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1 Introduction

In this work we consider an interesting bosonization of N=1 Liouville field theory that

was proposed recently in [1]. N=1 Liouville field theory contains one fermionic field ψ in

addition to the Liouville field ϕ. These fields are coupled through the standard interaction

term. For bosonization we need to add another free fermion η. The product theory appears

naturally in several applications of N=1 Liouville field theory. In particular, it has been

used in [2] and [3] to compute various structure constants of the OSP(1|2) WZW model.

More recently, it was considered in the context of the AGT correspondence [4] between

supersymmetric 4D gauge theories and 2D conformal field theory [1, 5–8].

In the bosonization, the two fermionic fields ψ and η are replaced by a single boson

Y . What Belavin et al. proposed was that the two bosonic fields ϕ and Y can me mapped

to a new set of bosonic fields, X and X̂, where X is an ordinary (non-supersymmetric)

Liouville field and X̂ an imaginary cousin. The latter may be thought of as a Liouville field

which takes values in imaginary numbers. Because of its internal structure, we shall often

refer to the fully bosonic model as double Liouville theory and to the factor associated with

the field X̂ as imaginary Liouville theory.

Imaginary Liouville theory is far from being an established model of 2D conformal

field theory. In fact, there exist several different proposals for its structure constants but
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consistency (crossing symmetry) has never been established (see discussion in section 3).

It is remarkable that one version of imaginary Liouville theory now appears through the

bosonization of a consistent local conformal field theory.

The relation between N=1 and double Liouville theory has a suggestive ancestor in

rational conformal field theory. In that context, double Liouville theory gets replaced by

a product of two minimal models and N=1 Liouville theory by its rational counterpart.

We can give a highly suggestive argument for their relation if we represent both models as

coset conformal field theories. It is well known that ordinary minimal models arise through

the cosets

MMk = (SU(2)k × SU(2)1)/SU(2)k+1

where k = 1, 2, . . . . This family of rational models includes the Ising model MM1 for a

single fermion η when k = 1. Similarly, N=1 supersymmetric minimal models are obtained

from the coset

SMMk = (SU(2)k × SU(2)2)/SU(2)k+2 .

If we allow ourselves to extend and reduce both numerator and denominator by the required

additional factors we can easily see that

SMMk−1 ×MM1 ∼ MMk ×MMk−1 . (1.1)

Similar relations between ’generalized minimal models’ and Virasoro minimal models were

first discussed in [9, 10] and later (it seems independently) by [11, 12]. More recently,

results for the 4D gauge theories [8] inspired Wyllard [13] to propose an extension to cosets

of the type (SU(N)κ × SU(N)p)/SU(N)κ+p where κ is a free parameter. Soon after this

paper had appeared, the case of N = 2, p = 2 was considered in more detail by Belavin et

al. [1].

Let us now describe the content of this work in more detail. We shall begin with a brief

review of Liouville field theory and its N=1 supersymmetric version in the next section.

Both theories were solved long ago, see section 2 for references to the original literature.

Then we turn to imaginary Liouville theory. As mentioned before, this model is very poorly

understood. After a few historical comments we shall describe the 3-point functions that

were proposed by Zamolodchikov in [14]. Our new results are formulated and analyzed in

section 4. There we shall spell out a precise relation between an infinite tower of fields

in N=1 Liouville field theory and double Liouville theory. This relation will be checked

through extensive comparison of 3-point functions on both sides of the correspondence.

Applications and extensions of our results are sketched in the concluding section.

2 Review of Liouville field theory

In this section we simply review some basic facts about Liouville field theory and its N=1

supersymmetric cousin. Most importantly, we shall discuss the spectrum of primary fields

along with their 2- and 3-point functions. For a more details see the reviews [15–17].
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2.1 Bosonic Liouville field theory

Liouville field theory involves a single scalar field with an exponential interaction term.

On a 2-dimensional world-sheet with metric γab and curvature R, the action of Liouville

theory takes the form

SL[X] =
1

4π

∫

Σ
d2σ

√
γ
(

γab∂aX∂bX +RQX + 4πµLe
2bX
)

(2.1)

where µL and b are two (real) parameters of the model. The second term in this action

describes the background charge of a linear dilaton. The value of the constant Q must be

adjusted to the choice of b in order for SL to define a conformal quantum field theory. We

shall state the relation in a moment.

Liouville theory should be considered as a marginal deformation of the free linear dila-

ton theory. The Virasoro field of a linear dilaton theory is given by the familiar expression

T (z) = −(∂X)2 +Q∂2X .

The modes of this field form a Virasoro algebra with central charge cL = 1 + 6Q2. Fur-

thermore, the usual closed string vertex operators

Vα(z) = : exp 2αX(z, z̄) : have hα = α(Q− α) = h̄α . (2.2)

Here and in the following we shall not explicitly display the dependence of our vertex

operators on the complex conjugate z̄ of the world-sheet coordinate z. Note the conformal

weights h, h̄ are real if α is of the form α = Q/2+ iP . In order for the exponential potential

in the Liouville action to be marginal, i.e. (hb, h̄b) = (1, 1), we must now also adjust the

parameter Q to the choice of b in such a way that

Q = b+ b−1 .

Weyl invariance of the classical action SL leads to the relation Qc = b−1 and the additional

shift by b may be considered as a quantum correction of the classical relation. The extra

term, which certainly becomes small in the semi-classical limit b→ 0, renders Q = Qc + b

(and hence the central charge) invariant under the replacement b→ b−1.

The solution of Liouville field theory is completely described by the 2- and 3-point

functions of the model. The vertex operators Vα are introduced such that their 2-point

function is canonically normalized, i.e.

〈Vα2(z2)Vα1(z1)〉 = |z12|−4hα12π (δ(α1 + α2 −Q) +DL(α1)δ(α2 − α1)) (2.3)

where

DL(α) =
(

πµLγ(b
2)
)

(Q−2α)
b

γ(2αb− b2)

b2 γ(2− 2αb−1 + b−2)
(2.4)

Here and throughout the main text we use γ(x) = Γ(x)/Γ(1−x). In order to spell out the

3-point functions we need to introduce Barnes’ double Γ-function Γb(y). It may be defined

through the following integral representation,

ln Γb(y) =

∫ ∞

0

dτ

τ







e−yτ − e−Qτ/2

(1− e−bτ )(1− e−τ/b)
−

(

Q
2 − y

)2

2
e−τ −

Q
2 − y

τ






(2.5)
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for all b ∈ R. The integral exists when 0 < Re(y) and it defines an analytic function which

may be extended onto the entire complex y-plane. Under shifts by b±1, the function Γb
behaves according to

Γb(y + b) =
√
2π

bby−
1
2

Γ(by)
Γb(y) , Γb(y + b−1) =

√
2π

b−
y
b
+ 1

2

Γ(b−1y)
Γb(y) . (2.6)

These shift equations let Γb appear as an interesting generalization of the usual Γ function

which may also be characterized through its behavior under shifts of the argument. But in

contrast to the ordinary Γ function, Barnes’ double Γ function satisfies two such equations

which are independent if b is not rational. We furthermore deduce from eqs. (2.6) that Γb
has poles at

yn,m = −nb−mb−1 for n,m = 0, 1, 2, . . . . (2.7)

From Branes’ double Gamma function one may construct the following basic building block

of the 3-point function,

Υb(α) := Γ2(α|b, b−1)−1 Γ2(Q− α|b, b−1)−1 . (2.8)

The properties of the double Γ-function imply that Υ possesses the following integral

representation

lnΥb(y) =

∫ ∞

0

dt

t





(

Q

2
− y

)2

e−t −
sinh2

(

Q
2 − y

)

t
2

sinh bt
2 sinh t

2b



 . (2.9)

Moreover, we deduce from the two shift properties (2.6) of the double Γ-function that

Υb(y + b) = γ(by) b1−2by Υb(y) , Υb(y + b−1) = γ(b−1y) b−1+2b−1y Υb(y) . (2.10)

Note that the second equation can be obtained from the first with the help of the self-duality

property Υb(y) = Υb−1(y).

After this preparation it is easy to spell out the 3-point function of primary fields in

Liouville field theory [18, 19],

〈Vα3(z3)Vα2(z2)Vα1(z1)〉 =
CL(α3, α2, α1|b)

|z12|2h12 |z13|2h13 |z23|2h23
(2.11)

with h12 = hα1 + hα2 − hα3 etc. and coupling constants CL of the form

CL(α3, α2, α1|b) =
[

πµLγ(b
2)b2−2b2

]
Q−α

b Υ0
b Υb (2α1)Υb (2α2)Υb (2α3)

Υb (α123 −Q) Υb (α12) Υb (α13) Υb (α23)
. (2.12)

Here and in the following, the constant Υ0
b is given by Υ0

b = Υ′
b (0). Furthermore, the

parameters α123 and αij are certain linear combinations of αj ,

α123 = α1 + α2 + α3 , α12 = α1 + α2 − α3 etc.

The solution (2.12) was first proposed by H. Dorn and H.J. Otto [18] and by A. and

Al. Zamolodchikov [19], based on extensive earlier work by many authors (see e.g. the
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reviews [15, 16, 20] for references). Full crossing symmetry of the conjectured 3-point

function was established much later in two steps by Ponsot and Teschner [21] and by

Teschner [15, 22]. The proof of consistency of the DOZZ structure constants for Liouville

field theory was completed recently by establishing modular invariance of 1-point functions

on a torus [23].

2.2 N=1 Liouville field theory

N=1 supersymmetric Liouville field involves one real superfield that contains a real bosonic

scalar ϕ, the two components ψ and ψ̄ of a Majorana fermion and an auxiliary field F .

After integrating out the latter and fixing the world-sheet metric, the action of N=1 super

Liouville field theory takes the form

SSL[ϕ, ψ] =
1

2π

∫

d2z
[

∂ϕ∂̄ϕ+ ψ∂̄ψ + ψ̄∂ψ̄
]

+ 2iµb2
∫

d2zψψ̄ebϕ , (2.13)

The background charge for the boson ϕ is related to the parameter b by Q = b + 1/b.

As in the case of bosonic Liouville field theory, the supersymmetric cousin is obtained by

perturbing a free field theory, namely the product of a linear dilaton with a 2-dimensional

Ising model. The spectrum of the Ising model contains six conformal blocks including the

identity field, the two components ψ and ψ̄ of the fermion and the energy density ψψ̄,

which are all part of the Neveu-Schwarz (NS) sector. In addition, there are two blocks in

the Ramond (R) sector. These are generated from the spin field ς+ = σ and the so-called

disorder field ς− = µ. After multiplication with the linear dilator, the model contains an

N=1 super-conformal symmetry with central charge cSL = 3
2(1 + 2Q2). The holomorphic

half of this symmetry is generated by modes of the following fields

T (z) = −1

2

(

(∂ϕ)2 −Q∂2ϕ+ ψ∂ψ
)

, G(z) = −i(ψ∂ϕ−Q∂ψ) . (2.14)

Anti-holomorphic fields can be constructed similarly. The interacting theory has been

solved soon after the DOZZ proposal had been put out, see [24, 25]. Vertex operators in

the NS sector are super-descendants of

φα(z) =: expαϕ(z, z̄) : with ∆α = α(Q− α)/2 = ∆̄α (2.15)

The 2-point function of these NS primary fields takes the form

〈φα2(z2)φα1(z1)〉 = |z12|−4∆α12π [δ(α1 + α2 −Q) + δ(α2 − α1)DNS(α1)] , (2.16)

with

DNS(α) = −
(

µπγ

(

bQ

2

))
Q−2α

b Γ
(

b
(

α− Q
2

))

Γ
(

1
b

(

α− Q
2

))

Γ
(

−b
(

α− Q
2

))

Γ
(

−1
b

(

α− Q
2

)) . (2.17)

Whereas the first term in eq. (2.16) is fixed by normalization, the second term involving

DNS contains dynamical information on the phase shift of tachyonic modes upon reflection

off the Liouville wall.
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To spell out the 3-point functions of the model we need to build two new special

functions from the Υ-function we introduced in the previous subsection, see eq. (2.9).

These are given by

ΥNS
b (x) = Υb

(x

2

)

Υb

(

x+Q

2

)

, ΥR
b (x) = Υb

(

x+ b

2

)

Υb

(

x+ b−1

2

)

. (2.18)

Properties of these new functions can easily be derived from the properties of Υb we listed

above. In particular, we note that the functions ΥNS
b and ΥR

b possess the following behavior

under shifts of their argument,

ΥNS
b (x+ b) = b−bxγ

(

1

2
+
bx

2

)

ΥR
b (x) , ΥR

b (x+ b) = b1−bxγ

(

bx

2

)

ΥNS
b (x) , (2.19)

ΥNS
b

(

x+
1

b

)

= b
x
b γ

(

1

2
+
x

2b

)

ΥR
b (x) , ΥR

b

(

x+
1

b

)

= b−1+x
b γ
( x

2b

)

ΥNS
b (x) . (2.20)

The functions ΥNS
b ,ΥR

b suffice to state the 3-point structure constants of the NS sector,

〈φα3(z3)φα2(z2)φα1(z1)〉 =
CNS(α3, α2, α1|b)

|z12|2h12 |z13|2h13 |z23|2h23
(2.21)

〈φα3(z3)φ̃α2(z2)φα1(z1)〉 =
C̃NS(α3, α2, α1|b)

|z12|2h12+1|z13|2h13−1|z23|2h23+1
(2.22)

where φ̃α = {G− 1
2
, [Ḡ− 1

2
, φα]}, and

CNS(α3, α2, α1|b)=
1

2

[

πµ

2bb2−1
γ

(

Qb

2

)]

Q−α123
b Υ0

b Υ
NS
b (2α1)Υ

NS
b (2α2)Υ

NS
b (2α3)

ΥNS
b (α123 −Q)ΥNS

b (α12)ΥNS
b (α23)ΥNS

b (α13)

(2.23)

C̃NS(α3, α2, α1|b) = i

[

πµ

2bb2−1
γ

(

Qb

2

)]

Q−α123
b Υ0

b Υ
NS
b (2α1)Υ

NS
b (2α2)Υ

NS
b (2α3)

ΥR
b (α123 −Q)ΥR

b (α12)ΥR
b (α23)ΥR

b (α13)

Any 3-point function of descendent fields can be written in terms of the correlator (2.21)

or (2.22) and 3-point blocks which are completely determined by the super-conformal Ward

identities (see e.g. [26]).

Let us now turn to the R sector of the model. As we recalled before, the 2-dimensional

Ising model possesses two local fields of conformal weight ∆ = 1/16 = ∆̄ which we denoted

by ς+ = σ and ς− = µ, see chapter 12 of [27] for more details. Using these spin fields, we

can define the following two vertex operators in the R sector of N=1 Liouville theory

Σ±
α (z) = ς±(z, z̄) : eαϕ(z,z̄) : with ∆R

α =
1

2
α(Q− α) +

1

16
= ∆̄R

α . (2.24)

Our conventions are the same as in [25, 29] and they imply

G0Σ
±
α (z) = iβe∓i

π
4 Σ∓

α (z), Ḡ0Σ
±
α (z) = −iβe±iπ4 Σ∓

α (z), β =
1√
2

(

Q

2
− α

)

. (2.25)
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The 2-point functions of the vertex operators Σǫα possess the following form

〈Σ±
α2
(z2)Σ

±
α1
(z1)〉 = |z12|−4∆α1−

1
4 2π [δ(α1 + α2 −Q)± δ(α2 − α1)DR(α1)] (2.26)

with a reflection coefficient given by

DR(α) =

(

µπγ

(

bQ

2

))
Q−2α

b Γ
(

1
2 + b

(

α− Q
2

))

Γ
(

1
2 + 1

b

(

α− Q
2

))

Γ
(

1
2 − b

(

α− Q
2

))

Γ
(

1
2 − 1

b

(

α− Q
2

)) . (2.27)

Let us also provide explicit expressions for the 3-point functions involving two RR fields.

These were determined in [24, 25, 30] and we shall simply quote the results along with all

the necessary notations,

〈φα3(z3)Σ
±
α2
(z2)Σ

±
α1
(z1)〉 =

C±
R (α3;α2, α1|b)

|z12|2∆12+
1
4 |z23|2∆23 |z13|2∆13

. (2.28)

The structure constants C±
R are constructed from the special functions ΥNS and ΥR as

follows,

C±
R (α3;α2, α1|b) =

1

2

[

µπ

2
γ

(

bQ

2

)

b1−b
2

]

Q−α123
b Υ0

b Υ
R
b (2α1)Υ

R
b (2α2)Υ

NS
b (2α3)

ΥR
b (α123 −Q)ΥR

b (α12)ΥNS
b (α23)ΥNS

b (α13)

(2.29)

±1

2

[

µπ

2
γ

(

bQ

2

)

b1−b
2

]

Q−α123
b Υ0

b Υ
R
b (2α1)Υ

R
b (2α2)Υ

NS
b (2α3)

ΥNS
b (α123 −Q)ΥNS

b (α12)ΥR
b (α23)ΥR

b (α13)
.

Crossing symmetry of 4-point functions in the NS sector of N=1 Liouville theory with

structure constants (2.23) and (2.29) was first checked numerically, see [31, 32], and later

proved analytically in [33, 34] using braiding and fusion properties of the 4-point blocks.

In the case of 4-point functions containing R fields, crossing symmetry of N=1 Liouville

theory was verified numerically in [35]. The first step necessary for an analytic proof was

presented in [36] where braiding properties of the 4-point blocks were derived.

3 Imaginary Liouville theory

Before we can state the main results of this work, we need one more ingredient, namely a

version of Liouville field theory with central charge c ≤ 1. In contrast to the models we

described in the previous section, the status of the theory we are about to discuss is less

clear. In particular, the issue of crossing symmetry has not been settled. We shall begin

our exposition with a few historical comments in the first subsection. Then we continue

by listing the proposed structure constants without much further discussion.

3.1 Some comments on history

In usual Liouville theory, the parameter b is taken to be real so that the corresponding

central charge c ≥ 25. The explicit expressions for 2- and 3-point functions admit analytic

– 7 –
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continuation to complex values of b with a non-vanishing real part. Formally, the central

charge takes values 1 < c in this regime. Purely imaginary values of b have been a subject of

several previous studies mostly because such values are relevant for time-like Liouville field

theory and tachyon condensation in string theory, see e.g. [37–43] and further references in

the more recent papers.

At least for b = i, it is possible to define the theory by taking a limit starting with

b = ǫ+ i. The resulting theory has central charge c = 1 and it agrees with a certain limit

of unitary minimal models. This limit was shown to satisfy crossing symmetry [44]. It is

likely that similar limits can be taken for other purely imaginary values of b. But even if

such limits describe consistent local quantum theories, they would at most be defined for

a discrete set of b-parameters.

There is an alternative approach to defining Liouville theory for imaginary b, i.e. for

c ≤ 1. In order to describe how this works, let us recall a few facts about the usual con-

struction of the 3-point couplings in Liouville field theory. The main idea is to evaluate

crossing symmetry for 4-point functions with three physical and one degenerate field in-

sertions. The operator product of a physical with a degenerate field involves a finite set of

terms whose coefficients can be computed in free field theory. More precisely, if we take

the degenerate field to be V−b±1/2, then the 4-point function must satisfy a second order

differential equation and hence only two terms can possibly arise on the left hand side of

the operator product, e.g.

Vα(w, w̄)V−b/2(z, z̄) =
∑

±

c±b (α)

|z − w|h± Vα∓b/2(z, z̄) + . . . (3.1)

where h± = ∓bα +Q(−b/2∓ b/2). A similar expansion for the second degenerate field is

obtained by replacing b→ b−1. We can even be more specific about the operator expansions

of degenerate fields because the coefficients c± may be determined through a simple free

field computation in the linear dilaton background. One finds that

c−b (α) = −µL
∫

d2z 〈V−b/2(0, 0)Vα(1, 1)Vb(z, z̄)VQ−b/2−α(∞,∞) 〉LD

= −µLπ
γ(1 + b2) γ(1− 2bα)

γ(2 + b2 − 2bα)
(3.2)

see [16] for more details. The result in the second line is obtained using the explicit

integral formulas that were derived by Dotsenko and Fateev. The corresponding field

is then degenerate and it possesses an operator product consisting of two terms only.

Teschner’s trick converts the crossing symmetry condition into a much simpler algebraic

condition. Moreover, since we have already computed the coefficients of operator products

with degenerate fields, the crossing symmetry equation is in fact linear in the unknown

generic 3-point couplings. One component of these conditions for the degenerate field

V−b/2 reads as follows

0 = CL

(

α1 +
b

2
, α3, α4

)

c−b (α1)P−−
+− + CL

(

α1 −
b

2
, α3, α4

)

c+b (α1)P++
+− , (3.3)

where P±±
+− = Fα1∓b/2,α3−b/2 [

− b
2
α3

α1α4
]Fα1∓b/2,α3+b/2 [

− b
2
α3

α1α4
] . (3.4)
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Note that the combination on the right hand side must vanish because in a consistent

model, the off-diagonal bulk mode (α4 − b/2, α4 + b/2) does not exist and hence it cannot

propagate in the intermediate channel. The required special entries of the Fusing matrix

can be expressed through a combination of Γ functions. Once the expressions for c± and

P are inserted (note that they only involve Γ functions), the crossing symmetry condition

may be written as follows,

CL(α1 + b, α2, α3)

CL(α1, α2, α3)
= − γ(b(2α1 + b))γ(2bα1)

πµLγ(1 + b2)γ(b(α123 −Q))

γ(b(α23 − b))

γ(bα13)γ(bα12)
(3.5)

with γ(x) = Γ(x)/Γ(1 − x), as before. The constraint takes the form of a shift equation

that describes how the coupling changes if one of its arguments is shifted by b. Using

the symmetry b ↔ b−1 we obtain a second shift equation that encodes how the 3-point

couplings behave under shifts by b−1. For irrational values of b, the two shift equations

determine the couplings completely, at least if we require that they are analytic in the

momenta. The unique solution turns out to be analytic in b as well so that it may be

extended to all real values of the parameter b.

We are now prepared to take a fresh look at the problem of constructing imaginary

Liouville theory. While the structure constants (2.12) are not analytic in b so that their

extension to imaginary b (or c ≤ 1) may be ill-defined, the coefficients of the shift equa-

tion (3.5) involve only Γ functions so that a continuation to imaginary values of b is straight

forward. If we postulate that the 3-point couplings of imaginary Liouville theory are ana-

lytic in the parameters αi and exists for all c ≤ 1, then there is again a unique solution [14].

We shall describe this solution in the following subsection.

3.2 Zamolodchikov’s solution

Imaginary Liouville theory may be thought of as a model whose action is formally given by

SL[X̂] =
1

4π

∫

Σ
d2σ

√
γ
(

−γab∂aX̂∂bX̂ +RQ̂X̂ + 4πµLe
−2b̂X̂

)

(3.6)

One can obtain it the usual action of ordinary Liouville theory by the formal replacements

X → −iX̂, b→ −ib̂ and Q→ iQ̂. Vertex operators in this model take the form

Vα̂(z) =: e2âX̂(z,z̄) with ĥα̂ = −α̂(Q̂− α̂) = ˆ̄hα̂ . (3.7)

They are obtained from the vertex operators of ordinary Liouville theory if we replace α by

α→ −α̂. For conformal invariance, the parameter Q̂ must be adjusted to the parameter b̂

such that

Q̂ = b̂−1 − b̂ . (3.8)

In terms of these parameters, the central charge of the Virasoro algebra is now given by

cL = 1− 6Q̂2.

As we have argued in the previous subsection, it is somewhat natural to introduce the

3-point coupling of this imaginary Liouville theory such that it the shift equation (3.5) is

satisfied. In terms of the real parameters α̂ and b̂, the shift equation reads

CL(α̂1 − b̂, α̂2, α̂3)

CL(α̂1, α̂2, α̂3)
= − γ(b̂(2α̂1 − b̂))γ(2b̂α̂1)

πµLγ(1− b̂2)γ(b̂(α̂123 − Q̂))

γ(b̂(α̂23 + b̂))

γ(b̂α̂13)γ(b̂α̂12)
. (3.9)
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Here we have simply carried out the substitutions we listed after eqs. (3.6) and (3.7). If

we shift α̂1 by β̂ and invert the relation we obtain,

CL(α̂1 + b̂, α̂2, α̂3)

CL(α̂1, α̂2, α̂3)
= − πµLγ(b̂(α̂123 − b̂−1 + 2b̂))

γ(b̂2)γ(b̂(2α̂1))γ(2b̂(α̂1 + b̂))

γ(b̂(α̂13 + b̂))γ(b̂(α̂12 + b̂))

γ(b̂α̂23)
. (3.10)

Note that all the factors that depend on linear combination of the variables α̂i are the same

as in eq. (3.5), except for a simple shift by b̂. Factors depending on α1 are not universal

since they are effected by the normalization of vertex operators. Following [14] we fix the

normalization such that

〈Vα̂(z2)Vα̂(z1)〉 = |z12|−4hα̂G(α̂) ,

G(α̂) =
(

πµLγ(−b̂2)
)

2α̂

b̂ γ(2α̂b̂+ b̂2) γ(2− b̂−2)

γ(2 + 2α̂b̂−1 − b̂−2) γ(b̂2)
.

The expression on the left hand side is obtained from the second term in eq. (2.4) by

our standard substitutions. Once this normalization is adopted, the associated 3-point

couplings take the form

CL(α̂3, α̂2, α̂1|b̂) =
(

πµLγ
(

−b̂2
))

α̂123
b̂ b2(b+b

−1)(α̂123+b̂−
1

b̂
)
γ
(

2− b̂−2
)

γ
(

b̂2
) b̂2 (3.11)

×
Υb̂

(

α̂123 − b̂−1 + 2b̂
)

Υb̂

(

α̂12 + b̂
)

Υb̂

(

α̂23 + b̂
)

Υb̂

(

α̂13 + b̂
)

Υ0
b̂
Υb̂

(

2α̂1 + b̂
)

Υb̂

(

2α̂2 + b̂
)

Υb̂

(

2α̂3 + b̂
) .

It is easy to check that these structure constants solve the shift equations (3.10), though

with a different α1-dependent prefactor. This concludes our presentation of imaginary

Liouville theory.

4 Bosonization of N=1 Liouville field theory

It is well known [27] that a certain orbifold of the product of two real fermions can be

bosonized, i.e. it is equivalent to a compactified free boson with compactification radius

R = 1. We will now show that a similar bosonization exists for an orbifold of the product

of N=1 Liouville field theory with a free fermion η. In this case, the bosonic description

involves two Liouville fields, one with real and the other with imaginary parameter b. This

relation was first conjectured in [1] for the Neveu-Schwarz sector of the supersymmetric

Liouville field theory. We will extend the correspondence to the Ramond sector and perform

extensive tests for a number of local 3-point functions.

4.1 Product of N=1 Liouville and a fermion

Before we discuss the product of N=1 Liouville theory and a free fermion η, let us briefly

review a few things about a product of fermions. As before, we shall denote one of our
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fermions by ψ, ψ̄ and the other by η, η̄. Both ψ and η are assumed to possess the same

standard operator product, i.e.

ψ(z)ψ(w) ∼ 1

z − w
, η(z)η(w) ∼ 1

z − w
.

While the first fermion ψ is assumed to be real, i.e. ψ† = ψ∗ = ψ, we will modify the

usual conjugation for η such that η† = −η. In this sense, the fermion η may be considered

imaginary. Note that the usual conjugation η∗ = η differs from the conjugation † by a

simple automorphism of the fermionic theory. In fact, the map η → −η preserves the

operator product of the fermion η. While the algebraic properties of the two fermions are

identical, we will use a different bilinear form on their state spaces, one that preserves

† rather than the usual ∗. As one can easily see, this form is indefinite. Our choice

will be motivated a posteriori through the relation with double Liouville theory (see next

subsection). Alternatively, one may observe that an imaginary fermion η emerges naturally

in the reduction from the OSP(1|2) WZW model to N=1 Liouville field theory (see formula

(2.17) of [2]).

The theory of a single fermion possesses six conformal primaries, namely the identity,

the fermion fields, the energy density and two spin fields. The latter will be denoted by ς±

and σ± for fermions ψ and η, respectively. In order to fix our conventions for σ±, let us

state the analogue of the relations (2.25)

η0σ
± =

1√
2
e∓i

π
4 σ∓, η̄0σ

± =
1√
2
e±i

π
4 σ∓ . (4.1)

Here, η0 and η̄0 denote the zero modes of the fermionic fields η and η̄, respectively. Due

to the conjugation rules of the fermion, i.e. η†−n = −ηn and η̄†−n = −η̄n, the norms of the

R fields satisfy 〈σ−|σ−〉 = −〈σ+|σ+〉. Hence, one of the states |σ±〉 has negative norm.

Coming back to the product theory between the fermion ψ and η, we note that it

contains a closed subset of even local fields given by

1 , ψψ̄ , ψη , ψη̄ , ψ̄η , ψ̄η̄ , ηη̄ , ψψ̄ηη̄ ; r± =
1

2
(ς+σ+ ± ς−σ−) . (4.2)

The associated conformal blocks give rise to a modular invariant partition function

Zfermion(q, q̄) = |χ(0,0) + χ( 1
2
, 1
2
)|2 + |χ(0, 1

2
) + χ( 1

2
,0)|2 + 2|χ( 1

16
, 1
16

)|2 (4.3)

where χ(h,h′) = χ1
hχ

2
h′ are the characters of c = 1/2 Virasoro representations with lowest

weight h = hψ and h′ = h′η. All the fields that are included in Zfermion can be bosonized

through a single bosonic field Y at compactification radius R = 1 [27]. The exponential

fields exp(ikY ) possess a rather simple expression in terms of χ = ψ + iη along with the

two spin fields r± we introduced in eq. (4.2). For k ∈ Z and k ≥ 0 one finds

:eikY : = :
k−1
∏

i=0

1

k!
∂(i)χ ∂̄(i)χ̄ : . (4.4)
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When k ∈ Z+ 1
2 we need to use the spin fields r±. For k ≥ 1/2 one has

:eikY : = :r+
k−1/2
∏

i=1

1

k!
∂(i)χ ∂̄(i)χ̄ : . (4.5)

We shall now replace the first fermion by N=1 Liouville field theory with a Liouville

field ϕ and a fermion ψ. The total central charge of our product theory is

c = cSL +
1

2
= 2 + 3

(

b+
1

b

)2

= 8 + 3b2 + 3b−2 . (4.6)

In our construction of fields we restrict to the even ones, just as for the free fermion model

we described above. For k = 0, 1/2, 1, 3/2, . . . we set

Φ(k)
α (z, z̄) =: exp (αϕ(z, z̄) + ikY (z, z̄)) : . (4.7)

The fields Φ
(k)
α differ from those introduced in [1] by their normalization (see also com-

ments below). For negative k = −1/2,−1,−3/2, . . . we introduce Φ
(k)
α through the simple

prescription

Φ(k)
α (z, z̄) = Φ

(−k)
Q−α(z, z̄) = : exp ((Q− α)ϕ(z, z̄)− ikY (z, z̄)) : . (4.8)

Up to the normalization we mentioned before, the fields Φ
(−|k|)
α also agree with those defined

in [1]. The conformal weight of Φ
(k)
α is given by

∆α +
k2

2
=

1

2
α(Q− α) +

k2

2
.

We note that fields with |k| ≤ 1/2 are primary with respect to the product of the N=1

super-conformal algebra and the free fermion η. These primary fields are given by Φ
(0)
α =

φα and

Φ
(− 1

2
)

α =
(

σ+Σ+
α − σ−Σ−

α

)

, Φ
( 1
2
)

α =
1

2i
χ0χ̄0Φ

(− 1
2
)

α =
(

σ+Σ+
α + σ−Σ−

α

)

. (4.9)

For all other values of k, the fields Φ
(k)
α are descendent fields. Our explicit computations

below will only involve the case of k = ±1,±3/2. Using the definition (4.7) and eq. (2.14)

one can rewrite the first few fields as descendants with respect to the super-conformal

algebra and the fermion η, see also [1],

|Φ(±1)
α 〉=Ω−2

±1(α)

[

G− 1
2
Ḡ− 1

2
+

(

Q

2
± P

)2

η− 1
2
η̄− 1

2
+

(

Q

2
± P

)

(

η− 1
2
Ḡ− 1

2
−η̄− 1

2
G− 1

2

)

]

|φα〉

|Φ(± 3
2
)

α 〉= χ−1χ̄−1|Φ
( 1
2
)

α 〉 = Ω−2
± 3

2

(α)

[

2

P 2
L−1G0L̄−1Ḡ0 + 2

(

Q

2
± P

)2

G−1Ḡ−1

+
√
2Ω± 3

2
(α)

(

Q

2
±P
)

(

η−1Ḡ−1−η̄−1G−1

)

±
√
2

P
Ω± 3

2
(α)

(

η−1L̄−1Ḡ0−η̄−1L−1G0

)

+Ω2
± 3

2

(α)η−1η̄−1 ±
2

P

(

Q

2
± P

)

(L−1G0Ḡ−1 +G−1L̄−1Ḡ0)

]

|Φ( 1
2
)

α 〉
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Here we wrote equations between states rather than fields by means of the usual state-

field correspondence. The variable P is related to α through α = Q/2 + P . Finally, the

pre-factor Ωk(α) is given by

Ωk(α) = n|k|

i+j=2|k|
∏

i, j = 1,

2|k| − i− j ∈ 2N

(

sign(k)(2α−Q) + ib+ jb−1
)

, (4.10)

where sign(k) = k/|k| denotes the sign of k when k 6= 0 and we set sign(0)=1. The first

two constants take the values

n1 = 2−1, n 3
2
= 2−

3
2 . (4.11)

There exists a straightforward but cumbersome algorithm that computes the numbers nk
for higher values of k. In [1], the factors Ωk were absorbed in the normalization of the

fields Φ
(k)
α .

4.2 Relation with double Liouville theory

We are now prepared to state the main result of this work. It relates the model described

in the previous subsection to a product of a Liouville field theory with c(1) ≥ 25 and an

imaginary Liouville theory with c(2) ≤ 1. We shall often refer to this product as double

Liouville theory. According to [1], the b-parameters of the two factors must be chosen as

b(1) =
2b√

2− 2b2
,

(

b̂(2)
)−1

=
2√

2− 2b2
. (4.12)

So that the central charge is

c = c
(1)
L + c

(2)
L = 2 + 6

(

b(1) +
1

b(1)

)2

− 6

(

b̂(2) − 1

b̂(2)

)2

= 8 + 3b2 + 3b−2 .

Note that the sum of central charges agrees with the central charge (4.6) of the model we

discussed in the previous subsection. Moreover, as was observed in [9–11], the two Virasoro

algebras of double Liouville theory can actually be reconstructed from the super-conformal

currents T and G along with the fermion η,

L(1)
n =

1

1− b2
Ln −

1 + 2b2

2− 2b2

∞
∑

r=−∞

r : ηn−rηr : +
b

1− b2

∞
∑

r=−∞

ηn−rGr,

L(2)
n =

1

1− b−2
Ln −

1 + 2b−2

2− 2b−2

∞
∑

r=−∞

r : ηn−rηr : +
b−1

1− b−2

∞
∑

r=−∞

ηn−rGr.

(4.13)

Similar formulas apply to the anti-holomorphic sector, of course. As anticipated in the

previous subsection, we now note that the familiar relation (L
(i)
n )† = L

(i)
−n requires † to act

as η†n = −η−n on the modes of the fermion η. In other words, the Virasoro modes in double

Liouville theory possess the usual conjugation rules provided that the modes Ln and Gn
do and we take η to be imaginary.
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Given such a close relation between their chiral algebras it seems natural to look for

relations between vertex operators. Following [1] let us introduce

V
(k)
α (z, z̄) = Vα(1)+kb(1)/2(z, z̄) Vα̂(2)+k/2b̂(2)(z, z̄) (4.14)

where 2k is an integer, α is a complex parameter and we defined

α(1) =
α√

2− 2b2
, α̂(2) =

bα√
2− 2b2

. (4.15)

The conformal dimension of the vertex operators (4.14) is easy to compute with the help

of the expressions (2.2) and (3.7) for conformal weights in (imaginary) Liouville theory,

h(α(1)+kb(1)/2) + ĥ(α̂(2)+k/2b̂(2)) = (α(1) + kb(1)/2)(Q(1) − α(1) − kb(1)/2)

−(α̂(2) + k/2b̂(2))(Q̂(2) − α̂(2) − k/2b̂(2)) =
1

2
α(Q− α) +

k2

2
.

These weights agree with the weights of the fields Φ
(k)
α we introduced in the previous

section. Hence, with proper normalization, the 2-point functions of the fields Φ
(k)
α and V

(k)
α

agree. In addition, it is not difficult to check that the fields Φ
(k)
α are primary with respect

to Virasoro algebras (4.13) of the Liouville field theory and its imaginary cousin. Given

these observations it is certainly tempting to contemplate that the relation

Φ(k)
α (z, z̄) = N (k)

α V
(k)
α (z, z̄) (4.16)

might hold in arbitrary correlation functions. Through comparison of 3-point functions we

shall provide very strong support in favor of this proposal. These computations determine

the normalization N (k)
α to take the form

N (k)
α = (−1)k Ñ (k)

α , (4.17)

when k ∈ N, i.e. in the NS sector of the theory, and

N (k)
α = 2

3
4 Ñ (k)

α , (4.18)

in R sector, i.e. when k takes the values k ∈ N+ 1
2 . The common factor Ñ (k)

α is given by

Ñ (k)
α =

[

πµLγ
(

(b(1))2
)](α(1)+ kb(1)

2
)/b(1)

[

πMγ
(

−(b̂(2))2
)]−(α̂(2)+ k

2b̂(2)
)/b̂(2)

n2k 2
k2
[

πµγ( bQ2 )
]

α
b
b−2k

(

1−b2

2

)
1
2
+2k

. (4.19)

The factors nk were introduced in eq. (4.11), at least for some special values of k. In order

to check that the fields Φ
(k)
α and V

(k)
α can be identified in all correlation functions, we must

verify that their 3-point functions agree,

̟(ki)κ(b)〈Φ(k3)
ᾱ3

Φ(k2)
α2

Φ(k1)
α1

〉 = N (k3)
ᾱ3

N (k2)
α2

N (k1)
α1

〈V(k3)
ᾱ3

V
(k2)
α2

V
(k1)
α1

〉 , (4.20)

at least up to some constant κ(b) that can be absorbed through an appropriate normal-

ization of the vacuum state, see eq. (4.22) for a concrete formula. The factors ̟ will be

– 14 –



J
H
E
P
1
2
(
2
0
1
2
)
0
2
0

shown to satisfy ̟4 = 1. Given the complexity of the fields Φ(k), checking eq. (4.20) is a

rather non-trivial task. We are not prepared to establish the relation (4.20) for all possible

3-point functions, but we have performed a number of highly non-trivial tests. These are

described in the next subsection. A proof of the simplest example involving NS sector

fields only was sketched in [1]. A closely related observation was made earlier in [28] for

the special value b = i, see eq. (13) of that paper.

4.3 Comparison of 3-point functions

Our goal is to check relation (4.16) in a few selected examples, involving both NS and R

sector fields and also super-descendent fields. Most computations are somewhat lengthy

but in principle straight forward to carry out.

4.3.1 NS sector

In our first example, we take all three fields of the N=1 Liouville theory to be super-

primaries in the NS sector. These are multiplied with the identity field of the free fermion

theory, i.e. we consider a 3-point correlator with Φ
(k)
α = Φ

(0)
α = φα. Since we have checked

already that the conformal dimensions on both sides of the correspondence (4.16) match,

we shall put the fields at the points z3 = ∞, z2 = 1 and z1 = 0 so that we can omit all

dependence on world-sheet coordinates. The 3-point function of Φ
(0)
α is given by

〈Φ(0)
ᾱ3

Φ(0)
α2

Φ(0)
α1

〉 = CNS(α3, α2, α1|b)

with CNS as given in equation (2.23). We will use the notation ᾱi ≡ Q − αi for reflected

momentum of the fields located at infinity. The other side of the correspondence (4.16) is

given by

〈V(0)
ᾱ3

V
(0)
α2

V
(0)
α1

〉 = CL(α
(1)
3 , α

(1)
2 , α

(1)
1 |b(1))CL(α̂

(2)
3 , α̂

(2)
2 , α̂

(2)
1 |b̂(2)).

The arguments α
(ν)
i and b(ν) that appear in the arguments of the structure constants were

introduced in eqs. (4.15) and (4.12). Explicit expressions for the structure constants can

be found in eqs. (2.12) and (3.11). Using the identities

Υb(1)
(

α(1)
)

Υb̂(2)

(

α̂(2) + b̂(2)
) = B(α)ΥNS

b (α), (4.21)

where

B(α) =
Υ0
b(1)

Υ0
b̂(2)

Υ0
b

b
b2α(Q−α)

2−2b2

(

1− b2

2

)

α(Q−α)−2
4

,

stated in (A.9) of [1], one can check that

CL(α
(1)
3 , α

(1)
2 , α

(1)
1 |b(1))CL(α̂

(2)
3 , α̂

(2)
2 , α̂

(2)
1 |b̂(2)) = A1CNS(α3, α2, α1|b)

with

A1 =
2
(

πµLγ
(

2b2

1−b2

))
Q−α
2b
(

πMγ
(

b2−1
2

))
ba

1−b2 γ
(

−2b2

1−b2

)

γ
(

b2+1
2

)

(

(πµ
2

)

γ
(

b2+1
2

))
Q−α

b
(

2
1−b2

)
3
2

.
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Comparison of this α-dependent factor with the product of the three normalizations N (0)
αi

we introduced in the previous subsection gives

N (0)
ᾱ3

N (0)
α2

N (0)
α1
A1 = κ(b) .

The function κ(b) depends on the parameter b, but it is independent of the labels αi.

Explicitly, it is given by

κ(b) =
2
[

πµLγ
(

(b(1))2
)]

Q(1)

b(1)

[

πµγ( bQ2 )
]

Q
b

γ

( −2b2

1− b2

)

γ

(

b2 + 1

2

)

. (4.22)

In conclusion, we have established eq. (4.20) for ki = 0 with ̟(0, 0, 0) = 1.

Let us now proceed to the next and slightly more complicated example of the rela-

tion (4.16) in which at least one of the vertex operators involves super-descendants in the

N=1 Liouville field. More specifically, let us insert one of the operators Φ
(±1)
α along with

two of the operators Φ
(0)
α . Looking back at the explicit formulas we spelled out at the end

of section 4.1, we observe that only the second term from these expressions can contribute

since 〈η〉 = 〈η̄〉 = 〈ηη̄〉 = 0. Hence we obtain

〈Φ(0)
ᾱ3

Φ(1)
α2

Φ
(0)
ᾱ1

〉 = Ω−2
1 (α2)〈φᾱ3G− 1

2
Ḡ− 1

2
φα2φα1〉 = α−2

2 C̃NS(α3, α2, α1|b)

where the evaluation of the correlator in the N=1 Liouville theory uses the structure

constants (2.23). On the other side of our correspondence (4.16) one finds

〈V(0)
ᾱ3

V
(1)
α2

V
(0)
α1

〉 = CL(α
(1)
3 , α

(1)
2 +

b(1)

2
, α

(1)
1 |b(1)) CL(α̂

(2)
3 , α̂

(2)
2 +

1

2b̂(2)
, α̂

(2)
1 |b̂(2))

If we insert the explicit formulas (2.12) and (3.11) for the structure constants CL and CL

along with the shift properties (2.6) and the identity

ΥR(α) =
bbα

γ
(

bα+1
2

) ΥNS(α+ b) = B−1(α+ b)
bbα

(

1−b2

2

)
bα
2

Υb(1)

(

α(1) + b(1)

2

)

Υb̂(2)

(

α̂(2) + 1
2b̂(2)

+ b̂(2)
) (4.23)

where B(α) is the function defined after eq. (4.21), we can check that

CL

(

α
(1)
3 , α

(1)
2 +

b(1)

2
, α

(1)
1 |b(1)

)

CL

(

α̂
(2)
3 , α̂

(2)
2 +

1

2b̂(2)
, α̂

(2)
1 |b̂(2)

)

= A2 C̃NS (α3, α2, α1|b)

equation where A2 are given by

A2 = −

(

πµLγ
(

2b2

1−b2

))
Q−α−b

2b
(

πMγ
(

b2−1
2

))
ba+1
1−b2 γ

(

−2b2

1−b2

)

γ
(

b2+1
2

)

i
(

(πµ
2

)

γ
(

b2+1
2

))
Q−α

b
b2
(

2
1−b2

)
7
2
α2
2

.
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As in the previous subsection, it is not difficult to see that the functions A2 may be

factorized into a product of three α-dependent factors N , i.e.

N (0)
ᾱ3

N (1)
α2

N (0)
α1
A2 = iκ(b)α−2

2 .

The constant κ(b) was introduced in eq. (4.22) above. Combining these results we conclude

that eq. (4.20) also holds for k1 = k3 = 0 and k2 = 1 with the same constant κ(b) as in the

previous computation and ̟(0, 1, 0) = i.

As a final check for fields from the NS sector we want to consider a correlation function

in which two fields have k = 1,

〈Φ(0)
ᾱ3

Φ(1)
α2

Φ(1)
α1

〉 = Ω−2
1 (α1)Ω

−2
1 (α2)

×
(

(

Q

2
+P1

)2(Q

2
+P2

)2

〈φα3 η− 1
2
η̄− 1

2
φα2 η− 1

2
η̄− 1

2
φα1〉+〈φα3 G− 1

2
Ḡ− 1

2
φα2 G− 1

2
Ḡ− 1

2
φα1〉

+

(

Q

2
+P1

)(

Q

2
+P2

)

(

〈φα3 η− 1
2
Ḡ− 1

2
φα2 η− 1

2
Ḡ− 1

2
φα1〉+〈φ3 η̄− 1

2
G− 1

2
φ2 η̄− 1

2
G− 1

2
φ1〉
)

)

It can be reduced to the basic structure constants with the help of the super-conformal

Ward identities [26]

〈ϕ3Gkϕ2(z, z̄)ϕ1〉 =

k+ 1
2

∑

m=0

(

k+ 1
2

m

)

(−z)m (〈Gm−kϕ3 ϕ2(z, z̄)ϕ1〉

−ǫ 〈ϕ3 ϕ2(z, z̄)Gk−mϕ1〉) , k > − 1
2
,

〈ϕ3G−kϕ2(z, z̄)ϕ1〉 =
∞
∑

m=0

(

k− 3
2
+m
m

)

zm〈Gk+mϕ3 ϕ2(z, z̄)ϕ1〉

− ǫ(−1)k+
1
2

∞
∑

m=0

(

k− 3
2
+m
m

)

z−k−m+ 1
2 〈ϕ3 ϕ2(z, z̄)Gm− 1

2
ϕ1〉, k > 1

2
,

〈G−kϕ3 ϕ2(z, z̄)ϕ1〉 = ǫ〈ϕ3 ϕ2(z, z̄)Gkϕ1〉+
l(k− 1

2
)

∑

m=−1

(

k+1/2
m+1

)

zk−
1
2
−m〈ϕ3Gm+ 1

2
ϕ2(z, z̄)ϕ1〉

where ǫ denotes the parity of the field ϕ2 and l(n) = n for n + 1 ≥ 0 while l(n) = ∞ for

n+ 1 < 0. The result reads

〈Φ(0)
ᾱ3

Φ(1)
α2

Φ(1)
α1

〉 = Ω−2
1 (α1)Ω

−2
1 (α2)

(

(

Q

2
+ P1

)2(Q

2
+ P2

)2

+ (∆3 −∆2 −∆1)
2

+2

(

Q

2
+ P1

)(

Q

2
+ P2

)

(∆3 −∆2 −∆1)

)

CNS (α3, α2, α1|b)

=

(

Q
2 + P1 + P2 − P3

)2 (
Q
2 + P1 + P2 + P3

)2

4α2
1 α

2
2

CNS (α3, α2, α1|b) .
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On the other side we find

〈V(0)
ᾱ3

V
(1)
α2

V
(1)
α1

〉

= CL

(

α
(1)
3 , α

(1)
2 +

b(1)

2
, α

(1)
1 +

b(1)

2
|b(1)

)

CL

(

α̂
(2)
3 , α̂

(2)
2 +

1

2b̂(2)
, α̂

(2)
1 +

1

2b̂(2)
|b̂(2)

)

As before, comparing structure constants and using eqs. (4.21) and (4.23) we can check

that

CL

(

α
(1)
3 , α

(1)
2 +

b(1)

2
, α

(1)
1 +

b(1)

2
|b(1)

)

CL

(

α̂
(2)
3 , α̂

(2)
2 +

1

2b̂(2)
, α̂

(2)
1 +

1

2b̂(2)
|b̂(2)

)

= A3CNS(α3, α2, α1|b)

where

A3 =

(

πµLγ
(

2b2

1−b2

))

Q−α123−2b
2b

(

πMγ
(

b2−1
2

))

bα123+2

1−b2 γ
(

−2b2

1−b2

)

γ
(

b2+1
2

)

(

(πµ
2

)

γ
(

b2+1
2

))

Q−α123
b

×2b−4

(

2

1− b2

)− 11
2

(2α2)
−2(2α1)

−2 (α1 + α2 − α3)
2 (α1 + α2 + α3 −Q)2.

Thus we have

N (0)
ᾱ3

N (1)
α2

N (1)
α1
A3 = κ(b)

(

Q
2 + P1 + P2 − P3

)2 (
Q
2 + P1 + P2 + P3

)2

4α2
2 α

2
1

.

Once more we have established an instance of eq. (4.20), this time for k3 = 0 and k1 =

k2 = 1. The constant factor κ(b) is given by the same expression as in the previous two

cases and ̟(0, 1, 1) = 1.

4.3.2 R sector

So far we have only looked at operators Φ
(k)
α with k ∈ Z that involve fields from the NS

sector of theN=1 Liouville field theory. The correspondence (4.16) we have formulated also

involves fields from the R sector. These appear for values k ∈ Z+ 1
2 . Actually, correlators

of fields in the R sector have been one of the crucial motivations for this work, see next

section. Therefore, we would like to perform a few tests involving Φ
(k)
α with k ∈ Z+ 1

2 .

The simplest possible 3-point function involving R sector fields is the correlation func-

tion

〈Φ(0)
α3

Φ
(± 1

2
)

α2 Φ
(± 1

2
)

α1 〉 = 〈φα3 σ
+
2 Σ

+
α2
σ+1 Σ

+
α1
〉+ 〈φα3 σ

−
2 Σ

−
α2
σ−1 Σ

−
α1
〉 (4.24)

involving two fields from the R sector along with one from the NS sector. The primary

fields Σ±
α of the N=1 Liouville field theory are accompanied by the spin fields σ± of the

free fermion. We added a subscript to these fields in order to keep track of the insertion

points. The fields σ±2 and σ±1 are inserted at z = 1 and z = 0, respectively. The field

inserted at z = ∞ involves the identity field of the free fermion model. Hence, for the

– 18 –



J
H
E
P
1
2
(
2
0
1
2
)
0
2
0

3-point function we consider, we only need to insert 2-point functions of the free fermion

model. In passing from the left hand side of eq. (4.24) we have inserted the definition

of Φ
(± 1

2
)

α and we used that 〈σ±2 σ∓1 〉 = 0. Assuming that σ± have been normalized, the

remaining 2-point functions are 〈σ±2 (1)σ±1 (0)〉 = ±1 so that we obtain

〈Φ(0)
ᾱ3

Φ
(± 1

2
)

α2 Φ
(± 1

2
)

α1 〉 = 〈φᾱ3 Σ
+
α2
Σ+
α1
〉+ 〈φᾱ3 Σ

−
α2
Σ−
α1
〉 = 2C

(+)
R (α3;α2, α1|b). (4.25)

The relevant correlation functions in N=1 Liouville field theories were spelled out after

eq. (2.28). With their help we find

C
(+)
R (α3;α2, α1|b) =

1

2

(

C+
R (α3, α2;α1|b) + C−

R (α3;α2, α1|b)
)

=
1

2

(

πµ

2
γ

(

Qb

2

)

b1−b
2

)

Q−α123
b Υ0

b Υ
R
b (2α1)Υ

R
b (2α2)Υ

NS
b (2α3)

ΥR
b (α123 −Q)ΥR

b (α12)ΥNS
b (α23)ΥNS

b (α13)

Similarly, we can compute

〈Φ(0)
ᾱ3

Φ
( 1
2
)

α2 Φ
(− 1

2
)

α1 〉 = 2C
(−)
R (α3;α2, α1|b) (4.26)

where

C
(−)
R (α3;α2, α1|b) =

1

2

(

C+
R (α3;α2, α1|b)− C−

R (α3;α2, α1|b)
)

=
1

2

(

πµ

2
γ

(

Qb

2

)

b1−b
2

)

Q−α123
b Υ0

b Υ
R
b (2α1)Υ

R
b (2α2)Υ

NS
b (2α3)

ΥNS
b (α123 −Q)ΥNS

b (α12)ΥR
b (α23)ΥR

b (α13)

On the other hand we can compute the 3-point functions of the corresponding fields in

double Liouville theory. Using the explicit formulae (2.12) and the relations (4.21), (4.23)

one may check that

〈V(0)
ᾱ3

V
(± 1

2
)

α2 V
(− 1

2
)

a1 〉=CL

(

α
(1)
3 , α

(1)
2 ± b(1)

4
, α

(1)
1 − b(1)

4
|b(1)
)

CL

(

α̂
(2)
3 , α̂

(2)
2 ± 1

4b̂(2)
, α̂

(2)
1 − 1

4b̂(2)
|b̂(2)
)

= A±
4 C

(∓)
R (α3;α2, α1|b)

where

A±
4 =

2
(

πµLγ
(

2b2

1−b2

))

Q−α123+b/2±b/2
2b

(

πMγ
(

b2−1
2

))

b(α123−1/2±1/2)

1−b2 γ
(

−2b2

1−b2

)

γ
(

b2+1
2

)

(

(πµ
2

)

γ
(

b2+1
2

))
Q−α

b
b−(1∓1)

(

2
1−b2

)
1
2
±1

.

As in all our previous computations, it is straight forward to show that the functions

A±
4 may be factorized into a product of three α-dependent factors N , up to the familiar

α-independent term (4.22) , i.e.

N (0)
ᾱ3

N (± 1
2
)

α2 N (− 1
2
)

α1 A±
4 = 2κ(b) .
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Combining these results we conclude once more that eq. (4.20) holds, with the familiar

κ(b) and a factor ̟(0,±1/2,−1/2) = 1.

Next let us consider two correlation functions containing the field Φ
( 3
2
)

α . In this case

in order to express the correlators in terms of the structure constants (4.25), (4.26) one

should use the Ward identities [29, 45]

〈G−nϕ
R
3 ϕ2(z, z̄)ϕ

R
1 〉 = ǫ 〈ϕR

3 ϕ2(z, z̄)Gnϕ
R
1 〉+

∞
∑

k=− 1
2

(

n+1/2
k+1/2

)

zn−k〈ϕR
3 Gkϕ2(z, z̄)ϕ

R
1 〉,

∞
∑

p=0

(

1
2
p

)

z
1
2
−p 〈ϕR

3 Gp−kϕ2(z, z̄)ϕ
R
1 〉 =

∞
∑

p=0

(

1
2
−k
p

)

(−z)p 〈Gp+k− 1
2
ϕR
3 ϕ2(z, z̄)ϕ

R
1 〉

− ǫ
∞
∑

p=0

(

1
2
−k
p

)

(−z) 1
2
−k−p〈ϕR

3 ϕ2(z, z̄)Gpϕ
R
1 〉 ,

where ϕR
i denotes a R field and ǫ is the parity of the NS field. Similar Ward identities

apply to the fermion η. With the help of these identities one can see that the simplest

correlator with Φ( 3
2
) has only a few non-vanishing terms

〈Φ(± 1
2
)

ᾱ3
Φ(0)
α2

Φ
( 3
2
)

α1 〉 = Ω−2
3
2

(α1) 〈Φ
(± 1

2
)

ᾱ3
Φ(0)
α2

(

2P−2
1 L−1G0L̄−1Ḡ0 +

1

2
(Q+ 2P1)

2G− 1
2
Ḡ− 1

2

+P−1
1 (Q+ 2P1)(L−1G0Ḡ−1 +G−1L̄−1Ḡ0)

)

Φ
( 1
2
)

α1 〉,

so that

〈Φ(± 1
2
)

ᾱ3
Φ(0)
α2

Φ
( 3
2
)

α1 〉= i

Ω2
3
2

(α1)

(

(∆3 −∆2 −∆1)−
(

Q

2
+ P1

)

(P1 + P3)

)2

〈Φ(± 1
2
)

ᾱ3
Φ(0)
α2

Φ
(− 1

2
)

α1 〉

=
i(Q+ 2P1 + 2P2 ± 2P3)

2(Q+ 2P1 − 2P2 ± 2P3)
2

4(2P1 + 2b+ b−1)2(2P1 + b+ 2b−1)2
C(∓)(α2;α3, α1|b)

The second correlator is more complicated,

〈Φ(± 1
2
)

ᾱ3
Φ(1)
α2

Φ
( 3
2
)

α1 〉 = Ω−2
3
2

(α1)Ω
−2
1 (α2)

〈

Φ
(± 1

2
)

ᾱ3

(

G− 1
2
Ḡ− 1

2
+

(

Q

2
+ P2

)2

η− 1
2
η̄− 1

2
+

(

Q

2
+ P2

)

(

η− 1
2
Ḡ− 1

2
− η̄− 1

2
G− 1

2

)

)

Φ(0)
α2

×
(

2−1(Q+ 2P1)
2G−1Ḡ−1 + 2−

1
2Ω 3

2
(α1)(Q+ 2P1)(η−1Ḡ−1 − η̄−1G−1)

+2P−2
1 L−1G0L̄−1Ḡ0 +Ω2

3
2

(α1)η−1η̄−1 +
√
2Ω 3

2
(α1)P

−1
1 (η−1L̄−1Ḡ0 − η̄−1L−1G0)

+P−1
1 (Q+ 2P1)(L−1G0Ḡ−1 + S−1L̄−1Ḡ0)

)

Φ
( 1
2
)

α1

〉

.
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Using the Ward identities we arrive at

〈Φ(± 1
2
)

ᾱ3
Φ(1)
α2

Φ
( 3
2
)

α1 〉

= Ω−2
3
2

(α1)Ω
−2
1 (α2)

(

(b+ 2b−1 + 2P1)
(

2b+ b−1 + 2P1

)

(

P2 +
Q

2

)

−2(P1 ∓ P3) (∆3 −∆2 −∆1 − 1/2) + 2(2P1 +Q)(∆3 − 2∆2 −∆1)

+2

(

P2 +
Q

2

)

(∆3 −∆2 −∆1)− (P1 ∓ P3)(2P1 +Q)

(

P2 +
Q

2

)

)2

〈Φ(± 1
2
)

α3 Φ(0)
α2

Φ
( 1
2
)

α1 〉

=
(2P1 + 2P2 ± 2P3 + 3b+ b−1)2(2P1 + 2P2 ± 2P3 + b+ 3b−1)2 C(±)(α2;α3, α1|b)
8(2P1 + 2P2 ∓ 2P3 +Q)−2(2P2 + b+ b−1)2(2P1 + 2b+ b−1)2(2P1 + b+ 2b−1)2

.

Within double Liouville theory we find

〈V(± 1
2
)

ᾱ3
V
(0)
α2

V
( 3
2
)

α1 〉 = CL(α
(1)
3 ± b(1)

4
, α

(1)
2 , α

(1)
1 +

3b(1)

4
|b(1))

CL(α̂
(2)
3 ± 1

4b̂(2)
, α̂

(2)
2 , α̂

(2)
1 +

3

4b̂(2)
|b̂(2)) = A±

5 C
(∓)
R (α2;α3, α1|b)

〈V(± 1
2
)

ᾱ3
V
(1)
α2

V
( 3
2
)

α1 〉 = CL(α
(1)
3 ± b(1)

4
, α

(1)
2 +

b(1)

2
, α

(1)
1 +

3b(1)

4
|b(1))

CL(α̂
(2)
3 ± 1

4b̂(2)
, α̂

(2)
2 +

1

2b̂(2)
, α̂

(2)
1 +

3

4b̂(2)
|b̂(2)) = A±

6 C
(±)
R (α2;α3, α1|b),

where

A±
5 =

(

πµLγ
(

2b2

1−b2

))

Q−α−3b/2∓b/2
2b

(

πMγ
(

b2−1
2

))

b(a+3/2±1/2)

1−b2 γ
(

−2b2

1−b2

)

γ
(

b2+1
2

)

(

(πµ
2

)

γ
(

b2+1
2

))
Q−α

b
b3±1

(

2
1−b2

)
9
2
±1

×(Q+ 2P1 + 2P2 ± 2P3)
2(Q+ 2P1 − 2P2 ± 2P3)

2

8 (2P1 + 2b+ b−1)2(2P1 + b+ 2b−1)2

and

A±
6 = −

(

πµLγ
(

2b2

1−b2

))

Q−α−5b/2∓b/2
2b

(

πMγ
(

b2−1
2

))

b(a+5/2±1/2)

1−b2 γ
(

−2b2

1−b2

)

γ
(

b2+1
2

)

(

(πµ
2

)

γ
(

b2+1
2

))
Q−α

b
b5±1

(

2
1−b2

)
13
2
±1

(2P1+2P2 ∓ 2P3 +Q)2(2P1+2P2 ± 2P3 + 3b+ b−1)2(2P1+2P2 ± 2P3 + b+ 3b−1)2

32 (2P2 + b+ b−1)2(2P1 + 2b+ b−1)2(2P1 + b+ 2b−1)2

Comparing with the correlators from the first part of the computation in N=1 Liouville

theory we obtain,

N (± 1
2
)

ᾱ3
N (0)
α2

N ( 3
2
)

α1 A
±
5 = 2κ(b)

(Q+ 2P1 + 2P2 ± 2P3)
2(Q+ 2P1 − 2P2 ± 2P3)

2

8 (2P1 + 2b+ b−1)2(2P1 + b+ 2b−1)2
,

N (± 1
2
)

ᾱ3
N (1)
α2

N ( 3
2
)

α1 A
±
6 = 4κ(b)

(2P1+ 2P2 ∓ 2P3 +Q)2(2P1+ 2P2 ± 2P3 + 3b+ b−1)2(2P1+ 2P2 ± 2P3 + b+ 3b−1)2

32 (2P2 + b+ b−1)2(2P1 + 2b+ b−1)2(2P1 + b+ 2b−1)2
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so that we verified two additional cases of eq. (4.20) with ̟(±1/2, 0, 3/2) = −i and

̟(±1/2, 1, 3/2) = 1. This concludes the tests of our main correspondence (4.16).

5 Outlook and conclusions

The main result of this work is our formula (4.16) that relates fields in the product of N=1

Liouville field theory with a free fermion to primaries in double Liouville field theory. We

have tested this proposal through a number of non-trivial calculations. The correspon-

dence (4.16) extends related observations in [1] to the R sector. In addition, we have been

able to normalize the fields in both R and NS sector such that the 3-point functions agree

up to a simple b-dependent factor ∼ κ. Since this factor does not depend on the fields we

insert, it can be absorbed through a normalization of the vacuum state.

Our results may be extended in a number of different directions. It clearly seems worth-

while to study the correspondence (4.16) for correlation functions e.g. on discs with non-

trivial boundary conditions or higher genus surfaces. N=1 Liouville field theory possesses

one continuous family of boundary conditions which preserve the N=1 super-conformal

algebra. Though boundary conditions in imaginary Liouville theory have not received as

much attention as the bulk model, see however [40], it seems likely that double Liouville the-

ory admits conformal boundary conditions that are parametrized by two continuous labels.

A subset of these boundary conditions should preserve the larger N=1 super-conformal

symmetry along with simple gluing conditions for the fermion η.

In an interesting recent paper [46] Gaiotto engineers a conformal interface between

the minimal models MMk and MMk−1. Gaiotto’s construction makes essential use of the

relation (1.1) between the product theory and supersymmetric minimal models. It seems

likely that a similar interface between Liouville theory and its imaginary version also exists.

Constructing this interface explicitly might be of some interest as it could provide more

insight into the relation between standard Liouville field theory and its imaginary cousin.

The main motivation for this work, however, came from the results of [2] which relate

correlators of the OSP(1|2) WZW model at level k to those of N=1 Liouville theory

with b−2 = 2k − 3. In order to compute N-point functions of primaries V ǫ
j (µ|z) in the

WZW model, one needs to calculate higher correlators in a product of N=1 Liouville field

theory with a free fermion. The latter involve N fields from the physical spectrum of the

supersymmetric Liouville theory along with N-2 degenerate ones whose insertion points

yi = yi(µν) depend on the complex parameters µν . It turns out that all these fields must

be taken from the R sector of the model. More precisely, one finds

〈
N
∏

ν=1

V ǫν
jν

(µν |zν)〉 ∼ δ2

(

N
∑

ν=1

µν

)

〈
N
∏

ν=1

1

2

(

Φ
(− 1

2
)

αν (zν)− iǫνΦ
( 1
2
)

αν (zν)

)N−2
∏

j=1

Φ
( 1
2
)

− 1
2b

(yj)〉 . (5.1)

up to some simple factors. In the present article we have argued that the correlation

functions on the right hand side can be calculated in double Liouville theory. We believe

that such a relation between the OSP(1|2) WZW model and double Liouville theory could

become a crucial ingredient in finding a supersymmetric analogue of the celebrated FZZ-

duality between the SL(2)/U(1) black hole sigma model and sine-Liouville field theory,
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much along the lines of [47]. In this context it is crucial to observe that, according to

eq. (4.16), the degenerate fields we have to insert at points yj on the right hand side of the

correspondence (5.1) are trivial in imaginary Liouville theory, i.e.

Φ
( 1
2
)

− 1
2b

(y) ∼ V− 1
2b
(y) .

Hence, the imaginary Liouville theory is merely a spectator throughout most of the com-

putations performed in [47]. Consequently, we can express correlation functions in the

OSP(1|2) WZW model through a product of sine-Liouville and imaginary Liouville theory.

It then remains to rewrite the latter in terms of a more conventional theory. We shall

return to these issues in a forthcoming paper.
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