrast to
3 above. On the other hand, for any finite fidelity requirement, there is an
output rate for an optimized process, which is computed below.

These results will be stated in precise terms in the following Section 2, together
with the notation needed for that purpose, and graphs of the optimal fidelities
and rates. The proofs follow in the subsequent sections. Technically they hinge
on the decomposition theory of tensor product representations of SU(2), and this
background is provided in Section 3. The reason for representation theory to enter
in such a crucial way is isolated in Section 3.1, where it is shown that the optimal
devices can be taken to be SU(2)-covariant (do not single out a basis in the qubit
space). The two basic purifiers, called the “natural purifier” (optimal for question
2 above), and the “optimal purifier” (optimal for question 3 above) are defined in
Section 4, and their fidelities are computed. The proof of the optimality claims is
given in Section 5. Finally, in Section 6, we determine the asymptotic behaviour
for the optimal purifier, and the output rates.

2 Figures of Merit and Main Results

In this section we will state the optimization problems for purifiers mathematically.
A device (not necessarily a purification procedure) takingN qubit systems as input
and producingM output qubits is described mathematically by a trace preserving,
completely positive linear map (“cp-map”)

T∗ : B∗(H⊗N ) → B∗(H⊗M ),

which takes input density matrices to output density matrices. Equivalently, we
may work in the Heisenberg picture, using the dual T of T∗, the unital (i.e. T (1I) =
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1I) cp-map

T : B(H⊗M ) → B(H⊗N ),

which is related to T∗ by tr
(
T (X)ρ

)
= tr
(
XT∗(ρ)

)
. Here H = C

2 is the one qubit
Hilbert space, B( · ) is the space of all (bounded) operators on the corresponding
Hilbert space and B∗( · ) denotes the space of trace class operators. Since dimH =
2 <∞, the spaces B∗(H) and B(H) are just the 2×2-matrices, but it is nevertheless
helpful to keep track of the distinction between spaces of observables and spaces
of states.

“Good purifiers” should make T∗((R∗σ)⊗N ) very close to σ⊗M . A simple
figure of merit is the fidelity of the output with respect to the desired state in the
worst case, i.e.,

Fall(T ) = inf
σ
tr
(
σ⊗MT∗

(
(R∗σ)⊗N )

))
, (2)

where the infimum is over all one-particle pure states σ. Similarly, we could pick
any one of the outputs, say the one with number i, 1 ≤ i ≤M , and test its fidelity.
The worst case then gives the fidelity

Fone(T ) = inf
i

inf
σ
tr
(
σ(i)T∗

(
(R∗σ)⊗N )

))
, (3)

where σ(i) = 1I⊗· · ·⊗σ⊗· · ·⊗1I denotes the tensor products with (M −1) factors
“1I” and one factor σ at the ith position. We seek to maximize these numbers by
judicious choice of T . Let us denote the optimal values by

Fmax
� (N,M) = sup

T
F�(T ), (4)

where �=“all” or �=“one”, and the supremum is over all unital cp-maps T with
the specified number of inputs and outputs.

For devices with variable numbers of outputs all these quantities become
random variables, as well. Typically, one will seek to optimize the mean fidelity.
It is then natural not to take the infimum in Equation (3), but the mean. The
case where no output is produced at all, is interpreted here as one output qubit in
the completely mixed state. The resulting mean fidelity [3] can be thought of as
the fidelity Fone(T̃ ) of a modified device T̃ , which uses T , followed by a random
selection of one of the outputs. Therefore, the problem of maximizing mean fidelity
is exactly the same as maximizing Fone(T ) for devices with fixed output number
M = 1, with optimal value Fmax

� (N,M).
Rather than looking at the mean of the fidelity distribution of a device with

variable number of outputs we could also look at its maximum. This corresponds
to the problem in item 1 of the previous section. More precisely, one should omit
the “worst case” infimum with respect to i in this case, and allow the device to
either pick one of its outputs, or to declare failure. This leads to a device with only
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the two output numbers 0 and 1, and the functional to be optimized is the fidelity
of the “1”-output. We will denote the optimum for this problem by Fmax

� (N, 0),
with a slight abuse of notation expressing that this is the case with no demands
on output numbers at all.

It is clear that Fmax
� (N,M) is a decreasing function ofM , and that therefore

the limit

Fmax
� (N,∞) = lim

M→∞
Fmax

� (N,M) (5)

exists. For �=all, this limit is zero. However, for �=one, it is an interesting quantity,
which even goes to 1 as N → ∞.

The results for the quantities Fmax
one (N, 0), Fmax

one (N, 1), and Fmax
one (N,∞) are

shown in Figure 1. Of course, all these quantities also depend on the parameter
describing the noise, which we have suppressed for notational convenience. It is
fixed in the following graphs as λ = 0.5 (resp. β = 0.549, see Section 3). It is clear
that Fmax

� (N,M) → 1 for any N and M , as the noise level goes to zero (λ→ 1).
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Figure 1: The three basic fidelities for the one-particle figure of merit:
top: Fmax

one (N, 0), middle: Fmax
one (N, 1), bottom: Fmax

one (N,∞)

The leading asymptotic behaviour (as N → ∞) is of the form

Fmax
one (N,M) ∝ 1− cM

2N
+ · · · (6)

c0 = (1− λ)/λ (7)
c1 = (1− λ)/λ2 (8)
c∞ = (λ+ 1)/λ2. (9)

From these asymptotic results, a simple estimate for the all-particle fidelity
criteria can be obtained: By Equation (41), 1−Fall(T ) ≤M(1−Fone(T )), where
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M is the number of outputs. Hence, for sufficiently small rate M/N one achieves
good fidelity, even for the all-particle test criterion: 1 − Fmax

all (N,M) ≤ M(1 −
Fmax

one (N,M)) ≤ M(1 − Fmax
one (N,∞)) ≈ M

2N c∞. Of course, the second estimate
is rather crude, and a refined version will be given in Section 6. The argument
does show, however, that one may expect optimal all-particle fidelity to become
a function of the output rate. This function will be computed in Section 6.3: for
every µ > 0, we find the limit

Φ(µ) = lim
N→∞

M/N→µ

Fmax
all (N,M) =


2λ2

2λ2 + µ(1− λ)
if µ ≤ λ

2λ2

µ(1 + λ)
if µ ≥ λ.

(10)

The function Φ is continuous and satisfies Φ(0) = 1 and Φ(∞) = 0, so at small
rates purification is near perfect, but becomes arbitrarily bad at too high rates. In
Figure 2 Φ is plotted with the noise parameter λ going in steps of 0.1 from 0 to 1.
The dotted line describes the performance of the natural purifier (see Section 4.1),
which operates with rate µ = λ.
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Figure 2: Asymptotic fidelity Φ(µ) for the all-particle figure of merit (10).
Curve parameter: λ = .1, .2, ..., 1; dotted line: natural purifier

3 Decomposition theory

Many arguments in this paper are based on group theory, in particular the decom-
position of tensor products of irreducible representations of SU(2). In this section
we will summarize the relevant results which are needed throughout the paper.
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3.1 Reduction to fully symmetric case

There are two reason why group theory is useful for us. First of all the depolarizing
channel R producing the noise is “covariant” which means that it does not prefer
any particular polarization direction (basis in the underlying Hilbert space H =
C

2), and second we are looking at a “universal” purification problem, i.e. the
purification devices T we are looking for should work well on an arbitrary unknown
input state σ. Therefore, it is natural to look at those T which are covariant as
well: T should work in exactly the same way on any input. Carrying this idea
further it should also be impossible to single out any one of the input and output
channels. Mathematically, these “natural conditions” are stated as follows:

Definition 3.1. A unital, cp-map T : B(H⊗M ) → B(H⊗N ) is called fully symmetric
if it is U(2) covariant, i.e.

T (U⊗MAU∗⊗M ) = U⊗NT (A)U∗⊗N ∀A ∈ B(H⊗M ) ∀U ∈ U(2)

and permutation invariant, i.e.

T (ηAη∗) = T (A) ∀η ∈ SM ∀A ∈ B(H⊗M )

and

τT (A)τ∗ = T (A) ∀τ ∈ SN ∀A ∈ B(H⊗N ).

Here η ∈ SM , τ ∈ SN denote permutations of M respectively N elements and at
the same time the corresponding unitaries on B(H⊗M ) and B(H⊗N ), i.e. η(ψ1 ⊗
· · · ⊗ ψM ) = ψη(1) ⊗ · · · ⊗ ψη(M).

We could have made this condition part of our definition of a purifier, and
restricted the discussion to fully symmetric operations from the outset. However,
we have chosen to take the heuristic arguments at the beginning of this section
more seriously: the kind of “universality” described there is already embodied in
the figures of merit of Section 2, so it becomes a mathematical question whether
optimal purifiers are indeed fully symmetric or else symmetry is broken, and a
non-symmetric purifier can outperform all symmetric ones.

We now argue that the optimal devices (with respect to Fone and Fall) may
be indeed assumed to be fully symmetric. To make this precise, note that Fall(T )
and Fone(T ) are infima over expressions which are linear in T , and hence concave
functionals. Therefore, averaging over many T ’s with the same figure of merit
produces a T at least as good. Clearly, for all permutations η ∈ SM , τ ∈ SN
and U ∈ U(2), the purifier T ′(X) = τU⊗NT (η U∗⊗MXU⊗Mη∗)U∗⊗Nτ∗ has the
same figure of merit as T . By averaging over these parameters (with respect to
the appropriate Haar measures) we thus find a purifier, which is at least as good
as T and, in addition, fully symmetric. Similar arguments apply for purifiers with
variable numbers of outputs (although one has to be more careful in defining figures
of merit). Therefore, we will restrict our discussion to fully symmetric purifiers from
now on.
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3.2 Decomposition of tensor products

The reduction to fully symmetric purifiers allows the application of techniques
from group theory (especially representation theory of SU(2)) which simplifies our
problems significantly. Consider in particular the N−fold tensor product

SU(2) � U �→ π1/2(U)⊗N = U⊗N ∈ B(H⊗N ),

of the spin-1/2, or the “defining” representation SU(2) � U �→ π1/2(U) = U ∈
B(H). It decomposes into a direct sum of irreducible subrepresentations

π1/2(U)⊗N = U⊗N =
⊕

s∈I[N ]

πs(U)⊗ 1I (11)

with

πs(U)⊗ 1I ∈ B(Hs ⊗KN,s) and H⊗N =
⊕

s∈I[N ]

Hs ⊗KN,s

and

I[N ] =

{
{0, 1, . . . , N2 } N even
{1

2 ,
3
2 . . . ,

N
2 } N odd

Here πs denotes the spin-s irreducible representation of SU(2), Hs its 2s + 1-
dimensional representation space, which we will identify in the following with
the symmetric tensor-product H⊗2s

+ , i.e. the 2s–qubits Bose subspace, and KN,s

denotes a multiplicity space, which carries an appropriate representation of the
symmetric group SN .

3.3 Decomposition of states

Consider now a general qubit density matrix ρ, which in its eigenbasis can be
written as (β ≥ 0)

ρ(β) =
1

2 cosh(β)
exp
(
2β
σ3

2

)
=

1
eβ + e−β

(
eβ 0
0 e−β

)
(12)

= tanh(β)|ψ〉〈ψ| + (1− tanh(β))
1
2
1I, ψ =

(
1
0

)
The parametrization of ρ in terms of the “pseudo-temperature” β is chosen here,
because it is, as we will see soon, very useful for calculations. The relation to the
form of ρ = R∗σ initially given in Equation (1) is obviously

λ = tanh(β).
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The N–fold tensor product ρ⊗N can be expressed as

ρ(β)⊗N = (2 cosh(β))−N exp(2βL3)

where

B(H⊗N ) � L3 =
1
2

(
σ3 ⊗ 1I⊗(N−1) + · · ·+ 1I⊗(N−1) ⊗ σ3

)
. (13)

denotes the 3–component of angular momentum in the representation π⊗N
1/2 . In

other words, the density matrices are just analytic continuations of group unitaries,
or “SU(2)-rotations by an imaginary angle 2iβ”. This reduces the decomposition of
ρ(β)⊗N to the decomposition (11) of the tensor product representation. Of course,
analytically continued group elements are not normalized as density operators.
Extracting appropriate normalization factors the decomposition becomes

ρ(β)⊗N =
⊕

s∈I[N ]

wN (s)ρs(β)⊗
1I

dimKN,s
,

with

wN (s) =
sinh
(
(2s+ 1)β

)
sinh(β)(2 cosh(β))N

dimKN,s, (14)

and

ρs(β) =
sinh(β)

sinh
(
(2s+ 1)β

) exp(2βL(s)
3 ).

Here L(s)
3 denotes again the 3–component of angular momentum, now in the rep-

resentation πs.
The ρs(β) are normalized, i.e. tr ρs(β) = 1. Hence

∑
s wN (s) = 1 and 0 ≤

wN (s) ≤ 1 due to the normalization of ρ(β)⊗N . Together with the fact that the
multiplicities dimKN,s are independent of β we can extract from Equation (14) a
generating functional for dimKN,s:

2 sinh(β)(2 cosh(β))N = 2
∑

s∈I[N ]

sinh
(
(2s+ 1)β

)
dimKN,s

=
(
eβ − e−β

)(
eβ + e−β

)N =
∑

s∈I[N ]

(
e(2s+1)β − e−(2s+1)β

)
dimKN,s,

obtaining

dimKN,s =
2s+ 1

N/2 + s+ 1

(
N

N/2− s

)
provided N/2 − s is integer, and zero otherwise. The same result can be derived
using representation theory of the symmetric group; see [4], where the more general
case dimH = d ∈ N is studied.
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3.4 Decomposition of operations and optimal cloning

Let us come back now to fully symmetric cp-maps T : B(H⊗M ) → B(H⊗N ). Using
the results of Subsection 3.2 it is easy to see that T can be decomposed into a
direct sum

T (A) =
⊕

s∈I[N ]

Ts(A)⊗ 1I (15)

where the Ts : B(H⊗M ) → B(Hs) are unital cp-maps which are again fully sym-
metric (using an obvious modification of Definition 3.1). Identifying, as in Subsec-
tion 3.2, the representation space Hs with the 2s–fold symmetric tensor product
H⊗2s

+ , leads to the significantly simpler problem of decomposing fully symmetric,
unital cp-maps Q : B(H⊗M ) → B(H⊗N

+ ), which is already solved in [2]. Hence we
will state only the corresponding results here. In particular we have the following
theorem:

Theorem 3.1. Consider again the 3-components of angular momentum L3 and L(s)
3

in the representations π⊗M
1/2 respectively πs (cf. Subsection 3.3).

1. For each fully symmetric cp-map Q : B(H⊗M ) → B(H⊗2s
+ ) there is a constant

ω(Q) ∈ R
+ with Q(L3) = ω(Q)L(s)

3 .

2. For each 2s ∈ N0 there is exactly one fully symmetric Q̂2s with

ω(Q̂2s) = max
Q

ω(Q) =


M

2s
for 2s ≥M

M + 2
2s+ 2

for 2s < M,

(16)

where the maximum is taken over the set of all fully symmetric cp-maps
Q : B(H⊗M ) → B(H⊗2s

+ ).

3. If M > 2s holds Q̂2s is given in terms of its pre-dual Q̂2s∗ : B∗(H⊗2s
+ ) →

B∗(H⊗M ) by

Q̂2s∗(θ) =
2s+ 1
M + 1

SM(θ ⊗ 1I⊗(M−2s))SM (17)

where SM is the projector from H⊗M onto the Bose subspace H⊗M
+ .

4. For M ≤ 2s the map Q̂2s is given by

Q̂2s(A) = S2s(A⊗ 1I⊗(2s−M))S2s,

or in terms of its predual

Q̂2s∗(θ) = tr2s−M θ, (18)

where tr2s−M denotes the partial trace over the first 2s−M tensor factors.
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Note that the family of cp-maps Q̂2s defined in Equation (17) respectively
(18) plays a very special role not only mathematically: Q̂2s describes the optimal
way to increase (17) or dercrease (18) the number of qubits. More precisely Q̂2s∗
maps a finite number 2s of qubits in the same unknown pure state σ to the
best possible approximation Q2s∗(σ⊗2s) of the product state σ⊗M . The quality of
Q2s∗(σ⊗2s) is measured here by the fidelities

Gall(Q) := inf
σ
tr
(
σ⊗MQ∗

(
σ⊗2s))

or

Gone(Q) := inf
i

inf
σ
tr
(
σ(i)Q∗

(
σ⊗2s)) .

If 2s ≥ M holds (item 4) we simply have to discard 2s−M qubits to get exactly
Q̂2s∗(σ⊗2s) = σ⊗M . If the number of qubits should be increased, i.e.M > 2s holds
(item 3), the target state σ⊗M can not be reached. In this case Q̂2s is the optimal
quantum cloning device described in [1, 2].

4 Natural and optimal purifiers

In this section we will introduce a particular class of purification maps which arise
very naturally from the group theoretical discussion of the last section and which
maximize, as we will see in Section 5, the fidelities Fall and Fone.

4.1 The definitions

As a first step let us reinterpret the decomposition of ρ(β)⊗N discussed in Subsec-
tion 3.3 in terms of the of cp-map⊕

s∈I[N ]

B(H⊗2s
+ ) �

⊕
s∈I[N ]

As =: A �→ T nat(A) :=
⊕

s∈I[N ]

T nat
s (As) :=

:=
⊕

s∈I[N ]

As ⊗ 1I ∈
⊕

s∈I[N ]

B(Hs ⊗KN,s) = B(H⊗N ). (19)

Its predual maps the density matrix ρ(β)⊗N to
⊕

s∈I[N ] wN (s)ρs(β). The lat-
ter should be interpreted as a (normal) state on the von Neumann algebra⊕

s∈I[N ] B(H
⊗2s
+ ). Hence T nat is an instrument which produces with probabil-

ity wN (s) the 2s–qubit state ρs(β) from the input state ρ(β)⊗N . This implies in
particular that the number of output systems of T nat is not a fixed parameter but
an observable. We will see soon that the fidelities of the output states ρs(β) are
bigger than those of the input state ρ(β)⊗N provided s > 0 holds. Hence we will
call T nat the natural purifier.
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The most obvious way to construct a device which produces always the same
number of output systems is the composition of T nat with the cloning operation

B(H⊗M ) � A �→ Q̂(A) =
⊕

s∈I[N ]

Q̂2s(A) ∈
⊕

s∈I[N ]

B(H⊗2s
+ ).

Here the Q̂2s are the operations introduced in Theorem 3.1. Combining T nat with
Q̂ we get an operation

B(H⊗M ) � A �→ T opt(A) := (T natQ̂)(A) ∈ B(H⊗N ) (20)

which produces, as stated, a fixed number M of output systems from N input
qubits. Physically we can interpret T opt(A) in the following way: First we apply
the natural purifier to the input state ρ(β)⊗N and we get 2s output systems in
the common state ρs(β). If 2s ≥ M we throw away M − 2s qubits and end up
with a number of M . If 2s < M we have to invoke the 2s→M optimal cloner to
reach the required number of M output systems. Although this cloning process is
wasteful we will see soon that the fidelities F#(T opt) of the output state produced
by T opt are even the best fidelities we can get for any N →M purifier. Hence we
will call T opt therefore the optimal purifier.

4.2 The one qubit fidelity

Now we will calculate the one qubit fidelity Fone. Due to covariance of the depo-
larizing channel R the expressions under the infima defining Fone(T ) (and Fall(T ))
in Equation (2) and (3) depend for any fully symmetric purifier not on σ and i.
I.e. we get with R∗σ = ρ(β):

Fall(T ) = tr
[
σ⊗MT∗

(
ρ(β)⊗N

)]
and Fone(T ) = tr

[
σ(1)T∗

(
ρ(β)⊗N

)]
(21)

with σ = |ψ〉〈ψ|. In the case of Fone the situation is further simplified by the
introduction of the black cow parameter (cf. [1]) γ(θ) which is defined for each
density matrix θ on H⊗M by

γ(θ) =
1
M

tr(2L3θ).

To derive the relation of γ to Fone note that full symmetry of T implies equivalently
to (21)

Fone(T ) = tr

 1
M

M∑
j=1

σ(j)

T∗
(
ρ(β)⊗N

) .
Since σ = (1I + σ3)/2 holds with the Pauli matrix σ3 we get together with the
definition of L3 in Equation (13)

Fone(T ) =
1
2

[
1 + γ

[
T∗(ρ(β)⊗N )

]]
. (22)
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In other words it is sufficient to calculate γ
[
T∗(ρ(β)⊗N )

]
(which is simpler because

SU(2) representation theory is more directly applicable) instead of Fone(T ).
Another advantage of γ is its close relation to the parameter λ = tanh(β)

defining the operation R∗ in Equation (1). In fact we have

γ(ρ(β)⊗N ) =
1
N

tr
(
2L3ρ(β)⊗N

)
=

1
N
N tr
(
σ3ρ(β)

)
= tanh(β) = λ.

In other words the one particle restrictions of the output state T
(
ρ(β)⊗N

)
are

given by

γ
[
T (ρ(β)⊗N )

]
σ +
[
1− γ[T (ρ(β)⊗N )]

]1I
2
.

This implies that γ
[
T (ρ(β)⊗N )

]
> λ should hold if T is really a purifier.

Let us consider now the natural purifier T nat. Since the number of output
qubits is not constant in this case we have to consider for each s ∈ I[N ] the
quantity Fone(T nat

s ) (see Equation (19) for the definition of the T nat
s ) instead of

one fixed parameter Fone(T nat) (in other words: The fidelity of T nat is, as the
number of output qubits, not a constant but an observable). According to the
discussion above we get

γ
(
ρs(β)

)
=

1
2s

tr
(
2L(s)

3 ρs(β)
)
=

1
2s

tr
(
2L(s)

3 exp(2βL(s)
3 )
)

tr
(
exp(2βL(s)

3 )
)

=
1
2s

d

dβ
ln tr
(
exp(2βL(s)

3 )
)
=

1
2s

d

dβ

(
ln sinh

(
(2s+ 1)β

)
− ln sinhβ

)
=

2s+ 1
2s

coth
(
(2s+ 1)β

)
− 1

2s
cothβ (23)

and hence

Fone(T nat
s ) =

1
2

[
1 + γ

(
ρs(β)⊗N

)]
=

1
2

[
1 +

2s+ 1
2s

coth
(
(2s+ 1)β

)
− 1

2s
coth β

]
.

If s = 1/2 we have γ
(
ρs(β)

)
= tanh(β) = λ hence the (perturbed) input state

ρ(β) is reproduced. Taking the derivative with respect to s shows in addition that
γ
(
ρs(β)

)
is strictly increasing in s. Hence T nat really purifies (according to the

remark above) and the best result we get if s is maximal. In the limit s → 0 we
find γ

(
ρs(β)

)
= 0 which is reasonable because T nat does not produce any output

at all in this case (dimHs = 1 for s = 0).
Let us apply these results to the optimal purifier. According to the definition

of T opt and T nat in Equations (20) and (19) the decomposition of T opt given in
(15) has the form

T opt(A) = T nat(Q̂(A)) =
∑

s∈I[N ]

Q̂2s(A)⊗ 1I =
∑

s∈I[N ]

T opt
s (A)⊗ 1I, (24)
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hence T opt
s (A) = Q̂2s(A). Together with (22) we get

Fone(T opt) =
1
2

1 + ∑
s∈I[N ]

wN (s)γ
[
T opt
s∗ (ρs(β))

] (25)

=
1
2

1 + ∑
s∈I[N ]

wN (s)γ
[
Q̂2s∗(ρs(β))

]
=:
∑

s∈I[N ]

wN (s)fone(M,β, s),

where we have introduced the abbreviation

fone(M,β, s) :=
1
2

[
1 + γ

[
Q̂2s(ρs(β))

]]
.

Together with Theorem 3.1 this implies:

2fone(M,β, s) − 1 = γ
[
Q̂2s∗(ρs(β))

]
=

1
M

tr
[
2Q̂2s(L3)ρs(β)

]
=
ω(Q̂2s)
M

tr[2L(s)
3 ρs(β)] =

ω(Q̂2s)2s
M

γ[ρs(β)].

Inserting the values of ω(Q̂2s) and γ[ρs(β)] from Equations (16) and (23) we get

2fone(M,β, s)− 1 =

=


2s+ 1
2s

coth
(
(2s+ 1)β

)
− 1

2s
cothβ for 2s > M

1
2s+ 2

M + 2
M

(
(2s+ 1) coth

(
(2s+ 1)β

)
− cothβ

)
for 2s ≤M .

(26)

Hence we have proved the following proposition.

Proposition 4.1. The one–qubit fidelity Fone(T opt) of the optimal purifier is given
by

Fone(T opt) =
∑

s∈I[N ]

wN (s)fone(M,β, s) (27)

with fone(M,β, s) from Equation (26).

Note in particular that in the case M = 1 the one–qubit fidelity coincides
with the expectation value of the fidelity of T nat in the state T nat

∗ (ρ(β)⊗N ) –
the mean fidelity. Hence we can reinterpret the natural purifier as a device which
produces exactly one output system (cf. [3]).
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4.3 The all qubit fidelity

As in the one–qubit case the all–qubit fidelity of T nat is an observable rather than
a fixed parameter. Hence we have to calculate Fall(T nat

s ) for each fixed s. Applying
again Equation (21) we get

Fall(T nat
s ) = tr

(
σ⊗2sρs(β)

)
=

sinh(β)
sinh
(
(2s+ 1)β

)e2βs
=
e(2s+1)β − e(2s−1)β

e(2s+1)β − e(2s+1)β =
1− e−2β

1− e−(4s+2)β .

Using the decomposition of T opt given in Equation (24) we get for the optimal
purifier something similar as in the last subsection:

Fall(T opt) =
∑

s∈I[N ]

wN (s) tr
[
σ⊗MT opt

s∗
(
ρs(β)

)]
(28)

=
∑

s∈I[N ]

wN (s) tr
[
σ⊗M Q̂2s∗

(
ρs(β)

)]
.

However the calculation of

fall(M,β, s) := tr
[
σ⊗M Q̂2s∗

(
ρs(β)

)]
is now more difficult, since the knowledge of Q̂2s(L3) = ω(Q̂2s)Ls

3 is not sufficient
in this case. Hence we have to use the explicit form of Q̂2s in Equation (17) and
(18). For 2s < M this leads to

fall(M,β, s) =
2s+ 1
M + 1

〈ψ⊗M , SM (ρs ⊗ 1I⊗(M−2s))SMψ⊗M 〉

=
2s+ 1
M + 1

〈ψ⊗M , (ρs ⊗ 1I⊗(M−2s))ψ⊗M 〉 = 2s+ 1
M + 1

〈ψ⊗2s, ρsψ
⊗2s〉

=
2s+ 1
M + 1

1− e−2β

1− e−(4s+2)β .

For M ≤ 2s we have to calculate

fall(s,M, β) = tr
[
σ⊗M Q̂2s∗

(
ρs(β)

)]
= tr
[
Q̂2s(σ⊗M )ρs(β)

]
= tr
[
ρs(β)

(
SM [(|ψ⊗M 〉〈ψ⊗M |)⊗ 1I⊗(2s−M)]SM

)]
(29)

We will compute the operator Q̂2s(σ⊗M ) in occupation number representation. By
definition, the basis vector “|n〉” of the occupation number basis is the normalized
version of SMΨ, where Ψ is a tensor product of n factors ψ and (M − n) factors
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φ, where φ = ( 0
1 ) denotes obviously the second basis vector. The normalization

factor is easily computed to be

SM(ψ⊗n ⊗ φ⊗(M−n)) =
(
M
n

)−1/2

|n〉. (30)

We can now expand the “1I” in Equation (29) in product basis, and apply (30), to
find

SM [(|ψ⊗M 〉〈φ⊗M |)⊗ 1I⊗(2s−M)]SM =
∑
K

(
2s−M

K −M

)(
2s
K

)−1

|K〉 〈K|.

Now L3 is diagonal in this basis, with eigenvalues mK = (K−s), K = 0, . . . , (2s).
With ρs(β) from (12) we get

fall(M,β, s) =
1− e−2β

1− e−(4s+2)β

∑
K

(
2s−M

K −M

)(
2s
K

)−1

e2β(K−s) for M ≤ 2s.

Together with(
2s−M

K −M

)(
2s
K

)−1

=
(2s−M)!

(K −M)!(2s−K)!
K!(2s−K)!

(2s)!
=
(
2s
M

)−1(
K

M

)
we get

fall(M,β, s) =
1− e−2β

1− e−(4s+2)β

(
2s
M

)−1∑
K

(
K

M

)
e2β(K−s).

Summarizing these calculations we get the following proposition:

Proposition 4.2. The all–qubit fidelity Fall(T opt) of the optimal purifier is given
by

Fall(T opt) =
∑

s∈I[N ]

wN (s)fone(M,β, s) (31)

where fall(M,β, s) is given by

fall(M,β, s) =


2s+ 1
M + 1

1− e−2β

1− e−(4s+2)β M ≤ 2s

1− e−2β

1− e−(4s+2)β

(
2s
M

)−1∑
K

(
K

M

)
e2β(K−s) M > 2s.

(32)
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5 Solution of the optimization problems

Now we are going to prove the following theorem:

Theorem 5.1. The purifier T opt maximizes the fidelities Fone(T ) and Fall(T ).
Hence the optimal fidelities Fmax

one (N,M) and Fmax
all (N,M) defined in Section 2

are given by Equation (27) and (31).

Proof. Note first that the funtionals Fone and Fall are, as infima over continu-
ous functions, upper semicontinuous. Together with the compactness of the set of
admissible T this implies that the suprema Fmax

# (N,M) from Equation (4) are
attained. In other words: optimal purifier T with F#(T ) = Fmax

# (N,M) exist, and
we can assume without loss of generality that they are fully symmetric (accord-
ing to the discussion in Section 3.1). Hence we can apply Equation (21) and the
decomposition (15) to get in analogy to (25) and (28)

Fone(T ) =
1
2

1 + ∑
s∈I[N ]

wN (s)γ
[
Ts∗(ρs(β))

]
and

Fall(T ) =
∑

s∈I[N ]

wN (s) tr
[
σ⊗MTs∗

(
ρs(β)

)]
. (33)

The last two Equations show that we have to optimize each component
Ts of the purifier T independently. In the one qubit case this is very easy, be-
cause we can use Theorem 3.1 to get Ts(L3) = ω(Ts)L

(s)
3 and γ

[
Ts∗(ρs(β))

]
=

ω(Ts) tr
(
L

(s)
3 ρs(β)

)
. Hence maximizing γ

[
Ts∗(ρs(β)

)
] is equivalent to maximizing

ω(Ts). But we have according to Theorem 3.1

max
T

ω(Ts) = ω(Q̂2s) =


M

2s
for 2s ≥M

M + 2
2(s+ 1)

for 2s < M,

which shows that Fmax
one (N,M) = Fone(T opt) holds as stated.

For the many qubit–test version the proof is slightly more difficult. However
as in the Fone-case we can solve the optimization problem for each summand in
Equation (33) separately. First of all this means that we can assume without loss
of generality that Ts∗ takes its values in B(H⊗M

+ ) because the functional

fs(Ts) := tr
(
σ⊗MTs∗

(
ρs(β)

))
(34)

which we have to maximize, depends only on this part of the operation. Full
symmetry implies in addition that Ts∗(ρs(β)) is diagonal in occupation number
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basis (see Equation (30)), because Ts∗(ρs(β)) commutes with each πs′(U) (s′ =
M/2, U ∈ U(2)) if πs(U) commutes with ρs(β).

If M > 2s this means we have Ts∗(ρs(β)) = κ∗σ
⊗M + r∗ where r∗ is a

positive operator with σ⊗Mr∗ = r∗σ
⊗M = 0. Inserting this into (34) we see that

fs(Ts) = κ∗. Hence we have to maximize κ∗. The first step is an upper bound
which we get from the fact that tr

(
σ⊗Mρs(β)

)
1I − ρs(β) is a positive operator.

Since Ts∗(1I) = (2s+1)/(M +1)1I (another consequence of full symmetry) we have

0 ≤ T
(
tr
(
σ⊗2sρs(β)

)
1I− ρs(β)

)
=

2s+ 1
M + 1

tr
(
σ⊗Mρs(β)

)
1I− κσ⊗M − r∗.

Multiplying this Equation with σ⊗M and taking the trace we get

κ∗ ≤ 2s+ 1
M + 1

tr
(
σ⊗Mρs(β)

)
. (35)

However calculating fs(T opt
s ) we see that this upper bound is achieved, in other

words T opt
s maximizes fs.

If M ≤ 2s holds we have to use slightly different arguments because the
estimate (35) is to weak in this case. However we can consider in Equation (34)
the dual Ts instead of Ts∗ and use then similar arguments. In fact for each covariant
Ts the quantity Ts(σ⊗M ) is, due to the same reasons as Ts∗(ρs(β)) diagonal in the
occupation number basis and we get Ts(σ⊗M ) = κσ⊗2s + r where r is again a
positive operator with r =

∑2s−1
n=0 rn|n〉 (|n〉 denotes again the occupation number

basis) and κ is a positive constant. Since Ts is unital we get from 1I − σ⊗M ≥ 0
the estimate 0 ≤ κ ≤ 1 in the same way as Equation (35). Calculating T opt

s (σ⊗M )
shows again that the upper bound κ = 1 is indeed achieved, however it is now not
clear whether maximizing κ is equivalent to maximizing fs(Ts).

Hence let us show first that κ = 1 is necessary for fs(Ts) to be maximal. This
follows basically from the fact that Ts is, up to a multiplicative constant, trace
preserving. In fact we have

tr
(
Ts(σ⊗M )

)
= tr
(
Ts(σ⊗M )1I

)
= tr
(
σ⊗MTs∗(1I)

)
=

2s+ 1
M + 1

.

This means especially that κ + tr(r) = (2s + 1)/(M + 1) holds, i.e. decreasing κ
by 0 < ε < 1 is equivalent to increasing tr(r) by the same ε. Taking into account
that ρs(β) =

∑2s
n=0 hn|n〉 holds with hn = exp

(
2β(n− s)

)
, we see that reducing κ

by ε reduces fs(Ts) at least by

ε
(
tr
(
σ⊗2sρs(β)

)
− tr
(
|2s− 1〉ρs(β)

))
= ε
(
e2βs − e(2s−1)β) > 0.

Therefore κ = 1 is necessary.
The last question we have to answer, is how the rest term r has to be chosen,

for fs(Ts) to be maximal. To this end let us consider the slightly modified fidelity
f̃s(Ts) = tr

(
Ts(σ⊗M )σ⊗2s

)
(which is in fact related to optimal cloning; see [1]
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and Section 3.4). It is in contrast to fs(Ts) maximized iff κ = 1. However the
operation which maximizes f̃(Ts) is obviously the optimal M → 2s cloner (up to
normalization) which is according to [2] unique. This implies that κ = 1 fixes Ts
already. Together with the facts that κ = 1 is necessary for fs(Ts) to be maximal
and κ = 1 is realized for T opt

s we conclude that max fs(Ts) = fs(T opt
s ) holds, which

proves the assertion.

6 Asymptotic behaviour

Now we want to analyze the rate with which nearly perfect purified qubits can be
produced in the limit N → ∞. To this end we have to compute the asymptotic
behaviour of various expectations involving s. It turns out that it is much better
not to do work with the explicit expressions of these expectations, as sums over
expressions with many binomial coefficients, but to go back to the definition, and
use general properties of expectations of ρ⊗N . This has the added advantage of be-
ing easily generalized to Hilbert space dimensions d > 2, so we expect the method
to be useful in its own right. We collect the basic statements in the following
subsection, applying them to the concrete expressions in subsequent ones.

6.1 Convergence of weights to a point measure

In the classical case the general theory alluded to above is nothing but the theory of
asymptotic distributions for independent identically distributed random variables
(Laws of large numbers of various sorts). In the quantum case this theory has
been developed in the context of the statistical mechanics of general mean-field
systems [5]. Of this theory we need only the simplest aspects (convergence to a
point measure), and not the more advanced “Large Deviation” parts, in which it
is shown how the probability of deviations from the limit decrease exponentially
fast.

Consider operators of the form AN = (1/N)
∑N

i=1 a
(i), where a(i) denotes the

copies of a fixed operator on H, acting in the ith tensor factor of H⊗N . It is clear
that the expectations tr(ρ⊗NAN ) = tr(ρa) are independent of N . Now consider
products of a finite number of such operators and expand the expectation into the
average over all terms of the form tr(ρ⊗Na(i)b(j)c(k) · · · ). It is easy to see that for
large N the majority of these terms will be such that all indices i, j, k, . . . are dif-
ferent, and for such terms the above expression is equal to tr(ρa) tr(ρb) tr(ρc) · · · .
So this will be the limit of the expectation of the product ANBNCN · · · as N → ∞
(for precise combinatorial estimates, see [5]). Of course, this allows us to compute
the asymptotic expectations for arbitrary polynomials, and by taking suitable lim-
its of arbitrary continuous functions of Hermitian operators. There is an abstract
non-commutative functional calculus describing exactly these possibilities (see ap-
pendix of [5]). However, for our purposes it is sufficient to say that all combinations
of algebraic operations and continuous functions of a Hermitian variable (evaluated
in the usual spectral functional calculus) are in this class.



20 M. Keyl, R. F. Werner Ann. Henri Poincaré

For the case at hand, note that the angular momentum operators Lk as in
Equation (13) are of the form NAN therefore, for any sequence of functions fN
of three non-commuting arguments (this means that in writing out fN we have to
keep track of operator ordering), which converges to a limit function, f∞, we get

lim
N→∞

tr
(
ρ⊗NfN

(
L1
N , L2

N , L3
N

))
= f∞

(
tr(ρ

σ1

2
), tr(ρ

σ2

2
), tr(ρ

σ3

2
)
)
. (36)

Note that the function f∞ is just evaluated on numbers (operators on a one-
dimensional space) so all operator ordering problems disappear in the limit. This
is the huge simplification which makes mean-field theory so accessible. The limit
formula will be applied to functions of “2s”, the number of outputs from the
natural purifier, which can itself be written as a function of this sort. It is, of
course, constant on each summand of the decomposition (11), so it is a function
of the Casimir operator 3L2 = s(s+ 1):

2s
N

= gN
(
L1
N , L2

N , L3
N

)
=
√
4(3L/N)2 +N−2 − 1/N

g∞(x1, x2, x3) = lim
N→∞

√
4(3x)2 +N−2 − 1/N = 2|3x|

g∞
(
tr(ρ

σ1

2
), tr(ρ

σ2

2
), tr(ρ

σ3

2
)
)
= g∞(0, 0, λ/2) = λ = tanhβ, (37)

when ρ = ρ(β) is given by eq.(12). Functions of g then also lie in the relevant
functional calculus, so we get the following statement, taylored to our need in
the following subsections. In it we have already encorporated further, straightfor-
ward approximation arguments, using uniformly convergent sequences of continu-
ous functions to establish upper and lower bounds separately.

Lemma 6.1. Let fN : (0, 1) → R, N ∈ N be a uniformly bounded sequence of
continuous functions, converging uniformly on a neighborhood of λ = tr(ρ(β)σ3)
to a continuous function f∞, and let wN (s) denote the weights in Equation (14).
Then

lim
N→∞

∑
s∈I[N ]

wN (s)fN (2s/N) = f∞(λ). (38)

In the language of measure theory this is saying that the probability measures∑
s wN (s)δ(x−2s/N)dx on the interval [0, 1] converge to the point measure δ(x−

λ)dx. Graphically, this is shown in Figure 3

6.2 The one particle test

Let us analyze first the behaviour of the optimal one–qubit fidelity Fmax
one (N,M)

in the limit M → ∞. Obviously only the M > 2s case of fone(M,β, s) is relevant
in this situation and we get, together with Equation (27), the expression

Fmax
one (N,∞) =

∑
s∈I[N ]

wN (s)
1
2

[
1 +

1
2s+ 2

(
(2s+ 1) coth

(
(2s+ 1)β

)
− coth β

)]
,
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Figure 3: Convergence of wN (s) to a point measure (λ = .5, N = 10, 100, 1000).
Discrete points joined, and rescaled for total area 1

which obviously takes its values between 0 and 1. To take the limit N → ∞ we
can write

lim
N→∞

Fmax
one (N,∞) = lim

N→∞

∑
s∈I[N ]

wN (s)fN,∞(
2s
N
)

with

fN,∞(x) =
1
2

[
1 +

1
Nx+ 2

(
(Nx+ 1) coth

(
(Nx+ 1)β

)
− coth β

)]
.

The functions fN,∞ are continuous, bounded and converge on each interval (ε, 1)
with 0 < ε < 1 uniformly to f∞,∞ ≡ 1. Hence the assumptions of Lemma 6.1 are
fulfilled and we get

lim
N→∞

Fmax
one (N,∞) = f∞,∞(λ) = 1

as already stated in Section 2. This means that we can produce arbitrarily good
purified qubits at infinite rate if we have enough input systems.

To analyze how fast the quantity Fmax
one (N,∞) approaches 1 as N → ∞ let

us consider the limit

lim
N→∞

N(1−Fmax
one (N,∞)) =

∑
s∈I[N ]

wN (s)f̃N,∞(
2s
N
) ≡ c∞

2
(39)

with f̃N,∞ = N(1− fN,∞). The existence of this limit is equivalent to the asymp-
totic formula

Fmax
one (N,∞) = 1− c∞

2N
+ o
(
1
N

)
,
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where, as usual, o
( 1
N

)
stands for terms going to zero faster than 1

N . Lemma 6.1
leads to c∞/2 = f̃∞,∞(λ) with f̃∞,∞ = limN→∞ f̃N,∞ uniformly on (ε, 1). To
calculate f̃∞,∞ note that

f̃N,∞(x) =
N

Nx+ 2
+
N coth β
Nx+ 2

+ Rest

holds, where “Rest” is a term which vanishes exponentially fast as N → ∞. Hence
with cothβ = 1/λ we get

c∞ = 2f̃∞,∞(λ) =
1 + λ

λ2

The asymptotic behaviour of Fmax
one (N, 1) can be analyzed in the same way.

The only difference is that we have to consider now the 1 = M ≤ 2s branch of
Equation (26). In analogy to Equation (39) we have to look at

lim
N→∞

N(1−Fmax
one (N, 1)) =

∑
s∈I[N ]

wN (s)f̃N,1(
2s
N
) =

c1
2

with f̃N,1 = N(1− fN,1) and

fN,1(x) =
1
2

[
1− 1

Nx

[
(Nx+ 1) coth

(
(Nx+ 1)β

)
− cothβ

]]
.

For f̃∞,1 we get

f̃∞,1(x) =
1
2
(
−1
x

+
1
xλ

). (40)

Using again Lemma 6.1 leads to

c1 = 2f̃∞,1(λ) =
1− λ

λ2 .

Finally let us consider Fmax
one (N, 0). Here the situation is easier than in the

other cases because Fmax
one (N, 0) equals the fidelity of the best possible output of

the natural purifier, i.e.

Fmax
one (N, 0) =

1
2

[
1− 1

N

[
(N + 1) coth

(
(N + 1)β

)
− cothβ

]]
= fN,1(1).

Hence we only need the asymptotic behaviour of fN,1(x) at x = 1. Using Equation
(40) we get

Fmax
one (N, 0) = 1− 1− λ

λ

1
2N

+ · · · .

This concludes the proof of Equations (6) to (9).
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6.3 The many particle test

Consider now the many–qubit fidelity Fall. Although, like Fone, it lies between zero
and one, and would attain the value 1 precisely for a (non-existent) ideal purifier,
both quantities behave quite differently, when we use them to compare states in
systems of varying size. We are looking here at the two kinds of fidelities for an
M -particle output state ρM with respect to a one-particle pure state given by the
vector ψ, namely

Fall = 〈ψ⊗M , ρMψ⊗M 〉 = tr ρM
(
|ψ⊗M 〉〈ψ⊗M |

)
, and

Fi = 〈ψ, ρ(i)
M ψ〉 = tr ρM

(
1I⊗ · · · (|ψ〉〈ψ|)i ⊗ 1I

)
,

where ρ
(i)
M denotes the restriction of ρM to the ith tensor factor. Let pall and

pi denote the projections whose ρM -expectations appear on the right hand side
of these Equations. These projections commute, and pall is the intersection (in
the commuting case: the product) of the pi in the lattice of projections. This
corresponds to the union of the respective complements, i.e.,

1I− pi ≤ 1I− pall ≤
∑
i

(1I− pi) .

Taking expectations with respect to ρM , we find that supi(1− Fi) ≤ (1− Fall) ≤∑
i(1−Fi) ≤M supi(1−Fi). For the two figures of merit introduced in Section 1

this implies

(1−Fone(T )) ≤ (1−Fall(T )) ≤M(1−Fone(T )) , (41)

for every purifying device T . Hence, for fixed N the two figures of merit are equiv-
alent to within a factor . But the upper bound becomes meaningless in the limit
M → ∞, so it is not clear at all whether we can bring the fidelity Fall(T ) close to
one for an increasing number of outputs.

As a consequence of this analysis it is necessary to perform the limit N,M →
∞ more carefully as in the one qubit case. We will consider therefore the limits
N → ∞ and M → ∞ simultaneously, while the quotient M/N approaches a
constant µ, i.e. we will calculate the function Φ(µ) defined in Equation (10). The
first step in this context is the following lemma, which allows us to handle the(2s
M

)−1∑
K

(
K
M

)
e2β(K−s) term in Equation (32).

Lemma 6.2. For integers M ≤ K and z ∈ C, define

Φ(K,M, z) =
(
K

M

)−1 K∑
R=M

(
R

M

)
zK−R.

Then, for |z| < 1, and c ≥ 1:

lim
M,K→∞
M/K→c

Φ(K,M, z) =
1

1− (1− c)z
.
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Proof. We substitute R �→ (K −R) in the sum, and get

Φ(K,M, z) =
∞∑

R=0

c(K,M,R)zR,

where coefficients with M + R > K are defined to be zero. We can write the
non-zero coefficients as

c(K,M,R) =
(
K

M

)−1 (
K −R

M

)
=

(K −M)!(K −R)!
K!(K −R−M)!

=
(K −M)

K

(K −M − 1)
(K − 1)

· · · (K −M −R+ 1)
(K −R+ 1)

=
R−1∏
S=0

(
1− M

K − S

)
.

Since 0 ≤ c(K,M,R) ≤ 1, for all K,M,R, the series for different values of M,K
are all dominated by the geometric series, and we can go to the limit termwise, for
every R separately. In this limit we have M/(K − S) → c for every S, and hence
c(K,M,R) → (1− c)R. The limit series is again geometric, with quotient (1− c)z
and we get the result.

To calculate now Φ(µ) recall that the weights wN (s) approach a point mea-
sure in 2s/N =: x concentrated at λ = tr(ρ(β)σ3). This means that in Equation
(31) only the term with 2s = λN survives the limit. Hence if µ ≥ λ we get
M ≥ λN = 2s. Using Equation (32) and Lemma 6.1 we get in this case

Φ(µ) =
λ

µ
(1− e−2β).

We see that Φ(µ) → 0 for µ→ ∞ and Φ(µ) → 1− exp(−2β) for µ→ λ.
If 0 < µ < λ we get M < λN = 2s, which means we have to choose Equation

(32) for fall(M,β, s). With Lemma 6.2 and Lemma 6.1 we get

Φ(µ) =
1− e−2β

1− (1− µ/λ)e−2β

which approaches 1 if µ→ 0 and 1− exp(−2β) if µ→ λ. Writing this in terms of
λ = tanhβ, we obtain Equation (10).

6.4 Estimating the many particle fidelity in terms of one particle

In Section 2 we motivated the observation that the the best all-particle fidelity is
a function of the rate (and not identically equal to 1) by estimating the all-particle
fidelity in terms of the one-particle fidelity. Since the latter quantity tends to be
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more easily computable it is of some interest for further investigations, how good
that estimate actually is. The estimate mentioned in the text before Equation (10)
amounts to

Φ(µ) ≥ 1− µ

2
c∞ = 1− µ(λ+ 1)

2λ
. (42)

However, the same basic estimate via Equation (41) gives even more information:

Φ(µ) ≥ 1− lim
N→∞

M/N→µ

M(1−Fmax
one (N,M))

≥ 1− µ lim
N→∞

∑
s∈I[N ]

wN (s) N(1− fone(µN, β, s))

=


1− µ(1− λ)

2λ2 if µ ≤ λ

2− µ(1 + λ)
2λ2 if µ ≥ λ,

(43)

where the evaluation of the limit was carried out with the same technique based
on Lemma 6.1 used in the previous sections. Figure 4 displays the lower bounds
(42) and (43) together with the exact result (10).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4: The lower bounds (42) and (43) together with the exact result (10)
for the all-particle test fidelity as a function of the rate (λ = .5)

It is apparent that these bounds are rather weak, and in fact completely
trivial for large rates. Hence all-particle fidelities contain new and independent
information about purification processes, which is not already contained in their
one-particle counterparts.
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