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Abstract: We introduce the transverse momentum dependent fragmenting jet function

(TMDFJF), which appears in factorization theorems for cross sections for jets with an

identified hadron. These are functions of z, the hadron’s longitudinal momentum fraction,

and transverse momentum, p⊥, relative to the jet axis. In the framework of Soft-Collinear

Effective Theory (SCET) we derive the TMDFJF from both a factorized SCET cross

section and the TMD fragmentation function defined in the literature. The TMDFJFs

are factorized into distinct collinear and soft-collinear modes by matching onto SCET+.

As TMD calculations contain rapidity divergences, both the renormalization group (RG)

and rapidity renormalization group (RRG) must be used to provide resummed calculations

with next-to-leading-logarithm prime (NLL’) accuracy. We apply our formalism to the

production of J/ψ within jets initiated by gluons. In this case the TMDFJF can be

calculated in terms of NRQCD (Non-relativistic quantum chromodynamics) fragmentation

functions. We find that when the J/ψ carries a significant fraction of the jet energy, the pT
and z distributions differ for different NRQCD production mechanisms. Another observable

with discriminating power is the average angle that the J/ψ makes with the jet axis.
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1 Introduction

In recent years, jet physics has played a prominent role at high energy colliders, particularly

the Large Hadron Collider (LHC). Jets provide an opportunity to test our understanding

of Quantum Chromodynamics (QCD) and appear in both Standard Model and beyond

the Standard Model cross sections, making them important for searches of new physics as

well. Due to the enormous energies available at the LHC, top quarks, W±, Z0, and Higgs

bosons are frequently produced with transverse momenta much greater than their mass, and

studies of jet substructure have proved essential in identifying these highly boosted particles

when they decay hadronically [1, 2]. For all these reasons, precision jet calculations have

become increasingly important in particle physics. At the heart of analytic calculations

of jets are factorization theorems which separate jet cross sections into perturbative and

non-perturbative pieces. Non-perturbative functions such as parton distribution functions

(PDFs), fragmentation functions (FFs), and fragmenting jet functions (FJFs) offer ways

to analytically probe the structure of the proton as well as the nature of hadronization.

FJFs were first introduced in ref. [3] within the framework of Soft-Collinear Effective

Theory (SCET) [4–7]. They appear in factorization theorems for cross sections for jets

containing an identified hadron h carrying a fraction z of the jet energy (z = 2Eh/ω, where

Eh is the hadron energy and ω =
∑

i∈jet p
−
i ). Ref. [3] also showed that one can construct a
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factorization theorem in SCET for the differential cross-section dσh/dz from the inclusive

jet cross section by applying a simple replacement rule,

Ji(s, µ)→ 1

2(2π)3
Gi/h(s, z, µ)dz, (1.1)

where Ji is the standard jet function and Gi/h is a FJF. In eq. (1.1), s is the jet invariant

mass and µ is the renormalization scale. Additionally in the limit ΛQCD �
√
s we can

evaluate the FJF as a convolution of perturbative short distance coefficients and the more

commonly studied fragmentation functions (FFs).

Gi/h(s, z, µ) =
∑
j

∫ 1

z

dx

x
Ji/j(s, x, µ)Dj/h

( z
x
, µ
)

+O(Λ2
QCD/s). (1.2)

Past studies of FJFs involve the jet invariant mass [3, 8, 9] and were generalized to angular-

ities [10] in ref. [11]. In refs. [12–14] FJFs independent of jet substructure observables were

used to study the production of light quarks, heavy mesons, and quarkonia. The properties

of FJFs have also been studied in refs. [15–22]. In this work we extend FJFs to transverse

momentum dependent distributions (TMDs). Recently, TMDs have been studied exten-

sively within and outside the framework of SCET [23–31]. TMDs offer a new technology

for the study of hadron substructure in hadron colliders (TMD parton distribution func-

tions (TMDPDFs)) and hadron production (TMD fragmentation functions (TMDFFs)).

TMDPDFs have been used in SCET for studies of Higgs production in the small transverse

momentum limit at the LHC [31–36]. TMD fragmenting jet functions (TMDFJF) depend

on three kinematic variables: the jet energy, ω/2, the fraction of this energy carried by

the identified hadron, z, and the hadron transverse momentum with respect to the axis of

direction of the original parton, ph⊥. The modes that give important contributions to the

transverse momentum are

collinear-soft: pµcs ∼ ω(λr, λ/r, λ), λ = p⊥/ω

collinear: pµn ∼ ω(λ2, 1, λ), (1.3)

where collinear-soft modes are soft modes collinear to the direction of the jet axis first

introduced in ref. [37] and r ≡ tan (R/2) for jet cone size R. Similar modes are also

studied in [38]. To incorporate contributions from soft-collinear modes, we make use of

the SCET+ formalism. SCET+ and other similar extensions of SCET have been used

to study processes with multiple well-separated scales and distinct phase space regions

(e.g. [29, 37–39]).

Recent work [11, 13] shows that jet substructure observables may be able to shed light

on outstanding puzzles in the production of quarkonia such as J/ψ and Υ. Our modern

understanding of quarkonium production comes from non-relativistic QCD (NRQCD) [40],

an effective field theory that writes cross sections and decay rates for bound states of heavy

quarks as expansions in the strong coupling αs(2mc) and v, the relative velocity of the

quark-antiquark pair. NRQCD provides factorization theorems [41–44] for cross sections

in terms of perturbatively calculable short-distance pieces multiplied by non-perturbative
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long distance matrix elements (LDMEs). The perturbative piece describes the creation of

a heavy quark-antiquark pair in a given color and angular momentum state while the non-

perturbative LDMEs describe the hadronization of the heavy quark-antiquark pair into the

physical quarkonium state. The different intermediate color and angular momentum states

of the pair define different NRQCD production mechanisms for quarkonia.

Ref. [13] studied the dependence of the cross section for the production of J/ψ within

jets initiated by gluons on z, the fraction of the jet’s energy, EJ , carried by the J/ψ. The

authors showed that the z dependence is sensitive to the underlying quarkonium production

mechanism. Thus, simultaneously measuring the z and EJ dependence of the cross section

for J/ψ production within jets provides a new and independent way of extracting the values

of the LDMEs. Ref. [11] extended these results to J/ψ production in e+e− collisions where

the angularity of the jet was probed. Ref. [11] also found that NLL’ resummed analytic

calculations of the z distributions were quite different from those predicted by PYTHIA

simulations. The authors attributed this large discrepancy to an unrealistic modeling of

the shower radiation from color-octet quarkonium production mechanisms.

Intuitively, one might expect color-octet quark-antiquark intermediate states to radiate

more gluons relative to color-singlet pairs. This would result in J/ψ produced with higher

p⊥ relative to the jet axis. Also, since different color-octet production mechanisms have

different FFs in NRQCD, FJFs should be able to distinguish between the different color-

octet production mechanisms. In addition to generalizing FJFs to TMD distributions, this

paper also shows that these TMDFJFs do in fact provide discriminating power between

the different mechanisms.

In section 2, we give a definition of the TMDFJF and show how it emerges from

definitions of TMDFFs in the literature. We then perform a matching calculation at

next-to-leading order (NLO) onto SCET+ and derive a result that is completely factor-

ized into hard, collinear, collinear-soft, and ultra-soft modes. We present a calculation

of the matching coefficients Jij between the TMDFJF and the more traditionally studied

FFs. Additionally, we present a perturbative calculation of the corresponding collinear-soft

function at NLO. In section 3, we use renormalization group (RG) and rapidity renormal-

ization group (RRG) techniques to resum logarithms to next-to-leading-log-prime (NLL’)

accuracy. The TMDFJF formalism is applied to the production of J/ψ in gluon jets where

the FFs are calculated to LO in NRQCD. We find that distributions in p⊥ and z as well

as the average angle of J/ψ relative to the axis of the jet can discriminate between the

various NRQCD production mechanisms. Conclusions are given in section 4. Appendix A

gives calculational details of the matching of the TMDFJF onto the FF, appendix B has

an alternative derivation of the TMDFJF from an SCET factorization theorem for a jet

cross section, and appendix C has details about the RG and RRG evolution.

2 Transverse momentum dependent fragmenting jet function

In this section we will present the definition of the TMDFJF, connecting it with definitions

of TMDFFs from the literature. We first show the matching calculation of the TMDFJF

onto SCET+ and its factorization into pure collinear, soft-collinear, and hard pieces. We
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then present perturbative calculations of the matching coefficients, Ji/j , from matching the

pure collinear function onto the FF as well as the one-loop expression for the soft-collinear

function.

2.1 Definition and factorization

The operator definition of the quark FF is given by [45]:

Dq/h(z, µ) =
1

z

∑
X

1

2Nc
δ(ω − p−X − p−h ) Tr

[
/̄n

2
〈0|ψ(0)|Xh〉〈Xh|ψ̄(0)|0〉

]∣∣∣
pX
⊥=−ph

⊥

, (2.1)

where ψ(x) is the quark field in QCD. The TMDFF is given by a similar expression but is

unintegrated in the transverse components of the hadron momentum. It is defined by [46]

Dq/h(ph⊥, z, µ) =
1

z

∫
d2x⊥
(2π)2

∑
X

1

2Nc
δ(ω − p−X − p−h ) Tr

[
/̄n

2
〈0|ψ(0, 0, x⊥)|Xh〉〈Xh|ψ̄(0)|0〉

]
,

(2.2)

such that, ∫
d2ph⊥ Dq/h(ph⊥, z, µ) = Dq/h(z, µ). (2.3)

Here, ph⊥ is the transverse momentum of the hadron h with respect to the direction of

the original fragmenting quark. In order to identify the experimentally measured jet axis

with the direction of the parton initiating the jet, there needs to be a constraint that only

ultrasoft radiation is outside the jet. Alternative definitions of the TMDFF often involve

the transverse momentum measured with respect to different axes (e.g., the beam axis).

In order to extend this concept to identified hadrons within jets we consider the collinear

limit of eq. (2.2) by matching onto SCET where now z ≡ Eh/EJ . This yields the operator

definition of the TMDFJF

Gq/h(p⊥, z, µ) =
1

z

∑
X

1

2Nc
δ(p−Xh;r)δ

(2)(p⊥+pX⊥ ) Tr

[
/̄n

2
〈0|δω,Pχ(0)

n (0)|Xh〉〈Xh|χ̄(0)
n (0)|0〉

]
,

(2.4)

where in the equation above the states |Xh〉 corresponds to the a final state of collinear

particles within a jet, in contrast with the the state |Xh〉 in eqs. (2.1) and (2.2) which

correspond to the inclusive case. The index (0) indicates that the field has been decoupled

from the ultra-soft gluons via BPS field redefinitions

χ(0)
n,ω(x) = Y †n (x)χn(x) and A(0)

n (x) = Y †n (x)An(x)Yn(x), (2.5)

and χn ≡W †nξn is defined in terms of the collinear quark fields of SCET and the ultrasoft

and collinear Wilson lines are

Y †n (x) = P exp

(
ig

∫ ∞
0
ds n·Aus(x+sn)

)
and Wn(x) =

∑
perms

exp

( −g
n̄ · P n̄·Anx

)
. (2.6)

As we show in appendix B, the expression for the TMDFJF given in eq. (2.4) is closely

related to the FJF introduced in ref. [3].
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As discussed in the introduction, the TMDFJF receives contributions from two differ-

ent modes, collinear and colllinear-soft or csoft. In order to make the contribution of the

csoft modes explicit, we now match our expression onto SCET+,

Gq/h(p⊥, z, µ) = C†+(µ)C+(µ)
1

z

∑
X

1

2Nc
δ(p−Xh;r)δ

(2)(p⊥ + pX⊥ )

× Tr

[
/̄n

2
〈0|δω,PV † (0)

n (0)χ(0)
n (0)|Xh〉〈Xh|χ̄(0)

n (0)V (0)
n (0)|0〉

]
, (2.7)

where

V (0)
n (x) =

∑
perm

exp

( −g
n̄ · P n̄ ·A

(0)
n, cs(x)

)
, (2.8)

are Wilson lines of csoft fields (the csoft analogue of Wn) and C+(µ) are SCET+ matching

coefficients. In order to decouple the collinear fields A
(0)
n and χ

(0)
n from the csoft gluons,

we now perform field redefintions similar to those of the BPS procdure [37]

Gq/h(p⊥, z, µ) = C†+(µ)C+(µ)
1

z

∑
X

1

2Nc
δ(p−Xh;r)δ

(2)(p⊥ + pX⊥ )

× Tr

[
/̄n

2
〈0|δω,PV † (0)

n (0)U (0)
n (0)χ(0,0)

n (0)|Xh〉

× 〈Xh|χ̄(0,0)
n (0)U † (0)

n (0)V (0)
n (0)|0〉

]
, (2.9)

where

U † (0)
n (x) = P exp

(
ig

∫ ∞
0

ds n ·A(0)
n, cs(ns+ x)

)
, (2.10)

and the superscript (0, 0) denotes that the corresponding fields are decoupled from both

ultra-soft and collinear-soft modes. Having factorized our operators, we now factorize the

phase-space into collinear and collinear-soft Hilbert states.

|Xh〉 → |Xnh〉|Xcs〉, (2.11)∑
X

→
∑
Xn

∑
Xcs

, (2.12)

δ(2)(p⊥ + pX⊥ ) → δ(2)(p⊥ + pXn
⊥ + pXcs

⊥ ). (2.13)

This allows us to factorize the TMDFJF into three pieces

Gq/h(p⊥, z, µ) = H+(µ)×
[
Dq/h ⊗⊥ SC

]
(p⊥, z, µ) , (2.14)

where H+ is proportional to the square of the matching coefficient from Gq/h in SCETI to

SCET+, and Dq/h and SC are the contributions collinear and the collinear-soft modes of
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SCET+ to the TMDFJF, respectively. These are defined by

H+(µ) = (2π)2Nc C
†
+(µ)C+(µ) , (2.15)

Dq/h(pD⊥, z) ≡ 1

z

∑
Xn

1

2Nc
δ(p−Xh;r)δ

(2)(p⊥Xh;r) Tr

[
/̄n

2
〈0|δω,Pχn(0)δ(2)(PXn

⊥ + pD⊥)|Xnh〉

× 〈Xnh|χ̄n(0)|0〉
]
, (2.16)

SC(pS⊥) ≡ 1

Nc

∑
Xcs

Tr
[
〈0|V †n (0)Un(0)δ(2)(P⊥ + pS⊥)|Xcs〉〈Xcs|U †n(0)Vn(0)|0〉

]
, (2.17)

where the Tr is over Dirac and color indices in Dq/h and color indices in SC . From now on,

we drop the (0) and (0, 0) superscripts since the different collinear, soft-collinear, and ultra-

soft modes are now factorized. We also employ the following shorthand for the convolution

in the ⊥ components

Dq/h ⊗⊥ SC(p⊥) =

∫
d2p′⊥
(2π)2

Dq/h(p⊥ − p′⊥)SC(p′⊥). (2.18)

Analogously for gluon fragmentation we have

Dg/h(p⊥, z, µ) = −gµν
1

z

∑
X

ω

(d− 2)(N2
c − 1)

δ(p−Xh;r)δ
(2)(p⊥ + pX⊥ )

× 〈0|δω,PB
ν,a
n,⊥(0)δ(2)(PXn

⊥ + pD⊥)|Xh〉〈Xh|Bµ,an,⊥(0)|0〉, (2.19)

where the collinear gluon field is

Bµ
n,⊥(y) =

1

g

[
W †n(y)iDn⊥Wn(y)

]
, (2.20)

and iDn⊥ = Pµn⊥ + gAµn⊥ is the standard ⊥-collinear covariant derivative in SCET.

At this point, only the purely collinear term Di/h contains information about the

hadron h. The collinear-soft function (SC) and the hard function (H+) are universal

functions dependent on the fragmenting parton i but not on the hadron h. Additionally,

in the limit that |p⊥| � ΛQCD, we may use the operator product expansion to factorize

Di/h into short distance coefficients and the more commonly studied FFs, Dj/h, via,

Di/h(p⊥, z, µ, ν) =

∫ 1

z

dx

x
Ji/j(p⊥, x, µ, ν)Dj/h

( z
x
, µ
)

+O
(

Λ2
QCD

|p⊥|2

)
, (2.21)

where Ji/j are the short distance coefficients that do not depend on the final hadron and

can be calculated order by order in perturbation theory.

2.2 Perturbative results

The O(αs) diagrams contributing to the gluon and quark TMDFJFs are shown in figures 1

and 2, respectively. At NLO, the matching coefficients Ji/j are directly related to the

– 6 –
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(a) (b)

(c) (d)

Figure 1. Feynman diagrams that give non-scaleless contributions to the gluon TMDFJF at NLO

in αs. Diagram (b) also has a mirror image that is not explicitly shown.

Figure 2. Associated non-scaleless diagrams that contribute to the quark TMDFJF at NLO.

Again, Diagram (b) has a mirror image that is not explicitely drawn above.

matching coefficients Ii/j between TMDPDFs and the more commonly studied PDFs cal-

culated in refs. [29, 31] by the substitution Ii/j → Jj/i. See appendix A for additional

details of the matching calculation. Following ref. [31], a rapidity regulator is used to

regulate rapidity divergences in the perturbative calculation. This is implemented by first

modifying the form of the collinear and collinear-soft Wilson lines

Wn =
∑

perms

exp

(
− g w

2

n̄ · P
|n̄ · Pg|−η
ν−η

n̄ ·An
)

Vn =
∑

perms

exp

(
− g w

n̄ · P
|n̄ · Pg|−η/2
ν−η/2

n̄ ·An,cs
)
,

(2.22)
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with similar modifications to Un. This introduces a regulator η, a bookkeeping parameter

w, and a new dimensionful parameter ν. The dependence of our results on ν should of

course cancel amongst the terms in our factorization theorem. The renormalized results

for the Ji/j in the MS scheme can be written,

Ji/j(p⊥, z, µ, ν) = δijδ(1− z)δ(2)(p⊥) (2.23)

+
αsTij
π

{(
δijδ(1−z) ln

(
ω2

ν2

)
+P̄ji(z)

)
L0(p2

⊥, µ
2) + cij(z)δ(2)(p⊥),

}
,

with

P̄qq(z) = Pqq(z)− γ̄qδ(1− z) = (1 + z2)L0(1− z),

P̄gq(z) = Pgq(z) =
1 + (1− z)2

z
,

P̄qg(z) = Pqg(z) = z2 + (1− z)2,

P̄gg(z) = Pgg(z)− γ̄gδ(1− z) = 2
(1− z + z2)2

z
L0(1− z), (2.24)

and

cqq(z) =
1− z

2
, cqg(z) =

z

2
, cgg(z) = 0, cgq(z) = z(1− z), (2.25)

where Tqq = Tqg = CF , Tgg = CA, Tgq = TF , γ̄q = 3/2 and γ̄g = β0/(2CA). For convenience

we use the following shorthand notation for the vector plus-distributions,

Ln(p2
⊥, µ

2) =
1

2πµ2
Ln
(

p2
⊥
µ2

)
=

1

2πµ2

(
µ2

p2
⊥

lnn(µ2/p2
⊥)

)
+

. (2.26)

Performing the convolutions in the energy ratio parameter z we get,

Di/h(p2
⊥, z, µ, ν) = Di/h(z, µ)δ(2)(p⊥) +

αs
π

{[
TiiDi/h(z, µ) ln

(
ω2(1− z)2

ν2

)
+ f

i/h
P⊗D(z, µ)

]
L0(p2

⊥, µ
2) + f

i/h
c⊗D(z, µ)δ(2)(p⊥)

}
, (2.27)

where

f
i/h
P⊗D(z, µ) =

∑
j

{
δijTii

∫ 1

z

dx

1− x
[
pi(x)Di/h

( z
x
, µ
)
− 2Di/h (z, µ)

]

+ (1− δij)Tij
∫ 1

z

dx

x
Pji(x)Dj/h

( z
x
, µ
)}

, (2.28)

with pq(x) = (1 + x2)/x, pg(x) = 2(1− x+ x2)2/x2 and

f
i/h
c⊗D(z, µ) =

∑
j

Tij

∫ 1

z

dx

x
cij(x)Dj/h

( z
x
, µ
)
, (2.29)
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V †
n

UnU †
n

Vn An,cs
V †
n

UnU †
n

Vn An,cs

(a) (b)

Figure 3. Real gloun emission diagrams that contribute to the collinear-soft function

SiC(p⊥, z, µ, ν) at O(αs). The gluons passing through the shaded oval indicate they are contained

within the phase-space of the jet.

At NLO, the collinear-soft function, defined by eq. (2.17), receives contributions from

the two diagrams shown in figure 3. The real gluon is contained within a jet defined by a

cone or kT -type jet algorithm with cone size parameter R. A global soft funciton of similar

form has been calculated at NLO in ref. [31] and at NNLO in ref. [33] in studies of Higgs

pT spectrum. The two diagrams in figure 3 yield identical contributions and thier sum is

given by,

S
i,B(1)
C (p⊥) = +g2w2

(
eγEµ2

4π

)ε
νηCi

∫
dk+dk−dd−2k⊥

2(2π)d−1

2

k+(k−)1+η
δ(k2)δ(2)(k⊥ + p⊥) Θalg

= +
αsw

2Ci
π

eγEε

Γ(1− ε)

(
νr

µ

)η 1

η

1

2πµ2

(
µ2

p2
⊥

)1+ε+η/2

, (2.30)

where Θalg defines the jet algorithm, r ≡ tan(R/2), and Cq = CF , Cg = CA. After an

expansion in η followed by an expansion in ε and summing both diagrams we get,

Si,BC (p⊥, µ, ν) = δ(2)(p⊥) +
αsw

2Ci
π

{
2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)
+ δ(2)(p⊥)

(
1

2ε2
+

1

2ε
ln

(
µ2

r2ν2

))
− L0(p2

⊥, µ
2) ln

(
µ2

r2ν2

)
+ L1(p2

⊥, µ
2)

− π2

24
δ(2)(p⊥)

}
, (2.31)

The renormalized result (where we have now set w → 1)in the MS scheme is thus

Si,RC (p⊥, µ, ν) = δ(2)(p⊥)− αsCi
π

{
L0(p2

⊥, µ
2) ln

(
µ2

r2ν2

)
− L1(p2

⊥, µ
2) +

π2

24
δ(2)(p⊥)

}
.

(2.32)

While in general this expression receives contributions from virtual gluon emission diagrams

at NLO, these diagrams yield scaleless integrals when using this particular set of regulators.

Thus virtual diagrams are neglected and all singularities from these real emission diagrams

are interpreted as UV divergences. We also verified, using a set of regulators where such
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virtual gluons give non-zero contributions, that the result is identical.1 Note if pure dimen-

sional regularization is used for ultraviolet and infrared divergences then H+ = (2π)2Nc as

discussed in ref. [29].

3 Numerical results

3.1 Renormalization group (RG) and rapidity renormalization group (RRG)

Individual diagrams for the collinear-soft function SC and the matching coefficients Ji/j
suffer from infra-red (IR), ultra-violet (UV) and rapidity divergences (RD). We use dimen-

sional regularization and a rapidity regulator (as introduced and developed in refs. [31, 47])

to regulate these divergences. IR divergences in the collinear-soft function cancel when

summing over all diagrams. In the matching coefficients Ji/j , IR divergences cancel in the

matching of the collinear functions Di/h onto traditional FFs, Dj/h. The remaining poles

(UV and rapidity), are removed by renormalization. In addition to the scale µ introduced

by dimensional regularization our use of a rapidity regulator requires the introduction of an

additional scale, ν. With this scale are associated rapidity renormalization group (RRG)

equations which can be used to resum large logarithms by evolving each function from its

canonical scale to a common scale. Bare and renormalized quantities are related through

the following convolution with the renormalization factor Z,

FB(p⊥) = ZF (p⊥, µ, ν)⊗⊥ FR(p⊥, µ, ν), (3.1)

where F can be either Di/h or SiC and satisfies the following RG and RRG equations,

d

d lnµ
FR(p⊥, µ, ν) = γFµ (µ, ν)× FR(p⊥, µ, ν)

d

d ln ν
FR(p⊥, µ, ν) = γFν (p⊥, µ, ν)⊗⊥ FR(p⊥, µ, ν). (3.2)

Here γFµ and γFν are the anomalous dimensions associated to RG and RRG respectively

and are defined by,[
(2π)2δ(2)(p⊥)

]
× γFµ (µ, ν) = −Z−1

F (p⊥, µ, ν)⊗⊥
d

d lnµ
ZF (p⊥, µ, ν)

γFν (p⊥, µ, ν) = −Z−1
F (p⊥, µ, ν)⊗⊥

d

d ln ν
ZF (p⊥, µ, ν). (3.3)

For the renormalization factors we find,

ZD(p⊥, µ, ν) = (2π)2δ(2)(p⊥) + (4π)αsw
2CF

{
− 2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)
+

1

2ε

(
ln

(
ν2

ω2

)
+ γ̄i

)
δ(2)(p⊥)

}
(3.4)

ZSC (p⊥, µ, ν) = (2π)2δ(2)(p⊥) + (4π)αsw
2CF

{
+

2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)
+

1

2ε

(
ln

(
µ2

r2ν2

)
+

1

ε

)
δ(2)(p⊥),

}
(3.5)

1In order to verify that all IR divergences do indeed cancel, we used a gluon mass, rapidity regulator,

and dimensional regulator where diagrams with virtual gluons give non-scaleless contributions.
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The µ anomalous dimensions are found using eq. (3.3),

γDµ (ν) =
αsCi
π

(
ln

(
ν2

ω2

)
+ γ̄i

)
(3.6)

γSC
µ (ν) =

αsCi
π

ln

(
µ2

r2ν2

)
, (3.7)

For the ν anomalous dimensions, our bookkeeping parameter w plays an analogous role

to the coupling g for the case of the µ anomalous dimension, although w itself is not a

coupling, such that,

ν
∂

∂ν
w = −η

2
w, (3.8)

thus yielding

γDν (p⊥, µ) = −(8π)αsCi L0(p⊥, µ
2) (3.9)

γSC
ν (p⊥, µ) = +(8π)αsCi L0(p⊥, µ

2). (3.10)

The anomalous dimensions satisfy

γDµ (ν) + γSC
µ (ν) = γJµ =

αsCi
π

(
ln

(
µ2

r2ω2

)
+ γ̄i

)
, (3.11)

where γJ is the anomalous dimension of the unmeasured quark jet function [48] and

γDν (p⊥, µ) + γSν (p⊥, µ) = 0. (3.12)

In order to resum our results to NLL’ accuracy we evolve the purely collinear function

and the collinear-soft function from their characteristic scales where logarithms are mini-

mized to common scales in µ and ν using the RG and RRG respectively. To perform the

evolution, we first solve the Fourier transforms of both the RRG and RG equations. We

then perform the evolution using the RG and RRG before finally performing the inverse

Fourier transform. The simplest resummation procedure is, in this case, to first evolve our

collinear-soft function in RRG space and choose the common scale to be ν = νD. We then

evolve both functions in RG space to the common scale µ = ωr. Notice that SC and D
have the same characteristic renormalization scale µSC

= µD ≡ µC . The equivalence of the

virtualities of the soft and collinear modes is a defining feature of SCETII.

To make the interpretation of our plots easier, we study the quantity Gi/h(p⊥, z, µ)

which is related to the TMDFJF by the change of variables from vector transverse momenta

(p⊥) to the amplitude (p⊥ = |p⊥|). Performing the evolutions described above we find,

Gi/h(p⊥, z, µ) = (2π)2 p⊥

∫ ∞
0

db bJ0(bp⊥)USC
(µ, µSC

,mSC
)UD(µ, µD, 1) (3.13)

× VSC
(b, µSC

, νD, νSC
)FT

[
Di/h(p⊥, z, µD, νD)⊗⊥ SiC(p⊥, µSC

, νSC
)
]
,

where b is the Fourier conjugate variable of p⊥, J0 is a Bessel function of the first kind,

UF (µ, µ0,mF ) = exp (KF (µ, µ0))

(
µ0

mF

)ωF (µ,µ0)

, (3.14)

and VF (b, µ, ν, ν0) =

(
µ

µC(b)

)ηF (µ,ν,ν0)

where µC(b) = 2 exp(−γE)/b, (3.15)
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Function (F ) RG scale (µF ) RRG scale (νF ) mF

Di/h µC(b) ω n.a.

SiC µC(b) µC(b)/r νr

Table 1. Characteristic scales of the different functions in the factorization theorem.

〈OJ/ψ(3S
[1]
1 )〉 〈OJ/ψ(3S

[8]
1 )〉 〈OJ/ψ(1S

[8]
0 )〉 〈OJ/ψ(3P

[8]
0 )〉

∼ v3 ∼ v7 ∼ v7 ∼ v7

1.32 GeV3 2.24 ×10−3 GeV3 4.97× 10−2 GeV3 −1.61× 10−2 GeV5

Table 2. LDMEs for NRQCD production mechanisms. Here v is the relative velocity of cc̄ pair.

For charmonium v ∼ 0.3. For the numerical result we use central values taken from global fits in

refs. [49, 50].

are the evolution kernels resulting from solving the RG and RRG equations respectively.

The pure collinear term Di/h in eq. (3.13) involves the convolution of the perturbatively

calculated short distance coefficients and the standard fragmentation functions evolved

from their canonical scale to the canonical scale of the collinear term in momentum space,

µ = p⊥. The form of the fragmentation functions is fixed during the Fourier transforms in

eq. (3.13). The scales µF , νF and mF for each of the functions are given in table 1 and

more details of the RG and RRG evolution are provided in appendix C.

3.2 Applications to quarkonium production

In this section we apply our TMDFJF formalism to the production of quarkonium in

jets. We will focus on J/ψ production within jets initiated by gluons, though our results

can be easily generalized to Υ or other quarkonia and jets initiated by quarks. For J/ψ

production the leading production mechanism in the NRQCD v expansion is 3S
[1]
1 , where

2S+1L
[1,8]
J indicates the color and angular momentum quantum numbers of the cc̄ produced

in the short-distance process. This mechanism scales as v3, whereas the leading color-

octet mechanisms, 3S
[8]
1 , 1S

[8]
0 , and 3P

[8]
J , scale as v7. Table 2 shows this scaling along with

numerical values of the corresponding LDME extracted from the fits in refs. [49, 50] (which

we use below). The extracted LDME are consistent with the v4 suppression expected from

NRQCD. As was done for the FJF’s in ref. [11] we use the leading order NRQCD [40]

FFs for gluon fragmentation to J/ψ for each of the four mechanisms. In the αs expansion

the leading order contribution to gluon fragmentation to J/ψ via the 3S
[1]
1 mechanism

scales as αs(2mc)
3, while for 1S

[8]
0 and 3P

[8]
J the leading contribution scales as αs(2mc)

2

and for the 3S
[8]
1 mechanism the fragmentation function scales as αs(2mc). Thus for gluon

fragmentation the v4 suppression of color-octet mechanisms is compensated for by fewer

powers of αs and all four contributions are roughly the same size. Our goal is to see

if the z and p⊥ dependence of the TMDFJF can discriminate between these competing

mechanisms.

The TMDFJF as a function of p⊥ for fixed z, for z = 0.3, 0.5, 0.7, and 0.9, are shown

figures 4 and 6, for jet energies of 100 GeV and 500 GeV, respectively. In order to make it
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Figure 4. The TMDFJF as a function of the p⊥ of the J/ψ for the 3S
[1]
1 , 3S

[8]
1 , 1S

[8]
0 , 3P

[8]
J produc-

tion mechanisms where the for jet energies EJ = 100 GeV. Theoretical uncertainties are calculated

by varying the renormalization scales by factors of 1/2 and 2.

easier to view all distributions simultaneously, we have rescaled the 3S
[8]
1 , 1S

[8]
0 , 3P

[8]
J ,and

3S
[1]
1 distributions, by factors of 106, 106, 3.0 105 and 4.0 105, respectively. The same

rescaling factor is used in all eight plots in figures 4 and 6, and theoretical uncertainties

are calculated by varying the RRG and RG scales νSC
, νD, and µ by a factor of 2 and 1/2.

The central dashed lines in the figures correspond to the scale choices ν = νD = ω and

µ = ωr. Though we plot our distributions in the range 0 < p⊥ < 20 GeV, it is important

that to keep in mind that our calculations are only reliable for p⊥ ≥ 2mc = 3 GeV.

These plots show that the TMDFJF does in fact provide discriminating power amongst

the four mechanisms. For z = 0.3, all four distributions look similar for both EJ = 100 GeV

and 500 GeV. The distributions peak at roughly the same location and they have same

slope for large p⊥. For z ≥ 0.5, the color-singlet 3S
[1]
1 mechanism and the color-octet

1S
[8]
0 mechanism peak at lower values of p⊥ and fall more steeply with p⊥ than the 3S

[8]
1

and 3P
[8]
J color-octet mechanisms. The 3P

[8]
J mechanism has the peculiar feature that in

order to obtain a positive FF we need to have a negative LDME, as is found in the fits of
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Figure 5. The TMDFJF as a function of the z of the J/ψ for the 3S
[1]
1 , 3S

[8]
1 , 1S

[8]
0 ,3 P

[8]
J production

mechanisms, with p⊥ = 10 GeV for EJ = 100 and 500 GeV. Theoretical uncertainties are calculated

by varying the renormalization scales by factors of 1/2 and 2.

refs. [49, 50]. The peaks in the p⊥ distribution for the 3S
[1]
1 and 1S

[8]
0 mechanisms are at very

low p⊥ where perturbation theory is not reliable. On the other hand, the peaks of the 3S
[8]
1

and 3P
[8]
J distributions are at larger values of p⊥ ∼ 6 − 8 GeV where perturbation theory

can be trusted. The 3P
[8]
J gives a slightly harder p⊥ distribution than 3S

[8]
1 mechanism,

and both are significantly harder than the other mechanisms.

It is interesting to study the dependence of the TMDFJF as a function of z with

p⊥ fixed to be a perturbative scale. In figure 5 we plot the TMDFJF as a function of

z for p⊥ = 10 GeV for jets with energy EJ = 100 and 500 GeV. Large logarithms and

shape function effects will affect these distributions in both the z → 0 and z → 1 limits,

but our calculations should be reliable for intermediate values of z. While for z < 0.5

the distributions have similar shapes, in the range 0.5 < z < 0.9, the shapes of all four

mechanisms are different. The z dependence of the TMDFJF for fixed p⊥ can be used to

differentiate between the NRQCD production mechanisms.

The TMDFJF formalism also allows us to calculate the angle at which J/ψ are pro-

duced relative to the jet axis. The average production angle for the J/ψ is given by

〈θ〉(z) =

∫
θdθ(dσ/dθdz)∫
dθ(dσ/dθdz)

. (3.16)

Using the small angle approximation the differential cross section can be written as

dσ

dθdz
=

∫
dp⊥ δ

(
θ − 2p⊥

zω

)
dσ

dp⊥dz
. (3.17)

Substituting this into eq. (3.16) yields

〈θ〉(z) =
2
∫
dp⊥p⊥(dσ/dp⊥dz)

zω
∫
dp⊥(dσ/dp⊥dz)

. (3.18)
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Figure 6. The TMDFJF as a function of the p⊥ of the J/ψ for the 3S
[1]
1 , 3S

[8]
1 , 1S

[8]
0 ,3 P

[8]
J produc-

tion mechanisms where the for jet energies EJ = 500 GeV. Theoretical uncertainties are calculated

by varying the renormalization scales by factors of 1/2 and 2.

As discussed in appendix B, the cross section dσ/dθdz can be factorized into hard, soft

and collinear terms in SCET. In general the hard and soft contributions will not cancel

because there is a sum over partonic channels in both the numerator and denominator

of eq. (3.18). However, they will if gluon fragmentation dominates production, then the

expression above can be written as

〈θ〉(z) ∼
2
∫
dp⊥ p⊥Gg/h(p⊥, z, µ)

zω
∫
dp⊥ Gg/h(p⊥, z, µ)

≡ fhω (z), (3.19)

where Gg/h(p⊥, z, µ) is the gluon TMDFJF. Figure 7 the function f
J/ψ
ω (z) is plotted at

points z = 0.3, 0.5, 0.7, and 0.9 for ω = 2EJ = 200 GeV and 1 TeV for J/ψ with p⊥ ∈
[5, 20] GeV and p⊥ ∈ [5, 60] GeV, respectively. As was done earlier we have fixed the scale

µ = ωr. Note the typical angles are small enough that the small angle approximation

is justified. The dashed lines in figure show the results of a fit to the functional form,

C0 exp(−z C1), the values of C0 and C1 for each mechanism at each energy are shown in

table 3. Again we see that differences between the various NRQCD mechanisms become

– 15 –



J
H
E
P
1
1
(
2
0
1
6
)
1
4
4

●

●

●

●

■

■

■

■

◆

◆

◆

◆

▲

▲

▲

▲

��� ��� ��� ��� ��� ��� ���

���

����

����

����

����
���� ●

●

●

●

■

■

■

■

◆

◆

◆

◆

▲

▲

▲

▲

��� ��� ��� ��� ��� ��� ���

�

�

�

�
�
�
�

▲

Figure 7. The function f
J/ψ
ω (z) (as defined in the text) as a function of z relative to the jet axis

for each NRQCD production mechanism where the jet has EJ = ω/2 = 100 GeV(left) and 500 GeV

(right). The J/ψ is restricted to have p⊥ ∈ [5, 20] GeV in the 100 GeV jet and p⊥ ∈ [5, 60] GeV in

the 500 GeV jet.

more pronounced as z increases. This shows that the average angle does in fact yield

some discriminating power between the octet mechanisms. In particular the slope on the

semilog plot, which is determined by the parameter C1 in table 3, differs by as much as

20% between the various NRQCD mechansims for EJ = 100 GeV and and as much as 40%

for EJ = 500 GeV. Note however that 1S
[8]
0 and 3S

[1]
1 give very similar predictions for this

observable.

4 Conclusions

In this paper we introduce the transverse momentum dependent fragmenting jet function

(TMDFJF) in the framework of SCET and show how it is related to the previously intro-

duced TMDFFs and fragmenting jet functions (FJFs). TMDFJFs describe the transverse

as well as longitudinal momentum distribution of an identified hadron within a jet. TMD-

FJFs evolve with the renormalization group (RG) scale µ and obey RG equations similar

to jet functions. Using SCET+ we show that this new distribution can be further factor-

ized into soft and purely collinear terms. The purely collinear factor can be written as a

convolution of perturbatively calculable short distance coefficients and the standard FFs,

where the soft factor is given by a vacuum matrix element of product of Wilson lines. This

factorization introduces rapidity divergences that are regulated with the rapidity regulator.

We check that at NLO the regulator dependance vanishes in the final product. Associated

with rapidity divergences are rapidity renormalization group (RRG) equations. By evolv-

ing the collinear and soft terms separately using the RG and RRG equations all orders

resummation of large logarithms in the TMDFJF can be performed.

As an example we implement this formalism for the case of quarkonium production. In

the case of quarkonia the TMDFJF can be calculated in terms of the NRQCD FFs which

are perturbatively calculable at the scale 2mQ. For the gluon TMDFJF for J/ψ, we study

the p⊥ and z dependence predicted by the four production mechanisms: 3S
[1]
1 , 3S

[8]
1 , 1S

[8]
0 ,
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EJ = 100 GeV

2S+1L
[1,8]
J C0 C1

3S
[1]
1 3.92 0.92

3S
[8]
1 3.86 0.84

1S
[8]
0 3.88 0.90

3P
[8]
J 3.75 0.74

EJ = 500 GeV

2S+1L
[1,8]
J C0 C1

3S
[1]
1 3.75 1.68

3S
[8]
1 3.48 1.39

1S
[8]
0 3.66 1.64

3P
[8]
J 3.28 1.20

Table 3. Results of fits of ln (fω(z)) shown in figure 7 to the function C0 exp(−z C1).

and 3P
[8]
J . We use the leading order (in αS) NRQCD FF for each of these mechanisms,

and the RG and RRG equations are used to calculate the TMDFJFs to next-to-leading-

logarithmic-prime (NLL’) accuracy. We find that the z dependence (for fixed p⊥) is different

for all four mechanisms. We also find that the dependence on p⊥ and the average angle of

the J/ψ relative to the jet axis can discriminate between the various NRQCD production

mechanisms.
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A Matching calculation

In this appendix we provide details for the evaluation of the matching coefficients, Ji/j .
From the sum of diagrams in figures 2a) and 2b) we get:

DB(1)
q/q (p⊥, z, µ, ν) =

αsw
2CF
π

eγEε

Γ(1− ε)
( ν
ω

)η 1

2πµ2

(
µ2

p2
⊥

)1+ε

×
{

2z

(
1

1− z

)1+η

+ (1− ε)(1− z)

}
=
αsw

2CF
π

{[
− 2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)
+

1

2ε

(
ln

(
ν2

ω2

)
+

3

2

)
δ(2)(p⊥)

]
δ(1− z)− 1

2ε
Pqq(z)δ(2)(p⊥)

+

(
−δ(1− z) ln

(
ν2

ω2

)
+ P̄qq(z)

)
L0(p2

⊥, µ
2) + cqq(z)δ(2)(p⊥)

}
+O(η, ε), (A.1)
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where we define cqq(z) = (1 − z)/2. The superscripts B and R denote bare and renor-

malized quantities, respectively, and the superscript (1) indicates that this is the O(αS)

contribution. The NLO matching coefficient is given by

J R(1)
q/q (p⊥, z, µ) = DR(1)

q/q (p⊥, z, µ)−DR(1)
q/q (z, µ)δ(2)(p⊥), (A.2)

where

D
R(1)
q/q (z) = −αsCF

π
Pqq(z)

1

2ε
. (A.3)

The 1/ε pole appearing in the FF is interpreted as an infrared divergence. Although for

extracting the renormalized matching coefficients Ji/j we can ignore scaleless integrals

and interpret the finite terms as the renormalized result to that particular order, here we

are interested in the origin of the poles since this will allow us to extract the anomalous

dimensions. Performing the matching we get:

J Rq/q(p⊥, z, µ, ν) = δ(2)(p⊥)δ(1− z) +
αsCF
π

{(
δ(1− z) ln

(
ω2

ν2

)
+ P̄qq(z)

)
L0(p2

⊥, µ
2)

+ cqq(z)δ(2)(p⊥)

}
. (A.4)

For the coefficient Jq/g we simply perform the replacement z → (1− z) and drop δ(z) and

plus-distributions since these functions are always integrated for values of z greater than

zero. Thus

J Rq/g(p⊥, z, µ, ν) =
αsCF
π

{
P̄gq(z)L0(p2

⊥, µ
2) + cqg(z)δ(2)(p⊥)

}
, (A.5)

where cqg(z) = cqq(1− z) = z/2. For the gluon splitting we get

DB(1)
g/g (p⊥, z, µ, ν) =

αsCAw
2

π

eεγE

Γ(1− ε)
( ν
ω

)η 1

2πµ2

(
µ2

p2
⊥

)1+ε

× 2

[
z

(1− z)1+η
+

(1− z)

z
+ z(1− z)

]
. (A.6)

Expanding in η and ε we have

DB(1)
g/g (p⊥, z, µ, ν) =

αsCAw
2

π

[
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

]
(A.7)

×
[
− 2

η
δ(1− z)− ln

(
ν2

ω2

)
δ(1− z) + P̄gg(z)

]
=
αsCAw

2

π

{[
− 2

η

(
− 1

2ε
δ(2)(p⊥) + L0(p2

⊥, µ
2)

)
+

1

2ε

(
ln

(
ν2

ω2

)
+

1

2
β0

)
δ(2)(p⊥)

]
δ(1− z)

− 1

2ε
Pgg(z)δ(2)(p⊥) +

(
−δ(1− z) ln

(
ν2

ω2

)
+ P̄gg(z)

)
L0(p2

⊥, µ
2)

}
,
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and since the corresponding FF is given by:

DR
g/g(z) = δ(1− z)− αsCA

π
Pgg(z)

1

2ε
+O(α2

s), (A.8)

where the 1/ε pole is an infrared divergence, we have

J Rg/g(p⊥, z, µ, ν) = δ(2)(p⊥)δ(1− z) +
αsCA
π

(
δ(1− z) ln

(
ω2

ν2

)
+ P̄gg(z)

)
L0(p2

⊥, µ
2).

(A.9)

A similar calculation yields the kernel Jg/q,

DB(1)
g/q (p⊥, z, µ, ν) =

αsTFw
2

π

eεγE

Γ(2− ε)
1

2πµ2

(
µ2

p2
⊥

)1+ε

×
(
P̄qg(z)− ε

)
(A.10)

=
αsTFw

2

π

{
− 1

2ε
P̄qg(z)δ(2)(p⊥) + L0(p2

⊥, µ
2)P̄qg(z) + cgq(z)δ(2)(p⊥)

}
,

where cgq(z) = z(1− z). Performing the matching and since the corresponding FF is

DR
g/q(z) = −αsTF

π
Pqg(z)

1

2ε
+O(α2

s), (A.11)

where again the 1/ε pole is an infrared divergence, we get

J Rg/q(p⊥, z, µ, ν) = δ(2)(p⊥)δ(1− z) +
αsTF
π

{
L0(p2

⊥, µ
2)P̄qg(z) + cgq(z)δ(2)(p⊥)

}
. (A.12)

B Factorization theorems in SCET

Much like the standard FJFs, TMDFJFs appear in factorization theorems for cross-sections

that are differential in z, the fraction of a jet initiating parton’s energy carried by an iden-

tified hadron, and p⊥, the transverse momenta of the hadron measured from the parton’s

momentum. It is shown in ref. [48] that the cross-section for the production of two jets in

electron-positron annihilation can be written as,

dσ = dσ(0)H2(µ)× SΛ(µ)× Jqn(ω, µ)× J q̄n̄(ω, µ) , (B.1)

where dσ(0) is the Born cross section, H2(µ) is the hard function resulting from matching a

2-jet operator in full QCD onto the corresponding SCET operators, SΛ(µ) is a soft function

that describes soft scale cross-talk between the jets and the soft out-of-jet radiation is

constrained via Eout < Λ, and Jn(ω, µ) is a jet function that describes collinear radiation

within a jet in the n̂ direction that has energy EJ = ω/2 (here ω = Ecm). The jet function

can be defined in SCET as

Jqn(ω, µ) =

∫
dk+

2π

∫
d4x exp(ik+x−/2)

1

NC
Tr

[
/̄n

2
〈0|δω,P δ0,P⊥χn(x)χ̄n(0)|0〉

]
. (B.2)
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To study jets with identified hadrons, we insert the following expression for the identity

1 =
∑
X

|X〉〈X| =
∑
X

∑
h∈Hi

∫
dzd2ph⊥
2(2π)3

|Xh(z,ph⊥)〉〈Xh(z,ph⊥)| (B.3)

Jqn(ω, µ) =
∑
h∈Hi

∫
dzd2p⊥
2(2π)3

∫
dk+

2π

∫
d4x exp(ik+x−/2)

1

NC

×
∑
X

Tr

[
/̄n

2
〈0|δω,P δ0,P⊥χn(x)|Xh(z,p⊥)〉〈Xh(z,p⊥)|χ̄n(0)|0〉

]
. (B.4)

where h is an identified hadron within the jet. Performing the integration over x, which is

the Fourier conjugate of the residual momenta, and the residual k+ yields

Jqn(ω, µ) =
∑
h∈Hi

∫
zdzd2p⊥ Gq/h(p⊥, z, µ). (B.5)

Insetrting this back to eq. (B.1) we have

dσ =
∑
h∈Hi

∫
zdzd2p⊥ dσ

(0)H2(µ)× SΛ(µ)× Gq/h(p⊥, z, µ)× J q̄n̄(ω, µ). (B.6)

which directly implies

dσi/h

dzd2p⊥
= dσ(0)H2(µ)× SΛ(µ)× Gq/h(p⊥, z, µ)× J q̄n̄(ω, µ) +O

(
Λ

EJ
,

Λ2
QCD

p2
⊥

)
. (B.7)

This suggests a rather powerful rule (already known to be true for the standard FJFs)

for constructing the factorization theorem in SCET with identified hadron with measured

transverse momenta:

dσi/h

dzd2p⊥
= dσ

[
J i(ω, µ)→ Gi/h(p⊥, z, µ)

]
. (B.8)

C Solving the RG and RRG equations

C.1 RRG evolution

The RRG equation in momentum space for a renormalized function FR is given by

ν
d

dν
FR(p⊥, µ, µ/ν) = γFν (p⊥, µ, ν)⊗⊥ FR(p⊥, µ, µ/ν) , (C.1)

where the anomalous dimension can be written in the following generic form,

γFν (p⊥, µ, ν) = ΓFν [αs]L0(p2
⊥, µ

2) + γFν [αs]δ
(2)(p⊥) , (C.2)

where

δ(2)(p⊥) =
1

π
δ(p2
⊥) . (C.3)
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Function (F ) ΓFν γFν Γ0
F γ0

F

Di/h −(8π)αsCi +O(α2
s) O(α2

s) 0 4Ci(ln(ν2/ω2) + γ̄i)

SiC (8π)αsCi +O(α2
s) O(α2

s) 4Ci 0

Table 4. Values of the cusp and non-cup parts of the anomalous dimensions for the collinear and

collinear-soft functions.

The cusp and non-cusp parts of the anomalous dimension are listed in table 4. Taking the

Fourier transform of eq. (C.1) yields,

d

d ln ν
F̃ (b, µ, ν) = γ̃Fν (b, µ, ν)F̃ (b, µ, ν) , (C.4)

where the Fourier conjugate of p⊥ is b where |b| = b and using the form of the anomalous

dimensions in eq. (3.9), (3.10) gives that,

γ̃Fν (b, µ, ν) = −ΓFν [αs]

(2π)2
ln

(
µ

µC(b)

)
+
γFν [αs]

(2π)2
, (C.5)

where µC(b) = 2e−γE/b. Integrating eq. (C.4) yields

F̃ (b, µ, ν) = F̃ (b, µ, ν0)VF (b, µ, ν, ν0) , (C.6)

where

VF (b, µ, ν, ν0) = exp
[
GF (µ, ν, ν0)

]( µ

µC

)ηF (µ,ν,ν0)

, (C.7)

with

GF (µ, ν, ν0) =
γFν [αs]

(2π)2
ln

(
ν

ν0

)
and ηF (µ, ν, ν0) = −ΓFν [αs]

(2π)2
ln

(
ν

ν0

)
. (C.8)

C.2 RG evolution

Evolution in µ begins with the following RG equation

d

d lnµ
FR(p⊥, µ, ν) = γFµ (µ, ν)× FR(p⊥, µ, ν) , (C.9)

where the anomalous dimension can be written in the generic form

γFµ (µ) = ΓFµ [α] ln

(
µ2

m2
F

)
+ γFµ [α] . (C.10)

The coefficient ΓFµ [αs] is proportional to the cusp anomalous dimension, Γcusp[αs], which

can be expanded in αs

Γcusp(αs) =

∞∑
n=0

(αs
4π

)1+n
Γnc , (C.11)
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and ΓFµ = (Γ0
F /Γ

0
c)Γcusp. The non-cusp part, γFµ [αs], has a similar expansion

γFµ [αs] =

∞∑
i=0

(αs
4π

)1+i
γiF . (C.12)

The solultion to the RGE is thus given by

FR(p⊥, µ, ν) = FR(p⊥, µ0, ν)UF (µ, µ0,mF ) , (C.13)

where again

UF (µ, µ0,mF ) = exp (KF (µ, µ0))

(
µ0

mF

)ωF (µ,µ0)

(C.14)

and the exponents KF and ωF are given in terms of the anomalous dimension,

KF (µ, µ0) = 2

∫ α(µ0)

α(µ)

dα′

β(α′)
ΓF (α′)

∫ α′

α(µ0)

dα′′

β(α′′)
+

∫ α(µ0)

α(µ)

dα′

β(α′)
γF (α′), (C.15)

ωF (µ, µ0) = 2

∫ α(µ0)

α(µ)

dα′

β(α′)
ΓF (α′), (C.16)

and for up to NLL and NLL’ accuracy are given by

KF (µ, µ0)=− γ
0
F

2β0
ln r− 2πΓ0

F

(β0)2

[
r−1+r ln r

αs(µ)
+

(
Γ1
c

Γ0
c

−β1

β0

)
1−r+ln r

4π
+

β1

8πβ0
ln2 r

]
, (C.17)

ωF (µ, µ0)=− Γ0
F

jFβ0

[
ln r +

(
Γ1
c

Γ0
c

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (C.18)

where r = α(µ)/α(µ0) and βn are the coefficients of the QCD β-function,

β(αs) = µ
dαs
dµ

= −2αs

∞∑
n=0

(αs
4π

)1+n
βn . (C.19)
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